23.1. GALILEAN TRANSFORMATIONS

Special Relativity

Let’s briefly recapitulate the situation in 1865:
MAXWELL’S EQUATIONS, which correctly described all
the phenomena of electromagnetism known in the mid-

19t Century (and then some), predicted also that elec-
tromagnetic fields should satisfy the WAVE EQUATION —
i.e., by virtue of a changing E creating B and vice versa,
the electric and magnetic fields would be able to “play
off each other” and propagate through space in the form
of a wave with all the properties of light (or its mani-
festations in shorter and longer wavelengths, which we
also term “light” when discussing electromagnetic waves
in general). Fine, so far.

But there are some unsettling implications of this “final”
explanation of light. First of all (and the focus of this
Chapter) is the omission of any reference to a medium
that does the “wiggling” as the electromagnetic wave
goes through it. Water waves propagate through water,
sound waves through air, liquid or solid, plasma waves
through plasmas, etc. This was the first time anyone
had ever postulated a wave that just propagated by it-
self through empty vacuum (or “free space,” as it is often
called in this context). Moreover, the propagation veloc-
ity of light (or any electromagnetic wave) through the
vacuum is given unambiguously by MAXWELL’S EQUA-
TIONS to be ¢ = 2.99792458 x 10® m/s, regardless of the
motion of the observer.

23.1 Galilean Transformations

So what? Well, this innocuous looking claim has some
very perplexing logical consequences with regard to rel-
ative velocities, where we have expectations that follow,
seemingly, from self-evident common sense. For instance,
suppose the propagation velocity of ripples (water waves)
in a calm lake is 0.5 m/s. If I am walking along a dock at
1 m/s and I toss a pebble in the lake, the guy sitting at
anchor in a boat will see the ripples move by at 0.5 m/s
but I will see them dropping back relative to me! That
is, I can “outrun” the waves. In mathematical terms, if
all the velocities are in the same direction (say, along ),
we just add relative velocities: if v is the velocity of the
wave relative to the water and v is my velocity relative
to the water, then v’, the velocity of the wave relative to
me, is given by v' = v —u. This common sense equation
is known as the GALILEAN VELOCITY TRANSFORMATION
— a big name for a little idea, it would seem.

With a simple diagram, we can summarize the
common-sense GALILEAN TRANSFORMATIONS (named
after Galileo, no Biblical reference):
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Figure 23.1 Reference frames of a “stationary” observer
O and an observer O’ moving in the x direction at a
velocity u relative to O. The coordinates and time of
an event at A measured by observer O are {z,y,z,t}
whereas the coordinates and time of the same event mea-
sured by O" are {z',y',2z',t'}. An object at A moving at
velocity U 4 relative to observer O will be moving at a dif-
ferent velocity @'y in the reference frame of O'. For con-
venience, we always assume that O and O’ coincide ini-
tially, so that everyone agrees about the “origin:” when
t=0andt =0, z=2',y =9 and z = 2/

First of all, it is self-evident that ¢’ = ¢, otherwise noth-
ing would make any sense at all.' Nevertheless, we in-
clude this explicitly. Similarly, if the relative motion of
O' with respect to O is only in the z direction, then
y' =y and 2z’ = z, which were true at t = ¢ = 0, must
remain true at all later times. In fact, the only coordi-
nates that differ between the two observers are x and .
After a time ¢, the distance (z') from O’ to some object
A is less than the distance (z) from O to A by an amount
ut, because that is how much closer O' has moved to A
in the interim. Mathematically, ' = z — ut.

The velocity ¥4 of A in the reference frame of O also
looks different when viewed from O' — namely, we have
to subtract the relative velocity of O’ with respect to O,
which we have labelled 4. In this case we picked @ along
I, so that the vector subtraction 1714 = ¥4 — U becomes
just vy = va, —u while vgy = wva, and v}y = va,.
Let’s summarize all these “coordinate transformations:”

!By now, this phrase should alert you to the likelihood of
error.



The GALILEAN TRANSFORMATIONS:

Coordinates:

¥ = x — ut (1)
y =y (2)
Z = z (3)
t' t (4)
Velocities:
Vi, = va, — U ()
vy, = va, (6)
vy, = wva, (7)

This is all so simple and obvious that it is hard to focus
one’s attention on it. We take all these properties for
granted — and therein lies the danger.

23.2 Lorentz Transformations

The problem is, it doesn’t work for light. Without any
stuff with respect to which to measure relative velocity,
one person’s vacuum looks exactly the same as another’s,
even though they may be moving past each other at enor-
mous velocity! If so, then MAXWELL’S EQUATIONS tell
both observers that they should “see” the light go past
them at ¢, even though one observer might be moving
at %c relative to the other!

