
Matplotlib
Release 1.0.0

Darren Dale, Michael Droettboom, Eric Firing, John Hunter

August 25, 2010

CONTENTS

I User’s Guide 1

1 Introduction 3

2 Installing 5
2.1 OK, so you want to do it the hard way? . 5
2.2 Installing from source . 6
2.3 Build requirements . 6
2.4 Building on OSX . 7

3 Pyplot tutorial 9
3.1 Controlling line properties . 11
3.2 Working with multiple figures and axes . 13
3.3 Working with text . 15

4 Interactive navigation 19
4.1 Navigation Keyboard Shortcuts . 20

5 Customizing matplotlib 23
5.1 The matplotlibrc file . 23
5.2 Dynamic rc settings . 23

6 Using matplotlib in a python shell 33
6.1 Ipython to the rescue . 33
6.2 Other python interpreters . 34
6.3 Controlling interactive updating . 34

7 Working with text 37
7.1 Text introduction . 37
7.2 Basic text commands . 37
7.3 Text properties and layout . 38
7.4 Writing mathematical expressions . 41
7.5 Text rendering With LaTeX . 51
7.6 Annotating text . 55

8 Image tutorial 59

i

8.1 Startup commands . 59
8.2 Importing image data into Numpy arrays . 59
8.3 Plotting numpy arrays as images . 62

9 Artist tutorial 73
9.1 Customizing your objects . 74
9.2 Object containers . 76
9.3 Figure container . 77
9.4 Axes container . 78
9.5 Axis containers . 81
9.6 Tick containers . 83

10 Customizing Location of Subplot Using GridSpec 87
10.1 GridSpec and SubplotSpec . 88
10.2 Adjust GridSpec layout . 89
10.3 GridSpec using SubplotSpec . 90
10.4 GridSpec with Varying Cell Sizes . 91

11 Legend guide 93
11.1 What to be displayed . 93
11.2 Multicolumn Legend . 95
11.3 Legend location . 95
11.4 Multiple Legend . 96

12 Event handling and picking 99
12.1 Event connections . 99
12.2 Event attributes . 100
12.3 Mouse enter and leave . 104
12.4 Object picking . 106

13 Transformations Tutorial 109
13.1 Data coordinates . 109
13.2 Axes coordinates . 112
13.3 Blended transformations . 113
13.4 Using offset transforms to create a shadow effect . 115
13.5 The transformation pipeline . 116

14 Path Tutorial 119
14.1 Bézier example . 120
14.2 Compound paths . 121

15 Annotating Axes 125
15.1 Annotating with Text with Box . 125
15.2 Annotating with Arrow . 126
15.3 Placing Artist at the anchored location of the Axes . 132
15.4 Using Complex Coordinate with Annotation . 135
15.5 Using ConnectorPatch . 137
15.6 Zoom effect between Axes . 138
15.7 Define Custom BoxStyle . 138

ii

16 Toolkits 143
16.1 Basemap . 143
16.2 GTK Tools . 143
16.3 Excel Tools . 143
16.4 Natgrid . 143
16.5 mplot3d . 143
16.6 AxesGrid . 144

17 Screenshots 145
17.1 Simple Plot . 145
17.2 Subplot demo . 146
17.3 Histograms . 146
17.4 Path demo . 146
17.5 mplot3d . 146
17.6 Ellipses . 147
17.7 Bar charts . 147
17.8 Pie charts . 147
17.9 Table demo . 148
17.10 Scatter demo . 148
17.11 Slider demo . 148
17.12 Fill demo . 149
17.13 Date demo . 149
17.14 Financial charts . 149
17.15 Basemap demo . 150
17.16 Log plots . 150
17.17 Polar plots . 150
17.18 Legends . 151
17.19 Mathtext_examples . 151
17.20 Native TeX rendering . 151
17.21 EEG demo . 153

18 What’s new in matplotlib 163
18.1 new in matplotlib-1.0 . 163
18.2 new in matplotlib-0.99 . 166
18.3 new in 0.98.4 . 168

19 License 177
19.1 License agreement for matplotlib 1.0.0 . 177

20 Credits 179

II The Matplotlib FAQ 183

21 Installation FAQ 185
21.1 Report a compilation problem . 185
21.2 matplotlib compiled fine, but nothing shows up with plot 185
21.3 Cleanly rebuild and reinstall everything . 186
21.4 Install from svn . 187

iii

21.5 Install from git . 187
21.6 Backends . 187
21.7 OS-X questions . 189
21.8 Windows questions . 192

22 Usage 193
22.1 Matplotlib, pylab, and pyplot: how are they related? . 193

23 Howto 195
23.1 Plotting: howto . 196
23.2 Contributing: howto . 205
23.3 Matplotlib in a web application server . 206
23.4 Search examples . 208

24 Troubleshooting 209
24.1 Obtaining matplotlib version . 209
24.2 matplotlib install location . 209
24.3 .matplotlib directory location . 209
24.4 Report a problem . 210
24.5 Problems with recent svn versions . 211

III The Matplotlib Developers’ Guide 213

25 Coding guide 215
25.1 Version control . 215
25.2 Style guide . 219
25.3 Documentation and docstrings . 222
25.4 Developing a new backend . 224
25.5 Writing examples . 224
25.6 Testing . 225
25.7 Licenses . 227

26 Documenting matplotlib 229
26.1 Getting started . 229
26.2 Organization of matplotlib’s documentation . 229
26.3 Formatting . 230
26.4 Figures . 232
26.5 Referring to mpl documents . 233
26.6 Internal section references . 234
26.7 Section names, etc . 234
26.8 Inheritance diagrams . 234
26.9 Emacs helpers . 235

27 Doing a matplolib release 237
27.1 Testing . 237
27.2 Branching . 237
27.3 Packaging . 237
27.4 Release candidate testing: . 238

iv

27.5 Uploading . 238
27.6 Announcing . 239

28 Working with transformations 241
28.1 matplotlib.transforms . 241

29 Adding new scales and projections to matplotlib 261
29.1 Creating a new scale . 261
29.2 Creating a new projection . 262
29.3 API documentation . 262

30 Docs outline 271
30.1 Reviewer notes . 274

IV The Matplotlib API 277

31 API Changes 279
31.1 Changes beyond 0.99.x . 279
31.2 Changes in 0.99 . 281
31.3 Changes for 0.98.x . 281
31.4 Changes for 0.98.1 . 283
31.5 Changes for 0.98.0 . 283
31.6 Changes for 0.91.2 . 288
31.7 Changes for 0.91.1 . 288
31.8 Changes for 0.91.0 . 288
31.9 Changes for 0.90.1 . 289
31.10 Changes for 0.90.0 . 290
31.11 Changes for 0.87.7 . 291
31.12 Changes for 0.86 . 293
31.13 Changes for 0.85 . 293
31.14 Changes for 0.84 . 294
31.15 Changes for 0.83 . 295
31.16 Changes for 0.82 . 295
31.17 Changes for 0.81 . 296
31.18 Changes for 0.80 . 297
31.19 Changes for 0.73 . 297
31.20 Changes for 0.72 . 297
31.21 Changes for 0.71 . 298
31.22 Changes for 0.70 . 299
31.23 Changes for 0.65.1 . 299
31.24 Changes for 0.65 . 299
31.25 Changes for 0.63 . 299
31.26 Changes for 0.61 . 300
31.27 Changes for 0.60 . 300
31.28 Changes for 0.54.3 . 301
31.29 Changes for 0.54 . 301
31.30 Changes for 0.50 . 304

v

31.31 Changes for 0.42 . 306
31.32 Changes for 0.40 . 307

32 matplotlib configuration 309
32.1 matplotlib . 309

33 matplotlib afm 313
33.1 matplotlib.afm . 313

34 matplotlib artists 317
34.1 matplotlib.artist . 317
34.2 matplotlib.legend . 326
34.3 matplotlib.lines . 329
34.4 matplotlib.patches . 337
34.5 matplotlib.text . 373

35 matplotlib axes 385
35.1 matplotlib.axes . 385

36 matplotlib axis 527
36.1 matplotlib.axis . 527

37 matplotlib cbook 537
37.1 matplotlib.cbook . 537

38 matplotlib cm 549
38.1 matplotlib.cm . 549

39 matplotlib collections 551
39.1 matplotlib.collections . 551

40 matplotlib colorbar 565
40.1 matplotlib.colorbar . 565

41 matplotlib colors 569
41.1 matplotlib.colors . 569

42 matplotlib dates 577
42.1 matplotlib.dates . 577

43 matplotlib figure 585
43.1 matplotlib.figure . 585

44 matplotlib font_manager 603
44.1 matplotlib.font_manager . 603
44.2 matplotlib.fontconfig_pattern . 608

45 matplotlib gridspec 611
45.1 matplotlib.gridspec . 611

vi

46 matplotlib mathtext 613
46.1 matplotlib.mathtext . 614

47 matplotlib mlab 629
47.1 matplotlib.mlab . 629

48 matplotlib path 653
48.1 matplotlib.path . 653

49 matplotlib pyplot 659
49.1 matplotlib.pyplot . 659

50 matplotlib nxutils 807
50.1 matplotlib.nxutils . 807

51 matplotlib spine 809
51.1 matplotlib.spine . 809

52 matplotlib ticker 813
52.1 matplotlib.ticker . 813

53 matplotlib units 821
53.1 matplotlib.units . 821

54 matplotlib backends 823
54.1 matplotlib.backend_bases . 823
54.2 matplotlib.backends.backend_gtkagg . 839
54.3 matplotlib.backends.backend_qt4agg . 839
54.4 matplotlib.backends.backend_wxagg . 840
54.5 matplotlib.backends.backend_pdf . 841
54.6 matplotlib.dviread . 843
54.7 matplotlib.type1font . 846

V Glossary 849

Module Index 853

Index 855

vii

viii

Part I

User’s Guide

1

CHAPTER

ONE

INTRODUCTION

matplotlib is a library for making 2D plots of arrays in Python. Although it has its origins in emulating the
MATLAB® 1 graphics commands, it is independent of MATLAB, and can be used in a Pythonic, object
oriented way. Although matplotlib is written primarily in pure Python, it makes heavy use of NumPy and
other extension code to provide good performance even for large arrays.

matplotlib is designed with the philosophy that you should be able to create simple plots with just a few
commands, or just one! If you want to see a histogram of your data, you shouldn’t need to instantiate
objects, call methods, set properties, and so on; it should just work.

For years, I used to use MATLAB exclusively for data analysis and visualization. MATLAB excels at mak-
ing nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in MATLAB. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of MATLAB as a programming language, and decided to start over in Python.
Python more than makes up for all of MATLAB’s deficiencies as a programming language, but I was having
difficulty finding a 2D plotting package (for 3D VTK more than exceeds all of my needs).

When I went searching for a Python plotting package, I had several requirements:

• Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc.)

• Postscript output for inclusion with TeX documents

• Embeddable in a graphical user interface for application development

• Code should be easy enough that I can understand it and extend it

• Making plots should be easy

Finding no package that suited me just right, I did what any self-respecting Python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to
emulate MATLAB’s plotting capabilities because that is something MATLAB does very well. This had the
added advantage that many people have a lot of MATLAB experience, and thus they can quickly get up to
steam plotting in python. From a developer’s perspective, having a fixed user interface (the pylab interface)
has been very useful, because the guts of the code base can be redesigned without affecting user code.

1 MATLAB is a registered trademark of The MathWorks, Inc.

3

http://www.python.org
http://www.numpy.org
http://www.vtk.org/

Matplotlib, Release 1.0.0

The matplotlib code is conceptually divided into three parts: the pylab interface is the set of functions
provided by matplotlib.pylab which allow the user to create plots with code quite similar to MATLAB
figure generating code (Pyplot tutorial). The matplotlib frontend or matplotlib API is the set of classes that
do the heavy lifting, creating and managing figures, text, lines, plots and so on (Artist tutorial). This is an
abstract interface that knows nothing about output. The backends are device dependent drawing devices, aka
renderers, that transform the frontend representation to hardcopy or a display device (What is a backend?).
Example backends: PS creates PostScript® hardcopy, SVG creates Scalable Vector Graphics hardcopy,
Agg creates PNG output using the high quality Anti-Grain Geometry library that ships with matplotlib,
GTK embeds matplotlib in a Gtk+ application, GTKAgg uses the Anti-Grain renderer to create a figure and
embed it a Gtk+ application, and so on for PDF, WxWidgets, Tkinter etc.

matplotlib is used by many people in many different contexts. Some people want to automatically generate
PostScript files to send to a printer or publishers. Others deploy matplotlib on a web application server to
generate PNG output for inclusion in dynamically-generated web pages. Some use matplotlib interactively
from the Python shell in Tkinter on Windows™. My primary use is to embed matplotlib in a Gtk+ EEG
application that runs on Windows, Linux and Macintosh OS X.

