
17.1. \DIRECT" FORCE LAWS 1ElectromagnetismAs suggested in the previous Chapter, Electricity andMagnetism (or E&M, as they are known in the trade)are \weird" phenomena because the palpable forces theygenerate on objects seem to come from nowhere | noth-ing is \touching" the objects and yet they are moved.The related fact that we are unable to wilfully exert sig-ni�cant electrical or magnetic forces directly on objectsaround us using any combination of muscles or mechani-cal devices removes E&M still further from our personalsensory experience and thus makes them seem \weirder."Even the most seasoned E&M veteran still experiencesa sense of primitive wonder when a magnet on top of thetable moves \by magic" under the inuence of anothermagnet underneath the table.On the one hand, this makes E&M a fun subject tostudy. On the other hand, it makes E&M hard to teach,because it will never make \common sense" like nuts-and-bolts Mechanics. C'est la vie. As our �rst forayinto \Weird Science" it is only �tting that E&M shouldbe something we know is there but that we will just haveto get used to instead of ever hoping to rectify it withour common sense. It is, of course, \common sense" itselfthat is defective. . . .17.1 \Direct" Force LawsThere are two fundamental kinds of forces in E&M: theelectrostatic force between two charges and the magneticforce between two currents. Let's start with the easy one.17.1.1 The Electrostatic ForceFirst, what is a charge? We don't know! But then, wedon't know what a mass is, either, except in terms ofits behaviour: a mass resists acceleration by forces andattracts other masses with a gravitational force. Theanalogy is apt, in the sense that electrical charges exertforces on each other in almost exactly the same way asmasses do, except for two minor di�erences, which I willcome to shortly. Recall Newton's Universal Law ofGravitation in its most democratic form: the force ~FG12acting on body #2 (massm2) due to body #1 (massm1)is ~FG12 = �G m1m2r212 r̂12where G is the Universal Gravitational Constant, r12 isthe distance between the two masses and r̂12 is the unitvector pointing from #1 to #2. The electrostatic force

~FE12 between two charges q1 and q2 is of exactly the sameform: ~FE12 = kE q1q2r212 r̂12 (1)where kE is some constant to make all the units come outright [allow me to sidestep this can of worms for now!].Simple, eh? This force law, also known as the Coulomb

Figure 17.1 Comparison of the gravitational force ~FG12 onmass m2 due to mass m1 and the electrostatic (Coulomb)force ~FE12 on electric charge q2 due to charge q1.force,1 has almost the same qualitative earmarks as theforce of gravity: the force is \central" | i.e. it acts alongthe line joining the centres of the charges | and dropso� as the inverse square of the distance between them; itis also proportional to each of the charges involved. [Wecould think of mass as a sort of \gravitational charge"in this context.]So what are the \minor di�erences?" Well, the �rst oneis in the sign. Both \coupling constants" (G and kE) arede�ned to be positive; therefore the � sign in the �rstequation tells us that the gravitational force ~FG12 on mass#2 is in the opposite direction from the unit vector r̂12pointing form #1 to #2 | i.e. the force is attractive,back toward the other body. All masses attract all othermasses gravitationally; there are (so far as we know) norepulsive forces in gravity. Another way of putting itwould be to say that \there are no negative masses." Bycontrast, electric charges come in both positive (+) and1The Coulomb force law, like the \coulomb" unit forelectric charge (to be discussed later), is named after a guycalled Coulomb; E&M units are littered with the names ofthe people who invented them or discovered related phe-nomena. Generally I �nd this sort of un-mnemonic namingscheme counterdidactic, but since we have no experientialreferents in E&M it's as good a scheme as any.