The only way to make such a description self-consistent
(not to say reasonable) is to allow length and duration to
be different for observers moving relative to one another.
That is, 2’ and ¢’ must differ from x and ¢ not only by
additive constants but also by a multiplicative factor.

For aesthetic reasons I will reproduce here the equa-
tions that provide such coordinate transformations; the
derivation will come later.

The ubiquitous factor v is equal to 1 for vanishingly
small relative velocity w and grows without limit as
u — c¢. In fact, if u ever got as big as ¢ then -~
would “blow up” (become infinite) and then (worse yet)
become imaginary for u > c.

The LORENTZ TRANSFORMATIONS:
Coordinates:
¥ = v(z — ut) (8)
L=y 9)
2 = z (10)
uzT
to= -5 (11)
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23.3 The Luminiferous Ather

This sort of nonsense convinced most people that
MAXWELL’S EQUATIONS were wrong — or, more chari-
tably, incomplete. The obvious way out of this dilemma
was to assume that what we perceive (in our ignorance)
as vacuum is actually an extremely peculiar substance
called the “luminiferous sether” through which ordinary
“solid” matter passes more or less freely but in which
the “field lines” of electromagnetism are actual “ripples.”
(Sort of.) This recovers the rationalizing influence of a
medium through which light propagates, at the expense
of some pretty unfamiliar properties of the medium. [You
can see the severity of the dilemma in the lengths to
which people were willing to go to find a way out of it.]
All that remained was to find a way of measuring the
observer’s velocity relative to the ether.

Since “solid” objects slip more or less effortlessly through
the eether, this presented some problems. What was
eventually settled for was to measure the apparent speed
of light propagation in different directions; since we are
moving through the &ther, the light should appear to
propagate more slowly in the direction we are moving,
since we are then catching up with it a little.?

*Recall the image of the pebble-thrower walking along the
dock and watching the ripples propagate in the pond.



23.3. THE LUMINIFEROUS £THER

23.3.1 The Speed of Light

The speed of light is so enormous (299,792 km/s) that
we scarcely notice a delay between the transmission and
reception of electromagnetic waves under normal circum-
stances. However, the same electronic technology that
raised all these issues in the first place also made it pos-
sible to perform timing to a precision of millionths of
a second (microseconds [us]) or even billionths of a sec-
ond (nanoseconds [ns]). Today we routinely send tele-
phone signals out to geosynchronous satellites and back
(a round trip of at least 70,800 km) with the result
that we often notice [and are irritated by] the delay of
0.236 seconds or more in transoceanic telephone conver-
sations. For computer communications this delay is even
more annoying, which was a strong motive for recently
laying optical fiber communications cables under the At-
lantic and Pacific oceans! So we are already bumping up
against the limitations of the finite speed of light in our
“everyday lives” (well, almost) without any involvement
of the weird effects in this Chapter!

23.3.2 Michelson-Morley Experiment

The famous experiment of Albert Abraham Michelson
and Edward Williams Morley actually involved an inter-
ferometer — a device that measures how much out of
phase two waves get when one travels a certain distance
North and South while the other travels a different dis-
tance East and West. Since one of these signals may have
to “swim upstream” and then downstream against the
ather flowing past the Earth, it will lose a little ground
overall relative to the one that just goes “across” and
back, with the result that it gets out of phase by a wave-
length or two. There is no need to know the exact phase
difference, because one can simply rotate the interfer-
ometer and watch as one gets behind the other and then
vice versa. When Michelson and Morley first used this
ingenious device to measure the velocity of the Earth
through the aether, they got an astonishing result: the
Earth was at rest!

Did Michelson or Morley experience brief paranoid fan-
tasies that the ergocentric doctrines of the Mediaval
Church might have been right after all? Probably not,
but we shall never know. Certainly they assumed they
had made some mistake, since their result implied that
the Earth was, at least at that moment, at rest with re-
spect to the Universe-spanning luminiferous aether, and
hence in some real sense at the centre of the Universe.
However, repeating the measurement gave the same re-
sult.

Fortunately, they knew they had only to wait six months
to try again, since at that time the Earth would be on the

opposite side of the Sun, moving in the opposite direc-
tion relative to it (the Sun) at its orbital velocity, which
should be easily detected by their apparatus. This they
did, and obtained the same result. The Earth was still
at rest relative to the aether.

Now everyone was in a bind. If they insisted in posit-
ing an ather to dispell the absurdities of propagation
through a vacuum at a fixed velocity, then they had
to adopt the embarrassing view that the ather actually
chose the Earth, of all the heavenly bodies, to define its
rest frame — and even followed it around in its acceler-
ated orbital path! This was too much.

