

Data Analysis & Visualization

Extrema User’s Guide

© TRIUMF

4004 Wesbrook Mall
Vancouver, British Columbia V6T 2A3

Phone: 604.222.1047 Fax: 604.222.1074

Table of Contents

GETTING STARTED1
About This Guide............. 1

Conventions used in this guide ...2
Installing Extrema............ 2
Running Extrema............. 2

DATA INPUT4
Data Representation........ 4

Addressing parts of arrays5
Constants6
Expressions6

Reading Data From Files. 6
Text files7
Binary files7

Generating Data 7
Sequences...................................7
Functions8
Interpolating Data8

DRAWING GRAPHS9
Graphics sub-windows 9

Pre-defined windows9
One-dimensional graphs10
Two-dimensional graphs11

Line graphs................................11
Scatterplots................................12

Histograms and bar charts..14
Three-dimensional graphs
...................................... 15

Contour Plots.............................16
Density plots16
Surface plots..............................17

Four+ dimensional graphs
...................................... 17

Graphing two 3-D functions on the
same drawing17
Multiple plots on the same drawing
...18
Tile numerous graphs on the
same drawing18

Draw two sets of data on the
same graph at the same scale
..19

Draw two sets of data on the
same graph, but at different Y-
scales20

CUSTOMIZING GRAPH
PRESENTATION.......23

Colors 24
Default Drawing Color............... 25

Plotting Symbols............ 25
Line type 27
Line width 27
Text................................ 28
Axis Labels 29
Graph Legend................ 29
Graph Axes.................... 31

Scaling 31
Tics.. 32
Logarithmic axes....................... 33
Axis placement.......................... 34

DATA ANALYSIS
EXAMPLES36

Operators....................... 36
Functions 37
Fitting............................. 37

Smoothing................................. 38
Fitting to a function.................... 38

Fitting different data segments
to different functions40

Binning........................... 41
Interpolation................... 41

2-D interpolation42
Integration...................... 43
Other functions 44
Data Selection 44

OUTPUT.................47
Printing graphs 47

Exporting graphs for
inclusion in other
documents 47

PostScript & EPS.......................47
PNG...47
JPEG ...48

Saving Data................... 48
SCRIPTING49

Creating and editing scripts
...................................... 50

Comments50
Running scripts.............. 50

Interacting with the user50
Initialization script51

Subroutines 51
Branching and looping... 52

DO loops53

Chapter

1
G E T T I N G S T A R T E D W I T N E X T R E M A

Getting Started
An introduction to Extrema

About This Guide
his guide is an introduction to using Extrema for data analysis and visualization. It
is not a comprehensive manual detailing all Extrema features, but rather a concise
guide to accomplishing the types of tasks most commonly performed by
researchers. It intended to be useful to new users, and for experienced users who

would like a quick introduction to features or methods they have not used before.

T
In most cases, this guide instructs by example. Typical data analysis and visualization tasks
are described and then performed, both using the GUI and using the scripting language.
The tasks are grouped into categories that are treated in subsequent sections of this guide:

C H A P T E R S

 Getting started

 Data input

 Drawing graphs

 Customizing graphs

∑ Data analysis

 Output

 Scripting

The tasks described are generally simple, but practical. Extending them to cases that are
more complex is generally straightforward, although you may need to consult the Extrema
Command Reference for further details.

Documentation that is more comprehensive is available in the following references:

1. Extrema Command Reference: a comprehensive guide to the Extrema
command language.

2. Extrema Online Help: detailed online help is available through the program
itself.

In many of the brief procedures described in this guide, the reader will be referred to
commands and functions for more information. These commands and functions may be
looked up in the above references.

1

Conventions used in this guide
Examples of messages and prompts written by the program, as well as examples of user
typed input are displayed in typewriter type style.

Curly brackets, {}, enclose parameters that are optional and/or have default values, and
indicate that it is not necessary to enter these parameters.

Parentheses, (), besides being used in mathematical expressions, also enclose formats.

The backslash, \, separates a command from a command qualifier, or a parameter from its
qualifier.

Literal quote strings can be delimited by the opening quote, `, and the single quote, ’, or by
the single quote at the beginning and the end, or by the double quote, ”, at the beginning
and the end. For example, `ABC’, ’ABC’, and ”ABC” are all valid literal quote strings.

Parentheses, the back slash and quotes must be included where indicated.

Extrema is case-insensitive, so input may be provided in upper or lower case, or with a mix
of cases. In the examples in this guide, Extrema keywords are given in UPPER CASE,
while variables and user-defined words are given in lower case, but this is simply for clarity;
you do not have to follow this convention. Words that you should replace with your own
variable names are given in italics.

Installing Extrema
Extrema is distributed as a self-extracting compressed file. You simply need to execute the
extremainstall program to begin the installation process. After agreeing to the
licensing agreement, you then select an installation directory (the default is C:\Extrema);
and everything else is automatic. The installation program places the Extrema icon on the
desktop. Extrema does not modify the registry, so to uninstall Extrema simply delete the
files.

Running Extrema
Double-click on the Extrema icon to launch the program. By default, the program raises
the visualization (graphics) window and the analysis (command input) window. Commands
may be typed directly into the analysis window, if you are familiar with the Extrema
command language. If not, you will probably be more comfortable selecting your actions
from the menus and toolbars.

A typical Extrema session involves the following steps:

 2

1. load or generate data to work on
2. graph the data, or
3. analyze the data
4. repeat previous two steps until the results are satisfactory
5. customize the presentation of the graph(s)
6. output the graph(s)
7. save data for archival purposes, or for further analysis

Once you become familiar with Extrema, or with your particular data analysis and
presentation requirements, many of the above steps can be automated. In that case, you can
build scripts to automatically perform the routine steps in the above sequence, and possibly
the entire sequence itself. Extrema's scripting capabilities include looping and decision-
making features, so a fair amount of intelligence can be built into your scripts.

The examples in this guide include instructions for performing operations interactively using
the GUI, or using the command language. Command language examples can be used
interactively in the command window, or in scripts.

 3

Chapter

2

Data Input
Before you can analyze or visualize your data, you need to get your data into Extrema
in a form that can be manipulated.

Data Representation
Data is stored internally in variables, which have names that you use to reference the data
they contain. Except for a few automatically generated variables, these names are chosen by
the user. The first character of a variable name must be an alphabetic character, that is, A
to Z, and the maximum number of characters in a name is thirty-two (32). Except for these
restrictions, variable names can be any combination of: alphabetic characters (ABC …
XYZ), digits (0123456789), underscore (_), and dollar sign ($).

 Variable names are case-insensitive, e.g., variable mydata is the same as MyData.

 Function names are reserved names and cannot be used as variable names.

 Variables can contain character data or numeric data. Numeric data are always stored as
double-precision real values.

Character (or string) variables can be one of the following types:

 string scalar: a simple string of text
 string array: an array of text strings

Numeric variables can be one of the following types:

 scalar: a number
 vector: a one-dimensional array of numbers
 matrix: a two-dimensional array of numbers

 tensor: a three-dimensional array of numbers (to be implemented)

The contents of arrays are indexed sequentially, with a starting index of one (1).

Except for physical memory limitations, there is no limit to the number of variables, or to
the length of strings, or to the size of arrays.

Addressing parts of arrays
To refer to an entire array, simply use the variable’s name.