2negative (�) varieties; moreover, Eq. (1) tells us that theelectrical force ~FE12 on charge #2 is in the same directionas r̂12 as long as the product q1q2 is positive | i.e.charges of like sign [both + or both �] repelwhereas unlike charges attract.This means that a positive charge and a negative chargeof equal magnitude will get pulled together until their netcharge is zero, whereupon they \neutralize" each otherand cease interacting with all other charges. To a goodapproximation, this is just what happens! Most macro-scopic matter is electrically neutral, meaning that it hasthe positive and negative charges pretty much piled ontop of each other.2The second \minor di�erence" between electrical andgravitational forces is in their magnitudes. Of course,each depends on the size of the \coupling constant" [Gfor gravity vs. kE for electrostatics] as well as the sizesof the \sources" [m1 and m2 for gravity vs. q1 and q2for electrostatics] so any discussion of magnitude has tobe in reference to \typical" examples. Let's choose theheaviest stable elementary particle that has both chargeand mass: the proton, which constitutes the nucleus ofa hydrogen atom.3 A proton has a positive charge ofe = 1:60217733(49)� 10�19 coulomb (abbreviated C)(2)[Don't worry about what a coulomb is just yet.] and amass of mp = 1:6726231(10)� 10�27 kg (3)For any separation distance r, two protons attract eachother (gravitationally) with a force whose magnitude FGis G m2pkE e2 times the magnitude FE of the (electrostatic)force with which they repel each other. This ratio has anastonishing value of 0:80915�10�36 | the gravitationalattraction between the two protons is roughly a trilliontrillion trillion times weaker than the electrostatic repul-sion. The electrical force wins, hands down. However, inspite of its phenomenal puniness, gravity can overcomeall other forces if enough mass gets piled up in one place.This feature will be discussed at length later on, but fornow it is time to discuss the basic magnetic force.2On a microscopic scale there are serious problems withthis picture. As the two charges get closer together, the forcegrows bigger and bigger and the work required to pull themapart grows without limit; in principle, according to Classi-cal Electrodynamics, an in�nite amount of work can be per-formed by two opposite charges that are allowed to \fall into"each other, providing we can set up a tiny system of leversand pulleys. Worse yet, the \self energy" of a single charge ofvanishingly small size becomes in�nite in the classical limit.But I am getting ahead of myself again. . . .3Now I am 'way ahead of myself; but we do need some-thing for an example here!

17.1.2 The Magnetic ForceAs we shall see later, the \Laws" of E&M are so sym-metric between electrical and magnetic phenomena thatmost Physicists are extremely frustrated by the factthat no one has ever been able to conclusively demon-strate the existence (other than theoretical) of a \mag-netic charge" (also known as a magnetic monopole ). Ifthere were magnetic charges, the magnetic force equationwould look just like the gravitational and electrostaticforce laws above and this part of the description wouldbe nice and simple. Alas, this is not the case. Static(constant in time) magnetic phenomena are generatedinstead by the steady motion of electric charges, rep-resented by a current I (the charge passing some �xedpoint per unit time) in some direction ~̀. Usually (atleast at the outset) we talk about currents owing in aconductor (e.g. a wire) through which the charges arefree to move with minimal resistance. Then ~̀ is a vectorlength pointing along the wire, or (if the wire is curved)d~̀ is an in�nitesimal element of the wire at some point.We may then think in terms of a \current element" Id~̀.One such current element I1d~̀1 exerts a magnetic forced~FM12 on a second current element I2d~̀2 at a distance~r12 (the vector from #1 to #2) given byd~FM12 = kM I1I2r212 d~̀2 � (d~̀1 � r̂12) (4)where kM is yet another unspeci�ed constant to makeall the units come out right [just wait!] and again r̂12 isthe unit vector de�ning the direction from #1 to #2.

Figure 17.2 The magnetic force d~FM12 on current elementI2d~̀2 due to current element I1d~̀1.This ugly equation (4) does give us some importantqualitative hints about the force between two current-carrying wires: the force between any two elements ofwire drops o� as the inverse square of the distance be-tween them, just like the gravitational and electrostatic



17.2. FIELDS 3forces [although this isn't much use in guessing the forcebetween real current-carrying wires, which don't come inin�nitesimal lengths] and the force is in a direction per-pendicular to both wires. In fact, if we are patient we cansee which way the magnetic forces will act between twoparallel wires: we can visualize a distance vector ~r fromthe �rst wire (#1) over to the second wire (#2); let itbe perpendicular to both for convenience. The \right-hand rule" will then tell us the direction of (d~̀1� r̂12):if we \turn the screw" in the sense of cranking throughthe angle from d~̀1 to r̂12), a right-handed screw [theconventional kind] would move in the direction labelledd~B12 in Fig. 17.2. This is the direction of (d~̀1 � r̂12).Now if we crank d~̀2 into d~B12, the turn of the screw willcause it to head back toward the �rst wire! Simple, eh?Seriously, no one is particularly enthused over this equa-tion! All anyone really retains from this intricate exerciseis the following pair of useful rules:1. Two parallel wires with electrical currents owingin the same direction will attract each other.2. Two parallel wires with electrical currents owingin opposite directions will repel each other.Nevertheless, electrical engineers and designers of elec-tric motors and generators need to know just what sortsof forces are exerted by one complicated arrangement ofcurrent-carrying wires on another; moreover, once it hadbeen discovered that moving charges create this weirdsort of action-at-a-distance, no one wanted to just giveup in disgust and walk away from it. What can we possi-bly do to make magnetic calculations manageable? Bet-ter yet, is there any way to make this seem more simple?17.2 FieldsIn Classical Mechanics we found several conceptual aidsthat not only made calculations easier by skipping overinessential details but also made it possible to carryaround the bare essence of Mechanics in our heads ina small number of compact \Laws." This is generallyregarded as a good thing, although of course we pay aprice for every entrenched paradigm | we may lose theability (if we ever had it!) to \see things as they are"without �ltering our experience through models. I willleave that debate to the philosophers, psychologists andmystics; it is true even in Physics, however, that themore successful the paradigm the bigger the blind spotit creates for alternative descriptions of the same phe-nomena. This bothers most Physicists, too, but there