23.3.3 FitzGerald/Lorentz Ather Drag

George Francis FitzGerald and H.A. Lorentz offered a
solution of sorts: in drifting through the acther, “solid”
bodies were not perfectly unaffected by it but in fact suf-
fered a common “drag” in the direction of motion that
caused all the yardsticks to be “squashed” in that di-
rection, so that the apparatus seemed to be unaffected
only because the apparatus and the yardstick and the
experimenters’ eyeballs were all contracted by exactly
the same multiplicative factor! They showed by simple
arguments that said factor was in fact v =1/y/1— 2
where 8 = u/c — i.e. exactly the factor defined ear-
lier in the LORENTZ TRANSFORMATIONS, so named after
one of their originators!® Their equations were right, but
their explanation (though no more outlandish than what
we now believe to be correct) was wrong.

For one thing, these famous “LORENTZ CONTRACTIONS”
of the lengths of meter or yardsticks were not accom-
panied (in their model) by any change in the relative
lengths of time intervals — how could they be? Such
an idea makes no sense! But this leads to qualitative
inconsistencies in the descriptions of sequences of events
as described by different observers, which also makes no
sense. Physics was cornered, with no way out.

Ernst Mach, who had a notorious distaste for “fake”
paradigms (he believed that Physics had no business
talking about things that couldn’t be experimented
upon),* proposed that Physics had created its own
dilemma by inventing a nonexistent “sether” in the first
place, and we would do well to forget it! He was right, in
this case, but it took a less crusty and more optimistic
genius to see how such a dismissal could be used to ex-
plain all the results at once.

3Poor FitzGerald gets less press these days, alas.
“Mach would have had apoplexy over today’s quarks —
but that’s a story for a later Chapter!



23.4 Einstein’s Simple Approach

At this time, Albert Einstein was working as a clerk
in the patent office in Ziirich, a position which afforded
him lots of free time to toy with crazy ideas. Aware of
this dilemma, he suggested the following approach to the
problem: since we have to give up some part of our com-
mon sense, why not simply take both the experiments
and MAXWELL’S EQUATIONS at face value and see what
the consequences are? No matter how crazy the implica-
tions, at least we will be able to remember our starting
assumptions without much effort. They are:

e The “Laws of Physics” are the same in one inertial
reference frame as in another, regardless of their rel-
ative motion.?

o All observers will inevitably measure the same velocity
of propagation for light in their own reference frame,
namely c.

These two postulates are the starting points for Ein-
stein’s celebrated SPECIAL THEORY OF RELATIVITY
(STR), for which this Chapter is named.’ The adjective
“Special” is there mainly to distinguish the STR from the
General Theory of Relativity, which deals with gravity
and accelerated reference frames, to be covered later.

23.5 Simultaneous for Whom?

The first denizen of common sense to fall victim to the
STR was the “obvious” notion that if two physical events
occur at the same time in my reference frame, they must
occur at the same time in any reference frame. This is
not true unless they also occur at the same place. Let’s
see why.

% An inertial reference frame is one that is not accelerated
— 4.e. one that is at rest or moving at constant velocity.

5Tt is perhaps unfortunate that the theory was called “Rel-
ativity” when in fact it expresses the principle that the “Laws
of Physics” are not relative; they are the same for all refer-
ence frames, moving or not! It is the transformations be-
tween measurements by different observers in relative motion
that give weird results. When someone says, “Yeah, Einstein
showed that everything is relative,” every Physicist within
earshot winces. On the other hand, the STR does explicitly
rule out any absolute reference frame with respect to which
all motion must be measured — thus elevating the negative
result of the Michelson-Morley experiment to the status of
a First Principle — and does imply that certain phenomena
that we always thought were absolute, like simultaneity, are
not! So the name “Relativity” does stimulate appropriate
debate.

Einstein was fond of performing imaginary experiments
in his head — Gedankenexperimenten in German — be-
cause the resultant laboratory was larger than anything
he could fit into the patent office and better equipped
than even today’s funding agencies could afford. Unfor-
tunately, the laboratory of the imagination also affords
the option of altering the Laws of Physics to suit one’s
expectations, which means that only a person with a
striking penchant for honesty and introspection can work
there without producing mostly fantasies. Einstein was
such a person, as witnessed by the ironic fact that he
used the Gedankenezperiment to dismantle much of our
common sense and replace it with a stranger truth. Any-
way, one of his devices was the laboratory aboard a fast-
moving vehicle. He often spoke of trains, the most famil-
iar form of transportation in Switzerland to this day; I
will translate this into the glass spaceship moving past a
“stationary” observer [someone has to be designated “at
rest,” although of course the choice is arbitrary].
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Figure 23.2 A flash bulb is set off in the centre of a glass
spaceship (O') at the instant it coincides with a fixed
observer O. As the spaceship moves by at velocity w
relative to O, the light propagates toward the bow and
stern of the ship at the same speed ¢ in both frames.

