SOUND WAVES

Picture a "snapshot" (holding time t fixed) of a small cylindrical section of an elastic medium, shown at right: the cross-sectional area is A and the length is $d x$. An excess pressure P (over and above the ambient pressure existing in the medium at equilibrium) is exerted on the left side and a slightly different pressure $P+d P$ on the right. The resulting volume element $d V=A d x$ has a mass $d m=\rho d V=\rho A d x$, where ρ is the mass density of the medium. If we choose the positive x direction to the right, the net force acting
 on $d m$ in the x direction is $d F_{x}=P A-(P+d P) A=-A d P$.

Now let s denote the displacement of particles of the medium from their equilibrium positions. This may also differ between one end of the cylindrical element and the other: s on the left $v s . s+d s$ on the right. We assume the displacements to be in the x direction but very small compared to $d x$, which is itself no great shakes. ${ }^{1}$

The fractional change in volume $d V / V$ of the cylinder due to the difference between the displacements at the two ends is

$$
\begin{equation*}
\frac{d V}{V}=\frac{A(s+d s)-A s}{A d x}=\frac{d s}{d x}=\left(\frac{\partial s}{\partial x}\right)_{t} \tag{1}
\end{equation*}
$$

where the rightmost expression reminds us explicitly that this description is being constructed around a "snapshot" with t held fixed.

Now, any elastic medium is by definition compressible but "fights back" when compressed ($d V<0$) by exerting a pressure in the direction of increasing volume. The Bulk Modulus B is a constant characterizing how hard the medium fights back - a sort of 3-dimensional analogue of the spring constant. It is defined by

$$
\begin{equation*}
P=-B \frac{d V}{V} \tag{2}
\end{equation*}
$$

Combining Eqs. (1) and (2) gives

$$
\begin{equation*}
P=-B\left(\frac{\partial s}{\partial x}\right)_{t} \tag{3}
\end{equation*}
$$

so that the difference in pressure between the two ends is

$$
\begin{equation*}
d P=\left(\frac{\partial P}{\partial x}\right)_{t} d x=-B\left(\frac{\partial^{2} s}{\partial x^{2}}\right)_{t} d x \tag{4}
\end{equation*}
$$

We now use $\sum F_{x}=m a_{x}$ on the mass element, giving

$$
\begin{equation*}
-A d P=A B\left(\frac{\partial^{2} s}{\partial x^{2}}\right)_{t} d x=d m a_{x}=\rho A d x\left(\frac{\partial^{2} s}{\partial t^{2}}\right)_{x} \tag{5}
\end{equation*}
$$

where we have noted that the acceleration of all the particles in the volume element (assuming $d s \ll s)$ is just $a_{x} \equiv\left(\partial^{2} s / \partial t^{2}\right)_{x}$.

[^0]If we cancel $A d x$ out of Eq. (5), divide through by B and collect terms, we get

$$
\begin{equation*}
\left(\frac{\partial^{2} s}{\partial x^{2}}\right)_{t}-\frac{\rho}{B}\left(\frac{\partial^{2} s}{\partial t^{2}}\right)_{x}=0 \quad \text { or } \quad\left(\frac{\partial^{2} s}{\partial x^{2}}\right)_{t}-\frac{1}{c^{2}}\left(\frac{\partial^{2} s}{\partial t^{2}}\right)_{x}=0 \tag{6}
\end{equation*}
$$

which the acute reader will recognize as the Wave Equation in one dimension (x), provided

$$
\begin{equation*}
c=\sqrt{\frac{B}{\rho}} \tag{7}
\end{equation*}
$$

is the velocity of propagation.
The fact that disturbances in an elastic medium obey the Wave Equation guarantees that such disturbances will propagate as simple waves with phase velocity c given by Eq. (7).

[^0]: ${ }^{1}$ Note also that any of $s, d s, P$ or $d P$ can be either positive or negative; we merely illustrate the math using an example in which they are all positive.