To select an individual element from the array, provide the index of the element in square
brackets:

x[8] ! 8th element of vector x
y[2,6] ! value from 2nd row, 6th column of matrix y

In all of the above cases, you are referring to a single value, i.e., a scalar. You can also specify
a range of indices using the colon (:) character:

x[8:20] ! 8th through 20th elements of vector x
y[1:10,1] ! first 10 rows from the first column of y

It is also possible to replace any part of an index with a mathematical expression. For
example:

x[2^3:10*2] ! 8th through 20th elements of vector x
y[1:sqrt(100),1] ! first 10 rows from the first column of y

Variables can also be used in indices. For example, suppose you have a vector z which holds
the values 1, 2,…, 10. The following are then valid:

x[z[2]^3:z[#]*2] ! 8th through 20th elements of vector x
y[z,1] ! first 10 rows from the first column of y

Such expressions can result in scalars, arrays, vectors, or matrices, depending on the number
of dimensions of the result.

The special characters * and # are also available for use in indices. For example:
S P E C I A L

* - all indexes

- the last index

x[*] ! all values from vector x
x[#] ! the last value from vector x
x[#-1] ! the next to last value from vector x
m[*,*] ! all rows and all columns of matrix m
m[*,#] ! all rows and the last column of matrix m
m[*,1:#-1] ! all rows and all but last column of matrix m

 5

Constants
You can type numeric values or constants anywhere a scalar variable or value is expected.

Constant arrays are expressed as a list of values inside square brackets. When typing out
vector or matrix values, separate successive indexes with a comma, and successive values
within an index with a semicolon.

5.03E-8 ! scalar value
[1;2;4;8] ! vector with 4 values
[1;0;0, 0;1;0, 0;0;1] ! 3 by 3 identity matrix

You can also use the [start:stop:step] notation to specify regular sequences of values
with which to fill the variable:

[0:2*pi:0.1] ! vector from 0 to 2π in steps of 0.1
[10:-10:-2] ! descending sequence from 10 to –10 in steps of 2

Expressions
Extrema allows you to use mathematical expressions anywhere it would expect a variable or
value, provided the expression evaluates to the expected type. Simple expressions involving
dimensioned variables generally return a value of the same dimension. Thus, if x has 10
values, then the expression sin(x)+1 also has 10 values. Other examples:

m[x,#-2:#] ! the rows denoted in x, and the last 3 columns of m
x*m[n,*] ! x times the nth row of m
SIN(a+b) ! the sines of the sums of respective values in a and b
x^2*SIN(x)+1 ! a non-linear function of the values in x

There is no limit to the length or complexity of a mathematical expression in Extrema .

You can also index the results of an expression, e.g.,

(SIN(x)+1)[4:8] ! selects 4th through 8th values of the expression

Reading Data From Files
In most cases, your data will be contained in files. You will need to read these files into
Extrema variables before you can operate on the data. Extrema is quite flexible in
allowing you to read files of different formats, although in more complex cases you will need
to know the details of the file's data format.

 6

Text files
Text files are human-readable, that is, they contain data written in ASCII format, and they
can be viewed or edited with a simple text editor such as Notepad ®. Many spreadsheets can
export their data into such a format.

If your text file contains data arranged in rows and columns, with columns delimited by
commas or white space, then reading the file is simple.

To read each column into its own vector:

READ file1.dat x y ! read 2 columns into vectors x and y
READ file2.dat a a_err b b_err ! read data and errors into vectors

To read all columns into a single matrix, you must also specify the number of rows in the
matrix:

READ\matrix file3.dat m nrows ! read file into matrix m

There are also options to read matrices in other ways, for example, by specifying the number
of columns in the matrix. See the READ command for more information.

Binary files
Binary files are not human readable; if you attempt to view or edit them, you will see a lot of
garbage. They contain sequences of numbers or other values in raw machine format. To
read this data, you need to know the details of the file format, that is, the sequence and types
of data written to the file.

Generating Data
Commonly, you will need to create data spontaneously. In simple cases, you can type in the
data directly. Usually, however, you will be working with data sizes that make this approach
too tedious. There are numerous methods you can use for bulk data generation.

Sequences
Simple sequences can be generated using the [start:stop:step] array notation.

pi = ACOS(-1) ! define scalar pi
X = [0:pi:.01] ! make a sequence of values from 0 to π in increments of 0.01

You can create a regular sequence of values using the GENERATE facility. The generated
data can be specified using any of the following methods:

 minimum value, maximum value, number of values

 7

 minimum value, maximum value, step size
 minimum value, step size, number of values

You can also request random values instead of a regular step size.

Functions
By applying an expression to an already-existing variable, you can generate a new variable in
which every element of the input variable has been modified by the expression. Capture this
data in a new variable by simply setting the new variable to equal the expression:

y = 10*SIN(x) ! x is a vector of values

If your source data is a monotonically increasing sequence (see above) that serves as the
dependent variable, then you will get a fair representation of the function itself over that
range. For instance, to produce data representing the function SIN(x) over the range 0 to
2π:

pi = ACOS(-1)
x = [0:2*pi:0.01]
y = SIN(x)

Interpolating Data
You may have a sparse sampling of data that you wish to fill in by interpolation. These
techniques are described later, in Chapter 5: Data Analysis Examples.

 8

Chapter

3

Drawing Graphs
Extrema can produce a wide variety of graph types, not all of which are described
here. This section reviews the types of graphs that are most commonly used, and how to
make them. For complete details on the variations that are possible, consult the
Extrema Command Refe ence Manualr for the appropriate commands

Graphics sub-windows
Use the WINDOW command to choose and/or define a graphics sub-window. Graphics
sub-windows are an easy way to subdivide the graphics output page into rectangular regions,
allowing multiple graphs and/or multiple figures and/or multiple text regions. A window is a
subset of the page. A window, other than the default zero level window, has a smaller
plotting unit range than the full page.

Commensurateness is never lost in a sub-window.

Pre-defined windows
Some of the initial pre-defined windows in PORTRAIT orientation are displayed below.

WINDOW 1 WINDOW 2

WINDOW 3

WINDOW 4

WINDOW 5

WINDOW 6

WINDOW 7

WINDOW 8

WINDOW 9

WINDOW 10

WINDOW 11

One-dimensional graphs
One-dimensional graphs are created from a single data vector. If you do not provide an
independent variable to graph against, Extrema will use the vector index as the independent
variable.

GRAPH [-1:1:0.1]

Alternatively, you can bin the values in the vector, to turn it into data pairs (i.e., bins and
counts). The resulting vectors can be plotted using any of the two-dimensional graph types
below. Binning data is explained in Chapter 5: Data Analysis Examples.

 10

Two-dimensional graphs
Two-dimensional graphs represent data pairs. Typically, you will have two vectors of the
same size, which should be plotted against each other in some way.

Line graphs
Line graphs connect each subsequent (x,y) data point with a line. This presumes that the
points are ordered, so that they are connected in sequence.

GRAPH x y ! draw y(x) as a line graph

A parametric line graph is also easy to make. If our parametric independent variable is T,
then we generate X and Y vectors by passing T through appropriate parametric functions:

t = [0:2*pi:.1]
x = t*SIN(t)
y = t*COS(t)
GRAPH x y

If your data is already in polar coordinates, you can graph it directly using the \POLAR
option, e.g.:

GRAPH\POLAR radius_vector angle_vector

 Angles are presumed to be in degrees.

Note: The plotting symbol (characteristic PLOTSYMBOL) must be set to 0 to get a line
graph. This is the default, so no special action needs to be taken unless the plotting symbol
has been otherwise set (see Scatterplots).