In Fig. 23.2 both observers (O and O') must measure the
same velocity (¢) for the light from the flash bulb. The
light propagates outward symmetrically in all directions
(in particular, to the right and left) from the point where
the bulb went off in either frame of reference. In the
O' frame, if the two detectors are equidistant from that
point they will both detect the light simultaneously, but
in the O frame the stern of the spaceship moves closer
to the source of the flash while the bow moves away, so
the stern detector will detect the flash before the bow
detector!

This is not just an optical illusion or some misinterpre-
tation of the experimental results; this is actually what
happens! What is simultaneous for O' is not for O, and
vice versa. Common sense notwithstanding, SIMULTANE-
ITY is relative.



23.6. TIME DILATION

23.6 Time Dilation

=

Figure 23.3 A “light clock” is constructed aboard a glass
spaceship (reference frame O') as follows: the “tick” of
the clock is defined by one half the time interval ¢’
required for the light from a strobe light to traverse the
width of the ship (a height h), bounce off a mirror and
come back, a total distance of 2h. In the reference frame
of a ground-based observer O (with respect to whom the
ship is travelling at a velocity w), the light is emitted a
distance 2ut behind the place where it is detected a
time 2t later. Since the light has further to go in the
O frame (a distance £ = v/h? + u?t?), but it travels at c
in both frames, ¢ must be longer than t'. This effect
is known as TIME DILATION.

Fig. 23.3 pictures a device used by R.P. Feynman, among
others, to illustrate the phenomenon of TIME DILATION:
a clock aboard a fast-moving vessel (even a normal clock)
appears’ to run slower when observed from the “rest
frame” — the name we give to the reference frame arbi-
trarily chosen to be at rest. Now, if we choose to regard
the ship’s frame as “at rest” (as is the wont of those
aboard) and the Earth as “moving,” a clock on Earth
will appear to be running slowly when observed from
the ship! Who is right? The correct answer is “both,”
in utter disregard for common sense. This seems to cre-
ate a logical paradox, which we will discuss momentarily.
But first let’s go beyond the qualitative statement, “The
clock runs slower,” and ask how much slower.

For this we need only a little algebra and geometry; nev-
ertheless, the derivation is perilous, so watch carefully.

"The term “appears” may suggest some sort of illusion;
this is not the case. The clock aboard the spaceship actually
does run slower in the Earth’s rest frame, and vice versa.

For O', the time interval described in Fig. 23.3 is simply

po=t
&

so that h = ct'

whereas for O the time interval is given by

t = - where 2 = h? 4+ J3t?

c
by the Pythagorean theorem. Expanding the latter equa-
tion gives

VI2 + 022

t = —— or
C

A2 = h? + W%t

which is not a solution yet because it does not relate ¢
to t'. We need to “plug in” h* = c*t'*> from earlier, to
get

C2t2 — c2tl2 _}_éu/2t2
. . u- -
or t* = t* + S+t
c
or  t*(1-p4%) = t”

where we have recalled the definition § = u/c. In one
last step we obtain

tl
t = \/17_—ﬂ2 or

where ~ is defined as before: v =1/4/1 — 32.

This derivation is a little crude, but it shows where -y
comes from.

t =t

23.6.1 The Twin Paradox

Like most “paradoxes,” this one isn’t. But it sure looks
like one at first glance. Suppose two identical twins part
company at age twenty; the first twin hops aboard a
spaceship of very advanced design and heads out for the
distant stars, eventually travelling at velocities very close
to ¢, while the second twin stays home at rest. They
give each other going-away presents of identical watches
guaranteed to keep perfect time under all conditions. At
the midpoint of the voyage, while coasting (and therefore
in an inertial reference frame), the first twin looks back
at Earth with a very powerful telescope and observes the
second twin’s wristwatch. After correcting for some truly
illusory effects, he concludes that the first twin’s watch is
running slower than his and that his twin on Earth must
be aging more slowly as well. Meanwhile, the second
twin, on Earth, is looking through his telescope at the
first twin’s watch (aboard the spaceship) and concludes
that the first twin is suffering the effects of time dilation
and is consequently aging more slowly than him! Who
is right? Both, at that moment.



Aha! But now we can bring the first twin home after his
relativistic journey and compare ages. Certainly they
can’t both be younger; this truly would create a logical
paradox that goes beyond the mere violation of common
sense!

