17.1. “DIRECT” FORCE LAWS

Electromagnetism

As suggested in the previous Chapter, Electricity and
Magnetism (or £&M, as they are known in the trade)
are “weird” phenomena because the palpable forces they
generate on objects seem to come from nowhere — noth-
ing is “touching” the objects and yet they are moved.
The related fact that we are unable to wilfully exert sig-
nificant electrical or magnetic forces directly on objects
around us using any combination of muscles or mechani-
cal devices removes £& M still further from our personal
sensory experience and thus makes them seem “weirder.”
Even the most seasoned £&M veteran still experiences
a sense of primitive wonder when a magnet on top of the
table moves “by magic” under the influence of another
magnet underneath the table.

On the one hand, this makes £&M a fun subject to
study. On the other hand, it makes £& M hard to teach,
because it will never make “common sense” like nuts-
and-bolts Mechanics. C’est la vie. As our first foray
into “Weird Science” it is only fitting that £& .M should
be something we know is there but that we will just have
to get used to instead of ever hoping to rectify it with
our common sense. It is, of course, “common sense” itself
that is defective. . ..

17.1 “Direct” Force Laws

There are two fundamental kinds of forces in E&M: the
electrostatic force between two charges and the magnetic
force between two currents. Let’s start with the easy one.

17.1.1 The Electrostatic Force

First, what is a charge? We don’t know! But then, we
don’t know what a mass is, either, except in terms of
its behaviour: a mass resists acceleration by forces and
attracts other masses with a gravitational force. The
analogy is apt, in the sense that electrical charges exert
forces on each other in almost exactly the same way as
masses do, except for two minor differences, which I will
come to shortly. Recall Newton’s UNIVERSAL LAW OF
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GRAVITATION in its most democratic form: the force F',
acting on body #2 (mass m2) due to body #1 (mass m;)
is
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where G is the Universal Gravitational Constant, ryo is
the distance between the two masses and 7> is the unit
vector pointing from #1 to #2. The electrostatic force

F‘i between two charges ¢q; and g» is of exactly the same
form: 5
13"12 = kg % T12 (1)
T2
where kg is some constant to make all the units come out
right [allow me to sidestep this can of worms for nowl].

Simple, eh? This force law, also known as the CouLoMB
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Figure 17.1 Comparison of the gravitational force F';, on
mass mo due to mass my and the electrostatic (Coulomb)

)
force F';, on electric charge ¢» due to charge ¢;.

FORCE,! has almost the same qualitative earmarks as the
force of gravity: the force is “central” — i.e. it acts along
the line joining the centres of the charges — and drops
off as the inverse square of the distance between them; it
is also proportional to each of the charges involved. [We
could think of mass as a sort of “gravitational charge”
in this context.

So what are the “minor differences?” Well, the first one
is in the sign. Both “coupling constants” (G and kg) are
defined to be positive; therefore the — sign in the first

equation tells us that the gravitational force f‘i on mass
#2 is in the opposite direction from the unit vector 71,
pointing form #1 to #2 — i.e. the force is attractive,
back toward the other body. All masses attract all other
masses gravitationally; there are (so far as we know) no
repulsive forces in gravity. Another way of putting it
would be to say that “there are no negative masses.” By
contrast, electric charges come in both positive (+) and

!The CouLOMB FORCE law, like the “coulomb” unit for
electric charge (to be discussed later), is named after a guy
called Coulomb; £&M units are littered with the names of
the people who invented them or discovered related phe-
nomena. Generally I find this sort of un-mnemonic naming
scheme counterdidactic, but since we have no experiential
referents in £&M it’s as good a scheme as any.



negative (—) varieties; moreover, Eq. (1) tells us that the
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electrical force F';, on charge #2 is in the same direction
as 712 as long as the product ¢;¢> is positive — i.e.

charges of like sign [both + or both —] repel
whereas unlike charges attract.