doesn't seem to be a practical alternative; so we con-tent ourselves with maintaining an awareness of our ownsystematic prejudices.Perhaps the best example of this from the days of \Clas-sical" Physics [i.e. before Relativity and Quantum Me-chanics rained confusion down on all of us] is the inven-tion of the Electric and Magnetic Fields, written~E and ~B, respectively. The idea of fields is to breakdown the nasty problems described in the previous Sec-tion into two easier parts:1. First, calculate the field due to the source chargeor current.2. Then calculate the force on a test charge or currentdue to that field.This also makes it a lot easier to organize our calcula-tions in cases where the sources are complicated arraysof charges and/or currents. Here's how it works:17.2.1 The Electric FieldThe electric field ~E at any point in space is de�nedto be the force per unit test charge due to all the othercharges in the universe. That is, there is probably no\test charge" q there to experience any force, but if therewere it would experience a force~FE = q ~E (5)Note that since the force is a vector, ~E is a vector �eld.Since by de�nition ~E is there even if there isn't any testcharge present, it follows that there is an electric �eld atevery point in space, all the time! [It might be prettyclose to zero, but it's still there!]4Is the electric field real? No. Yes. You decide.5 Thisparadigm makes everything so much easier that mostPhysicists can't imagine thinking about E&M any otherway. Does this blind us to other possibilities? Undoubt-edly.A single isolated electric \source" charge Q [I am la-belling it di�erently from my \test" charge q just to avoidconfusion. Probably it won't work.] generates a spheri-cally symmetric electric �eld~E = kE Qr2 r̂ (6)4We often try to represent this graphically by drawing\lines of force" that show which way ~E points at various po-sitions; unfortunately it is di�cult to draw in ~E at all pointsin space. I will discuss this some more in a later Section.5De�ne \real."



4at any point in space speci�ed by the vector distance ~rfrom Q to that point. That is, the �eld ~E is radial [inthe direction of the radius vector] and has the same mag-nitude E at all points on an imaginary spherical surfacea distance r from Q.It might be helpful to picture the acceleration of gravityas a similar vector �eld:~g = �G MEr2 r̂ (7)| i.e. ~g always points back toward the centre of theEarth (mass ME) and drops o� as the inverse square ofthe distance r from the centre of the Earth.17.2.2 The Magnetic FieldAny current element Id~̀ contributes d~B to the magnetic�eld ~B at a given point in space:d~B = kM I d~̀ � r̂r2 (8)where r̂ is the unit vector in the direction of ~r, the vectordistance from the current element to the point in spacewhere the magnetic �eld is being evaluated. Eq. (8) isknown as the Law of Biot and Savart. It is stillnot perfectly transparent, I'm sure you will agree, but itbeats Eq. (4)!

Figure 17.3 The magnetic �eld d~B at position ~r due to acurrent element Id~̀ at the origin.17.2.3 SuperpositionWhile it may seem obvious, it bears saying that the elec-tric �elds due to several di�erent \source" charges or themagnetic �elds due to several di�erent \source" currentelements are just added together (vectorially, of course)to make the net ~E or ~B �eld. Horrible as it might seem,this might in principle not be true | we might have