What happens? The first twin, who went travelling, is in
fact younger now than the twin who stayed home. The
paradox is resolved by a meticulous use of the LORENTZ
TRANSFORMATIONS, especially if we make use of the
graphical gimmick of the LIGHT CONE, to be discussed
later.

23.7 Einstein Contraction(?)

We can obtain the concomitant effect of LORENTZ CON-
TRACTION without too much trouble® using the following
Gedankenexperiment, which is so simple we don’t even
need a Figure:

Suppose a spaceship gets a nice running start and whips
by the Earth at a velocity u on the way to Planet X, a
distance x away as measured in the Earth’s reference
frame, which we call O. [We assume that Planet X is
at rest with respect to the Earth, so that there are no
complications due to their relative motion.] If the space-
ship just “coasts” the rest of the way at velocity w [this
is what is meant by an INERTIAL REFERENCE FRAME],
then by definition the time required for the voyage is

81 haven’t shown all the false starts in which I got the
wrong answer using what seemed like perfectly logical argu-
ments. ... Here’s a good one:

We can obtain the concomitant effect of LORENTZ CON-
TRACTION in a sloppy way merely by referring back to
Fig. 23.2: let z be the distance between the flash bulb
and the forward detector, as measured by the observer O on
the ground, and let z’ be the same distance as measured
by the observer O’ aboard the spaceship. Assume that O
stretches out a tape measure from the place where the flash
bulb is set off (say, by a toggle switch on the outer hull of
the spaceship which gets hit by a stick held up by O as O’
flies by) to the position of the detector in the O frame at
the instant of the flash. That way we don’t need to worry
about the position of the detector in the O frame when the
light pulse actually arrives there some time later; we are only
comparing the length of the spaceship in one frame with the
same length in the other. [It may take a few passes of the
spaceship to get this right; but hey, this is a Gedankenexz-
periment, where resources are cheap!] Then the time light
takes to traverse distance z', according to O', is ¢ = z'/c,
whereas the time ¢ for the same process in the rest frame
is t = z/c. Therefore, if (from TIME DILATION) ¢ is longer
than ¢’ by afactor ~, then x must also be longer than 2
by the same factor if both observers are using the same c.

Simple, eh? Unfortunately, I got the wrong answer! Can
you figure out why?

t = z/u. But this is the time as measured in the Earth’s
reference frame, and we already know about TIME DI-
LATION, which says that the duration ¢’ of the trip as
measured aboard the ship (frame O') is shorter than ¢
by a factor of 1/v: ¢ =t/7.

Let’s look at the whole trip from the point of view of
the observer O’ aboard the ship: since our choice of who
is at rest and who is moving is perfectly arbitrary, we
can choose to consider the ship at rest and the Earth
(and Planet X) to be hurtling past/toward the ship at
velocity w. As measured in the ship’s reference frame,
the distance from the Earth to Planet X is 2’ and we
must have w = z'/t' by definition. But we also must
have u = x/t in the other frame; and by symmetry they
are both talking about the same wu, so

T
Yooy = 2
t
and since ¢t =t we must also have
!
r =z

That is, the distance between fixed points, as measured
by the space traveller, is shorter than that measured
by stay-at-homes on Earth by a factor of 1/v. This is
because the Earth and Planet X represent the moving
system as measured from the ship. This effect is known
as LORENTZ CONTRACTION; it has nothing whatsoever
to do with “eether drag!” So one might wonder why it
isn’t called “Einstein contraction,” since we calculated it
the way Einstein would have.

Of course, the effect works both ways. The length of
the spaceship, for instance, will be shorter as viewed
from the Earth than it is aboard the spaceship itself,
because in this case the length in question is in the frame
that moved with respect to the Earth. The sense of the
contraction effect can be remembered by this mnemonic:

Moving rulers are shorter. (17)

However, it is possible to conjure up situations that defy
common sense and thus are often (wrongly) described as
“paradoxes.”

23.7.1 The Polevault Paradox

I have a favourite Gedankenexperiment for illustrating
the peculiarities of LORENTZ CONTRACTION: picture a
polevaulter standing beside a 10 foot long barn with a
10 foot polevault pole in her hands. Tape measures are
brought out and it is confirmed to everyone’s satisfaction
that the pole is exactly the same length as the barn. Got
the picture? Now the barn door is opened — no tricks
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— and our intrepid polevaulter walks back a few parsecs
to begin her run up.