This means that a positive charge and a negative charge
of equal magnitude will get pulled together until their net
charge is zero, whereupon they “neutralize” each other
and cease interacting with all other charges. To a good
approximation, this is just what happens! Most macro-
scopic matter is electrically neutral, meaning that it has
the positive and negative charges pretty much piled on
top of each other.?

The second “minor difference” between electrical and
gravitational forces is in their magnitudes. Of course,
each depends on the size of the “coupling constant” [G
for gravity vs. kg for electrostatics] as well as the sizes
of the “sources” [m; and mo for gravity vs. ¢ and ¢
for electrostatics] so any discussion of magnitude has to
be in reference to “typical” examples. Let’s choose the
heaviest stable elementary particle that has both charge
and mass: the proton, which constitutes the nucleus of
a hydrogen atom.® A proton has a positive charge of

e = 1.60217733(49) x 10~"? coulomb (abbreviated C)
(2)
[Don’t worry about what a coulomb is just yet.] and a

mass of
m, = 1.6726231(10) x 107%" kg (3)

For any separation distance r, two protons attract each

other (gravitationally) with a force whose magnitude F
2

is ,?E—meé’ times the magnitude Fr of the (electrostatic)
force with which they repel each other. This ratio has an
astonishing value of 0.80915 x 1036 — the gravitational
attraction between the two protons is roughly a trillion
trillion trillion times weaker than the electrostatic repul-
sion. The electrical force wins, hands down. However, in
spite of its phenomenal puniness, gravity can overcome
all other forces if enough mass gets piled up in one place.
This feature will be discussed at length later on, but for

now it is time to discuss the basic magnetic force.

20On a microscopic scale there are serious problems with
this picture. As the two charges get closer together, the force
grows bigger and bigger and the work required to pull them
apart grows without limit; in principle, according to Classi-
cal Electrodynamics, an infinite amount of work can be per-
formed by two opposite charges that are allowed to “fall into”
each other, providing we can set up a tiny system of levers
and pulleys. Worse yet, the “self energy” of a single charge of
vanishingly small size becomes infinite in the classical limit.
But I am getting ahead of myself again. ...

3Now I am ’way ahead of myself; but we do need some-
thing for an example here!

17.1.2 The Magnetic Force

As we shall see later, the “Laws” of £&M are so sym-
metric between electrical and magnetic phenomena that
most Physicists are extremely frustrated by the fact
that no one has ever been able to conclusively demon-
strate the existence (other than theoretical) of a “mag-
netic charge” (also known as a magnetic monopole ). If
there were magnetic charges, the magnetic force equation
would look just like the gravitational and electrostatic
force laws above and this part of the description would
be nice and simple. Alas, this is not the case. Static
(constant in time) magnetic phenomena are generated
instead by the steady motion of electric charges, rep-
resented by a current I (the charge passing some fixed
point per unit time) in some direction . Usually (at
least at the outset) we talk about currents flowing in a
conductor (e.g. a wire) through which the charges are
free to move with minimal resistance. Then £ is a vector
length pointing along the wire, or (if the wire is curved)
df is an infinitesimal element of the wire at some point.
We may then think in terms of a “current element” I de.

One such current element Ildzl exerts a magnetic force

o M -
dF', on a second current element I,df€, at a distance
712 (the vector from #1 to #2) given by
- M Il Iz = e N
dF12 = kM ’[‘T de X (d£1 X 7“12) (4:)
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where kjs is yet another unspecified constant to make
all the units come out right [just wait!] and again 7y» is
the unit vector defining the direction from #1 to #2.
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Figure 17.2 The magnetic force dF';5 on current element
I>dls due to current element I1d¥{;.