4 Chapter 1. Introduction

http://http://www.adobe.com/products/postscript/
http://www.w3.org/Graphics/SVG/
http://www.antigrain.com
http://www.gtk.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.wxpython.org/
http://docs.python.org/lib/module-Tkinter.html

CHAPTER

TWO

INSTALLING

There are lots of different ways to install matplotlib, and the best way depends on what operating system
you are using, what you already have installed, and how you want to use it. To avoid wading through all
the details (and potential complications) on this page, the easiest thing for you to do is use one of the pre-
packaged python distributions that already provide matplotlib built in. The Enthought Python Distribution
(EPD) for Windows, OS X or Redhat is an excellent choice that “just works” out of the box. Another
excellent alternative for Windows users is Python (x, y) which tends to be updated a bit more frequently.
Both of these packages include matplotlib and pylab, and lots of other useful tools. matplotlib is also
packaged for pretty much every major linux distribution, so if you are on linux your package manager will
probably provide matplotlib prebuilt.

One single click installer and you are done.

2.1 OK, so you want to do it the hard way?

For some people, the prepackaged pythons discussed above are not an option. That’s OK, it’s usually pretty
easy to get a custom install working. You will first need to find out if you have python installed on your
machine, and if not, install it. The official python builds are available for download here, but OS X users
please read Which python for OS X?.

Once you have python up and running, you will need to install numpy. numpy provides high performance
array data structures and mathematical functions, and is a requirement for matplotlib. You can test your
progress:

>>> import numpy
>>> print numpy.__version__

matplotlib requires numpy version 1.1 or later. Although it is not a requirement to use matplotlib, we
strongly encourage you to install ipython, which is an interactive shell for python that is matplotlib aware.

Next we need to get matplotlib installed. We provide prebuilt binaries for OS X and Windows on the
matplotlib download page. Click on the latest release of the “matplotlib” package, choose your python
version (2.5 or 2.6) and your platform (macosx or win32) and you should be good to go. If you have any
problems, please check the Installation FAQ, google around a little bit, and post a question the mailing list.
If you are on debian/unbuntu linux, it suffices to do:

5

http://www.enthought.com/products/epd.php
http://www.pythonxy.com/foreword.php
http://www.python.org/download
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://ipython.scipy.org/dist
http://sourceforge.net/projects/matplotlib/files/
http://sourceforge.net/project/showfiles.php?group_id=80706

Matplotlib, Release 1.0.0

> sudo apt-get install python-matplotlib

Instructions for installing our OSX binaries are found in the FAQ Installing OSX binaries.

Once you have ipython, numpy and matplotlib installed, in ipython’s “pylab” mode you have a MATLAB-
like environment that automatically handles most of the configuration details for you, so you can get up and
running quickly:

johnh@flag:~> ipython -pylab
Python 2.4.5 (#4, Apr 12 2008, 09:09:16)
IPython 0.9.0 -- An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]: x = randn(10000)

In [2]: hist(x, 100)

Instructions for installing our OSX binaries are found in the FAQ ref:install_osx_binaries.

Note that when testing matplotlib installations from the interactive python console, there are some issues
relating to user interface toolkits and interactive settings that are discussed in Using matplotlib in a python
shell.

2.2 Installing from source

If you are interested perhaps in contributing to matplotlib development, running the latest greatest code, or
just like to build everything yourself, it is not difficult to build matplotlib from source. Grab the latest tar.gz
release file from sourceforge, or if you want to develop matplotlib or just need the latest bugfixed version,
grab the latest svn version Install from svn.

Once you have satisfied the requirements detailed below (mainly python, numpy, libpng and freetype), you
build matplotlib in the usual way:

cd matplotlib
python setup.py build
python setup.py install

We provide a setup.cfg file that lives along setup.py which you can use to customize the build process, for
example, which default backend to use, whether some of the optional libraries that matplotlib ships with are
installed, and so on. This file will be particularly useful to those packaging matplotlib.

2.3 Build requirements

These are external packages which you will need to install before installing matplotlib. Windows users
only need the first two (python and numpy) since the others are built into the matplotlib windows installers

6 Chapter 2. Installing

http://sourceforge.net/project/showfiles.php?group_id=80706
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/matplotlib/setup.cfg.template?view=markup

Matplotlib, Release 1.0.0

available for download at the sourceforge site. If you are building on OSX, see Building on OSX. If you are
installing dependencies with a package manager, you may need to install the development packages (look
for a “-dev” postfix) in addition to the libraries themselves.

python 2.4 (or later but not python3) matplotlib requires python 2.4 or later (download)

numpy 1.1 (or later) array support for python (download)

libpng 1.1 (or later) library for loading and saving PNG files (download). libpng requires zlib. If you are
a windows user, you can ignore this since we build support into the matplotlib single click installer

freetype 1.4 (or later) library for reading true type font files. If you are a windows user, you can ignore this
since we build support into the matplotlib single click installer.

Optional

These are optional packages which you may want to install to use matplotlib with a user interface toolkit.
See What is a backend? for more details on the optional matplotlib backends and the capabilities they
provide

tk 8.3 or later The TCL/Tk widgets library used by the TkAgg backend

pyqt 3.1 or later The Qt3 widgets library python wrappers for the QtAgg backend

pyqt 4.0 or later The Qt4 widgets library python wrappers for the Qt4Agg backend

pygtk 2.4 or later The python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend

wxpython 2.6 or later The python wrappers for the wx widgets library for use with the WXAgg backend

wxpython 2.8 or later The python wrappers for the wx widgets library for use with the WX backend

pyfltk 1.0 or later The python wrappers of the FLTK widgets library for use with FLTKAgg

Required libraries that ship with matplotlib

agg 2.4 The antigrain C++ rendering engine. matplotlib links against the agg template source statically, so
it will not affect anything on your system outside of matplotlib.

pytz 2007g or later timezone handling for python datetime objects. By default, matplotlib will install pytz
if it isn’t already installed on your system. To override the default, use :file:‘setup.cfg to force or
prevent installation of pytz.

dateutil 1.1 or later provides extensions to python datetime handling. By default, matplotlib will install
dateutil if it isn’t already installed on your system. To override the default, use setup.cfg to force
or prevent installation of dateutil.

2.4 Building on OSX

The build situation on OSX is complicated by the various places one can get the png and freetype require-
ments from (darwinports, fink, /usr/X11R6) and the different architectures (x86, ppc, universal) and the
different OSX version (10.4 and 10.5). We recommend that you build the way we do for the OSX release:
by grabbing the tarbar or svn repository, cd-ing into the release/osx dir, and following the instruction in the

2.4. Building on OSX 7

http://www.python.org/download/
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
http://www.libpng.org/pub/png/libpng.html

Matplotlib, Release 1.0.0

README. This directory has a Makefile which will automatically grab the zlib, png and freetype dependen-
cies from the web, build them with the right flags to make universal libraries, and then build the matplotlib
source and binary installers.

8 Chapter 2. Installing

CHAPTER

THREE

PYPLOT TUTORIAL

matplotlib.pyplot is a collection of command style functions that make matplotlib work like MATLAB.
Each pyplot function makes some change to a figure: eg, create a figure, create a plotting area in a figure,
plot some lines in a plotting area, decorate the plot with labels, etc.... matplotlib.pyplot is stateful, in
that it keeps track of the current figure and plotting area, and the plotting functions are directed to the current
axes

import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel(’some numbers’)
plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

so
m

e
 n

u
m

b
e
rs

9

Matplotlib, Release 1.0.0

You may be wondering why the x-axis ranges from 0-2 and the y-axis from 1-3. If you provide a single
list or array to the plot() command, matplotlib assumes it is a sequence of y values, and automatically
generates the x values for you. Since python ranges start with 0, the default x vector has the same length as
y but starts with 0. Hence the x data are [0,1,2].

plot() is a versatile command, and will take an arbitrary number of arguments. For example, to plot x
versus y, you can issue the command:

plt.plot([1,2,3,4], [1,4,9,16])

For every x, y pair of arguments, there is an optional third argument which is the format string that indicates
the color and line type of the plot. The letters and symbols of the format string are from MATLAB, and you
concatenate a color string with a line style string. The default format string is ‘b-‘, which is a solid blue line.
For example, to plot the above with red circles, you would issue

import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], ’ro’)
plt.axis([0, 6, 0, 20])

0 1 2 3 4 5 6
0

5

10

15

20

See the plot() documentation for a complete list of line styles and format strings. The axis() command
in the example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally,
you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example

10 Chapter 3. Pyplot tutorial

http://numpy.scipy.org

Matplotlib, Release 1.0.0

below illustrates a plotting several lines with different format styles in one command using arrays.

import numpy as np
import matplotlib.pyplot as plt

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, ’r--’, t, t**2, ’bs’, t, t**3, ’g^’)

0 1 2 3 4 5
0

20

40

60

80

100

120

3.1 Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see
matplotlib.lines.Line2D. There are several ways to set line properties

• Use keyword args:

plt.plot(x, y, linewidth=2.0)

• Use the setter methods of the Line2D instance. plot returns a list of lines; eg line1, line2 =
plot(x1,y1,x2,x2). Below I have only one line so it is a list of length 1. I use tuple unpacking in
the line, = plot(x, y, ’o’) to get the first element of the list:

3.1. Controlling line properties 11

Matplotlib, Release 1.0.0

line, = plt.plot(x, y, ’-’)
line.set_antialiased(False) # turn off antialising

• Use the setp() command. The example below uses a MATLAB-style command to set multiple
properties on a list of lines. setp works transparently with a list of objects or a single object. You can
either use python keyword arguments or MATLAB-style string/value pairs:

lines = plt.plot(x1, y1, x2, y2)
use keyword args
plt.setp(lines, color=’r’, linewidth=2.0)
or MATLAB style string value pairs
plt.setp(lines, ’color’, ’r’, ’linewidth’, 2.0)

Here are the available Line2D properties.

Property Value Type
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a Transform instance, a Patch
color or c any matplotlib color
contains the hit testing function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls [‘-‘ | ‘–‘ | ‘-.’ | ‘:’ | ‘steps’ | ...]
linewidth or lw float value in points
lod [True | False]
marker [‘+’ | ‘,’ | ‘.’ | ‘1’ | ‘2’ | ‘3’ | ‘4’
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array

Continued on next page

12 Chapter 3. Pyplot tutorial

Matplotlib, Release 1.0.0

Table 3.1 – continued from previous page
zorder any number

To get a list of settable line properties, call the setp() function with a line or lines as argument

In [69]: lines = plt.plot([1,2,3])

In [70]: plt.setp(lines)
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

3.2 Working with multiple figures and axes

MATLAB, and pyplot, have the concept of the current figure and the current axes. All plotting com-
mands apply to the current axes. The function gca() returns the current axes (a matplotlib.axes.Axes
instance), and gcf() returns the current figure (matplotlib.figure.Figure instance). Normally, you
don’t have to worry about this, because it is all taken care of behind the scenes. Below is a script to create
two subplots.

import numpy as np
import matplotlib.pyplot as plt

def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(1)
plt.subplot(211)
plt.plot(t1, f(t1), ’bo’, t2, f(t2), ’k’)

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), ’r--’)

The figure() command here is optional because figure(1) will be created by default, just as a
subplot(111) will be created by default if you don’t manually specify an axes. The subplot() com-
mand specifies numrows, numcols, fignum where fignum ranges from 1 to numrows*numcols. The
commas in the subplot command are optional if numrows*numcols<10. So subplot(211) is identical
to subplot(2,1,1). You can create an arbitrary number of subplots and axes. If you want to place an axes
manually, ie, not on a rectangular grid, use the axes() command, which allows you to specify the location
as axes([left, bottom, width, height]) where all values are in fractional (0 to 1) coordinates. See
pylab_examples example code: axes_demo.py for an example of placing axes manually and pylab_examples
example code: line_styles.py for an example with lots-o-subplots.

You can create multiple figures by using multiple figure() calls with an increasing figure number. Of
course, each figure can contain as many axes and subplots as your heart desires:

3.2. Working with multiple figures and axes 13

Matplotlib, Release 1.0.0

0 1 2 3 4 5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

import matplotlib.pyplot as plt
plt.figure(1) # the first figure
plt.subplot(211) # the first subplot in the first figure
plt.plot([1,2,3])
plt.subplot(212) # the second subplot in the first figure
plt.plot([4,5,6])

plt.figure(2) # a second figure
plt.plot([4,5,6]) # creates a subplot(111) by default

plt.figure(1) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figure1 current
plt.title(’Easy as 1,2,3’) # subplot 211 title

You can clear the current figure with clf() and the current axes with cla(). If you find this statefulness,
annoying, don’t despair, this is just a thin stateful wrapper around an object oriented API, which you can
use instead (see Artist tutorial)

If you are making a long sequence of figures, you need to be aware of one more thing: the memory required
for a figure is not completely released until the figure is explicitly closed with close(). Deleting all refer-
ences to the figure, and/or using the window manager to kill the window in which the figure appears on the
screen, is not enough, because pyplot maintains internal references until close() is called.