Scatterplots
Scatterplots take the corresponding elements of each vector, and plot them as (x,y) data
points, using whatever plot symbol has been selected. There is no requirement that the
vectors be ordered in any particular way. To plot scattered points that are not joined by a
line, select a negative symbol type.

SET PLOTSYMBOL -1
GRAPH x y

If we have errors in the data also stored in a matching vector, then we can add that
information to the plot by specifying the error vector(s):

GRAPH x y yerr

 12

If your data is ordered, and you would like the data points to be joined with a line, then
simply use a positive plotting symbol number:

SET PLOTSYMBOL 1
GRAPH x y

 13

For a detailed listing of plotting symbols, see Chapter 4: Customizing Graph
Presentation.

Histograms and bar charts
Histograms (bar charts) with tails going to y=0 are drawn by using the \HISTOGRAM
qualifier with the GRAPH command. x values are assumed to be bins, and y values are
assumed to be counts.

X = [1:19]
Y = SIN(x/(2*pi))
GRAPH\HISTOGRAM x y

The other types of histogram are shown below, each with the appropriate value of
HISTOGRAMTYPE.

 14

Three-dimensional graphs
Three-dimensional graphs represent data triplets. These are typically interpreted as 3-D
functions, z(x,y), and plotted accordingly.

3-D data typically comes in three forms:

 A matrix, whose indices represent the x and y dimensions, and whose values
represent the z dimension. Variables of this type are representable as surface
functions, and surface plots are usually generated from data of this type.

 Three vectors, which can represent the x, y, and z dimensions in a rectangular
coordinate system. Corresponding indexes in these vectors are your data
coordinates, so by analogy with 2-D graphs above, the data can be plotted as a
scatter plot or a line (by connecting successive points). If it is reasonable to interpret
the data as sampling a function z(x,y), then it is also possible to interpolate a regular
matrix from it, using the GRID operation, and then proceed as in the previous case.
Certain types of 3-D plots (e.g., contour plots) can be generated directly from the
original data vectors, however.

 Two vectors, which contain a series of (x,y) data pairs. Normally these would be
plotted using a two-dimensional graph type, but they can also be binned to form a 2-
D histogram, which is represented as a matrix and plotted as in the first case.

There are a number of different graph types that can be used to represent a surface function,
z(x,y). These are summarized below.

 15

Contour Plots
In contour plots, the z value is interpreted as an elevation that is indicated using a contour
map.

CONTOUR m 15 ! m is a matrix

Density plots
In density plots, the z value is interpreted as an intensity that is indicated using color
(default), tone, dithering, or scaled boxes.

DENSITY m ! m is a matrix

 16

Surface plots
In surface plots, the z value is interpreted as a 3rd spatial dimension that is drawn in
perspective.

SURFACE m ! m is a matrix

Four+ dimensional graphs
There are limits to how well four- (or more) dimensional data can be represented on a two-
dimensional surface, but there are some tricks you can use. Here are a few ideas to help you
get started.

Assume we have a tensor of data called t, and we wish to graph t(x,y,z). We can slice t at
different values of z and graph these slices using the 3-D graphing techniques above.
(Section 3.5, below, explains how to tile multiple graphs on the same drawing.)

You could also build a script to plot each slice in sequence, automatically clearing and
plotting the next slice as it went. This would give you a simple animation as you moved up
(or down) through the slices.

Graphing two 3-D functions on the same drawing
Say we have two matrixes f and g, which represent surface functions f{x,y} and g(x,y) over
the same X and Y ranges. We would like to plot them together on the same drawing for
easy comparison. This is most effectively done by plotting f using some kind of density
plot, and then drawing g as a contour plot over top of it. It may help to draw g in a
different color to ensure it is clearly visible.

 17

Multiple plots on the same drawing
Researchers commonly need to combine graphs into the same drawing, plot multiple data
sets on the same graph, draw different graphs with a common axis, and so on. There are
many ways Extrema can be used to get these effects. A few are mentioned here; see also
section 4.5.4.

Tile numerous graphs on the same drawing
Extrema divides the drawing area into windows, which can be selected by their number to
confine a graph to a particular section of the drawing. Window number 0 is the default.

For example, to tile four graphs on the same drawing, simply select windows 5, 6, 7, and 8 in
order, and issue an appropriate GRAPH command for each.

WINDOW 5
GRAPH x y1
WINDOW 6
GRAPH x y2
WINDOW 7
GRAPH x y3
WINDOW 8
GRAPH x y4

 18

The WINDOW command can also be used to define your own custom set of drawing
windows.

Draw two sets of data on the same graph at the same scale
Method 1: Manually set the axis scales to values that are appropriate for both graphs (see
section 4.5.1). Then draw your first graph. Without clearing the graph, draw the second
graph without axes.

SCALE 0 2*pi -1 1 ! xmin xmax ymin ymax
GRAPH x y
SET CURVECOLOR RED ! change color for overlayed curve
GRAPH\OVERLAY x z

 19

Method 2: Draw the graph that should be used to autoscale the axes first. Then freeze the
axes at those values, before drawing the second graph without axes.

GRAPH x y
SCALE ! freezes the current scale
GRAPH\OVERLAY x z

Method 3: Graph either of the two data curves first, then overlay the second data curve.
Then use the REPLOT command to redraw both curves on a common scale.

GRAPH x y
GRAPH\OVERLAY x z
REPLOT

Draw two sets of data on the same graph, but at different Y-scales
Method 1: If you only need a labelled y-axis for one data set, the task is easy:

GRAPH x y ! y-axis is for this graph
GRAPH\OVERLAY x z ! no y-scale shown for this graph

Method 2: By default, the y-axis is drawn at the left hand end of the x-axis. The
GRAPH\YONRIGHT command draws the y-axis on the right. For example, the following
commands produce the figure below.
X = [1:100]
GRAPH\YONRIGHT X SIN(X/20)

 20

If you need a labelled y-axis for both data sets, just graph the first data curve with the y-axis
on the left (the default), and then graph the second data curve with the y-axis on the right.
You might want to change the color for the second y-axis and curve to distinguish it from
the first. For example:

x=[1:20:.5]
y1=x^2
y2=EXP(SIN(x/5))
SET
 XLABEL 'This is the x-axis label'
 XLABELON 1
%XLABELHEIGHT 5
 YLABEL 'x<^>2'
 YLABELON 1
%YLABELHEIGHT 5

GRAPH x y1
SET
 YAXISCOLOR blue
 YNUMBERSCOLOR blue
 CURVECOLOR blue

 21

 XAXIS 0
 YLABELCOLOR blue
 YLABEL 'e<^>sin(x/5)'

GRAPH\YONRIGHT x y2

The GRAPH\XONTOP command draws the x-axis on the top. More information on
customizing axes and graph placement is provided in the next chapter.

 22

Chapter

4

Customizing
Graph
Presentation
Once you can draw your data, you will want to customize the details of the drawing to
improve its presentation.

Extrema has a large number of internal parameters used to control the drawing details. By
altering these parameters you can vary the appearance of your drawing in a great variety of
ways.

The most commonly used parameters can be easily set from the GUI, simply by checking
off the desired options from those that are presented. The more obscure parameters may
not have any convenient checkboxes, however, and will have to be set manually using a
typed command.

Each drawing parameter has a name. To get the value of a parameter, use the function

GET characteristic

This returns a value that can be viewed interactively, or stored in a variable. To set the value
of a parameter, use

SET characteristic value

Specific commonly used examples follow. A comprehensive list of parameters is given in
the Extrema Command Reference.