This ugly equation (4) does give us some important
qualitative hints about the force between two current-
carrying wires: the force between any two elements of
wire drops off as the inverse square of the distance be-
tween them, just like the gravitational and electrostatic



17.2.  FIELDS

forces [although this isn’t much use in guessing the force
between real current-carrying wires, which don’t come in
infinitesimal lengths] and the force is in a direction per-
pendicular to both wires. In fact, if we are patient we can
see which way the magnetic forces will act between two
parallel wires: we can visualize a distance vector ¥ from
the first wire (#1) over to the second wire (#2); let it
be perpendicular to both for convenience. The “RIGHT-
HAND RULE” will then tell us the direction of (le X F12):
if we “turn the screw” in the sense of cranking through
the angle from df€; to 712), a right-handed screw [the
conventional kind] would move in the direction labelled
dBy, in Fig. 17.2. This is the direction of (d€; x f12).
Now if we crank dZ2 into dBlz, the turn of the screw will
cause it to head back toward the first wire! Simple, eh?

Seriously, no one is particularly enthused over this equa-
tion! All anyone really retains from this intricate exercise
is the following pair of useful rules:

1. Two parallel wires with electrical currents flowing
in the same direction will attract each other.

2. Two parallel wires with electrical currents flowing
in opposite directions will repel each other.

Nevertheless, electrical engineers and designers of elec-
tric motors and generators need to know just what sorts
of forces are exerted by one complicated arrangement of
current-carrying wires on another; moreover, once it had
been discovered that moving charges create this weird
sort of action-at-a-distance, no one wanted to just give
up in disgust and walk away from it. What can we possi-
bly do to make magnetic calculations manageable? Bet-
ter yet, is there any way to make this seem more simple?

17.2 Fields

In Classical Mechanics we found several conceptual aids
that not only made calculations easier by skipping over
inessential details but also made it possible to carry
around the bare essence of Mechanics in our heads in
a small number of compact “Laws.” This is generally
regarded as a good thing, although of course we pay a
price for every entrenched paradigm — we may lose the
ability (if we ever had it!) to “see things as they are”
without filtering our experience through models. I will
leave that debate to the philosophers, psychologists and
mystics; it is true even in Physics, however, that the
more successful the paradigm the bigger the blind spot
it creates for alternative descriptions of the same phe-
nomena. This bothers most Physicists, too, but there

doesn’t seem to be a practical alternative; so we con-
tent ourselves with maintaining an awareness of our own
systematic prejudices.

Perhaps the best example of this from the days of “Clas-
sical” Physics [i.e. before Relativity and Quantum Me-
chanics rained confusion down on all of us] is the inven-
tion of the ELECTRIC and MAGNETIC FIELDS, written
E and B, respectively. The idea of FIELDS is to break
down the nasty problems described in the previous Sec-
tion into two easier parts:

1. First, calculate the FIELD due to the source charge
or current.

2. Then calculate the force on a test charge or current
due to that FIELD.

This also makes it a lot easier to organize our calcula-
tions in cases where the sources are complicated arrays
of charges and/or currents. Here’s how it works:

17.2.1 The Electric Field

The ELECTRIC FIELD E at any point in space is defined
to be the force per unit test charge due to all the other
charges in the universe. That is, there is probably no
“test charge” q there to experience any force, but if there
were it would experience a force

Fp =qF (5)
Note that since the force is a vector, E is a vector field.

Since by definition E is there even if there isn’t any test
charge present, it follows that there is an electric field at
every point in space, all the time! [It might be pretty
close to zero, but it’s still there!]*

Is the ELECTRIC FIELD real? No. Yes. You decide.® This
paradigm makes everything so much easier that most
Physicists can’t imagine thinking about £& M any other
way. Does this blind us to other possibilities? Undoubt-
edly.

A single isolated electric “source” charge @ [I am la-
belling it differently from my “test” charge ¢ just to avoid
confusion. Probably it won’t work.] generates a spheri-
cally symmetric electric field

(6)

“We often try to represent this graphically by drawing
“lines of force” that show which way E points at various po-
sitions; unfortunately it is difficult to draw in E at all points
in space. I will discuss this some more in a later Section.