Suppose we permit a certain amount of fantasy in this
Gedankenexperiment and imagine that Superwoman, a
very adept polevaulter, can run with her pole at a veloc-
ity u = 0.6c. (Thus g = 0.6 and v = 1.25 — check it
yourself!) This means that as she runs past a stationary
observer her 10 foot pole turns into a 8 foot pole due
to LORENTZ CONTRACTION. On the other hand, in her
own reference frame she is still carrying a 10 foot pole
but the barn is now only 8 feet long. She runs into the
barn and the attendant (Superman) slams the barn door
behind her.

From Superwoman’s point of view, the following se-
quence of events occurs: first the end of her pole smashes
through the end of the barn, and then® (somewhat point-
lessly, it seems) the barn door slams behind her. A few
nanoseconds later she herself hits the end of the barn
and the whole schmier explodes in a shower of elemen-
tary particles — except for Superwoman and Superman,
who are (thankfully) invulnerable.

Superman sees it differently. He has no trouble shutting
the barn door behind Superwoman before her polevault
pole hits the other end of the barn, so he has success-
fully performed his assignment — to get Superwoman
and her polevaulting skills hidden away inside the barn
for the two nanosecond period that the scout for the
Olympic Trials happens to be looking this way. What
happens after that is pretty much the same as described
by Superwoman.

Imagine that you have been called in to mediate the en-
suing argument. Who is right? Can you counsel these
two Superbeings out of a confrontation that might dev-
astate the surrounding landscape? Or will this become
the Parent of all Battles?

Well, if they want to fight they will fight, of course; but
the least you can do is point out that objectively there is
nothing to fight about: they are both right! When you
think about it you will see that they have both described
the same events; it is only the sequence of the events
that they disagree on. And the sequence of events is not
necessarily the same for two observers in relative motion!
It all comes back to the RELATIVITY OF SIMULTANEITY
and related issues. For Superwoman the pole hits the
wall before the door slams, while for Superman the door
slams before the pole hits the wall. Both events occur
for both observers, but the sequence is different.!°

9Tt takes about 3.4 ns [nanoseconds, 107 s] to go 2 feet
at a velocity of 0.6¢c.

107f the door were at the far end of the barn (where the pole
hits), there could be no such disagreement, since two events

23.8 Relativistic Travel

Numerous misconceptions have been bred by lazy sci-
ence fiction (§F) authors anxious to circumvent the lim-
itations imposed by the STR. Let’s examine these limi-
tations and ask whether in fact they restrict space-flight
options as severely as & fans have been led to believe.

The first and most familiar restriction is the familiar
statement, “You can’t ever go quite as fast as light.”
Why is this? Well, consider the behaviour of that ubiq-
uitous scaling factor v as u — ¢ (ie, as 8 — 1):
as [ gets closer and closer to unity, (1 — () gets
closer and closer to zero, as does its square root, which
means that v “blows up” (becomes infinite) as u — c.
TIME DILATION causes clocks aboard fast-moving space-
ships to freeze completely and LORENTZ CONTRACTION
causes the length of the ship (in the direction of its mo-
tion) to squash to nothing, if w — c. [As observed
by Earth-bound telescopes, of course.] Worse yet, if we
could achieve a velocity greater than ¢, time would not
run backwards [or any of the other simplistic extrapola-
tions tossed off in mediocre §F]; rather the time-dilation
/ Lorentz-contraction factor v becomes imaginary —
in other words, there is no such physical solution to the
LORENTZ TRANSFORMATION equations! At least not for
objects with masses that are real in the mathematical
sense. [I will deal with the hypothetical tachyons in a
later section.] Another way of understanding why it is
impossible to reach the speed of light will be evident
when we begin to discuss RELATIVISTIC KINEMATICS in
the next Chapter.

So there is no way to get from here to another star 10
light years distant in less than ten years — as time is
measured on Earth! However, contrary to popular mis-
conceptions, this does not eliminate the option of rela-
tivistic travel to distant stars, because the so-called “sub-
jective time”!! aboard the spaceship is far shorter! This
is because in the traveller’s reference frame the stars are
moving and the distances between them (in the direction
of motion) shrink due to LORENTZ CONTRACTION.

It is quite interesting to examine these effects quantita-
tively for the most comfortable form of relativistic travel:
constant acceleration at 1g (9.81 m/s?) as measured in
the spaceship’s rest frame, allowing shipboard life to con-

at the same place and the same time are for all intents and
purposes part of the same event. It is only events separated
in space about which such differences of opinion can arise.

U Time measured aboard the spaceship is no more “subjec-
tive” than time on Earth, of course; this terminology suggests
that the experience of the traveller is somehow bogus, which
is not the case. Time actually does travel more slowly for the
moving observer and the distance between origin and desti-
nation actually does get shorter.



form to the appearance of Earth-normal gravity. I will
list two versions of the “range” of such a voyage (mea-
sured in the Earth’s rest frame) for different “subjective”
elapsed times (measured in the ship’s rest frame) — one
for arrival at rest [the only mode of travel that could be
useful for “visiting” purposes|, in which one must accel-
erate halfway and then decelerate the rest of the way,
and one for a “flyby,” in which you don’t bother to stop
for a look [this could only appeal to someone interested
in setting a long-distance record].