14 Chapter 3. Pyplot tutorial

Matplotlib, Release 1.0.0

3.3 Working with text

The text() command can be used to add text in an arbitrary location, and the xlabel(), ylabel() and
title() are used to add text in the indicated locations (see Text introduction for a more detailed example)

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor=’g’, alpha=0.75)

plt.xlabel(’Smarts’)
plt.ylabel(’Probability’)
plt.title(’Histogram of IQ’)
plt.text(60, .025, r’$\mu=100,\ \sigma=15$’)
plt.axis([40, 160, 0, 0.03])
plt.grid(True)

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
ro

b
a
b
ili

ty

µ=100, σ=15

Histogram of IQ

All of the text() commands return an matplotlib.text.Text instance. Just as with with lines above,
you can customize the properties by passing keyword arguments into the text functions or using setp():

3.3. Working with text 15

Matplotlib, Release 1.0.0

t = plt.xlabel(’my data’, fontsize=14, color=’red’)

These properties are covered in more detail in Text properties and layout.

3.3.1 Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression
σi = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r’$\sigma_i=15$’)

The r preceeding the title string is important – it signifies that the string is a raw string and not to treate
backslashes and python escapes. matplotlib has a built-in TeX expression parser and layout engine, and
ships its own math fonts – for details see Writing mathematical expressions. Thus you can use mathematical
text across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed,
you can also use LaTeX to format your text and incorporate the output directly into your display figures or
saved postscript – see Text rendering With LaTeX.

3.3.2 Annotating text

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate() method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

import numpy as np
import matplotlib.pyplot as plt

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor=’black’, shrink=0.05),
)

plt.ylim(-2,2)
plt.show()

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates.
There are a variety of other coordinate systems one can choose – see Annotating text and Annotating Axes
for details. More examples can be found in pylab_examples example code: annotation_demo.py.

16 Chapter 3. Pyplot tutorial

Matplotlib, Release 1.0.0

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

local max

3.3. Working with text 17

Matplotlib, Release 1.0.0

18 Chapter 3. Pyplot tutorial

CHAPTER

FOUR

INTERACTIVE NAVIGATION

All figure windows come with a navigation toolbar, which can be used to navigate through the data set. Here
is a description of each of the buttons at the bottom of the toolbar

The Forward and Back buttons These are akin to the web browser forward and back buttons. They are
used to navigate back and forth between previously defined views. They have no meaning unless you
have already navigated somewhere else using the pan and zoom buttons. This is analogous to trying
to click Back on your web browser before visiting a new page –nothing happens. Home always takes
you to the first, default view of your data. For Home, Forward and Back, think web browser where
data views are web pages. Use the pan and zoom to rectangle to define new views.

The Pan/Zoom button This button has two modes: pan and zoom. Click the toolbar button to activate
panning and zooming, then put your mouse somewhere over an axes. Press the left mouse button
and hold it to pan the figure, dragging it to a new position. When you release it, the data under the
point where you pressed will be moved to the point where you released. If you press ‘x’ or ‘y’ while
panning the motion will be constrained to the x or y axis, respectively. Press the right mouse button
to zoom, dragging it to a new position. The x axis will be zoomed in proportionate to the rightward
movement and zoomed out proportionate to the leftward movement. Ditto for the y axis and up/down
motions. The point under your mouse when you begin the zoom remains stationary, allowing you to
zoom to an arbitrary point in the figure. You can use the modifier keys ‘x’, ‘y’ or ‘CONTROL’ to
constrain the zoom to the x axis, the y axis, or aspect ratio preserve, respectively.

With polar plots, the pan and zoom functionality behaves differently. The radius axis labels can be
dragged using the left mouse button. The radius scale can be zoomed in and out using the right mouse
button.

19

Matplotlib, Release 1.0.0

The Zoom-to-rectangle button Click this toolbar button to activate this mode. Put your mouse some-
where over and axes and press the left mouse button. Drag the mouse while holding the button to
a new location and release. The axes view limits will be zoomed to the rectangle you have defined.
There is also an experimental ‘zoom out to rectangle’ in this mode with the right button, which will
place your entire axes in the region defined by the zoom out rectangle.

The Subplot-configuration button Use this tool to configure the parameters of the subplot: the left,
right, top, bottom, space between the rows and space between the columns.

The Save button Click this button to launch a file save dialog. You can save files with the following
extensions: png, ps, eps, svg and pdf.

4.1 Navigation Keyboard Shortcuts

The following table holds all the default keys, which can be overwritten by use of your matplotlibrc
(#keymap.*).

Command Keyboard Shortcut(s)
Home/Reset h or r or home
Back c or left arrow or backspace
Forward v or right arrow
Pan/Zoom p
Zoom-to-rect o
Save s
Toggle fullscreen f
Constrain pan/zoom to x axis hold x
Constrain pan/zoom to y axis hold y
Preserve aspect ratio hold CONTROL
Toggle grid g
Toggle x axis scale (log/linear) L or k
Toggle y axis scale (log/linear) l

If you are using matplotlib.pyplot the toolbar will be created automatically for every figure. If you are
writing your own user interface code, you can add the toolbar as a widget. The exact syntax depends on

20 Chapter 4. Interactive navigation

Matplotlib, Release 1.0.0

your UI, but we have examples for every supported UI in the matplotlib/examples/user_interfaces
directory. Here is some example code for GTK:

from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas
from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar

win = gtk.Window()
win.connect("destroy", lambda x: gtk.main_quit())
win.set_default_size(400,300)
win.set_title("Embedding in GTK")

vbox = gtk.VBox()
win.add(vbox)

fig = Figure(figsize=(5,4), dpi=100)
ax = fig.add_subplot(111)
ax.plot([1,2,3])

canvas = FigureCanvas(fig) # a gtk.DrawingArea
vbox.pack_start(canvas)
toolbar = NavigationToolbar(canvas, win)
vbox.pack_start(toolbar, False, False)

win.show_all()
gtk.main()

4.1. Navigation Keyboard Shortcuts 21

Matplotlib, Release 1.0.0

22 Chapter 4. Interactive navigation

CHAPTER

FIVE

CUSTOMIZING MATPLOTLIB

5.1 The matplotlibrc file

matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which we call rc
settings or rc parameters. You can control the defaults of almost every property in matplotlib: figure size
and dpi, line width, color and style, axes, axis and grid properties, text and font properties and so on.
matplotlib looks for matplotlibrc in three locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific customizations that you do
not want to apply elsewhere.

2. .matplotlib/matplotlibrc, for the user’s default customizations. See .matplotlib directory loca-
tion.

3. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL is some-
thing like /usr/lib/python2.5/site-packages on Linux, and maybe
C:\Python25\Lib\site-packages on Windows. Every time you install matplotlib, this file
will be overwritten, so if you want your customizations to be saved, please move this file to you
.matplotlib directory.

To display where the currently active matplotlibrc file was loaded from, one can do the following:

>>> import matplotlib
>>> matplotlib.matplotlib_fname()
’/home/foo/.matplotlib/matplotlibrc’

See below for a sample matplotlibrc file.

5.2 Dynamic rc settings

You can also dynamically change the default rc settings in a python script or interactively from the python
shell. All of the rc settings are stored in a dictionary-like variable called matplotlib.rcParams, which is
global to the matplotlib package. rcParams can be modified directly, for example:

23

Matplotlib, Release 1.0.0

import matplotlib as mpl
mpl.rcParams[’lines.linewidth’] = 2
mpl.rcParams[’lines.color’] = ’r’

Matplotlib also provides a couple of convenience functions for modifying rc settings. The
matplotlib.rc() command can be used to modify multiple settings in a single group at once, using
keyword arguments:

import matplotlib as mpl
mpl.rc(’lines’, linewidth=2, color=’r’)

There matplotlib.rcdefaults() command will restore the standard matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib.rcsetup for
details.

5.2.1 A sample matplotlibrc file

MATPLOTLIBRC FORMAT

This is a sample matplotlib configuration file - you can find a copy
of it on your system in
site-packages/matplotlib/mpl-data/matplotlibrc. If you edit it
there, please note that it will be overridden in your next install.
If you want to keep a permanent local copy that will not be
over-written, place it in HOME/.matplotlib/matplotlibrc (unix/linux
like systems) and C:\Documents and Settings\yourname\.matplotlib
(win32 systems).
#
This file is best viewed in a editor which supports python mode
syntax highlighting. Blank lines, or lines starting with a comment
symbol, are ignored, as are trailing comments. Other lines must
have the format
key : val # optional comment
#
Colors: for the color values below, you can either use - a
matplotlib color string, such as r, k, or b - an rgb tuple, such as
(1.0, 0.5, 0.0) - a hex string, such as ff00ff or #ff00ff - a scalar
grayscale intensity such as 0.75 - a legal html color name, eg red,
blue, darkslategray

CONFIGURATION BEGINS HERE

the default backend; one of GTK GTKAgg GTKCairo CocoaAgg FltkAgg
MacOSX QtAgg Qt4Agg TkAgg WX WXAgg Agg Cairo GDK PS PDF SVG Template
You can also deploy your own backend outside of matplotlib by
referring to the module name (which must be in the PYTHONPATH) as
’module://my_backend’
backend : GTKAgg

24 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.0.0

if you are runing pyplot inside a GUI and your backend choice
conflicts, we will automatically try and find a compatible one for
you if backend_fallback is True
#backend_fallback: True
#interactive : False
#toolbar : toolbar2 # None | classic | toolbar2
#timezone : UTC # a pytz timezone string, eg US/Central or Europe/Paris

Where your matplotlib data lives if you installed to a non-default
location. This is where the matplotlib fonts, bitmaps, etc reside
#datapath : /home/jdhunter/mpldata

LINES
See http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.lines for more
information on line properties.
#lines.linewidth : 1.0 # line width in points
#lines.linestyle : - # solid line
#lines.color : blue
#lines.marker : None # the default marker
#lines.markeredgewidth : 0.5 # the line width around the marker symbol
#lines.markersize : 6 # markersize, in points
#lines.dash_joinstyle : miter # miter|round|bevel
#lines.dash_capstyle : butt # butt|round|projecting
#lines.solid_joinstyle : miter # miter|round|bevel
#lines.solid_capstyle : projecting # butt|round|projecting
#lines.antialiased : True # render lines in antialised (no jaggies)

PATCHES
Patches are graphical objects that fill 2D space, like polygons or
circles. See
http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.patches
information on patch properties
#patch.linewidth : 1.0 # edge width in points
#patch.facecolor : blue
#patch.edgecolor : black
#patch.antialiased : True # render patches in antialised (no jaggies)

FONT
#
font properties used by text.Text. See
http://matplotlib.sourceforge.net/api/font_manager_api.html for more
information on font properties. The 6 font properties used for font
matching are given below with their default values.
#
The font.family property has five values: ’serif’ (e.g. Times),
’sans-serif’ (e.g. Helvetica), ’cursive’ (e.g. Zapf-Chancery),
’fantasy’ (e.g. Western), and ’monospace’ (e.g. Courier). Each of
these font families has a default list of font names in decreasing
order of priority associated with them.
#
The font.style property has three values: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it is not

5.2. Dynamic rc settings 25

Matplotlib, Release 1.0.0

present.
#
The font.variant property has two values: normal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent
to using a font size of ’smaller’, or about 83% of the current font
size.
#
The font.weight property has effectively 13 values: normal, bold,
bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as
400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.
#
The font.stretch property has 11 values: ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-expanded,
expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property is not currently implemented.
#
The font.size property is the default font size for text, given in pts.
12pt is the standard value.
#
#font.family : sans-serif
#font.style : normal
#font.variant : normal
#font.weight : medium
#font.stretch : normal
note that font.size controls default text sizes. To configure
special text sizes tick labels, axes, labels, title, etc, see the rc
settings for axes and ticks. Special text sizes can be defined
relative to font.size, using the following values: xx-small, x-small,
small, medium, large, x-large, xx-large, larger, or smaller
#font.size : 12.0
#font.serif : Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
#font.sans-serif : Bitstream Vera Sans, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif
#font.cursive : Apple Chancery, Textile, Zapf Chancery, Sand, cursive
#font.fantasy : Comic Sans MS, Chicago, Charcoal, Impact, Western, fantasy
#font.monospace : Bitstream Vera Sans Mono, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixed, Terminal, monospace

TEXT
text properties used by text.Text. See
http://matplotlib.sourceforge.net/api/artist_api.html#module-matplotlib.text for more
information on text properties

#text.color : black

LaTeX customizations. See http://www.scipy.org/Wiki/Cookbook/Matplotlib/UsingTex
#text.usetex : False # use latex for all text handling. The following fonts

are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans serif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the

26 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.0.0

matplotlib mailing list
#text.latex.unicode : False # use "ucs" and "inputenc" LaTeX packages for handling

unicode strings.
#text.latex.preamble : # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX FAILURES

AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.
preamble is a comma separated list of LaTeX statements
that are included in the LaTeX document preamble.
An example:
text.latex.preamble : \usepackage{bm},\usepackage{euler}
The following packages are always loaded with usetex, so
beware of package collisions: color, geometry, graphicx,
type1cm, textcomp. Adobe Postscript (PSSNFS) font packages
may also be loaded, depending on your font settings

#text.dvipnghack : None # some versions of dvipng don’t handle alpha
channel properly. Use True to correct
and flush ~/.matplotlib/tex.cache
before testing and False to force
correction off. None will try and
guess based on your dvipng version

#text.hinting : True # If True, text will be hinted, otherwise not. This only
affects the Agg backend.