SDefine “real.”
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at any point in space specified by the vector distance 7
from @ to that point. That is, the field E is radial [in
the direction of the radius vector] and has the same mag-
nitude E at all points on an imaginary spherical surface
a distance r from Q.

It might be helpful to picture the acceleration of gravity
as a similar vector field:

g=-G=Li (7)

— i.e. g always points back toward the centre of the
Earth (mass Mg) and drops off as the inverse square of
the distance r from the centre of the Earth.

17.2.2 The Magnetic Field

Any current element [ df contributes dB to the magnetic
field B at a given point in space:

Ide x 7

dB = ky —; (8)

r
where 7 is the unit vector in the direction of #, the vector
distance from the current element to the point in space
where the magnetic field is being evaluated. Eq. (8) is
known as the LAW OF BIOT AND SAVART. It is still
not perfectly transparent, I'm sure you will agree, but it
beats Eq. (4)!

dB

Figure 17.3 The magnetic field dB at position 7 due to a
current element Idf at the origin.

17.2.3 Superposition

While it may seem obvious, it bears saying that the elec-
tric fields due to several different “source” charges or the
magnetic fields due to several different “source” current
elements are just added together (vectorially, of course)
to make the net E or B field. Horrible as it might seem,
this might in principle not be true — we might have

to “add up” such fields in some hopelessly more com-
plicated way. But it didn’t turn out that way in this
universe. Lucky us!

17.2.4 The Lorentz Force

We can now put the second part of the procedure [calcu-
lating the forces on a test charge due to known FIELDS]
into a very compact form combining both the electric
and the magnetic forces into one equation. If a particle
with charge ¢ and mass m moves with velocity ¢ in the
combination of a uniform electric field E and a uniform
magnetic field B , the net force acting on the particle is
the LORENTZ FORCE, which can be written (in one set
of units)

F:q<E+%xB), 9)
where (for now) we can think of ¢ as just some constant
with units of velocity.

If E =0 and @ is perpendicular to B, the Lorentz force
is perpendicular to both B and the momentum P =mv.
The force will deflect the momentum sideways, changing
its direction but not its magnitude.® As P changes direc-
tion, F changes with it to remain ever perpendicular to
the velocity — this is an automatic property of the cross
product — and eventually the orbit of the particle closes
back on itself to form a circle. In this way the mag-
netic field produces UNIFORM CIRCULAR MOTION with
the plane of the circle perpendicular to both ¥ and B.

Using Newton’s SECOND LAw and a general knowledge
of circular motion, one can derive a formula for the ra-
dius of the circle (r) in terms of the momentum of the
particle (p = mwv), its charge (¢) and the magnitude of
the magnetic field (B). In “Gaussian units” (grams, cen-
timeters, Gauss) the formula reads”

_ pe

’I‘—qB. (10)

A force perpendicular to the motion does no work on the
particle and so does not change its kinetic energy or speed —
recall the general qualitative features of CIRCULAR MOTION
under the influence of a CENTRAL FORCE.

"In “practical” units the formula reads

p[MeV/c]
0.3 B [kG] g [electron charges]

rlem] =

where cm are (as usual) centimeters, MeV /c are millions of
“electron volts” divided by the speed of light (believe it or
not, a unit of momentum!) and kG (“kilogauss”) are thou-
sands of Gauss. I only mention this now because I will use
it later on and because it illustrates the madness of electro-
magnetic units — see next Section!



17.3. POTENTIALS AND GRADIENTS
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Figure 17.4 Path of a charged particle with momentum p
in a uniform, static magnetic field B perpendicular to p.

It is also interesting to picture qualitatively what will
happen to the particle if an electric field E is then ap-
plied parallel to B: since E accelerates the charge in
the direction of E‘, which is also the direction of B , and
since B only produces a force when the particle moves
perpendicular to B, in effect the “perpendicular part
of the motion” is unchanged (circular motion) while the
“parallel part” is unrestricted acceleration. The path
in space followed by the particle will be a spiral with
steadily increasing “pitch”:

Figure 17.5 Path of a charged particle in parallel E and
B fields.