Many drawing parameters refer to positions on the drawing, which can be expressed in
various units, including percentages. To interactively determine which position you would
prefer, simply move your mouse over the drawing and the positions will be displayed below
in whatever units have been selected.

Colors
Colors are numbered; these numbers are indexes into a color map. A color map can hold
up to 256 colors. Extrema pre-loads a default color map that should be adequate for most
cases, but you can also load your own color map (see the SET COLORMAP or the SET
COLORMAPFILE command). In the GUI, select a color map color simply by clicking on
the grid of colors that are presented. In the command language, you will need to know the
color number. The default color map is stored in the file DefaultColorMap.dat, and
the color numbers can be looked up there.

In addition to the color map, Extrema also predefines a set of colors that are always
available, no matter what color map is currently loaded. These are checked off by name in
the GUI, or by selecting a color name or a negative color number in the command language.

 24

Default Drawing Color
The characteristic COLOR sets the current drawing color. If set, this color is used for
everything placed onto the drawing. By changing this parameter in the course of adding
things to the drawing, you can easily control the plotting colors.

SET COLOR BLUE ! draw the curve in blue
GRAPH\OVERLAY x y
SET COLOR BLACK ! draw the axes in black
GRAPH\AXESONLY x y

There are also more specific drawing color parameters used to set the colors of certain graph
items, such as labels, axes, and so on. If set, these will override the global default color. If
not set, the global color will be used.

SET CURVECOLOR BLUE ! draw the curve in blue
SET XAXISCOLOR BLACK ! draw the x-axis in black
GRAPH x y

Plotting Symbols
The plotting symbol can be manually selected in the GRAPH window. In the command
language, use:

SET PLOTSYMBOL n

Where n is the symbol number, taken from:

 If n is positive, successive points are connected by lines.
 If n is negative, the corresponding positive value is used, but points will not be

connected.
 If n is zero, no plotting symbol is used (but the points are connected; the data is

drawn as a simple curve in this case).

 25

In addition to the plotting symbol, you can also specify the size, color, and angle (in degrees).
If scalar values are used for these, the value will apply to every data point. If vector values
are used, the vectors should be the length as the data vectors. The corresponding values for
each point are used to set the plotting style for that point.

In the GUI, you can simply enter the size, color, and angle vectors (or scalars, or
expressions) in the appropriate fields. In the command language, use:

SET PLOTSYMBOL symbol
SET %PLOTSYMBOLSIZE size
SET PLOTSYMBOLCOLOR color
SET PLOTSYMBOLANGLE angle

For example, to plot a vector field, we could select an arrow symbol where the arrow is
centred at on the data value (#13), and then set the sizes and angles according to two
vectors, magnitude and direction:

SET PLOTSYMBOL –13
SET %PLOTSYMBOLSIZE magnitude
SET PLOTSYMBOLCOLOR black
SET PLOTSYMBOLANGLE direction
GRAPH x y ! draw vector field

 26

Line type
The line type or style used for drawing lines on your graphs can be selected using the SET
LINETYPE command:

The line style is used only for graphed lines; it is not used for other lines such as graph axes.

Line width
SET LINEWIDTH n controls the line width of the axes, the data curve, and the
plotting symbols drawn when the GRAPH command is entered. The units of

 27

LINEWIDTH are pts, where a pt is 1/72 of an inch. For example, a line width of 36
gives 1/2 inch wide lines. The parameter n must be a scalar.

SET LINEWIDTH is a shorthand way to set CURVELINEWIDTH and
PLOTSYMBOLLINEWIDTH.

Text
Graph titles, axis labels, and other drawn text strings have several characteristics that can be
altered, in particular the font, size, color, placement, and angle. These can be specified for
specific types of text labels (e.g., x-axis labels), or for text labels in general.

These parameters are all easily controlled in the GUI by setting the appropriate fields in the
TEXT window (or the FONT sub-window).

You can explicitly enter the location on the graph where the label should be placed, or you
can manually place it using the mouse. The placement of the label is with respect to a
particular point in the box that encloses the text string:

In command mode, the various text drawing parameters are controlled using a number of
settings:

SET XTEXTLOCATION x_position
SET YTEXTLOCATION y_position
SET %XTEXTLOCATION xp_position ! expressed as a percentage
SET %YTEXTLOCATION yp_position ! expressed as a percentage
SET FONT font_name

 28

Axis Labels
Axis labels are a special case of text strings, since they have a standard placement and
orientation. The x-axis text label is drawn, centred, below the x-axis. The y-axis text label is
drawn, centred, to the left of the y-axis. The axis text labels are drawn only when the axes
are drawn. The character string may contain format commands.

The SET XLABEL command sets the automatic x-axis text label. Use the SET
XLABELON command to toggle off/on drawing the x-axis text label. Change the sizes of
the text label with SET XLABELHEIGHT or SET %XLABELHEIGHT. Change the font
of the x-axis text label with the SET XLABELFONT command and change the color of the
x-axis text label with the SET XLABELCOLOR command.

The SET YLABEL command sets the automatic y-axis text label. Use the SET
YLABELON command to toggle off/on drawing the y-axis text label. Change the sizes of
the text label with SET YLABELHEIGHT or SET %YLABELHEIGHT. Change the font
of the y-axis text label with the SET YLABELFONT command and change the color of the
y-axis text label with the SET YLABELCOLOR command.

Graph Legend
Legends are boxes of descriptive text that describe certain details of the graph. Typically,
they are used to label different point types, different line types or colors, contour elevations,
fit parameters, and so on.

 29

The LEGENDON characteristic is changed with the SET command and the current value is
obtained with the GET command. If LEGENDON ≠ 0, a legend entry is drawn into a legend
frame box. A legend entry consists of a short line segment, with optional plotting symbol(s),
and a text string. The legend entry is drawn when the GRAPH command is entered. The string
portion of the legend entry is expected as the first parameter of the GRAPH command, for
example:

GRAPH 'legend entry' x y

If LEGENDON = 0, a string entered as a first parameter with the GRAPH command is ignored.

Following is an example script using a graph legend and the picture that it produces.

x=[1:10]
SET
 LEGENDON 1
 LEGENDTITLECOLOR -16
 LEGENDTITLEFONT 'impact'
 LEGENDTITLE 'The Legend Title'
 LEGENDENTRYLINEON 1
 %LEGENDFRAME 20 60 60 90

symbolSizes = [2;2.5;3;2]
symbols = [15;16;17;18]
colors[1] = 'red'
colors[2] = 'blue'
colors[3] = 'coral'
colors[4] = 'cyan'
DO i = [1:4]
 SET
 PLOTSYMBOL symbols[i]
 PLOTSYMBOLCOLOR colors[i]
 %PLOTSYMBOLSIZE symbolSizes[i]
 LEGENDSYMBOLS i
 CURVECOLOR colors[5-i]
 CURVELINETYPE i+2

 GRAPH 'legend entry<^>'//RCHAR(i) x i*x^2
ENDDO
REPLOT

 30

Graph Axes
To graph only the axes for a particular set of data, use:

GRAPH\AXESONLY x y

To graph a set of data with no axes, use:

GRAPH\OVERLAY x y

These options are handy if you make multiple drawing passes over the same graph. In the
GUI you can simply select the appropriate checkboxes to get the same behaviour.

Scaling
Axes can be manually or automatically scaled.

