Your Brain on Java—A Learner’s Guide

59 Head First

solve a Five-Minute
Pump neurons with Java Mystery
the Brain Barbell
workouts

See what

makes the JVM o R k .
tick and what (A R Watch Java objects

ticks it off = e ; , expose their inner
~ A secrets on
Java Tabloid TV

Fool around in
the Java Library

some code with
Ready-Bake Java

Bend your mind
around 4?2

Learn why Lucy \ Java puzzles >
*really* keeps her

variables private

Kathy Sierra & Bert Bates




2 classes and objects

We're going to
Objectvillel We're
leaving this dusty ol'
procedural town for good.
T'll send you a postcard.

| was told there would be objects. In Chapter 1, we put all of our code in the

main() method. That’s not exactly object-oriented. In fact, that’s not object-oriented at all. Well,
we did use a few objects, like the String arrays for the Phrase-O-Matic, but we didn't actually
develop any of our own object types. So now we've got to leave that procedural world behind,
get the heck out of main(), and start making some objects of our own. We'll look at what makes
object-oriented (OO) development in Java so much fun. We'll look at the difference between a
class and an object. We'll look at how objects can give you a better life (at least the program-
ming part of your life. Not much we can do about your fashion sense). Warning: once you get

to Objectville, you might never go back. Send us a postcard.

Head First Java Sampler 1



once upon a time in Objectville

Chair Wars

(or How Objects Can Change Your Life)

. the spec
nce upon a time in a software shop, two program-
mers were given the same spec and told to “build \/
it”. The Really Annoying Project Manager forced

the two coders to compete, and whoever
delivered first got one of those cool
Aeron™ chairs all the Silicon Valley guys
had. Larry, the procedural programmer,
and Brad, the OO guy, both knew this
would be a piece of cake.

Larry, sitting in his cube, thought to him-
self, “What are the things this program has
to do? What procedures do we need?”. And
he answered himself , “rotate and play-
Sound.” So off he went to build the proce-
dures. After all, what is a program if not a
pile of procedures?

Brad, meanwhile, kicked back at the cafe
and thought to himself, “What are the things
in this program... who are the key players?”
He first thought of The Shapes. Of course there

were other objects he thought of like the User,

the Sound, and the Clicking event. But he already has a
library of code for those pieces, so he focused on build-
ing Shapes. Read on to see how Brad and Larry built their
programs, and for the answer to your burning question,

a the chair
“So, who got the Aeron?” ﬁl

4 b4
Inlarry’s cube At Brad’s laptop at the cafe
As he had done a gazillion times before, Larry Brad wrote a class for each of the three shapes
set about writing his Important Procedures.
. . Square
He wrote rotate and playSound in no time.
rotate (shapeNum) { rotate() { Circle
Il code to rotate a s
// make the shape rotate 360° } rotate) { Triangle
} I code to rotate a ¢
playSound() { } rotate() {
playSound (shapeNum) { If code to play the A Il code to rotate a triangle
. Il for a square playSound() { )
// use shapeNum to lookup which } Ireotieo ple 16
// AIF sound to play, and play it /I for a circle playSound() {
} I code to play the AlF file
} 1| /f for a triangle
}




classes objects

Larry thought he’d nailed it. He could almost feel the rolled
steel of the Aeron beneath his...

But wait! There’s been a spec change.

“OK, technically you were first, Larry,” said the Manager, “but we have to add just one
tiny thing to the program. It'll be no problem for crack programmers like you two.”

“If I had a dime for every time I've heard that one”, thought Larry, knowing that spec-
change-no-problem was a fantasy. “And yet Brad looks strangely serene. What's up with
that?” Still, Larry held tight to his core belief that the OO way, while cute, was just
slow. And that if you wanted to change his mind, you’d have to pry it from his cold,
dead, carpal-tunnelled hands.

— what got added to the spec

Back in Larry’s cube At Brad’s laptop at the beach
The rotate procedure would still work; the code used Brad smiled, sipped his margarita, and wrote one
a lookup table to match a shapeNum to an actual new class. Sometimes the thing he loved most
shape graphic. But playSound would have to change. about OO was that he didn’t have to touch code
And what the heck is a .hif file? he’d already tested and delivered. “Flexibility,
playSound (shapeNum) { extensibility,...” he mused, reflecting on the
// if the shape is not an amoeba, benefits of OO.
// use shapeNum to lookup which Amoeba
// AIF sound to play, and play it rotate() {
// else /I code to rotate an amoeba
// play amoeba .hif sound }
! playSound() {

It turned out not to be such a big deal, but it still Il code to play the new
made him queasy to touch previously-tested code. Of I/ hif file for an amoeba
all people, heshould know that no matter what the }
project manager says, the spec always changes.




once upon a time in Objectville

Larry snuck in just moments ahead of Brad.

(Hah! So much for that foofy OO nonsense). But the smirk on Larry’s face slid away when the
Really Annoying Project Manager said (with that tone of disappointment), “Oh, no, that’s not
how the amoeba is supposed to rotate...”

Turns out, both programmers had written their rotate code like this:
1) determine the rectangle that surrounds the shape / 0\
2) calculate the center of that rectangle, and rotate the shape around that point. L)

But the amoeba shape was supposed to rotate around a point on one end, like a clock hand.

“I'm toast.” thought Larry, visualizing charred sourdough. “Although, hmmmm. I could just

add another if/else to the rotate, and just hard-code the rotation point code for the amoeba.

That probably won’t break anything.” But the little voice at the back of his head said, “Big
Mistake. Do you honestly think the spec won’t change again?”