17.2.5 “Field Lines” and Flux

In Fig. 17.4 the uniform magnetic field is pictured as
a forest of little parallel arrows of equal length, equally
spaced. Something like this is always necessary if we
want to make a visual representation of B , but it leaves
alot to be desired. For instance, a uniform magnetic field
has the same magnitude and direction at every point in
space, not just where the lines are drawn. Moreover, as
we have seen, the magnetic force, if any, is never in the
direction of the “lines of B” but rather perpendicular to
them, as shown in Fig. 17.4.

Nevertheless, the visual appeal of such a graphical repre-
sentation in terms of “field lines” is so compelling that a
whole description of £&M has been developed in terms
of them. In that description one speaks of “lines per
unit area” as a measure of the strength of an electric or
magnetic field. The analogy is with hydrodynamics, the
flow of incompressible fluids, in which we may actually
see “lines” of fluid flow if we drop packets of dye in the
water.

In fluid dynamics there is actually “stuff” flowing, a
transfer of mass that has momentum and density. In
that context one naturally thinks of the FLUX of ma-
terial through imaginary surfaces perpendicular to the
flow® and indeed B is sometimes referred to as the mag-
netic flux per unit (perpendicular) area.

By the same token, if “lines” of B pass through a surface
of area A normal (perpendicular) to B, then we can
(and do) talk about the MAGNETIC FLUX ® through the
surface; ® has units of magnetic field times area. If we
want, we can turn this around and say that a magnetic
field has units of flux per unit area.

Even though we rarely take this “lines of B” business
literally, it makes such a good image that we make con-
stant use of it in handwaving arguments. Moreover, the
concept of MAGNETIC FLUX is well ensconced in modern
E& M terminology.

17.3 Potentials and Gradients

Recall from MECHANICS that if we move a particle a
vector distance d€ under the influence of a force f‘, that
force does dW = F' - df worth of work on the particle
— which appears as kinetic energy. Etc. If the force is

8For instance, the flux of a river past a fixed point might
be measured in gallons per minute per square meter of area
perpendicular to the flow. A hydroelectric generator will in-
tercept twice as many gallons per minute if it presents twice
as large an area to the flow. And so on.



due to the action of an electric field E on a charge ¢, the
work done is dW = qE - df. This work gets “stored up”
as potential energy V as usual: dV = —dW. Just as we
defined E as the force per unit charge, we now define the
ELECTRIC POTENTIAL ¢ to be the potential energy per
unit charge, viz.

dp = —E-d€  (11)

dV = qd¢ where

or, summing the contributions from all the infinitesimal
elements £ of a finite path through space in the presence
of electric fields,”

¢z—/E-dZ (12)

When multiplied by ¢, ¢ gives the potential energy of
the charge ¢ in the electric field E.

Just as we quickly adapted our formulation of MECHAN-
ICS to use energy (potential and kinetic) as a starting
point instead of force, in £&M we usually find it eas-
ier to start from ¢(7) as a function of position (#) and
derive E the same way we did in MECHANICS:

= —

B = -V (13)
where, as before,'?
= 0 .0 .0

The most important example is, of course, the electric
potential due to a single “point charge” ) at the origin:

" Q
o) = kp (15)
Note that ¢(rr) — 0 asr — 0, as discussed in the previous
footnote. This is a convenient convention. I will leave it

as an exercise for the enthusiastic reader to show that

Electric potential is most commonly measured in volts
(abbreviated V) after Count Volta, who made the first
useful batteries. We often speak of the “voltage” of a

9Note that, just as in the case of the mechanical potential
energy V, the zero of ¢ is chosen arbitrarily at some point in
space; we are really only sensitive to differences in potential.
However, for a point charge it is conventional to choose an
infinitely distant position as the zero of the electrostatic po-
tential, so that ¢(r) for a point charge @ is the work required
to bring a unit test charge up to a distance r away from @,
starting at infinite distance.