Auto-scaling is the default, in which the axis will stretch or shrink to accommodate the full
range of the plotted data. This is convenient for well-behaved data sets, but maybe not for
data with spikes, infinities, or related problems. Autoscaling is also inconvenient when one
is overlaying numerous similar graphs, where one requires that the scale be fixed.

 31

Manual axis scaling is done using the SCALES command:

SCALES x_min x_max y_min y_max
SCALES x_min x_max n_x_tics y_min y_max n_y_tics
SCALES

The first form simply sets axis ranges. The second form also sets the number of large
(numbered) tic marks that should be shown for each axis. The last form freezes the axis
scales at whatever is their current value.

Tics
The parameters controlling x-axis tic marks are:

XTICSON controls whether or not tic marks, both large and small, are
drawn on the x-axis.

XTICSBOTHSIDES controls whether or not tic marks, both large and small, are
drawn on both sides of the x-axis.

XTICANGLE controls the angle of the tic marks, both large and small, on
the x-axis.

XNLINCS controls the number of large, labelled, tic marks to be
displayed on the x-axis

XNSINCS controls the number of small, unlabeled, tic marks to be
displayed between the large, labelled, tic marks on the x-axis.

XLARGETICLENGTH controls the length of the large, labelled, tic marks on the x-
axis.

XSMALLTICLENGTH controls the length of the optional small tic marks on the x-
axis. These are the unlabeled tic marks between the large,
numbered, tic marks.

XIMAGTICANGLE controls the angle, in degrees, measured counter clockwise,
between the x-axis and a line joining the base of each large
tic mark on the x-axis to the centre of the number labelling
that tic mark.

XIMAGTICLENGTH controls the distance, measured from the base of each large
tic mark on the x-axis, to the centre of the number labelling
that tic mark

 32

The parameters controlling y-axis tic marks are:

YTICSON controls whether or not tic marks, both large and small, are
drawn on the y-axis.

YTICSBOTHSIDES controls whether or not tic marks, both large and small, are
drawn on both sides of the y-axis.

YTICANGLE controls the angle of the tic marks, both large and small, on
the y-axis.

YNLINCS controls the number of large, labelled, tic marks to be
displayed on the y-axis

YNSINCS controls the number of small, unlabeled, tic marks to be
displayed between the large, labelled, tic marks on the y -axis.

YLARGETICLENGTH controls the length of the large, labelled, tic marks on the y -
axis.

YSMALLTICLENGTH controls the length of the optional small tic marks on the y -
axis. These are the unlabeled tic marks between the large,
numbered, tic marks.

YIMAGTICANGLE controls the angle, in degrees, measured counter clockwise,
between the y -axis and a line joining the base of each large
tic mark on the y-axis to the centre of the number labelling
that tic mark.

YIMAGTICLENGTH controls the distance, measured from the base of each large
tic mark on the y-axis, to the centre of the number labelling
that tic mark

Logarithmic axes
To get logarithmic scaling on the x-axis, use SET XLOGBASE n, where:

n > 1.0 the x-axis will have a logarithmic scale. The base will be the integer part of
XLOGBASE, except for the special case: 1.05*e > XLOGBASE > 0.95*e,
where e is the base of the natural logarithms, e ≈ 2.718281828, in which case
the base will be e.

n ≤ 1.0 the x-axis will have a linear scale

 33

If XLOGSTYLE = 0, and XLOGBASE > 1.0, then the numbers labelling the large tic marks
on the x-axis are displayed in decimal format. If XLOGSTYLE ≠ 0, and XLOGBASE > 1.0,
then the numbers labelling the large tic marks on the x-axis are displayed in exponential
format.

To get logarithmic scaling on the y-axis, use SET YLOGBASE n, where:

n > 1.0 the y-axis will have a logarithmic scale. The base will be the integer part of
YLOGBASE, except for the special case: 1.05*e > YLOGBASE > 0.95*e,
where e is the base of the natural logarithms, e ≈ 2.718281828, in which case
the base will be e.

n ≤ 1.0 the y-axis will have a linear scale

If YLOGSTYLE = 0, and YLOGBASE > 1.0, then the numbers labelling the large tic marks
on the y-axis are displayed in decimal format. If YLOGSTYLE ≠ 0, and YLOGBASE > 1.0,
then the numbers labelling the large tic marks on the y-axis are displayed in exponential
format.

Axis placement
The placement of the axes can be precisely controlled by manipulating the axis location
parameters:

%XLOWERAXIS
%XUPPERAXIS
%YLOWERAXIS

 34

%YUPPERAXIS

The percentage versions specify positions as percentages of the current drawing window;
otherwise the positions are in the drawing coordinates.

By careful manipulation of these values, you can place one graph at any point on the
drawing with respect to another. For instance, to adjoin two graphs along the x-axis so that
there is an upper graph and a lower graph with a common edge:

1. Set %YUPPERAXIS to a reduced value, e.g., 50.
2. Plot the first graph.
3. Set %YLOWERAXIS to the value of %YUPPERAXIS
4. Set %YUPPERAXIS to 85.
5. Turn off drawing of the x-axis labels with SET XAXIS 0.
6. Plot the second graph.

In practice, there are some other parameters you may need to play with to keep the y-axis
labelling clean, but the above will suffice in simple cases.

 35

Chapter

5

Data Analysis
Examples
Extrema provides numerous tools for data analysis, including data transformation
tools, filtering tools, cutting and selection tools.

Elementary data manipulation is done using Extrema’s built-in expression evaluation
capabilities. Any expression involving a variable will return a similar variable, each element
of which has been modified by the expression; the return value of the expression can be
saved to another variable, or operated on directly.

Examples:

y = SIN(x)^2 + COS(x)^2 ! save expression results in variable y
GRAPH x 3*x^2-6x+2 ! graph expression directly

Expressions are built up of constants, variables, operators, and functions, which can be
combined in any algebraic syntax, as in the examples above.

Operators
In addition to the simple arithmetic operators, +, -, *, /, ^ (exponentiation), and ()
(grouping), there are also special vector and matrix operators:

>< - outer product <> - inner product
<- - matrix transpose >- - matrix reflect
/| - vector union /& - vector intersection

and a set of Boolean operators that return true (1) or false (0) values:

| - or || - exclusive or
 & - and \ - not
= - equal to ~= - not equal to
> - greater than < - less than
>= - greater than or equal to <= - less than or equal to

Functions
Extrema has over 200 built-in functions that can perform a wide range of other operations
on your data. Examples include:

 conventional mathematical functions, such as the trigonometric functions,
logarithms, roots and exponentials, and rounding functions.

 advanced functions, such as Bessel, Clebsch-Gordan, etc.

 calculus functions, such as integral and derivative.

 probability functions

 programmers' functions, such as random number generation, variable tests, looping
functions

 array and matrix functions, such as where, eigenvectors and eigenvalues, etc.

 string functions, such as case, date/time, etc.

In all cases, these functions accept data of a certain type, and return data of a certain type;
they may be freely used in any expression, so long as the types they return make sense in the
expression context.

For further information, see Operators and Functions in the Extrema Command
Reference.

Fitting
Fitting data, that is, describing a set of data points as some sort of function, is one of the
most important forms of data analysis. Extrema's data-fitting capabilities are sophisticated
and flexible; complete details are provided in the Extrema Command Reference, but
some simple examples are given here.