The following settings allow you to select the fonts in math mode.
They map from a TeX font name to a fontconfig font pattern.
These settings are only used if mathtext.fontset is ’custom’.
Note that this "custom" mode is unsupported and may go away in the
future.
#mathtext.cal : cursive
#mathtext.rm : serif
#mathtext.tt : monospace
#mathtext.it : serif:italic
#mathtext.bf : serif:bold
#mathtext.sf : sans
#mathtext.fontset : cm # Should be ’cm’ (Computer Modern), ’stix’,

’stixsans’ or ’custom’
#mathtext.fallback_to_cm : True # When True, use symbols from the Computer Modern

fonts when a symbol can not be found in one of
the custom math fonts.

#mathtext.default : it # The default font to use for math.
Can be any of the LaTeX font names, including
the special name "regular" for the same font
used in regular text.

AXES
default face and edge color, default tick sizes,
default fontsizes for ticklabels, and so on. See
http://matplotlib.sourceforge.net/api/axes_api.html#module-matplotlib.axes
#axes.hold : True # whether to clear the axes by default on
#axes.facecolor : white # axes background color

5.2. Dynamic rc settings 27

Matplotlib, Release 1.0.0

#axes.edgecolor : black # axes edge color
#axes.linewidth : 1.0 # edge linewidth
#axes.grid : False # display grid or not
#axes.titlesize : large # fontsize of the axes title
#axes.labelsize : medium # fontsize of the x any y labels
#axes.labelcolor : black
#axes.axisbelow : False # whether axis gridlines and ticks are below

the axes elements (lines, text, etc)
#axes.formatter.limits : -7, 7 # use scientific notation if log10

of the axis range is smaller than the
first or larger than the second

#axes.unicode_minus : True # use unicode for the minus symbol
rather than hypen. See http://en.wikipedia.org/wiki/Plus_sign#Plus_sign

#axes.color_cycle : b, g, r, c, m, y, k # color cycle for plot lines
as list of string colorspecs:
single letter, long name, or
web-style hex

#polaraxes.grid : True # display grid on polar axes
#axes3d.grid : True # display grid on 3d axes

TICKS
see http://matplotlib.sourceforge.net/api/axis_api.html#matplotlib.axis.Tick
#xtick.major.size : 4 # major tick size in points
#xtick.minor.size : 2 # minor tick size in points
#xtick.major.pad : 4 # distance to major tick label in points
#xtick.minor.pad : 4 # distance to the minor tick label in points
#xtick.color : k # color of the tick labels
#xtick.labelsize : medium # fontsize of the tick labels
#xtick.direction : in # direction: in or out

#ytick.major.size : 4 # major tick size in points
#ytick.minor.size : 2 # minor tick size in points
#ytick.major.pad : 4 # distance to major tick label in points
#ytick.minor.pad : 4 # distance to the minor tick label in points
#ytick.color : k # color of the tick labels
#ytick.labelsize : medium # fontsize of the tick labels
#ytick.direction : in # direction: in or out

GRIDS
#grid.color : black # grid color
#grid.linestyle : : # dotted
#grid.linewidth : 0.5 # in points

Legend
#legend.fancybox : False # if True, use a rounded box for the

legend, else a rectangle
#legend.isaxes : True
#legend.numpoints : 2 # the number of points in the legend line
#legend.fontsize : large
#legend.pad : 0.0 # deprecated; the fractional whitespace inside the legend border
#legend.borderpad : 0.5 # border whitspace in fontsize units

28 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.0.0

#legend.markerscale : 1.0 # the relative size of legend markers vs. original
the following dimensions are in axes coords
#legend.labelsep : 0.010 # the vertical space between the legend entries
#legend.handlelen : 0.05 # the length of the legend lines
#legend.handletextsep : 0.02 # the space between the legend line and legend text
#legend.axespad : 0.02 # the border between the axes and legend edge
#legend.shadow : False

FIGURE
See http://matplotlib.sourceforge.net/api/figure_api.html#matplotlib.figure.Figure
#figure.figsize : 8, 6 # figure size in inches
#figure.dpi : 80 # figure dots per inch
#figure.facecolor : 0.75 # figure facecolor; 0.75 is scalar gray
#figure.edgecolor : white # figure edgecolor

The figure subplot parameters. All dimensions are fraction of the
figure width or height
#figure.subplot.left : 0.125 # the left side of the subplots of the figure
#figure.subplot.right : 0.9 # the right side of the subplots of the figure
#figure.subplot.bottom : 0.1 # the bottom of the subplots of the figure
#figure.subplot.top : 0.9 # the top of the subplots of the figure
#figure.subplot.wspace : 0.2 # the amount of width reserved for blank space between subplots
#figure.subplot.hspace : 0.2 # the amount of height reserved for white space between subplots

IMAGES
#image.aspect : equal # equal | auto | a number
#image.interpolation : bilinear # see help(imshow) for options
#image.cmap : jet # gray | jet etc...
#image.lut : 256 # the size of the colormap lookup table
#image.origin : upper # lower | upper
#image.resample : False

CONTOUR PLOTS
#contour.negative_linestyle : dashed # dashed | solid

Agg rendering
Warning: experimental, 2008/10/10
#agg.path.chunksize : 0 # 0 to disable; values in the range

10000 to 100000 can improve speed slightly
and prevent an Agg rendering failure
when plotting very large data sets,
especially if they are very gappy.
It may cause minor artifacts, though.
A value of 20000 is probably a good
starting point.

SAVING FIGURES
#path.simplify : True # When True, simplify paths by removing "invisible"

points to reduce file size and increase rendering
speed

#path.simplify_threshold : 0.1 # The threshold of similarity below which
vertices will be removed in the simplification
process

#path.snap : True # When True, rectilinear axis-aligned paths will be snapped to

5.2. Dynamic rc settings 29

Matplotlib, Release 1.0.0

the nearest pixel when certain criteria are met. When False,
paths will never be snapped.

the default savefig params can be different from the display params
Eg, you may want a higher resolution, or to make the figure
background white
#savefig.dpi : 100 # figure dots per inch
#savefig.facecolor : white # figure facecolor when saving
#savefig.edgecolor : white # figure edgecolor when saving
#savefig.extension : auto # what extension to use for savefig(’foo’), or ’auto’

#cairo.format : png # png, ps, pdf, svg

tk backend params
#tk.window_focus : False # Maintain shell focus for TkAgg

ps backend params
#ps.papersize : letter # auto, letter, legal, ledger, A0-A10, B0-B10
#ps.useafm : False # use of afm fonts, results in small files
#ps.usedistiller : False # can be: None, ghostscript or xpdf

Experimental: may produce smaller files.
xpdf intended for production of publication quality files,
but requires ghostscript, xpdf and ps2eps

#ps.distiller.res : 6000 # dpi
#ps.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType)

pdf backend params
#pdf.compression : 6 # integer from 0 to 9

0 disables compression (good for debugging)
#pdf.fonttype : 3 # Output Type 3 (Type3) or Type 42 (TrueType)

svg backend params
#svg.image_inline : True # write raster image data directly into the svg file
#svg.image_noscale : False # suppress scaling of raster data embedded in SVG
#svg.embed_char_paths : True # embed character outlines in the SVG file

docstring params
#docstring.hardcopy = False # set this when you want to generate hardcopy docstring

Set the verbose flags. This controls how much information
matplotlib gives you at runtime and where it goes. The verbosity
levels are: silent, helpful, debug, debug-annoying. Any level is
inclusive of all the levels below it. If your setting is "debug",
you’ll get all the debug and helpful messages. When submitting
problems to the mailing-list, please set verbose to "helpful" or "debug"
and paste the output into your report.
#
The "fileo" gives the destination for any calls to verbose.report.
These objects can a filename, or a filehandle like sys.stdout.
#
You can override the rc default verbosity from the command line by
giving the flags --verbose-LEVEL where LEVEL is one of the legal
levels, eg --verbose-helpful.

30 Chapter 5. Customizing matplotlib

Matplotlib, Release 1.0.0

#
You can access the verbose instance in your code
from matplotlib import verbose.
#verbose.level : silent # one of silent, helpful, debug, debug-annoying
#verbose.fileo : sys.stdout # a log filename, sys.stdout or sys.stderr

Event keys to interact with figures/plots via keyboard.
Customize these settings according to your needs.
Leave the field(s) empty if you don’t need a key-map. (i.e., fullscreen : ’’)

#keymap.fullscreen : f # toggling
#keymap.home : h, r, home # home or reset mnemonic
#keymap.back : left, c, backspace # forward / backward keys to enable
#keymap.forward : right, v # left handed quick navigation
#keymap.pan : p # pan mnemonic
#keymap.zoom : o # zoom mnemonic
#keymap.save : s # saving current figure
#keymap.grid : g # switching on/off a grid in current axes
#keymap.yscale : l # toggle scaling of y-axes (’log’/’linear’)
#keymap.xscale : L, k # toggle scaling of x-axes (’log’/’linear’)
#keymap.all_axes : a # enable all axes

5.2. Dynamic rc settings 31

Matplotlib, Release 1.0.0

32 Chapter 5. Customizing matplotlib

CHAPTER

SIX

USING MATPLOTLIB IN A PYTHON
SHELL

By default, matplotlib defers drawing until the end of the script because drawing can be an expensive oper-
ation, and you may not want to update the plot every time a single property is changed, only once after all
the properties have changed.

But when working from the python shell, you usually do want to update the plot with every command, eg,
after changing the xlabel(), or the marker style of a line. While this is simple in concept, in practice it
can be tricky, because matplotlib is a graphical user interface application under the hood, and there are some
tricks to make the applications work right in a python shell.

6.1 Ipython to the rescue

Fortunately, ipython, an enhanced interactive python shell, has figured out all of these tricks, and is mat-
plotlib aware, so when you start ipython in the pylab mode.

johnh@flag:~> ipython -pylab
Python 2.4.5 (#4, Apr 12 2008, 09:09:16)
IPython 0.9.0 -- An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type ’help(pylab)’.

In [1]: x = randn(10000)

In [2]: hist(x, 100)

it sets everything up for you so interactive plotting works as you would expect it to. Call figure() and a
figure window pops up, call plot() and your data appears in the figure window.

Note in the example above that we did not import any matplotlib names because in pylab mode, ipython will
import them automatically. ipython also turns on interactive mode for you, which causes every pyplot com-
mand to trigger a figure update, and also provides a matplotlib aware run command to run matplotlib scripts
efficiently. ipython will turn off interactive mode during a run command, and then restore the interactive
state at the end of the run so you can continue tweaking the figure manually.

33

http://ipython.scipy.org/dist

Matplotlib, Release 1.0.0

There has been a lot of recent work to embed ipython, with pylab support, into various GUI applications, so
check on the ipython mailing list for the latest status.

6.2 Other python interpreters

If you can’t use ipython, and still want to use matplotlib/pylab from an interactive python shell, eg the plain-
ole standard python interactive interpreter, or the interpreter in your favorite IDE, you are going to need to
understand what a matplotlib backend is What is a backend?.

With the TkAgg backend, that uses the Tkinter user interface toolkit, you can use matplotlib from an arbi-
trary python shell. Just set your backend : TkAgg and interactive : True in your matplotlibrc
file (see Customizing matplotlib) and fire up python. Then:

>>> from pylab import *
>>> plot([1,2,3])
>>> xlabel(’hi mom’)

should work out of the box. Note, in batch mode, ie when making figures from scripts, interactive mode can
be slow since it redraws the figure with each command. So you may want to think carefully before making
this the default behavior.

For other user interface toolkits and their corresponding matplotlib backends, the situation is complicated by
the GUI mainloop which takes over the entire process. The solution is to run the GUI in a separate thread,
and this is the tricky part that ipython solves for all the major toolkits that matplotlib supports. There are
reports that upcoming versions of pygtk will place nicely with the standard python shell, so stay tuned.

6.3 Controlling interactive updating

The interactive property of the pyplot interface controls whether a figure canvas is drawn on every pyplot
command. If interactive is False, then the figure state is updated on every plot command, but will only be
drawn on explicit calls to draw(). When interactive is True, then every pyplot command triggers a draw.

The pyplot interface provides 4 commands that are useful for interactive control.

isinteractive() returns the interactive setting True|False

ion() turns interactive mode on

ioff() turns interactive mode off

draw() forces a figure redraw

When working with a big figure in which drawing is expensive, you may want to turn matplotlib’s interactive
setting off temporarily to avoid the performance hit:

>>> #create big-expensive-figure
>>> ioff() # turn updates off
>>> title(’now how much would you pay?’)
>>> xticklabels(fontsize=20, color=’green’)

34 Chapter 6. Using matplotlib in a python shell

http://projects.scipy.org/mailman/listinfo/ipython-user

Matplotlib, Release 1.0.0

>>> draw() # force a draw
>>> savefig(’alldone’, dpi=300)
>>> close()
>>> ion() # turn updating back on
>>> plot(rand(20), mfc=’g’, mec=’r’, ms=40, mew=4, ls=’--’, lw=3)

6.3. Controlling interactive updating 35

Matplotlib, Release 1.0.0

36 Chapter 6. Using matplotlib in a python shell

CHAPTER

SEVEN

WORKING WITH TEXT

7.1 Text introduction

matplotlib has excellent text support, including mathematical expressions, truetype support for raster and
vector outputs, newline separated text with arbitrary rotations, and unicode support. Because we embed the
fonts directly in the output documents, eg for postscript or PDF, what you see on the screen is what you get
in the hardcopy. freetype2 support produces very nice, antialiased fonts, that look good even at small raster
sizes. matplotlib includes its own matplotlib.font_manager, thanks to Paul Barrett, which implements
a cross platform, W3C compliant font finding algorithm.