10Remember the metaphor of 6¢ as the “slope” of a “hill”
whose height is given by ¢(7).

battery or an appliance. [The latter does not ordinarily
have any electric potential of its own, but it is designed to
be powered by a certain “voltage.” A light bulb would
be a typical case in point.] The volt is actually such
a familiar unit that eletric field is usually measured in
the derivative unit, volts per meter (V/m). It really is
time now to begin discussing units — what are those
constants kg and kj;, for instance? But first I have one
last remark about potentials.

The electrostatic potential ¢ is often referred to as the
SCALAR POTENTIAL, which immediately suggests that
there must be such a thing as a VECTOR POTENTIAL
too. Just so. The VECTOR POTENTIAL A is used to
calculate the magnetic field B but not quite as simply
as we get E from V¢. In this case we have to take the
“curl” of A to get B:

B = VxA. (16)

Never mind this now, but we will get back to it later.

17.4 Units

When Physicists are working out problems “formally”
(that is, trying to understand “how things behave”) they
are usually only concerned with deriving a formula which
describes the behaviour, not so much with getting “num-
bers” out of the formula. This is why we can tolerate so
much confusion in the details of the alternate electro-
magnetic unit systems. We never actually calculate any
“answers” that an engineer could use to build devices
with; we simply derive a formula for such calculations,
preferably in a form as free of specific units as possible,
and leave the practical details up to the engineer (who
may be us, later).

So I have left the unspecified “coupling constants” kg
and kj,; undefined while we talked about the qualitative
behaviour of electric and magnetic fields. Now we finally
have to assign some units to all these weird quantities.

The history of units in £&M is a long horror story. It
isn’t even very entertaining, at least to my taste. Numer-
ous textbooks provide excellent summaries of the differ-
ent systems of units used in &M [there are at least
three!] but even when one understands perfectly there
is not much satisfaction in it. Therefore I will provide
only enough information on £& M units to define the un-
avoidable units one encounters in everyday modern life
and to allow me to go on to the next subject.

As long as electric and magnetic fields are not both in-
volved in the same problem, one can usually stick to
familiar units expressed in a reasonably clear fashion.
Let’s discuss them one at a time.



17.4. UNITS

17.4.1 Electrical Units

I will give the old-fashioned version of this saga, in which
one picks either VOLTS or COULOMBS as the “fundamen-
tal” unit and derives the rest from that. Today the Am-
PERE [A] is actually the most basic unit; it is defined to
be the current required to flow in both of two “very long”
parallel wires 1 m apart in order to give a magnetic force
per unit length of exactly 2 x 10~7 N/m acting on each
wire. No, I'm not kidding. Then the CourLomB [C] is
defined as the electric charge that flows past any point
in 1 s when a steady current of 1 A is maintained in a
wire. Le. we have 1 C = 1 A-s. Anyway, I will start
with COULOMBS because it is more mnemonic.

Coulombs and Volts

As indicated in Eq. (2), electric charge is usually mea-
sured in COULOMBS (abbreviated C). If we take this
as a fundamental unit, we can analyze the definition
of the volt (V) by reference to Eq. (11): moving a
charge of ¢ = 1 C through an electric potential differ-
ence A¢ = 1V produces a potential energy difference of
AV =1 J. Therefore

a VOLT is a joule per coulomb.

If we prefer to think of the volt as a more fundamental
unit, we can turn this around and say that

a COULOMB is a joule per volt.

However, I think the former is a more comfortable defi-
nition.