to \add up" such �elds in some hopelessly more com-plicated way. But it didn't turn out that way in thisuniverse. Lucky us!17.2.4 The Lorentz ForceWe can now put the second part of the procedure [calcu-lating the forces on a test charge due to known fields]into a very compact form combining both the electricand the magnetic forces into one equation. If a particlewith charge q and mass m moves with velocity ~v in thecombination of a uniform electric �eld ~E and a uniformmagnetic �eld ~B, the net force acting on the particle isthe Lorentz Force, which can be written (in one setof units) ~F = q �~E + ~vc � ~B� ; (9)where (for now) we can think of c as just some constantwith units of velocity.If ~E = 0 and ~v is perpendicular to ~B, the Lorentz forceis perpendicular to both ~B and the momentum ~p = m~v.The force will deect the momentum sideways, changingits direction but not its magnitude.6 As ~p changes direc-tion, ~F changes with it to remain ever perpendicular tothe velocity | this is an automatic property of the crossproduct | and eventually the orbit of the particle closesback on itself to form a circle. In this way the mag-netic �eld produces uniform circular motion withthe plane of the circle perpendicular to both ~v and ~B.Using Newton's Second Law and a general knowledgeof circular motion, one can derive a formula for the ra-dius of the circle (r) in terms of the momentum of theparticle (p = mv), its charge (q) and the magnitude ofthe magnetic �eld (B). In \Gaussian units" (grams, cen-timeters, Gauss) the formula reads7r = pcqB : (10)6A force perpendicular to the motion does no work on theparticle and so does not change its kinetic energy or speed |recall the general qualitative features of circular motionunder the inuence of a central force.7In \practical" units the formula readsr [cm] = p [MeV/c]0:3 B [kG] q [electron charges]where cm are (as usual) centimeters, MeV/c are millions of\electron volts" divided by the speed of light (believe it ornot, a unit of momentum!) and kG (\kilogauss") are thou-sands of Gauss. I only mention this now because I will useit later on and because it illustrates the madness of electro-magnetic units | see next Section!



17.3. POTENTIALS AND GRADIENTS 5

Figure 17.4 Path of a charged particle with momentum ~pin a uniform, static magnetic �eld ~B perpendicular to ~p.It is also interesting to picture qualitatively what willhappen to the particle if an electric �eld ~E is then ap-plied parallel to ~B: since ~E accelerates the charge inthe direction of ~E, which is also the direction of ~B, andsince ~B only produces a force when the particle movesperpendicular to ~B, in e�ect the \perpendicular partof the motion" is unchanged (circular motion) while the\parallel part" is unrestricted acceleration. The pathin space followed by the particle will be a spiral withsteadily increasing \pitch":

Figure 17.5 Path of a charged particle in parallel ~E and~B �elds.

17.2.5 \Field Lines" and FluxIn Fig. 17.4 the uniform magnetic �eld is pictured asa forest of little parallel arrows of equal length, equallyspaced. Something like this is always necessary if wewant to make a visual representation of ~B, but it leavesa lot to be desired. For instance, a uniform magnetic �eldhas the same magnitude and direction at every point inspace, not just where the lines are drawn. Moreover, aswe have seen, the magnetic force, if any, is never in thedirection of the \lines of ~B" but rather perpendicular tothem, as shown in Fig. 17.4.Nevertheless, the visual appeal of such a graphical repre-sentation in terms of \�eld lines" is so compelling that awhole description of E&M has been developed in termsof them. In that description one speaks of \lines perunit area" as a measure of the strength of an electric ormagnetic �eld. The analogy is with hydrodynamics, theow of incompressible uids, in which we may actuallysee \lines" of uid ow if we drop packets of dye in thewater.In uid dynamics there is actually \stu�" owing, atransfer of mass that has momentum and density. Inthat context one naturally thinks of the flux of ma-terial through imaginary surfaces perpendicular to theow8 and indeed ~B is sometimes referred to as the mag-netic ux per unit (perpendicular) area.By the same token, if \lines" of ~B pass through a surfaceof area A normal (perpendicular) to ~B, then we can(and do) talk about the magnetic flux � through thesurface; � has units of magnetic �eld times area. If wewant, we can turn this around and say that a magnetic�eld has units of ux per unit area.Even though we rarely take this \lines of ~B" businessliterally, it makes such a good image that we make con-stant use of it in handwaving arguments. Moreover, theconcept of magnetic flux is well ensconced in modernE&M terminology.17.3 Potentials and GradientsRecall from Mechanics that if we move a particle avector distance d~̀ under the inuence of a force ~F , thatforce does dW = ~F � d~̀ worth of work on the particle| which appears as kinetic energy. Etc. If the force is8For instance, the ux of a river past a �xed point mightbe measured in gallons per minute per square meter of areaperpendicular to the ow. A hydroelectric generator will in-tercept twice as many gallons per minute if it presents twiceas large an area to the ow. And so on.