You have total control over every text property (font size, font weight, text location and color, etc) with
sensible defaults set in the rc file. And significantly for those interested in mathematical or scientific fig-
ures, matplotlib implements a large number of TeX math symbols and commands, to support mathematical
expressions anywhere in your figure.

7.2 Basic text commands

The following commands are used to create text in the pyplot interface

• text() - add text at an arbitrary location to the Axes; matplotlib.axes.Axes.text() in the API.

• xlabel() - add an axis label to the x-axis; matplotlib.axes.Axes.set_xlabel() in the API.

• ylabel() - add an axis label to the y-axis; matplotlib.axes.Axes.set_ylabel() in the API.

• title() - add a title to the Axes; matplotlib.axes.Axes.set_title() in the API.

• figtext() - add text at an arbitrary location to the Figure; matplotlib.figure.Figure.text()
in the API.

• suptitle() - add a title to the Figure; matplotlib.figure.Figure.suptitle() in the API.

• annotate() - add an annotation, with optional arrow, to the Axes ;
matplotlib.axes.Axes.annotate() in the API.

All of these functions create and return a matplotlib.text.Text() instance, which can bew configured
with a variety of font and other properties. The example below shows all of these commands in action.

37

http://freetype.sourceforge.net/index2.html

Matplotlib, Release 1.0.0

-*- coding: utf-8 -*-
import matplotlib.pyplot as plt

fig = plt.figure()
fig.suptitle(’bold figure suptitle’, fontsize=14, fontweight=’bold’)

ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
ax.set_title(’axes title’)

ax.set_xlabel(’xlabel’)
ax.set_ylabel(’ylabel’)

ax.text(3, 8, ’boxed italics text in data coords’, style=’italic’,
bbox={’facecolor’:’red’, ’alpha’:0.5, ’pad’:10})

ax.text(2, 6, r’an equation: $E=mc^2$’, fontsize=15)

ax.text(3, 2, unicode(’unicode: Institut f\374r Festk\366rperphysik’, ’latin-1’))

ax.text(0.95, 0.01, ’colored text in axes coords’,
verticalalignment=’bottom’, horizontalalignment=’right’,
transform=ax.transAxes,
color=’green’, fontsize=15)

ax.plot([2], [1], ’o’)
ax.annotate(’annotate’, xy=(2, 1), xytext=(3, 4),

arrowprops=dict(facecolor=’black’, shrink=0.05))

ax.axis([0, 10, 0, 10])

plt.show()

7.3 Text properties and layout

The matplotlib.text.Text instances have a variety of properties which can be configured via keyword
arguments to the text commands (eg title(), xlabel() and text()).

38 Chapter 7. Working with text

Matplotlib, Release 1.0.0

0 2 4 6 8 10
xlabel

0

2

4

6

8

10
y
la

b
e
l

boxed italics text in data coords

an equation: E=mc2

unicode: Institut für Festkörperphysik

colored text in axes coords

annotate

axes title

bold figure suptitle

Property Value Type
alpha float
backgroundcolor any matplotlib color
bbox rectangle prop dict plus key ‘pad’ which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]
clip_path a Path instance and a Transform instance, a Patch
color any matplotlib color
family [‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
fontproperties a matplotlib.font_manager.FontProperties instance
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float
multialignment [’left’ | ‘right’ | ‘center’]
name or fontname string eg, [’Sans’ | ‘Courier’ | ‘Helvetica’ ...]
picker [None|float|boolean|callable]
position (x,y)
rotation [angle in degrees ‘vertical’ | ‘horizontal’
size or fontsize [size in points | relative size eg ‘smaller’, ‘x-large’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion
transform a matplotlib.transform transformation instance
variant [‘normal’ | ‘small-caps’]
verticalalignment or va [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
x float
y float
zorder any number

7.3. Text properties and layout 39

Matplotlib, Release 1.0.0

You can layout text with the alignment arguments horizontalalignment, verticalalignment, and
multialignment. horizontalalignment controls whether the x positional argument for the text in-
dicates the left, center or right side of the text bounding box. verticalalignment controls whether
the y positional argument for the text indicates the bottom, center or top side of the text bounding box.
multialignment, for newline separated strings only, controls whether the different lines are left, center or
right justified. Here is an example which uses the text() command to show the various alignment possibil-
ities. The use of transform=ax.transAxes throughout the code indicates that the coordinates are given
relative to the axes bounding box, with 0,0 being the lower left of the axes and 1,1 the upper right.

import matplotlib.pyplot as plt
import matplotlib.patches as patches

build a rectangle in axes coords
left, width = .25, .5
bottom, height = .25, .5
right = left + width
top = bottom + height

fig = plt.figure()
ax = fig.add_axes([0,0,1,1])

axes coordinates are 0,0 is bottom left and 1,1 is upper right
p = patches.Rectangle(

(left, bottom), width, height,
fill=False, transform=ax.transAxes, clip_on=False
)

ax.add_patch(p)

ax.text(left, bottom, ’left top’,
horizontalalignment=’left’,
verticalalignment=’top’,
transform=ax.transAxes)

ax.text(left, bottom, ’left bottom’,
horizontalalignment=’left’,
verticalalignment=’bottom’,
transform=ax.transAxes)

ax.text(right, top, ’right bottom’,
horizontalalignment=’right’,
verticalalignment=’bottom’,
transform=ax.transAxes)

ax.text(right, top, ’right top’,
horizontalalignment=’right’,
verticalalignment=’top’,
transform=ax.transAxes)

ax.text(right, bottom, ’center top’,
horizontalalignment=’center’,
verticalalignment=’top’,

40 Chapter 7. Working with text

Matplotlib, Release 1.0.0

transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), ’right center’,
horizontalalignment=’right’,
verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), ’left center’,
horizontalalignment=’left’,
verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(0.5*(left+right), 0.5*(bottom+top), ’middle’,
horizontalalignment=’center’,
verticalalignment=’center’,
fontsize=20, color=’red’,
transform=ax.transAxes)

ax.text(right, 0.5*(bottom+top), ’centered’,
horizontalalignment=’center’,
verticalalignment=’center’,
rotation=’vertical’,
transform=ax.transAxes)

ax.text(left, top, ’rotated\nwith newlines’,
horizontalalignment=’center’,
verticalalignment=’center’,
rotation=45,
transform=ax.transAxes)

ax.set_axis_off()
plt.show()

7.4 Writing mathematical expressions

You can use a subset TeX markup in any matplotlib text string by placing it inside a pair of dollar signs ($).

Note that you do not need to have TeX installed, since matplotlib ships its own TeX expression parser, layout
engine and fonts. The layout engine is a fairly direct adaptation of the layout algorithms in Donald Knuth’s
TeX, so the quality is quite good (matplotlib also provides a usetex option for those who do want to call
out to TeX to generate their text (see Text rendering With LaTeX).

Any text element can use math text. You should use raw strings (preceed the quotes with an ’r’), and sur-
round the math text with dollar signs ($), as in TeX. Regular text and mathtext can be interleaved within the
same string. Mathtext can use the Computer Modern fonts (from (La)TeX), STIX fonts (with are designed
to blend well with Times) or a Unicode font that you provide. The mathtext font can be selected with the
customization variable mathtext.fontset (see Customizing matplotlib)

Note: On “narrow” builds of Python, if you use the STIX fonts you should also set ps.fonttype and

7.4. Writing mathematical expressions 41

http://www.aip.org/stixfonts/
http://wordaligned.org/articles/narrow-python

Matplotlib, Release 1.0.0

left top
left bottom

right bottom
right top

center top

ri
g
h
t

ce
n
te

r
le

ft
 c

e
n
te

r

middle

ce
n
te

re
d

ro
ta

te
d

with
 n

ew
lin

es

pdf.fonttype to 3 (the default), not 42. Otherwise some characters will not be visible.

Here is a simple example:

plain text
plt.title(’alpha > beta’)

produces “alpha > beta”.

Whereas this:

math text
plt.title(r’$\alpha > \beta$’)

produces “α > β“.

Note: Mathtext should be placed between a pair of dollar signs ($). To make it easy to display monetary
values, e.g. “$100.00”, if a single dollar sign is present in the entire string, it will be displayed verbatim as
a dollar sign. This is a small change from regular TeX, where the dollar sign in non-math text would have
to be escaped (‘$’).

Note: While the syntax inside the pair of dollar signs ($) aims to be TeX-like, the text outside does not. In
particular, characters such as:

42 Chapter 7. Working with text

http://thread.gmane.org/gmane.comp.python.matplotlib.general/19963/focus=19978

Matplotlib, Release 1.0.0

$ % & ~ _ ^ \ { } \(\) \[\]

have special meaning outside of math mode in TeX. Therefore, these characters will behave differently
depending on the rcParam text.usetex flag. See the usetex tutorial for more information.

7.4.1 Subscripts and superscripts

To make subscripts and superscripts, use the ’_’ and ’^’ symbols:

r’$\alpha_i > \beta_i$’

αi > βi (7.1)

Some symbols automatically put their sub/superscripts under and over the operator. For example, to write
the sum of xi from 0 to∞, you could do:

r’$\sum_{i=0}^\infty x_i$’

∞∑
i=0

xi (7.2)

7.4.2 Fractions, binomials and stacked numbers

Fractions, binomials and stacked numbers can be created with the \frac{}{}, \binom{}{} and
\stackrel{}{} commands, respectively:

r’$\frac{3}{4} \binom{3}{4} \stackrel{3}{4}$’

produces
3
4

(
3
4

)
3
4 (7.3)

Fractions can be arbitrarily nested:

r’$\frac{5 - \frac{1}{x}}{4}$’

produces
5 − 1

x

4
(7.4)

Note that special care needs to be taken to place parentheses and brackets around fractions. Doing things
the obvious way produces brackets that are too small:

r’$(\frac{5 - \frac{1}{x}}{4})$’

7.4. Writing mathematical expressions 43

Matplotlib, Release 1.0.0

(
5 − 1

x

4
) (7.5)

The solution is to precede the bracket with \left and \right to inform the parser that those brackets
encompass the entire object:

r’$\left(\frac{5 - \frac{1}{x}}{4}\right)$’5 − 1
x

4

 (7.6)

7.4.3 Radicals

Radicals can be produced with the \sqrt[]{} command. For example:

r’$\sqrt{2}$’

√
2 (7.7)

Any base can (optionally) be provided inside square brackets. Note that the base must be a simple expres-
sion, and can not contain layout commands such as fractions or sub/superscripts:

r’$\sqrt[3]{x}$’

3√x (7.8)

7.4.4 Fonts

The default font is italics for mathematical symbols.

Note: This default can be changed using the mathtext.default rcParam. This is useful, for example, to
use the same font as regular non-math text for math text, by setting it to regular.

To change fonts, eg, to write “sin” in a Roman font, enclose the text in a font command:

r’$s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)$’

s(t) = Asin(2ωt) (7.9)

More conveniently, many commonly used function names that are typeset in a Roman font have shortcuts.
So the expression above could be written as follows:

r’$s(t) = \mathcal{A}\sin(2 \omega t)$’

s(t) = A sin(2ωt) (7.10)

Here “s” and “t” are variable in italics font (default), “sin” is in Roman font, and the amplitude “A” is in
calligraphy font. Note in the example above the caligraphy A is squished into the sin. You can use a spacing
command to add a little whitespace between them:

44 Chapter 7. Working with text

Matplotlib, Release 1.0.0

s(t) = \mathcal{A}\/\sin(2 \omega t)

s(t) = A sin(2ωt) (7.11)

The choices available with all fonts are:

Command Result
\mathrm{Roman} Roman
\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter

\mathcal{CALLIGRAPHY} CALLIGRAPHY

When using the STIX fonts, you also have the choice of:

Command Result
\mathbb{blackboard} lakoar

\mathrm{\mathbb{blackboard}} lakoar

\mathfrak{Fraktur} Fraktur

\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

There are also three global “font sets” to choose from, which are selected using the mathtext.fontset
parameter in matplotlibrc.

cm: Computer Modern (TeX)

stix: STIX (designed to blend well with Times)

stixsans: STIX sans-serif

Additionally, you can use \mathdefault{...} or its alias \mathregular{...} to use the font used for
regular text outside of mathtext. There are a number of limitations to this approach, most notably that far
fewer symbols will be available, but it can be useful to make math expressions blend well with other text in
the plot.

7.4. Writing mathematical expressions 45

http://www.aip.org/stixfonts/

Matplotlib, Release 1.0.0

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to use, and should
be considered an experimental feature for patient users only. By setting the rcParam mathtext.fontset
to custom, you can then set the following parameters, which control which font file to use for a particular
set of math characters.

Parameter Corresponds to
mathtext.it \mathit{} or default italic
mathtext.rm \mathrm{} Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf \mathbf{} bold italic
mathtext.cal \mathcal{} calligraphic
mathtext.sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-written font chapter).