 37

Smoothing
Smoothing is a simple way of fitting a set of data points to a smooth curve. There are
several methods of calculating these smooth curves, notably cubic splines under tension
(SMOOTH and SPLSMOOTH functions), and Saviztky-Golay filters (SAVGOL function).

Smoothing functions return a smoothed set of data, that is, they accept your data as input,
and output a new set of values that fall on a smooth curve of the appropriate type. They can
operate on any shape of data without any prior knowledge of the data's shape. (In some
cases, there is a requirement that the data be monotonically increasing.) They will not,
however, return an actual algebraic function describing the shape of your data. For this you
need to do a proper fit (see below).

There are also interpolation functions that will fill in missing data using similar smoothing
techniques (INTERP and SPLINTERP functions). Please refer to SMOOTH,
SPLSMOOTH, SAVGOL, INTERP, and SPLINTERP functions.

Fitting to a function
To describe your data as a function, you'll need to know in advance what function you will
be fitting to. This function will be expressed with a number of free parameters,
whose precise values are unknown. The purpose of the fit is to determine what values of
those free parameters best match the data.

 38

Note: Fitting is an uncertain process by its very nature. There is no guarantee that an
appropriate fit will be found in all cases, and there is no guarantee that there is only one such
fit that describes the data.

A free parameter is like a scalar variable, except that instead of being set by you (or your
data analysis operations), it is set by Extrema in the course of making the fit. This
difference in behaviour means that free parameters are declared differently, so that Extrema
knows it can vary the parameter, instead of treating it as a fixed constant in the fitting
expression.

SET PLOTSYMBOLCOLOR RED !
GRAPH X Y ! graph the raw data
SCALAR\FIT A B ! declare free parameters
FIT Y=A+B*X ! perform the fit
SET PLOTSYMBOL 0 ! graph the fit function as a line
SET CURVECOLOR BLUE !
GRAPH X A+B*X !

Free parameters should be initialized to an appropriate guess value, from which the fit will
begin. In simple cases, the actual value of the guess is not terribly important; Extrema will
find the correct value regardless. In more complex cases, the initial guess will affect how the
fit progresses, and could affect the final result. In other words, in some cases, different fits
can be found depending on where you start, so choosing a reasonable guess to initialize the

 39

free parameters can be important. Once the fit is complete, the free parameters will have
their fitted values. If Extrema failed to find a good fit, the free parameters will have the last
values Extrema tried to fit with; or, optionally, they can be reset to their initial values upon
failure.

Normally, fitting results in multiple lines of text output describing the fit. The values of the
free parameters, and various other values describing the accuracy of the fit, are all contained
in this output. Extrema can optionally write some of this information into variables, for
access by scripts and expressions later in the analysis process.

For more detailed information, please refer to the FIT command in the Extrema
Command Reference.

Fitting different data segments to different functions
In some cases you will want to divide the data into segments or groups, and fit each group
separately. For example, suppose you want to fit two line segments to the data such that
they join at one end point. Below, on the left, is an example where the two segments are
forced to join and, on the right, an example where they are allowed to float.

X=[1:19]
Y=[1;2;3;4;5;6;7;8;9;10;9;8;7;6;5;4;3;2;1]+5*ran(x)
WINDOW 5
SET PLOTSYMBOL –1
GRAPH x y
SCALAR\FIT a b c d
X0 = 10
FIT y=(a+b*x)*(x<=x0)+(c+d*x)*(x>=x0)+(a+b*x-c-d*x)*1000*(x=x0)
SET PLOTSYMBOL 0
I1 = WHERE(x<=x0)
I2 = WHERE(x>=x0)
Y1 = a+b*x
Y2 = c+d*x
SET CURVECOLOR red
GRAPH\OVERLAY x[i1] y1[i1]
GRAPH\OVERLAY x[i2] y2[i2]
WINDOW 7
SET PLOTSYMBOL –1
GRAPH x y
FIT y=(a+b*x)*(x<=x0)+(c+d*x)*(x>=x0)
SET PLOTSYMBOL 0
Y1 = a+b*x
Y2 = c+d*x
SET CURVECOLOR red
GRAPH\OVERLAY x[i1] y1[i1]
GRAPH\OVERLAY x[i2] y2[i2]
REPLOT\ALL

 40

Binning
Binning data has already been mentioned a few times as a means of converting one-
dimensional data into two-dimensional data (BIN command), or two-dimensional into
three-dimensional (BIN2D command).

Simply put, binning counts the data points falling into a certain range. This results in a
vector (or vectors, in the 2-D case) describing the ranges (the bins), and a second vector (or
matrix) describing the counts.

Simple binning is straightforward. An input vector of values is taken as input, and two
output vectors containing the bins and the counts are returned.

BIN x xbin xcount ! bin the values in x
GRAPH\HISTOGRAM xbin xcount

There are many binning options, among them:

 various options for defining the bin boundaries
 the averages of the values in each bin can be returned
 values can be counted conditionally
 counts can be weighted
 lagrange binning

Please refer to the BIN command for more information.

Interpolation
There are many cases where one needs to interpolate data, for instance:

 estimating missing data values
 converting an irregular data sample to a monotonically increasing data sample

 41

 representing a set of data points as a smooth function

Interpolation presumes the data can be represented as a smooth function, and that this
function passes through all of the data points. Interpolation therefore consists of looking up
the y-values of this function for any x that is not represented in the original data. This is
normally done by means of the INTERP function, which returns a data vector containing
the interpolated values. The INTERP function accepts three arguments:

 x-vector, a monotonically increasing set of x values.
 y-vector, the values of y at each of the above x values.
 x-interpolation points, a set of x-values at which to interpolate new y-values.

The method of interpolation is normally interpolating splines, but an optional fourth
argument can be used to select an alternate interpolation method:

 LINEAR simple linear interpolation
 LAGRANGE general Lagrange interpolation
 FC Fritsch and Carlson method of monotone piecewise cubic

 interpolation

If one's starting data is not monotonically increasing, then one can use the
SPLINTERP(x,y,n) function instead. It accepts an arbitrary set of x and y values, and a
number of points to interpolate. The output is a 2-column matrix, the first column of which
gives the interpolated points (i.e., x-values), and the second of which gives the interpolated
values (i.e., y-values).

2-D interpolation
Beginning with a scattered set of 3-D data points in three vectors (say, x, y, and z), you can
interpolate a regular matrix using the GRID command. The three vectors are assumed to
represent scattered points, where z[i] is the altitude corresponding to the coordinates
(x[i],y[i]). The set of scattered data points is used to construct a Thiessen
triangulation of the plane and a regular matrix, m, is interpolated.

For example, the following script produces the pictures below.

X=[1;0;1;0;0.2;0.3;0.5;0.8]
Y=[5;5;0;0;1;1.5;2.5;4]
Z=[10;10;10;10;-100;10;-100;500]
GRID\XYOUT X Y Z M XOUT YOUT
SET PLOTSYMBOL –14
GRAPH X Y ! produce the graph on the left
SET PLOTSYMBOL 0
DENSITY\DITHER XOUT YOUT M ! produce the density plot

 42

Integration
Integration is the summing of areas and volumes under curves and surfaces. Extrema
provides you with several tools to accomplish this.

The INTEGRAL function is the simplest method; it accepts two vectors representing the x-
values (monotonically increasing) and y-values of the function to be integrated. The return
value is the integrated function, i.e., the integral at each x-value; there is one additional value
appended to the end of this output vector, and that is the integral over the full range of x.