The practical limit for an impulse drive converting mass
carried along by ship into a collimated light beam with
100% efficiency is about 10-12 years. Longer acceleration
times require use of a “ram scoop” or similar device using
ambient matter.

Now, what does this say about the real possibilities for
relativistic travel? Without postulating any “unPhysi-
cal” gimmicks — e.g. “warp drives” or other inventions
that contradict today’s version of the “Laws” of Physics
— we can easily compose &F stories in which humans (or
others) can travel all through our own Galaxy without
resorting to suspended animation'? or other hypotheti-
cal future technologies.!®> There is only one catch: As
Thomas Wolfe said, You can’t go home again. Or, more
precisely, you can go home but you won’t recognize the
old place, because all those years it took light to get
to your destination and back (that you cleverly dodged
by taking advantage of LORENTZ CONTRACTION) still
passed normally for the folks back home, now thousands
of years dead and gone.

So a wealthy misanthropic adventurer may decide to
leave it all behind and go exploring, but no government
will ever pay to build a reconnaissance vessel which will
not return before the next election. This implies that
there may well be visitors from other stars, but they
would be special sorts of characters with powerful cu-
riosities and not much interest in socializing. And we
can forget about “scouts” from aggressive races bent on
colonization, unless they take a very long view!

12The idea of suspended animation is a good one and I find
it plausible that we may one day learn to use it safely; but it
does not quite fall into the category of a simple extrapolation
from known technology — yet.

13Except for the “ramscoop” technology and the requisite
shields against the thin wisp of ambient matter (protons, elec-
trons,...) inhabiting interstellar space, which is converted
into high-energy radiation by virtue of our ship’s relative mo-
tion. Minor details.

Table 23.1 Distances covered (measured in Earth’s rest
frame) by a spaceship accelerating at a constant 1g (9.81
m/s?) in its own rest frame.

Elapsed Time Distance Travelled (Light Years)
aboard ship (years) | Arriving at Rest “Fly-by”
1 0.063 0.128
2 0.98 2.76
3 2.70 9.07
4 5.52 26.3
) 10.26 73.2
6 18.14 200.7
7 31.14 547.3
8 52.6 1,490
9 88 4,050
10 146 11,012
11 244 29,936
12 402 81,376
13 665 921,200
14 1,096 601,300
15 1,808 1,635,000
16 2,981 4,443,000
17 4915 12,077,000
18 8,103 32,830,000
19 13,360 89,241,000
20 92,000 243,000,000
21 36,300 659,000,000
22 59,900 1,792,000,000
23 99,000 4,870,000,000
24 163,000 13,200,000,000
25 268,000 36,000,000,000
2 442,000 98,000,000,000
27 729,000 (present diam.
28 1,200,000 of universe
29 thought to be
30 less than about
30,000,000,000)




23.10. A ROTATIONAL ANALOGY

23.9 Natural Units

As T mentioned in the Chapter on UNITS AND DIMEN-
SIONS, in any context where the speed of travel is virtu-
ally (or, in this case, exactly) a constant, people auto-
matically begin to express distances in time units. [Q:
“How far is is from New York to Boston?” A: “Oh,
about three hours.”] This is equivalent to defining the
speed of travel to be a dimensionless constant of magni-
tude 1. Relativistic Physics is no different. Anyone who
has to discuss relativistic phenomena at any length will
usually slip into “NATURAL UNITS” where

c =1

and distance and time are measured in the same units.
You get to pick your favourite unit — seconds, meters,
light years or (as we shall see later) inverse masses! The
list is endless. Then [ is just “the velocity” measured in
natural units and the calculations become much simpler.
But you have to convert all your other units accordingly,
and this can be interesting. It does take a little getting
used to, but the exercise is illuminating.

23.10 A Rotational Analogy

If we compare the LORENTZ TRANSFORMATIONS with
the GALILEAN TRANSFORMATIONS, several striking qual-
itative features are apparent: the first is the multiplica-
tive factor y which describes both TIME DILATION and
LORENTZ CONTRACTION; the second is the fact that time
and space get mixed together by the LORENTZ TRANS-
FORMATION — a blasphemy in the paradigm of classical
Physics.

The latter weirdness is going to be confusing no matter
what we do; is there any way to at least make it look
familiar? What we need is an analogy with something
that does “make sense” and is still intact. Fortunately
there is a precedent for a transformation that mixes co-
ordinates, namely the ROTATION.