The fonts used should have a Unicode mapping in order to find any non-Latin characters, such as Greek.
If you want to use a math symbol that is not contained in your custom fonts, you can set the rcParam
mathtext.fallback_to_cm to True which will cause the mathtext system to use characters from the
default Computer Modern fonts whenever a particular character can not be found in the custom font.

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may not have glyphs
in the correct place for mathtext.

7.4.5 Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for
some of them.

Command Result
\acute a or \’a á
\bar a ā
\breve a ă
\ddot a or \"a ä
\dot a or \.a ȧ
\grave a or \‘a à
\hat a or \^a â
\tilde a or \~a ã
\vec a ~a

In addition, there are two special accents that automatically adjust to the width of the symbols below:

Command Result
\widehat{xyz} x̂yz
\widetilde{xyz} x̃yz

Care should be taken when putting accents on lower-case i’s and j’s. Note that in the following \imath is
used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imath$"

46 Chapter 7. Working with text

Matplotlib, Release 1.0.0

î ı̂ (7.12)

7.4.6 Symbols

You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.

Lower-case Greek

α \alpha β \beta χ \chi δ \delta z \digamma
ε \epsilon η \eta γ \gamma ι \iota κ \kappa
λ \lambda µ \mu ν \nu ω \omega φ \phi
π \pi ψ \psi ρ \rho σ \sigma τ \tau
θ \theta υ \upsilon ε \varepsilon κ \varkappa ϕ \varphi
$ \varpi % \varrho ς \varsigma ϑ \vartheta ξ \xi
ζ \zeta

Upper-case Greek

∆ \Delta Γ \Gamma Λ \Lambda Ω \Omega Φ \Phi Π \Pi
Ψ \Psi Σ \Sigma Θ \Theta Υ \Upsilon Ξ \Xi f \mho
∇ \nabla

Hebrew

ℵ \aleph i \beth k \daleth ג \gimel

Delimiters

/ / [[⇓ \Downarrow ⇑ \Uparrow ‖ \Vert \ \backslash
↓ \downarrow 〈 \langle d \lceil b \lfloor x \llcorner y \lrcorner
〉 \rangle e \rceil c \rfloor p \ulcorner ↑ \uparrow q \urcorner
| \vert { \{ ‖ \| } \}]] | |

Big symbols⋂
\bigcap

⋃
\bigcup

⊙
\bigodot

⊕
\bigoplus

⊗
\bigotimes⊎

\biguplus
∨

\bigvee
∧

\bigwedge
∐

\coprod
∫
\int∮

\oint
∏

\prod
∑

\sum

Standard function names

Pr \Pr arccos \arccos arcsin \arcsin arctan \arctan
arg \arg cos \cos cosh \cosh cot \cot
coth \coth csc \csc deg \deg det \det
dim \dim exp \exp gcd \gcd hom \hom
inf \inf ker \ker lg \lg lim \lim
lim inf \liminf lim sup \limsup ln \ln log \log
max \max min \min sec \sec sin \sin
sinh \sinh sup \sup tan \tan tanh \tanh

Binary operation and relation symbols

7.4. Writing mathematical expressions 47

Matplotlib, Release 1.0.0

m \Bumpeq e \Cap d \Cup
+ \Doteq Z \Join b \Subset
c \Supset \Vdash � \Vvdash
≈ \approx u \approxeq ∗ \ast
� \asymp � \backepsilon v \backsim
w \backsimeq Z \barwedge ∵ \because
G \between © \bigcirc 5 \bigtriangledown
4 \bigtriangleup J \blacktriangleleft I \blacktriangleright
⊥ \bot ./ \bowtie � \boxdot
� \boxminus � \boxplus � \boxtimes
• \bullet l \bumpeq ∩ \cap
· \cdot ◦ \circ $ \circeq
D \coloneq � \cong ∪ \cup
2 \curlyeqprec 3 \curlyeqsucc g \curlyvee
f \curlywedge † \dag a \dashv
‡ \ddag � \diamond ÷ \div
> \divideontimes � \doteq + \doteqdot
u \dotplus [\doublebarwedge P \eqcirc
E \eqcolon h \eqsim 1 \eqslantgtr
0 \eqslantless ≡ \equiv ; \fallingdotseq

_ \frown ≥ \geq = \geqq
> \geqslant � \gg ≫ \ggg
� \gnapprox 	 \gneqq � \gnsim
' \gtrapprox m \gtrdot R \gtreqless
T \gtreqqless ≷ \gtrless & \gtrsim
∈ \in ᵀ \intercal h \leftthreetimes
≤ \leq 5 \leqq 6 \leqslant
/ \lessapprox l \lessdot Q \lesseqgtr
S \lesseqqgtr ≶ \lessgtr . \lesssim
� \ll ≪ \lll � \lnapprox
� \lneqq � \lnsim n \ltimes
| \mid |= \models ∓ \mp
3 \nVDash 1 \nVdash 0 \napprox
� \ncong , \ne , \neq
, \neq . \nequiv � \ngeq
≯ \ngtr 3 \ni � \nleq
≮ \nless - \nmid < \notin
∦ \nparallel ⊀ \nprec / \nsim
1 \nsubset * \nsubseteq � \nsucc
2 \nsupset + \nsupseteq 6 \ntriangleleft

48 Chapter 7. Working with text

Matplotlib, Release 1.0.0

5 \ntrianglelefteq 7 \ntriangleright 4 \ntrianglerighteq
2 \nvDash 0 \nvdash � \odot
	 \ominus ⊕ \oplus � \oslash
⊗ \otimes ‖ \parallel ⊥ \perp
t \pitchfork ± \pm ≺ \prec
v \precapprox 4 \preccurlyeq � \preceq
� \precnapprox � \precnsim - \precsim
∝ \propto i \rightthreetimes : \risingdotseq
o \rtimes ∼ \sim ' \simeq
/ \slash ^ \smile u \sqcap
t \sqcup @ \sqsubset @ \sqsubset
v \sqsubseteq A \sqsupset A \sqsupset
w \sqsupseteq ? \star ⊂ \subset
⊆ \subseteq j \subseteqq (\subsetneq
$ \subsetneqq � \succ w \succapprox
< \succcurlyeq � \succeq � \succnapprox
� \succnsim % \succsim ⊃ \supset
⊇ \supseteq k \supseteqq) \supsetneq
% \supsetneqq ∴ \therefore × \times
> \top / \triangleleft E \trianglelefteq

, \triangleq . \triangleright D \trianglerighteq
] \uplus � \vDash ∝ \varpropto
C \vartriangleleft B \vartriangleright ` \vdash
∨ \vee Y \veebar ∧ \wedge
o \wr

Arrow symbols

⇓ \Downarrow ⇐ \Leftarrow
⇔ \Leftrightarrow W \Lleftarrow
⇐= \Longleftarrow ⇐⇒ \Longleftrightarrow
=⇒ \Longrightarrow � \Lsh
t \Nearrow v \Nwarrow
⇒ \Rightarrow V \Rrightarrow
� \Rsh u \Searrow
w \Swarrow ⇑ \Uparrow
m \Updownarrow 	 \circlearrowleft
� \circlearrowright x \curvearrowleft
y \curvearrowright c \dashleftarrow
d \dashrightarrow ↓ \downarrow
� \downdownarrows � \downharpoonleft
� \downharpoonright ←↩ \hookleftarrow
↪→ \hookrightarrow { \leadsto
← \leftarrow � \leftarrowtail
↽ \leftharpoondown ↼ \leftharpoonup
⇔ \leftleftarrows ↔ \leftrightarrow
� \leftrightarrows � \leftrightharpoons
! \leftrightsquigarrow f \leftsquigarrow

7.4. Writing mathematical expressions 49

Matplotlib, Release 1.0.0

←− \longleftarrow ←→ \longleftrightarrow
7−→ \longmapsto −→ \longrightarrow
" \looparrowleft # \looparrowright
7→ \mapsto (\multimap
: \nLeftarrow < \nLeftrightarrow
; \nRightarrow ↗ \nearrow
8 \nleftarrow = \nleftrightarrow
9 \nrightarrow ↖ \nwarrow
→ \rightarrow � \rightarrowtail
⇁ \rightharpoondown ⇀ \rightharpoonup
� \rightleftarrows � \rightleftarrows

 \rightleftharpoons
 \rightleftharpoons
⇒ \rightrightarrows ⇒ \rightrightarrows
 \rightsquigarrow ↘ \searrow
↙ \swarrow → \to
� \twoheadleftarrow � \twoheadrightarrow
↑ \uparrow l \updownarrow
l \updownarrow � \upharpoonleft
� \upharpoonright � \upuparrows

Miscellaneous symbols

$ \$ Å \AA ` \Finv
a \Game = \Im ¶ \P
< \Re § \S ∠ \angle
8 \backprime F \bigstar � \blacksquare
N \blacktriangle H \blacktriangledown · · · \cdots
X \checkmark r \circledR s \circledS
♣ \clubsuit { \complement © \copyright
. . . \ddots ♦ \diamondsuit ` \ell
∅ \emptyset ð \eth ∃ \exists
[\flat ∀ \forall ~ \hbar

♥ \heartsuit } \hslash
#

\iiint!
\iint

!
\iint ı \imath

∞ \infty \jmath . . . \ldots
] \measuredangle \ \natural ¬ \neg

@ \nexists
)

\oiiint ∂ \partial
′ \prime] \sharp ♠ \spadesuit
^ \sphericalangle \ss O \triangledown

∅ \varnothing M \vartriangle
... \vdots

℘ \wp U \yen

If a particular symbol does not have a name (as is true of many of the more obscure symbols in the STIX
fonts), Unicode characters can also be used:

ur’$\u23ce$’

50 Chapter 7. Working with text

Matplotlib, Release 1.0.0

7.4.7 Example

Here is an example illustrating many of these features in context.

import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)

plt.plot(t,s)
plt.title(r’$\alpha_i > \beta_i$’, fontsize=20)
plt.text(1, -0.6, r’$\sum_{i=0}^\infty x_i$’, fontsize=20)
plt.text(0.6, 0.6, r’$\mathcal{A}\mathrm{sin}(2 \omega t)$’,

fontsize=20)
plt.xlabel(’time (s)’)
plt.ylabel(’volts (mV)’)

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

v
o
lt

s
(m

V
)

∞∑
i=0

xi

Asin(2ωt)

αi >βi

7.5 Text rendering With LaTeX

Matplotlib has the option to use LaTeX to manage all text layout. This option is available with the following
backends:

• Agg

7.5. Text rendering With LaTeX 51

Matplotlib, Release 1.0.0

• PS

• PDF

The LaTeX option is activated by setting text.usetex : True in your rc settings. Text handling with
matplotlib’s LaTeX support is slower than matplotlib’s very capable mathtext, but is more flexible, since
different LaTeX packages (font packages, math packages, etc.) can be used. The results can be striking,
especially when you take care to use the same fonts in your figures as in the main document.

Matplotlib’s LaTeX support requires a working LaTeX installation, dvipng (which may be included with
your LaTeX installation), and Ghostscript (GPL Ghostscript 8.60 or later is recommended). The executables
for these external dependencies must all be located on your PATH.

There are a couple of options to mention, which can be changed using rc settings. Here is an example
matplotlibrc file:

font.family : serif
font.serif : Times, Palatino, New Century Schoolbook, Bookman, Computer Modern Roman
font.sans-serif : Helvetica, Avant Garde, Computer Modern Sans serif
font.cursive : Zapf Chancery
font.monospace : Courier, Computer Modern Typewriter

text.usetex : true

The first valid font in each family is the one that will be loaded. If the fonts are not specified, the Computer
Modern fonts are used by default. All of the other fonts are Adobe fonts. Times and Palatino each have their
own accompanying math fonts, while the other Adobe serif fonts make use of the Computer Modern math
fonts. See the PSNFSS documentation for more details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

from matplotlib import rc
rc(’font’,**{’family’:’sans-serif’,’sans-serif’:[’Helvetica’]})
for Palatino and other serif fonts use:
#rc(’font’,**{’family’:’serif’,’serif’:[’Palatino’]))
rc(’text’, usetex=True)

Here is the standard example, tex_demo.py:

#!/usr/bin/env python
"""
You can use TeX to render all of your matplotlib text if the rc
parameter text.usetex is set. This works currently on the agg and ps
backends, and requires that you have tex and the other dependencies
described at http://matplotlib.sf.net/matplotlib.texmanager.html
properly installed on your system. The first time you run a script
you will see a lot of output from tex and associated tools. The next
time, the run may be silent, as a lot of the information is cached in
~/.tex.cache

"""
from matplotlib import rc
from numpy import arange, cos, pi

52 Chapter 7. Working with text

http://www.tug.org
http://sourceforge.net/projects/dvipng
http://www.cs.wisc.edu/~ghost/
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

Matplotlib, Release 1.0.0

from matplotlib.pyplot import figure, axes, plot, xlabel, ylabel, title, \
grid, savefig, show

rc(’text’, usetex=True)
rc(’font’, family=’serif’)
figure(1, figsize=(6,4))
ax = axes([0.1, 0.1, 0.8, 0.7])
t = arange(0.0, 1.0+0.01, 0.01)
s = cos(2*2*pi*t)+2
plot(t, s)

xlabel(r’\textbf{time (s)}’)
ylabel(r’\textit{voltage (mV)}’,fontsize=16)
title(r"\TeX\ is Number $\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!",

fontsize=16, color=’r’)
grid(True)
savefig(’tex_demo’)

show()

Exception occurred rendering plot.