For example, to find the area under cos3(x)+sin4(x) for 0 ≤ x ≤ π:

pi = ACOS(-1)
x = [0:pi:.1]
yi = INTEGRAL(x,COS(x)^3+SIN(x)^4)
value = yi[#]

 43

Other functions
Please refer to the DERIV function (derivative of a function); and the AREA function (area
within a polygon), and the VOLUME function (volume under a surface). There are also
numerous special integration functions, such as elliptic integral, Fresnel integral, exponential
integral, sine integral (SININT) and cosine integral (COSINT).

Two-dimensional integration is typically done using the VOLUME function, which can
operate on a variety of data types:

 vectors containing scattered (x,y) points
 vectors containing scattered polar coordinate points (angle, radius)
 regular matrix

Data Selection
Filtering, cutting, and other forms of conditional data selection are a big part of many
analysis tasks. There are many ways this can be accomplished in Extrema.

 44

Many of these techniques involve selecting subsets of vectors, matrices, or tensors,
according to some arbitrary condition. A trivial form of data selection simply consists of
selecting the desired indexes, for example:

good_data = m[#,*] ! only the last column of the matrix is good

If the good data is scattered throughout a vector (say data), and you have the indexes of
the good values in another vector good, then you can select the good data using the
notation:

good_data = data[good]

Determining which indexes are good and which are bad is the tricky part. The WHERE
function is invaluable for this. It accepts a vector as input, and returns the indexes where the
input vector was not equal to zero.

The input vector is usually some kind of Boolean operation on the actual data vector, such
that a vector of true/false (1/0) values is actually passed to the WHERE function. The return
vector of indexes is then used to select the values from the original data vectors.

The power of this function is best illustrated with a few simple examples:

Example 1: select the data points within 1 unit of the origin

We have a scattered set of data points in the vectors x and y, but we want only the ones that
lie within the unit circle, i.e., the points that satisfy SQRT(x^2+y^2)<=1.

i=WHERE(SQRT(x^2+y^2)<=1) ! select data in unit circle
! i is our list of selected indexes

GRAPH x[i] y[i] ! graph the selected data

Example 2: select only the data points collected within a time window

We have an unordered, scattered set of data points in the vectors x and y, and the times of
each in a vector t. Say our time window is defined by tmin and tmax.

i=WHERE(t>=tmin & t<=tmax) ! select data in time window
GRAPH x[i] y[i] ! graph the selected data

Example 3: select only the data points whose error is below a threshold

We have a set of data points in the vectors x and y, with errors denoted by vectors xerr
and yerr. We want to reject any data point with an x-error exceeding xthresh or y-
error exceeding ythresh.

i=WHERE(xerr<=xthresh|yerr<=ythresh) ! select good data

 45

GRAPH x[i] y[i] xerr[i] yerr[i] ! graph the selected data

Example 4: eliminate spikes from the data

We have a set of data points in the vectors x and y, with occasional anomalous (single-
point) spikes where the y-value goes very high. In the simple case, we can simply filter out
any data over a certain y-value (say, ymax):

i=WHERE(y<ymax)
GRAPH x[i] y[i] ! graph the selected data

This won't work if the good data occasionally can rise above ymax. In this case you might
only want to filter out spikes with a certain minimum height (say, spike_min) relative to
adjacent good points. Here is a simple way to accomplish that:

ydiff[1] = 0 ! get y-differences between each point and the previous point
ydiff[2:LEN(y)] = y[2:#]-y[1:#-1]
i=WHERE(ydiff<spike_min)
GRAPH x[i] y[i] ! graph the selected data

 46

Chapter

6

Output
Printing graphs
Printing your graphs is very easy; simply select Print and proceed as you would for any
other Windows printing job.

Exporting graphs for inclusion in other documents
Researchers commonly need to include their graphs in other documents, such as research
papers, written reports, or web pages. For these purposes, Extrema can export to several
industry-standard graphics formats: PostScript (EPS), Portable Network Graphics (PNG),
and Joint Photographic Experts Group (JPEG). The HARDCOPY command is used for
saving the graphics to a file in one of the supported formats. Encapsulated PostScript is the
default format, if no qualifier is entered with the HARDCOPY command.

PostScript & EPS
PostScript (EPS) is the industry standard for printed documents; it provides excellent,
publication-quality output that is completely scalable, and is compatible with documents
conforming to the Portable Document Format (PDF) or to the TeX and LaTeX systems
that are common in scientific publishing.

PNG
Portable Network Graphic (PNG) is a bitmap image format that is supported by most major
web browsers, including Explorer and Netscape. As a bitmap format, it is inferior for
regular publication purposes, but it is convenient for in-lined image display in web pages. It
gives high rates of compression for conventional drawings and plots, and is the
recommended graphics format for most drawings.

JPEG
Joint Photographic Experts Group (JPEG) images are also stored in a bitmap format, and
suffer from all the drawbacks of PNG images. They are also optimized for displaying
photographic images, and do not generally give good compression for conventional
drawings and plots. Some complex drawings that involve smoothly varying gradients of
tone or color may benefit from being exported to JPEG format, however.

Saving Data
If you have done much data processing, you may want to save your modified data in a file so
that you can come back to it in a future Extrema session and analyze it further.

The simplest way to write an output file is using the WRITE command, which takes your
variables and writes them in columns to the designated output file.

WRITE mydata.dat x y z ! write x, y, and z vectors to 3 columns

This sort of data file is also easy to read back in to Extrema (see section 2). It is fairly
portable in general, and could also be imported into most spreadsheet programs, for
instance.

There are many options and other uses for the WRITE command, including:

 writing text strings, scalars, matrixes, and tensors
 specifying precise formats
 appending to files
 writing individual vectors in multiple columns

 48

Chapter

7

Scripting
Interactive use of Extrema is adequate for one-off data analysis and visualization jobs, or
for exploratory data analysis, in which you are trying to gain an understanding of your data.
There are other cases where completely interactive control over the job are not desirable, for
instance:

 favourite configurations, or preferred defaults, that you'd like to load instantly
 routine or repetitive tasks that always involve the same set of steps
 production analysis, in which established data analysis routines are used repeatedly

on similar data sets
 long or intensive analysis jobs that don't need baby-sitting

In these cases, you will use scripts to fully or partially automate the process. Examples of
Extrema scripting commands have been provided throughout this guide; in fact, every
Extrema operation has both an interactive GUI method, and a corresponding command-
driven method to accomplish it. In addition, there are special tools that are only available
when in script mode, such as:

 branches
 loops
 subroutines

If you have computer programming experience, you'll recognize these as the essential
elements of a programming language. Using these elements, you can make your Extrema
scripts perform arbitrarily complicated tasks. So long as the analysis procedure is
quantifiable in some way, Extrema can be configured to make all the necessary decisions,
and take the appropriate steps in the handling of your data.

Creating and editing scripts
Extrema scripts are simple text files, with one command per line. You can use any editor or
word processor to create and/or edit your script, provided you save it in plain text (txt)
format.

By default, Extrema scripts are assumed to have the extension .pcm. Any other extension
can be used, however, if it is specified when you run the script.

Every line of the script is an Extrema command. By default, the commands are executed in
order, unless you have loops or branches (see below).

Comments
Script lines that begin with the exclamation point character, !, are comments. These lines
are ignored by Extrema, and are used to add commentary to your scripts to help document
what they are doing. (Many of the scripting examples in this guide include comments.)
Comments can be placed on their own line, or they can be appended to the end of the line.
Everything from the exclamation point character to the end of the line is ignored.