What the spec conveniently
forgot to mention

Back in Larry’s cube At Brad’s laptop on his lawn
He figured he better add rotation point arguments chair at fhe Telluride B'Uegrass FeSﬂ\/al

to the rotate procedure. A lot of code was affected.
Testing, recompiling, the whole nine yards all over
again. Things that used to work, didn’t.

Without missing a beat, Brad modified the rotate
method, but only in the Amoeba class. He never

touched the tested, working,
rotate (shapeNum, xPt, yPt) { compriled code for the other Amoeba

// if the shape is not an amoeba, parts of the program. To | int xPoint
give the Amoeba a rota- | intyPoint

tion point, he added an | rotate() {
attribute that all Ameboas| // code to rotate an amoeba

// calculate the center point

// based on a rectangle,

// then rotate would have. He modi- Il using amoeba’s x and y
// else fied, tested, and delivered }

// use the xPt and yPt as (wirelessly) the revised playSound() {

// the rotation point offset program during a single It cgdg to play the new

// and then rotate Bela Fleck song. g/ hif file for an amoeba




classes and objects

So, Brad the 00 guy got the chair, right?

Not so fast. Larry found a flaw in Brad’s approach. And,
since he was sure that if he got the chair he’d also get Lucy
in accounting, he had to turn this thing around.

LARRY: You've got duplicated code! The rotate proce-
dure is in all four Shape things.

BRAD: It’s amethod, not a procedure. And they’re
classes, not things.

LARRY: Whatever. It’s a stupid design. You have to main-
tain four different rotate “methods”. How can that ever be
good?

BRAD: Oh, I guess you didn’t see the final design. Let
me show you how OO inheritance works, Larry. Even you

should be able to follow along. What Larry wanted N
(figured the chair would impress her)

L

Square Circle Triangle Amoeba I looked at Whaf all fOUl’
rotate() rotate() rotate() rotate() classes have in commwon.
playSound() playSound() playSound() playSound() K
They’re Shapes, and they all rotate and Shape
playSound. So | abstracted out the otatel) e
comwmon features and put thew into a playSound()
new class called Shape. —_ Shape Then | linked the other
four shape classes to
superclass sangy | the new Shape class,
in a relationship called
inheritance.
You can read this as, “Square inherits from Shape”, ﬂ KQ
“Circle inherits from Shape”, and so on. | removed subelasses
rotate() and playSound() from the other shapes, so now / \
there’s only one copy to maintain. ) ,
Square Circle Triangle Amoeba

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

Head First Java Sampler 5



once upon a time in

What about the Amoeba rotate()?

LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

BRAD: Method.

LARRY: Whatever. How can amoeba do something different if
it “inherits” its functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the meth-
ods of the Shape class. Then at runtime, the JVM knows exactly which
rotate () method to run when someone tells the Amoeba to rotate.

superclass Shape
(wmore abstract)

- rotate() | made the Amoeba class override
playSound() the rotatel) and playSound()
wmethods of the superclass Shape.

subclasse§ . Overriding just means that a
(more specific) subclass redefines one of its
\ inherited methods when it needs
Square Circle Triangle Amoeba to change or extend the behavior
of that method.

rotate() {
/I amoeba-specific
I/ rotate code }

Overriding methods
playSound) { Ve e
/I amoeba-specific
/I sound code }

T can take
care of myself.
T know how an Amoeba
is supposed fo rotate

and play a sound.

LARRY: How do you “tell” an Amoeba to do
something? Don’t you have to call the pro-
cedure, OK method, and then tell it which
thing to rotate?

BRAD: That’s the really cool thing about OO.
When it’s time for, say, the triangle to rotate,
the program code invokes (calls) the rotate()
method on the triangle object. The rest of the
program really doesn’t know or care how the
triangle does it. And when you need to add
something new to the program, you just write
a new class for the new object type, so the new
objects will have their own behavior.

LARRY: Well, I suppose I could become an
OO programmer... you know, to woo women.

I know how a Shape is
supposed to behave. Your
job is to tell me what to
do, and my job is to make it happen.
Don't you worry your little program-
mer head about how I do it.




classes objects

The suspense is killing me.
Who got the chair?

Amy from the second floor.

(unbeknownst to all, the Project

Manager had given the spec to
three programmers.)

What do you like about 007

"It helps me design in a more natural way. Things
have a way of evolving.”
-Joy, 27, software architect

"Not messing around with code I've already
tested, just to add a new feature.”
-Brad, 32, programmer

"I like that the data and the methods that oper-
ate on that data are together in one class.”
-Josh, 22, beer drinker

"Reusing code in other applications. When I write
a new class, I can make it flexible enough to be
used in something new, later.”

-Chris, 39, project manager

"I can't believe Chris just said that. He hasn't
written a line of code in 5 years.”

-Daryl, 44, works for Chris

—®

Time to pump some neurons.

You just read a story bout a procedural program-
mer going head-to-head with an OO program-
mer.You got a quick overview of some key OO
concepts including classes, methods, and attri-
butes. We spend the rest of the chapter looking
at classes and objects (we'll return to inheritance
and overriding in later chapters).

Based on what you've seen so far (and what you
may know from a previous OO language you've
worked with), take a moment to think about
these questions:

What are the fundamental things you need to
think about when you design a Java class? What
are the questions you need to ask yourself? If
you could design a checklist to use when you're
designing a class, what would be on it?

metacognitive tip

If you're stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates

a different part of your brain. Although it

works best if you have another person to

discuss it with, pets work too. That's how
our dog learned polymorphism.

"Besides the chair?"
-Amy, 34, programmer