Note that display math mode ($$ e=mc^2 $$) is not supported, but adding the command \displaystyle,
as in tex_demo.py, will produce the same results.

Note: Certain characters require special escaping in TeX, such as:

$ % & ~ _ ^ \ { } \(\) \[\]

Therefore, these characters will behave differently depending on the rcParam text.usetex flag.

7.5.1 usetex with unicode

It is also possible to use unicode strings with the LaTeX text manager, here is an example taken from
tex_unicode_demo.py:

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
This demo is tex_demo.py modified to have unicode. See that file for
more information.
"""
from matplotlib import rcParams
rcParams[’text.usetex’]=True
rcParams[’text.latex.unicode’]=True
from numpy import arange, cos, pi
from matplotlib.pyplot import figure, axes, plot, xlabel, ylabel, title, \

grid, savefig, show

7.5. Text rendering With LaTeX 53

Matplotlib, Release 1.0.0

figure(1, figsize=(6,4))
ax = axes([0.1, 0.1, 0.8, 0.7])
t = arange(0.0, 1.0+0.01, 0.01)
s = cos(2*2*pi*t)+2
plot(t, s)

xlabel(r’\textbf{time (s)}’)
ylabel(ur’\textit{Velocity (\u00B0/sec)}’, fontsize=16)
title(r"\TeX\ is Number $\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!",

fontsize=16, color=’r’)
grid(True)
show()

Exception occurred rendering plot.

7.5.2 Postscript options

In order to produce encapsulated postscript files that can be embedded in a new LaTeX document, the default
behavior of matplotlib is to distill the output, which removes some postscript operators used by LaTeX that
are illegal in an eps file. This step produces results which may be unacceptable to some users, because
the text is coarsely rasterized and converted to bitmaps, which are not scalable like standard postscript, and
the text is not searchable. One workaround is to to set ps.distiller.res to a higher value (perhaps
6000) in your rc settings, which will produce larger files but may look better and scale reasonably. A better
workaround, which requires Poppler or Xpdf, can be activated by changing the ps.usedistiller rc setting
to xpdf. This alternative produces postscript without rasterizing text, so it scales properly, can be edited in
Adobe Illustrator, and searched text in pdf documents.

7.5.3 Possible hangups

• On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting
environment variables in windows for details.

• Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to MiK-
TeX/Options and update your format files

• The fonts look terrible on screen. You are probably running Mac OS, and there is some funny business
with older versions of dvipng on the mac. Set text.dvipnghack : True in your matplotlibrc file.

• On Ubuntu and Gentoo, the base texlive install does not ship with the type1cm package. You may
need to install some of the extra packages to get all the goodies that come bundled with other latex
distributions.

• Some progress has been made so matplotlib uses the dvi files directly for text layout. This allows
latex to be used for text layout with the pdf and svg backends, as well as the *Agg and PS backends.
In the future, a latex installation may be the only external dependency.

54 Chapter 7. Working with text

http://poppler.freedesktop.org/
http://www.foolabs.com/xpdf

Matplotlib, Release 1.0.0

7.5.4 Troubleshooting

• Try deleting your .matplotlib/tex.cache directory. If you don’t know where to find
.matplotlib, see .matplotlib directory location.

• Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

• Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

• Most problems reported on the mailing list have been cleared up by upgrading Ghostscript. If possible,
please try upgrading to the latest release before reporting problems to the list.

• The text.latex.preamble rc setting is not officially supported. This option provides lots of flexi-
bility, and lots of ways to cause problems. Please disable this option before reporting problems to the
mailing list.

• If you still need help, please see Report a problem

7.6 Annotating text

For a more detailed introduction to annotations, see Annotating Axes.

The uses of the basic text() command above place text at an arbitrary position on the Axes. A common use
case of text is to annotate some feature of the plot, and the annotate() method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,y)
tuples.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = ax.plot(t, s, lw=2)

ax.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor=’black’, shrink=0.05),
)

ax.set_ylim(-2,2)
plt.show()

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There
are a variety of other coordinate systems one can choose – you can specify the coordinate system of xy and
xytext with one of the following strings for xycoords and textcoords (default is ‘data’)

7.6. Annotating text 55

http://www.cs.wisc.edu/~ghost/

Matplotlib, Release 1.0.0

0 1 2 3 4 5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

local max

argument coordinate system
‘figure points’ points from the lower left corner of the figure
‘figure pixels’ pixels from the lower left corner of the figure
‘figure fraction’ 0,0 is lower left of figure and 1,1 is upper, right
‘axes points’ points from lower left corner of axes
‘axes pixels’ pixels from lower left corner of axes
‘axes fraction’ 0,1 is lower left of axes and 1,1 is upper right
‘data’ use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate(’local max’, xy=(3, 1), xycoords=’data’,
xytext=(0.8, 0.95), textcoords=’axes fraction’,
arrowprops=dict(facecolor=’black’, shrink=0.05),
horizontalalignment=’right’, verticalalignment=’top’,
)

For physical coordinate systems (points or pixels) the origin is the (bottom, left) of the figure or axes. If
the value is negative, however, the origin is from the (right, top) of the figure or axes, analogous to negative
indexing of sequences.

Optionally, you can specify arrow properties which draws an arrow from the text to the annotated point by
giving a dictionary of arrow properties in the optional keyword argument arrowprops.

56 Chapter 7. Working with text

Matplotlib, Release 1.0.0

arrowprops key description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
headwidth the width of the base of the arrow head in points
shrink move the tip and base some percent away from the annotated point and text
**kwargs any key for matplotlib.patches.Polygon, e.g. facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to ‘data’). For a polar
axes, this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate
system. matplotlib.text.Text keyword args like horizontalalignment, verticalalignment and
fontsize are passed from the ‘~matplotlib.Axes.annotate‘ to the ‘‘Text instance

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
r = np.arange(0,1,0.001)
theta = 2*2*np.pi*r
line, = ax.plot(theta, r, color=’#ee8d18’, lw=3)

ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], ’o’)
ax.annotate(’a polar annotation’,

xy=(thistheta, thisr), # theta, radius
xytext=(0.05, 0.05), # fraction, fraction
textcoords=’figure fraction’,
arrowprops=dict(facecolor=’black’, shrink=0.05),
horizontalalignment=’left’,
verticalalignment=’bottom’,
)

plt.show()

For more on all the wild and wonderful things you can do with annotations, including fancy arrows, see
Annotating Axes and pylab_examples example code: annotation_demo.py.

7.6. Annotating text 57

Matplotlib, Release 1.0.0

0°

45°

90°

135°

180°

225°

270°

315°

0.2
0.4

0.6
0.8

1.0

a polar annotation

58 Chapter 7. Working with text

CHAPTER

EIGHT

IMAGE TUTORIAL

8.1 Startup commands

At the very least, you’ll need to have access to the imshow() function. There are a couple of ways to do it.
The easy way for an interactive environment:

$ipython -pylab

The imshow function is now directly accessible (it’s in your namespace). See also Pyplot tutorial.

The more expressive, easier to understand later method (use this in your scripts to make it easier for others
(including your future self) to read) is to use the matplotlib API (see Artist tutorial) where you use explicit
namespaces and control object creation, etc...

In [1]: import matplotlib.pyplot as plt
In [2]: import matplotlib.image as mpimg
In [3]: import numpy as np

Examples below will use the latter method, for clarity. In these examples, if you use the -pylab method, you
can skip the “mpimg.” and “plt.” prefixes.

8.2 Importing image data into Numpy arrays

Plotting image data is supported by the Python Image Library (PIL), . Natively, matplotlib only supports
PNG images. The commands shown below fall back on PIL if the native read fails.

The image used in this example is a PNG file, but keep that PIL requirement in mind for your own data.

Here’s the image we’re going to play with:

59

http://bytebaker.com/2008/07/30/python-namespaces/
http://www.pythonware.com/products/pil/

Matplotlib, Release 1.0.0

It’s a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending on where you get your data, the other
kinds of image that you’ll most likely encounter are RGBA images, which allow for transparency, or single-
channel grayscale (luminosity) images. You can right click on it and choose “Save image as” to download
it to your computer for the rest of this tutorial.

And here we go...

In [4]: img=mpimg.imread(’stinkbug.png’)
Out[4]:
array([[[0.40784314, 0.40784314, 0.40784314],

[0.40784314, 0.40784314, 0.40784314],
[0.40784314, 0.40784314, 0.40784314],
...,
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098]],

[[0.41176471, 0.41176471, 0.41176471],
[0.41176471, 0.41176471, 0.41176471],
[0.41176471, 0.41176471, 0.41176471],
...,
[0.42745098, 0.42745098, 0.42745098],
[0.42745098, 0.42745098, 0.42745098],

60 Chapter 8. Image tutorial

Matplotlib, Release 1.0.0

[0.42745098, 0.42745098, 0.42745098]],

[[0.41960785, 0.41960785, 0.41960785],
[0.41568628, 0.41568628, 0.41568628],
[0.41568628, 0.41568628, 0.41568628],
...,
[0.43137255, 0.43137255, 0.43137255],
[0.43137255, 0.43137255, 0.43137255],
[0.43137255, 0.43137255, 0.43137255]],

...,
[[0.43921569, 0.43921569, 0.43921569],
[0.43529412, 0.43529412, 0.43529412],
[0.43137255, 0.43137255, 0.43137255],
...,
[0.45490196, 0.45490196, 0.45490196],
[0.4509804 , 0.4509804 , 0.4509804],
[0.4509804 , 0.4509804 , 0.4509804]],

[[0.44313726, 0.44313726, 0.44313726],
[0.44313726, 0.44313726, 0.44313726],
[0.43921569, 0.43921569, 0.43921569],
...,
[0.4509804 , 0.4509804 , 0.4509804],
[0.44705883, 0.44705883, 0.44705883],
[0.44705883, 0.44705883, 0.44705883]],

[[0.44313726, 0.44313726, 0.44313726],
[0.4509804 , 0.4509804 , 0.4509804],
[0.4509804 , 0.4509804 , 0.4509804],
...,
[0.44705883, 0.44705883, 0.44705883],
[0.44705883, 0.44705883, 0.44705883],
[0.44313726, 0.44313726, 0.44313726]]], dtype=float32)

Note the dtype there - float32. Matplotlib has rescaled the 8 bit data from each channel to floating point data
between 0.0 and 1.0. As a side note, the only datatype that PIL can work with is uint8. Matplotlib plotting
can handle float32 and uint8, but image reading/writing for any format other than PNG is limited to uint8
data. Why 8 bits? Most displays can only render 8 bits per channel worth of color gradation. Why can they
only render 8 bits/channel? Because that’s about all the human eye can see. More here (from a photography
standpoint): Luminous Landscape bit depth tutorial.

Each inner list represents a pixel. Here, with an RGB image, there are 3 values. Since it’s a black and white
image, R, G, and B are all similar. An RGBA (where A is alpha, or transparency), has 4 values per inner list,
and a simple luminance image just has one value (and is thus only a 2-D array, not a 3-D array). For RGB
and RGBA images, matplotlib supports float32 and uint8 data types. For grayscale, matplotlib supports only
float32. If your array data does not meet one of these descriptions, you need to rescale it.

8.2. Importing image data into Numpy arrays 61

http://www.luminous-landscape.com/tutorials/bit-depth.shtml

Matplotlib, Release 1.0.0

8.3 Plotting numpy arrays as images

So, you have your data in a numpy array (either by importing it, or by generating it). Let’s render it. In
Matplotlib, this is performed using the imshow() function. Here we’ll grab the plot object. This object
gives you an easy way to manipulate the plot from the prompt.

In [5]: imgplot = plt.imshow(img)

0 100 200 300 400

0

50

100

150

200

250

300

350

You can also plot any numpy array - just remember that the datatype must be float32 (and range from 0.0 to
1.0) or uint8.

8.3.1 Applying pseudocolor schemes to image plots

Pseudocolor can be a useful tool for enhancing contrast and visualizing your data more easily. This is
especially useful when making presentations of your data using projectors - their contrast is typically quite
poor.

Pseudocolor is only relevant to single-channel, grayscale, luminosity images. We currently have an RGB
image. Since R, G, and B are all similar (see for yourself above or in your data), we can just pick on channel
of our data:

62 Chapter 8. Image tutorial

Matplotlib, Release 1.0.0

In [6]: lum_img = img[:,:,0]

This is array slicing. You can read more in the Numpy tutorial.

In [7]: imgplot = mpimg.imshow(lum_img)

0 100 200 300 400

0

50

100

150

200

250

300

350

Now, with a luminosity image, the default colormap (aka lookup table, LUT), is applied. The default is
called jet. There are plenty of others to choose from. Let’s set some others using the set_cmap() method
on our image plot object:

In [8]: imgplot.set_cmap(’hot’)

In [9]: imgplot.set_cmap(’spectral’)

There are many other colormap schemes available. See the list and images of the colormaps.