6due to the action of an electric �eld ~E on a charge q, thework done is dW = q ~E � d~̀. This work gets \stored up"as potential energy V as usual: dV = �dW . Just as wede�ned ~E as the force per unit charge, we now de�ne theelectric potential � to be the potential energy perunit charge, viz.dV = q d� where d� = �~E � d~̀ (11)or, summing the contributions from all the in�nitesimalelements ~̀ of a �nite path through space in the presenceof electric �elds,9 � � � Z ~E � d~̀ (12)When multiplied by q, � gives the potential energy ofthe charge q in the electric �eld ~E.Just as we quickly adapted our formulation ofMechan-ics to use energy (potential and kinetic) as a startingpoint instead of force, in E&M we usually �nd it eas-ier to start from �(~r) as a function of position (~r) andderive ~E the same way we did in Mechanics:~E � � ~r� (13)where, as before,10~r � x̂ @@x + ŷ @@y + ẑ @@z (14)The most important example is, of course, the electricpotential due to a single \point charge" Q at the origin:�(~r) = kE Qr (15)Note that �(r) ! 0 as r ! 0, as discussed in the previousfootnote. This is a convenient convention. I will leave itas an exercise for the enthusiastic reader to show that~r�1r� = � r̂r2 :Electric potential is most commonly measured in volts(abbreviated V) after Count Volta, who made the �rstuseful batteries. We often speak of the \voltage" of a9Note that, just as in the case of the mechanical potentialenergy V , the zero of � is chosen arbitrarily at some point inspace; we are really only sensitive to di�erences in potential.However, for a point charge it is conventional to choose anin�nitely distant position as the zero of the electrostatic po-tential, so that �(r) for a point charge Q is the work requiredto bring a unit test charge up to a distance r away from Q,starting at in�nite distance.10Remember the metaphor of ~r� as the \slope" of a \hill"whose height is given by �(~r).

battery or an appliance. [The latter does not ordinarilyhave any electric potential of its own, but it is designed tobe powered by a certain \voltage." A light bulb wouldbe a typical case in point.] The volt is actually sucha familiar unit that eletric �eld is usually measured inthe derivative unit, volts per meter (V/m). It really istime now to begin discussing units | what are thoseconstants kE and kM , for instance? But �rst I have onelast remark about potentials.The electrostatic potential � is often referred to as theScalar Potential, which immediately suggests thatthere must be such a thing as a Vector Potentialtoo. Just so. The Vector Potential ~A is used tocalculate the magnetic �eld ~B but not quite as simplyas we get ~E from ~r�. In this case we have to take the\curl" of ~A to get ~B:~B = ~r� ~A: (16)Never mind this now, but we will get back to it later.17.4 UnitsWhen Physicists are working out problems \formally"(that is, trying to understand \how things behave") theyare usually only concerned with deriving a formula whichdescribes the behaviour, not so much with getting \num-bers" out of the formula. This is why we can tolerate somuch confusion in the details of the alternate electro-magnetic unit systems. We never actually calculate any\answers" that an engineer could use to build deviceswith; we simply derive a formula for such calculations,preferably in a form as free of speci�c units as possible,and leave the practical details up to the engineer (whomay be us, later).So I have left the unspeci�ed \coupling constants" kEand kM unde�ned while we talked about the qualitativebehaviour of electric and magnetic �elds. Now we �nallyhave to assign some units to all these weird quantities.The history of units in E&M is a long horror story. Itisn't even very entertaining, at least to my taste. Numer-ous textbooks provide excellent summaries of the di�er-ent systems of units used in E&M [there are at leastthree!] but even when one understands perfectly thereis not much satisfaction in it. Therefore I will provideonly enough information on E&M units to de�ne the un-avoidable units one encounters in everyday modern lifeand to allow me to go on to the next subject.As long as electric and magnetic �elds are not both in-volved in the same problem, one can usually stick tofamiliar units expressed in a reasonably clear fashion.Let's discuss them one at a time.