Electron Volts

We can also take advantage of the fact that Nature sup-
plies electric charges in integer multiples of a fixed quan-
tity of charge!! to define some more “natural” units. For
instance, the electric charge of an electron is —e [where
e is the charge of a proton, defined in Eq. (2)]. An ELEC-
TRON VOLT (eV) is the kinetic energy gained by an elec-
tron [or any other particle with the same size charge]
when it is accelerated through a one volt (1 V) electric
potential. Moving a charge of 1 C through a potential
of 1V takes 1 J of work (and will produce 1 J of kinetic
energy), so we know immediately from Eq. (2) that

leV = 1.60217733(49) x 107 J (17)

This is not much energy if you are a toaster, but for
an electron (which is an incredibly tiny particle) it is

"This is what we mean when we say that charge is
quantized.

enough to get it up to a velocity of 419.3828 km /s, which
is 0.14% of the speed of light! Another way of looking
at it is to recall that we can express temperature in en-
ergy units using Boltzmann’s constant as a conversion
factor. You can easily show for yourself that 1 eV is
equivalent to a temperature of 11,604 degrees Kelvin or
about 11,331°C. So in the microscopic world of electrons
the eV is a pretty convenient (or “natural”) unit. But
not in the world of toasters and light bulbs. So let’s get
back to “conventional” units.

Amperes

Electric currents (the rate at which charges pass a fixed
point in a wire, for instance) have dimensions of charge
per unit time. If the COULOMB is our chosen unit for
electric charge and we retain our fondness for seconds as
a time unit, then current must be measured in coulombs
per second. We call these units AMPERES or Amps [ab-
breviated A] after a Frenchman named Ampere. Thus

1A [AMPERE] = 1C/s [cCOULOMB per second] (18)

I have a problem with Amps. It makes about as much
sense to give the coulomb per second its own name as it
would to make up a name for meters per second. No one
frets over the complexity of expressing speed in m/s or
kph or whatever — in fact it serves as a good reminder
that velocity is a rate of change of distance with time —
but for some reason we feel obliged to give C/s their own
name. Ah well, it is probably because all this electrical
stuff is so weird.'?> Whatever the reason, we are stuck
with them now!

The Coupling Constant

We are now ready to define our electrical “coupling con-
stant” kg. Referring to Eq.(15) we have

Q[C]
r [m]

¢[V] = ke

which we can rearrange to read

¢[V] - rlm]
Q[C]

Thus kg must have dimensions of {electric potential
times distance per unit charge}; we can pick units of
V-m/C to stick with convention. This still doesn’t tell
us the value of kg. This must be measured. The result
is

kp =

kg = 8.98755---x 10° V-m/C (19)

12And also, I suspect, because people were looking for a
good way to honour the great Physicist Ampere and all the
best units were already taken.



17.4.2 Magnetic Units

Gauss vs. Tesla

There are two “accepted” units for the magnetic field
B: GAuUss [abbreviated G] and TESLA [abbreviated T.
Needless to say, both are named after great E&M re-
searchers. The former is handy when describing weak
magnetic fields — for instance, the Earth’s magnetic
field is on the order of 1 G — but the unit that goes
best with our selected electrical units (because it is de-
fined in terms of meters and coulombs and seconds) is
the TESLA. Fortunately the conversion factor is simple:

1 T = 10,000 G.

The TESLA is also defined in terms of the WEBER [W]
(named after guess whom), a conventional unit of mag-
netic flux. The definition is

1T=1W/m?> o 1W=1T x 1m?
if you're interested. So referring back to Eq. (8), we have

T[A] dl[m)]
(r[m])?

B[TESLA] = kum

which we can rearrange to read

B[rESLA] (r [m])?
TTA] df [m]

k=

so that kjp; must have dimensions of magnetic flux per
unit current per unit length or units of W/A-m. Its value
is again determined by experiment:

ky = 10" W/A-m (20)

I will leave it as an exercise for the student to plug these
coupling constants back into the equations where they
appear and show that everything is, though weird, di-
mensionally consistent.