Comment characters are also sometimes used to disable lines in a script.

Running scripts
To run a script, use the syntax @script. By default this will execute the script in the file
script.pcm. If you saved your script in a file with a different extension (say .txt), you
could say @script.txt instead.

By default, scripts run silently (with no output) unless they perform actions that generate
some kind of output (e.g., draw graphs, do a fit). In some cases you may prefer that your
script be “chatty” so that you can follow its progress. You could insert commands to force
some output at particular moments, or you could just include the command ENABLE
ECHO at or near the top of the script, which causes Extrema to echo each command as it is
performed. (Use DISABLE ECHO to turn this behaviour off.)

Interacting with the user
Not all scripts are meant to run by themselves off in a dark room somewhere. Some scripts
will have a real person in front of them, and interaction with this user may be necessary.
There are a few special Extrema commands for this purpose:

 DISPLAY: causes Extrema to display a message or other text string

 INQUIRE: prints a message (such as a question), and waits for the user to provide
an answer. The answer is kept in a variable, and so can be used in subsequent

operations. In the trivial case, this could be a prompt to “Hit return to
continue...”, and the answer is irrelevant. In more sophisticated cases, it
could prompt for multiple variable names or values to operate on

Initialization script
You can have Extrema automatically run a script when it first starts. This is convenient for
setting up physical constants or your favourite graphing parameters and defaults. To make
an initialization script, simply create a file named extrema.init in the scripts
subfolder of C:\extrema (or wherever you installed Extrema).

Subroutines
Scripts can be executed from within other scripts; sometimes the top-level script (invoked by
a person) is referred to as the program, while the remaining scripts (invoked by the script)
are called the subroutines. Other than that, a subroutine is just like any other script, and is
executed the same way.

The RETURN command, when encountered, stops execution of the current script, and
returns to the next script above. This is a common way of ending a subroutine, although it
is not strictly necessary at the very end --- RETURN is implied at the end of every script, so it
is only needed for abnormal returns in the middle of the script. RETURN'ing from a top-
level script will return the user to interactive mode.

Subroutine scripts will commonly require input parameters, by means of which the calling
script passes information for the subroutine to operate on. Parameters are typically variables
that are given after the subroutine name, for example:

@analyze x y z ! pass x, y, and z vectors to the analyze subroutine

Parameters can also include text strings, for instance file names:

@savedata myfile.dat x y ! save the x & y vectors to myfile.dat

Subroutines that require parameters can also be executed interactively, without specifying the
parameters. In this case, Extrema will interactively prompt you for the missing information.

To use a parameter inside a subroutine, use the notation ?n, where n is the number of the
parameter to substitute into that spot. For instance, in the previous example, the script
savedata.pcm might contain the following lines:

WRITE\APPEND ?1 ?2 ?3
DISPLAY ?1//’ updated with ’//LEN(?2)//’ points’

which would be translated to:

 51

WRITE\APPEND myfile.dat x y
DISPLAY ’myfile.dat updated with '//LEN(x)//’ points’

There is no limit to how many times you call a subroutine, how many different subroutines
you call, or how many levels deep subroutines may be nested inside each other.

Branching and looping
Branches are places where the execution of a script can fork. This is usually controlled using
the IF ... THEN construct. There are two ways this statement can be used:

Method 1:

IF (condition) THEN command

Method 2:

IF (condition) THEN
command
command
...etc.
ENDIF

In both cases, the commands are executed only if the condition evaluates to true (i.e., 1). In
method 1, only the single command is executed, whereas in method 2, an entire sequence of
commands is executed. If the condition evaluates to false, then the commands are ignored,
and execution jumps to the next non-conditional statement.

You can also jump non-conditionally using the GOTO statement.
The command GOTO label command transfers script execution to the given label.

A label is a special statement that does nothing; it is simply a place marker in the script. It
consists of just a name (no spaces) followed by a colon. The colon is not used in the GOTO
statement.

start:
...
IF (a>b) THEN RETURN
GOTO start

In the above example, the GOTO statement restarts the script from the top; this could
repeat indefinitely, if we didn't have the conditional RETURN statement to exit the script at
some point. (This is a simple example of a loop.)

 52

Here is another way to use GOTO statements to continue executing a block of code until
some condition is met:

begin: ! loop to execute a block of code until a equals b
...
IF (a != b) THEN GOTO begin

If you cannot get Extrema to make the key decisions on its own, you could always prompt
for a human decision on whether to repeat the loop:

begin: ! loop to execute a block of code until user is happy
...
INQUIRE ’Redo (Y/N)?’ answer
IF (EQS(answer),’Y’) THEN GOTO begin

You could use similar conditional branching statements to control the number of times a
section of code gets executed:

nloop = 0 ! ugly loop to execute a block of code 10 times
do_loop:
...
nloop = nloop+1
IF (nloop <= 10) THEN GOTO do_loop

DO loops
The previous example can be written more concisely as:

DO x = [1:10] ! better loop to execute a block of code 10 times
...
ENDDO

The general form of the DO loop is:

DO scalar = vector
...
ENDDO

The scalar is set to each element of the vector in turn, with the loop code being executed
once for each such setting. Thus, the following are all legal DO loops:

DO i = [-10:10:2] ! loop from -10 to +10 in steps of 2
...
ENDDO

DO i = x^2 ! loop over the squares of all values of x

 53

...
ENDDO

DO x = [1:LEN(a[*,#])] ! matrix c is the difference between
 ! matrixes a and b
 DO y = [1:LEN(a[#,*])]
 c[x,y] = a[x,y] - b[x,y]
 ENDDO
ENDDO

This last example is illustrative of the looping mechanism (using nested loops), but otherwise
it is a bit artificial. This is how you might handle the operation of subtracting two matrices
in a conventional programming language, but loops of this nature are implicit in Extrema 's
variable handling and expression evaluation. The same operation can be accomplished more
efficiently with:

c=a-b ! implicit loop over every element

 54

	About This Guide
	CHAPTERS
	Conventions used in this guide

	Installing Extrema
	Running Extrema
	Data Representation
	Addressing parts of arrays
	SPECIAL
	Constants
	Expressions

	Reading Data From Files
	Text files
	Binary files

	Generating Data
	Sequences
	Functions
	Interpolating Data

	Graphics sub-windows
	Pre-defined windows

	One-dimensional graphs
	Two-dimensional graphs
	Line graphs
	Scatterplots

	Histograms and bar charts

	Three-dimensional graphs
	Contour Plots
	Density plots
	Surface plots

	Four+ dimensional graphs
	Graphing two 3-D functions on the same drawing
	Multiple plots on the same drawing
	Tile numerous graphs on the same drawing

	Draw two sets of data on the same graph at the same scale
	Draw two sets of data on the same graph, but at different Y-

	Colors
	Default Drawing Color

	Plotting Symbols
	Line type
	Line width
	Text
	Axis Labels
	Graph Legend
	Graph Axes
	Scaling
	Tics
	Logarithmic axes
	Axis placement

	Operators
	Functions
	Fitting
	Smoothing
	Fitting to a function

	Fitting different data segments to different functions

	Binning
	Interpolation
	2-D interpolation

	Integration
	Other functions
	Data Selection
	Printing graphs
	Exporting graphs for inclusion in other documents
	PostScript & EPS
	PNG
	JPEG

	Saving Data
	Creating and editing scripts
	Comments

	Running scripts
	Interacting with the user
	Initialization script

	Subroutines
	Branching and looping
	DO loops

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