17.4. UNITS 717.4.1 Electrical UnitsI will give the old-fashioned version of this saga, in whichone picks either Volts or Coulombs as the \fundamen-tal" unit and derives the rest from that. Today the Am-pere [A] is actually the most basic unit; it is de�ned tobe the current required to ow in both of two \very long"parallel wires 1 m apart in order to give a magnetic forceper unit length of exactly 2� 10�7 N/m acting on eachwire. No, I'm not kidding. Then the Coulomb [C] isde�ned as the electric charge that ows past any pointin 1 s when a steady current of 1 A is maintained in awire. I.e. we have 1 C = 1 A-s. Anyway, I will startwith Coulombs because it is more mnemonic.Coulombs and VoltsAs indicated in Eq. (2), electric charge is usually mea-sured in coulombs (abbreviated C). If we take thisas a fundamental unit, we can analyze the de�nitionof the volt (V) by reference to Eq. (11): moving acharge of q = 1 C through an electric potential di�er-ence �� = 1 V produces a potential energy di�erence of�V = 1 J. Thereforea volt is a joule per coulomb.If we prefer to think of the volt as a more fundamentalunit, we can turn this around and say thata coulomb is a joule per volt.However, I think the former is a more comfortable de�-nition.Electron VoltsWe can also take advantage of the fact that Nature sup-plies electric charges in integer multiples of a �xed quan-tity of charge11 to de�ne some more \natural" units. Forinstance, the electric charge of an electron is �e [wheree is the charge of a proton, de�ned in Eq. (2)]. An elec-tron volt (eV) is the kinetic energy gained by an elec-tron [or any other particle with the same size charge]when it is accelerated through a one volt (1 V) electricpotential. Moving a charge of 1 C through a potentialof 1 V takes 1 J of work (and will produce 1 J of kineticenergy), so we know immediately from Eq. (2) that1 eV = 1:60217733(49)� 10�19 J (17)This is not much energy if you are a toaster, but foran electron (which is an incredibly tiny particle) it is11This is what we mean when we say that charge isquantized.

enough to get it up to a velocity of 419.3828 km/s, whichis 0.14% of the speed of light! Another way of lookingat it is to recall that we can express temperature in en-ergy units using Boltzmann's constant as a conversionfactor. You can easily show for yourself that 1 eV isequivalent to a temperature of 11,604 degrees Kelvin orabout 11,331�C. So in the microscopic world of electronsthe eV is a pretty convenient (or \natural") unit. Butnot in the world of toasters and light bulbs. So let's getback to \conventional" units.AmperesElectric currents (the rate at which charges pass a �xedpoint in a wire, for instance) have dimensions of chargeper unit time. If the coulomb is our chosen unit forelectric charge and we retain our fondness for seconds asa time unit, then current must be measured in coulombsper second. We call these units amperes or Amps [ab-breviated A] after a Frenchman named Amp�ere. Thus1A [ampere] � 1C/s [coulomb per second] (18)I have a problem with Amps. It makes about as muchsense to give the coulomb per second its own name as itwould to make up a name for meters per second. No onefrets over the complexity of expressing speed in m/s orkph or whatever | in fact it serves as a good reminderthat velocity is a rate of change of distance with time |but for some reason we feel obliged to give C/s their ownname. Ah well, it is probably because all this electricalstu� is so weird.12 Whatever the reason, we are stuckwith them now!The Coupling ConstantWe are now ready to de�ne our electrical \coupling con-stant" kE . Referring to Eq.(15) we have� [V ] = kE Q [C]r [m]which we can rearrange to readkE = � [V ] � r [m]Q [C]Thus kE must have dimensions of felectric potentialtimes distance per unit chargeg; we can pick units ofV-m/C to stick with convention. This still doesn't tellus the value of kE . This must be measured. The resultis kE = 8:98755 � � � � 109 V-m/C (19)12And also, I suspect, because people were looking for agood way to honour the great Physicist Amp�ere and all thebest units were already taken.



817.4.2 Magnetic UnitsGauss vs. TeslaThere are two \accepted" units for the magnetic �eld~B: gauss [abbreviated G] and tesla [abbreviated T].Needless to say, both are named after great E&M re-searchers. The former is handy when describing weakmagnetic �elds | for instance, the Earth's magnetic�eld is on the order of 1 G | but the unit that goesbest with our selected electrical units (because it is de-�ned in terms of meters and coulombs and seconds) isthe tesla. Fortunately the conversion factor is simple:1 T � 10,000 G.The tesla is also de�ned in terms of the weber [W](named after guess whom), a conventional unit of mag-netic ux. The de�nition is1 T � 1 W/m2 or 1 W = 1 T � 1 m2if you're interested. So referring back to Eq. (8), we haveB [tesla] = kM I [A] d`[m](r[m])2which we can rearrange to readkM = B [tesla] (r [m])2I [A] d` [m]so that kM must have dimensions of magnetic ux perunit current per unit length or units of W/A-m. Its valueis again determined by experiment:kM = 107 W/A-m (20)I will leave it as an exercise for the student to plug thesecoupling constants back into the equations where theyappear and show that everything is, though weird, di-mensionally consistent.