23.10.1 Rotation in Two Dimensions

Suppose we have a point A in a plane with perpendicular
x and y coordinate axes scribed on it, as pictured in
Fig. 23.4.

We can scribe a different pair of perpendicular coordi-
nate axes ¢’ and y’ on the same plane surface using
dashed lines by simply rotating the original coordinate
axes by an angle 6 about their common origin, the co-
ordinates of which are (0,0) in either coordinate system.
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Figure 23.4 A fixed point A can be located in a plane
using either of two coordinate systems O (z,y) and O’
(«',y") that differ from each other by a rotation of 6
about the common origin (0,0).

Now suppose that we have the coordinates (za,y4)
of point A in the original coordinate system and we
would like to transform these coordinates into the coordi-
nates (z'y,y’) of the same point in the new coordinate
system.'* How do we do it? By trigonometry, of course.
You can figure this out for yourself. The transformation
is

8
[

z cos(d) + y sin(f) (18)
y = —zsin(f) + y cos() (19)

23.10.2 Rotating Space into Time

If we now look at just the = and ¢ part of the LORENTZ
TRANSFORMATION [leaving out the y and z parts, which
don’t do much anyway], we have

vy — yBct (20)
—vBx + vyt (21)

— d.e., the LORENTZ TRANSFORMATION “sort of” ro-
tates the space and time axes in “sort of” the same way
as a normal rotation of z and y. I have used ct as the
time axis to keep the units explicitly the same; if we use
“natural units” (¢ = 1) then we can just drop ¢ out of
the equations completely and the analogy becomes obvi-
ous. However, you should resist the temptation to think

€T =

ct' =

“This situation might arise if an architect suddenly dis-
covered that his new plaza had been drawn from coordinates
laid out by a surveyor who had aligned his transit to magnetic
North while standing next to a large industrial electromagnet.
The measurements are all OK but they have to be converted
to true latitude and longitude!
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of the LORENTZ TRANSFORMATION as “just a rotation
of space and time into each other.” If we “boost” the O’
frame by some large relative velocity in the negative x
direction and try to plot up z’ and ct’ on the same graph
as (z,ct) then we get a weird picture.
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Figure 23.5 An attempt to draw (z',ct’) coordinates on
the same graph as the (z,ct) coordinates. The result
is misleading because the spatial surface on which it is
drawn obeys EUCLIDEAN geometry (the invariant length
of an interval is the square root of the sum of the squares
of its two perpendicular components) whereas spacetime
obeys the MINKOWSKI metric: the invariant “length”
of a spacetime interval (the PROPER TIME) is equal to
22 — 22, not ¢?t? +x?). You may think of the LORENTZ
TRANSFORMATION as a sort of rotation, but you can’t
draw it as a rotation, because you don’t have Minkowski
paper!

Proper Time and Lorentz Invariants

The most important important difference between ordi-
nary ROTATIONS and the LORENTZ TRANSFORMATIONS
is that the former preserve the RADIUS distance

ro= ViR ty? = o 4y (22)

of point A from the origin, whereas the latter preserve
the PROPER TIME 7T of an event:

or = VAR —x? = /2 — g (23)
The — sign in the latter is important!

In general, any quantity which we can define (like 7)
that will have the same value in every inertial reference
frame, regardless of relative motion, may be expected to
become very precious to our bruised sensibilities. The
STR has dismantled most of our common sense about

which physical observables are reliable, universal con-
stants and which depend upon the reference frame of
the observer; if we can specifically identify those proper-
ties of a quantity that will guarantee its invariance un-
der LORENTZ TRANSFORMATIONS, then we can at least
count on such quantities to remain reliably and directly
comparable for different observers. Such quantities are
known as LORENTZ INVARIANTS.

The criterion for LORENTZ INVARIANCE is that the quan-
tity in question be the scalar product of two 4-vectors, or
any combination of such scalar products. What do we
mean by 4-vectors? {Space and time} make the clas-
sic example, but we can define a 4-vector to be any
4-component quantity that transforms like spacetime.
That is, a, = {ao,a1,a2,a3} — where qg is the “time-
like” component (like ct) and {a;, a2, a3} are the three
“spacelike” components (like z,y, z) — is a 4-vector if a
“boost” of u in the z direction gives

ag = 7(ao — Bar)
a; = 7y(a — Bao)
a, = as
a; = ag

just like for x, = {ct,z,y,2}. The most important ex-
ample (other than z, itself) is p, = {E,pg, py,p-}, the
ENERGY-MOMENTUM 4-vector, which we will encounter
next.