8.3.2 Color scale reference

It’s helpful to have an idea of what value a color represents. We can do that by adding color bars. It’s as
easy as one line:

8.3. Plotting numpy arrays as images 63

http://www.scipy.org/Tentative_NumPy_Tutorial
http://matplotlib.sourceforge.net/examples/pylab_examples/show_colormaps.html

Matplotlib, Release 1.0.0

0 100 200 300 400

0

50

100

150

200

250

300

350

In [10]: plt.colorbar()

This adds a colorbar to your existing figure. This won’t automatically change if you change you switch to a
different colormap - you have to re-create your plot, and add in the colorbar again.

8.3.3 Examining a specific data range

Sometimes you want to enhance the contrast in your image, or expand the contrast in a particular region
while sacrificing the detail in colors that don’t vary much, or don’t matter. A good tool to find interesting
regions is the histogram. To create a histogram of our image data, we use the hist() function.

In[10]: plt.hist(lum_img.flatten(), 256, range=(0.0,1.0), fc=’k’, ec=’k’)

Most often, the “interesting” part of the image is around the peak, and you can get extra contrast by clipping
the regions above and/or below the peak. In our histogram, it looks like there’s not much useful information
in the high end (not many white things in the image). Let’s adjust the upper limit, so that we effectively
“zoom in on” part of the histogram. We do this by calling the set_clim() method of the image plot object.

In[11]: imgplot.set_clim=(0.0,0.7)

64 Chapter 8. Image tutorial

Matplotlib, Release 1.0.0

0 100 200 300 400

0

50

100

150

200

250

300

350

8.3.4 Array Interpolation schemes

Interpolation calculates what the color or value of a pixel “should” be, according to different mathematical
schemes. One common place that this happens is when you resize an image. The number of pixels change,
but you want the same information. Since pixels are discrete, there’s missing space. Interpolation is how
you fill that space. This is why your images sometimes come out looking pixelated when you blow them
up. The effect is more pronounced when the difference between the original image and the expanded image
is greater. Let’s take our image and shrink it. We’re effectively discarding pixels, only keeping a select few.
Now when we plot it, that data gets blown up to the size on your screen. The old pixels aren’t there anymore,
and the computer has to draw in pixels to fill that space.

In [8]: import Image
In [9]: img = Image.open(’stinkbug.png’) # Open image as PIL image object
In [10]: rsize = img.resize((img.size[0]/10,img.size[1]/10)) # Use PIL to resize
In [11]: rsizeArr = np.asarray(rsize) # Get array back
In [12]: imgplot = mpimg.imshow(rsizeArr)

Here we have the default interpolation, bilinear, since we did not give imshow() any interpolation argument.

Let’s try some others:

In [10]: imgplot.set_interpolation(’nearest’)

8.3. Plotting numpy arrays as images 65

Matplotlib, Release 1.0.0

0 100 200 300 400

0

50

100

150

200

250

300

350

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In [10]: imgplot.set_interpolation(’bicubic’)

Bicubic interpolation is often used when blowing up photos - people tend to prefer blurry over pixelated.

66 Chapter 8. Image tutorial

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

8.3. Plotting numpy arrays as images 67

Matplotlib, Release 1.0.0

0 100 200 300 400

0
50

100
150
200
250
300
350

Before

0.1 0.3 0.5 0.7

0 100 200 300 400

0
50

100
150
200
250
300
350

After

0.1 0.3 0.5 0.7

68 Chapter 8. Image tutorial

Matplotlib, Release 1.0.0

0 10 20 30 40

0

5

10

15

20

25

30

35

8.3. Plotting numpy arrays as images 69

Matplotlib, Release 1.0.0

0 10 20 30 40

0

5

10

15

20

25

30

35

70 Chapter 8. Image tutorial

Matplotlib, Release 1.0.0

0 10 20 30 40

0

5

10

15

20

25

30

35

8.3. Plotting numpy arrays as images 71

Matplotlib, Release 1.0.0

72 Chapter 8. Image tutorial

CHAPTER

NINE

ARTIST TUTORIAL

There are three layers to the matplotlib API. The matplotlib.backend_bases.FigureCanvas is the area
onto which the figure is drawn, the matplotlib.backend_bases.Renderer is the object which knows
how to draw on the FigureCanvas, and the matplotlib.artist.Artist is the object that knows how to
use a renderer to paint onto the canvas. The FigureCanvas and Renderer handle all the details of talking
to user interface toolkits like wxPython or drawing languages like PostScript®, and the Artist handles all
the high level constructs like representing and laying out the figure, text, and lines. The typical user will
spend 95% of his time working with the Artists.

There are two types of Artists: primitives and containers. The primitives represent the standard graph-
ical objects we want to paint onto our canvas: Line2D, Rectangle, Text, AxesImage, etc., and the
containers are places to put them (Axis, Axes and Figure). The standard use is to create a Figure
instance, use the Figure to create one or more Axes or Subplot instances, and use the Axes instance
helper methods to create the primitives. In the example below, we create a Figure instance using
matplotlib.pyplot.figure(), which is a convenience method for instantiating Figure instances and
connecting them with your user interface or drawing toolkit FigureCanvas. As we will discuss below,
this is not necessary – you can work directly with PostScript, PDF Gtk+, or wxPython FigureCanvas in-
stances, instantiate your Figures directly and connect them yourselves – but since we are focusing here on
the Artist API we’ll let pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,1,1) # two rows, one column, first plot

The Axes is probably the most important class in the matplotlib API, and the one you will be working with
most of the time. This is because the Axes is the plotting area into which most of the objects go, and the
Axes has many special helper methods (plot(), text(), hist(), imshow()) to create the most common
graphics primitives (Line2D, Text, Rectangle, Image, respectively). These helper methods will take your
data (eg. numpy arrays and strings) and create primitive Artist instances as needed (eg. Line2D), add
them to the relevant containers, and draw them when requested. Most of you are probably familiar with the
Subplot, which is just a special case of an Axes that lives on a regular rows by columns grid of Subplot
instances. If you want to create an Axes at an arbitrary location, simply use the add_axes() method which
takes a list of [left, bottom, width, height] values in 0-1 relative figure coordinates:

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

73

http://www.wxpython.org

Matplotlib, Release 1.0.0

Continuing with our example:

import numpy as np
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)
line, = ax.plot(t, s, color=’blue’, lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Subplot
is just a subclass of Axes) and when you call ax.plot, it creates a Line2D instance and adds it to the
Axes.lines list. In the interactive ipython session below, you can see that the Axes.lines list is length
one and contains the same line that was returned by the line, = ax.plot... call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710>

In [102]: line
Out[102]: <matplotlib.lines.Line2D instance at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is “on” which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of these
will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, tick labels and axis
labels:

xtext = ax.set_xlabel(’my xdata’) # returns a Text instance
ytext = ax.set_ylabel(’my xdata’)

When you call ax.set_xlabel, it passes the information on the Text instance of the XAxis. Each Axes
instance contains an XAxis and a YAxis instance, which handle the layout and drawing of the ticks, tick
labels and axis labels.

Try creating the figure below.

9.1 Customizing your objects

Every element in the figure is represented by a matplotlib Artist, and each has an extensive list of properties
to configure its appearance. The figure itself contains a Rectangle exactly the size of the figure, which you
can use to set the background color and transparency of the figures. Likewise, each Axes bounding box (the
standard white box with black edges in the typical matplotlib plot, has a Rectangle instance that determines
the color, transparency, and other properties of the Axes. These instances are stored as member variables
Figure.patch and Axes.patch (“Patch” is a name inherited from MATLAB, and is a 2D “patch” of color
on the figure, eg. rectangles, circles and polygons). Every matplotlib Artist has the following properties

74 Chapter 9. Artist tutorial

http://ipython.scipy.org/

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

v
o
lt

s
a sine wave

4 3 2 1 0 1 2 3
time (s)

0
10
20
30
40
50
60

Property Description
alpha The transparency - a scalar from 0-1
animated A boolean that is used to facilitate animated drawing
axes The axes that the Artist lives in, possibly None
clip_box The bounding box that clips the Artist
clip_on Whether clipping is enabled
clip_path The path the artist is clipped to
contains A picking function to test whether the artist contains the pick point
figure The figure instance the artist lives in, possibly None
label A text label (eg. for auto-labeling)
picker A python object that controls object picking
transform The transformation
visible A boolean whether the artist should be drawn
zorder A number which determines the drawing order

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates Python-
istas and we plan to support direct access via properties or traits but it hasn’t been done yet). For example,
to multiply the current alpha by a half:

a = o.get_alpha()
o.set_alpha(0.5*a)

If you want to set a number of properties at once, you can also use the set method with keyword arguments.

9.1. Customizing your objects 75

Matplotlib, Release 1.0.0

For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist properties is to use
the matplotlib.artist.getp() function (simply getp() in pylab), which lists the properties and their
values. This works for classes derived from Artist as well, eg. Figure and Rectangle. Here are the
Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
alpha = 1.0
animated = False
antialiased or aa = True
axes = None
clip_box = None
clip_on = False
clip_path = None
contains = None
edgecolor or ec = w
facecolor or fc = 0.75
figure = Figure(8.125x6.125)
fill = 1
hatch = None
height = 1
label =
linewidth or lw = 1.0
picker = None
transform = <Affine object at 0x134cca84>
verts = ((0, 0), (0, 1), (1, 1), (1, 0))
visible = True
width = 1
window_extent = <Bbox object at 0x134acbcc>
x = 0
y = 0
zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the interactive
“help” or the matplotlib artists for a listing of properties for a given object.

9.2 Object containers

Now that we know how to inspect and set the properties of a given object we want to configure, we need to
now how to get at that object. As mentioned in the introduction, there are two kinds of objects: primitives
and containers. The primitives are usually the things you want to configure (the font of a Text instance,
the width of a Line2D) although the containers also have some properties as well – for example the Axes
Artist is a container that contains many of the primitives in your plot, but it also has properties like the
xscale to control whether the xaxis is ‘linear’ or ‘log’. In this section we’ll review where the various
container objects store the Artists that you want to get at.

76 Chapter 9. Artist tutorial

Matplotlib, Release 1.0.0

9.3 Figure container

The top level container Artist is the matplotlib.figure.Figure, and it contains everything in the
figure. The background of the figure is a Rectangle which is stored in Figure.patch. As you add subplots
(add_subplot()) and axes (add_axes()) to the figure these will be appended to the Figure.axes. These
are also returned by the methods that create them:

In [156]: fig = plt.figure()

In [157]: ax1 = fig.add_subplot(211)

In [158]: ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: ax1
Out[159]: <matplotlib.axes.Subplot instance at 0xd54b26c>

In [160]: print fig.axes
[<matplotlib.axes.Subplot instance at 0xd54b26c>, <matplotlib.axes.Axes instance at 0xd3f0b2c>]

Because the figure maintains the concept of the “current axes” (see Figure.gca and Figure.sca) to
support the pylab/pyplot state machine, you should not insert or remove axes directly from the axes list, but
rather use the add_subplot() and add_axes() methods to insert, and the delaxes() method to delete.
You are free however, to iterate over the list of axes or index into it to get access to Axes instances you want
to customize. Here is an example which turns all the axes grids on:

for ax in fig.axes:
ax.grid(True)

The figure also has its own text, lines, patches and images, which you can use to add primitives directly. The
default coordinate system for the Figure will simply be in pixels (which is not usually what you want) but
you can control this by setting the transform property of the Artist you are adding to the figure.

More useful is “figure coordinates” where (0, 0) is the bottom-left of the figure and (1, 1) is the top-right of
the figure which you can obtain by setting the Artist transform to fig.transFigure:

In [191]: fig = plt.figure()

In [192]: l1 = matplotlib.lines.Line2D([0, 1], [0, 1],
transform=fig.transFigure, figure=fig)

In [193]: l2 = matplotlib.lines.Line2D([0, 1], [1, 0],
transform=fig.transFigure, figure=fig)

In [194]: fig.lines.extend([l1, l2])

In [195]: fig.canvas.draw()

Here is a summary of the Artists the figure contains

9.3. Figure container 77

Matplotlib, Release 1.0.0

Figure attribute Description
axes A list of Axes instances (includes Subplot)
patch The Rectangle background
images A list of FigureImages patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure patches (rarely used, see Axes.patches)
texts A list Figure Text instances

9.4 Axes container

The matplotlib.axes.Axes is the center of the matplotlib universe – it contains the vast majority of all
the Artists used in a figure with many helper methods to create and add these Artists to itself, as well
as helper methods to access and customize the Artists it contains. Like the Figure, it contains a Patch
patch which is a Rectangle for Cartesian coordinates and a Circle for polar coordinates; this patch
determines the shape, background and border of the plotting region:

ax = fig.add_subplot(111)
rect = ax.patch # a Rectangle instance
rect.set_facecolor(’green’)

78 Chapter 9. Artist tutorial

Matplotlib, Release 1.0.0

When you call a plotting method, eg. the canonical plot() and pass in arrays or lists of values, the method
will create a matplotlib.lines.Line2D() instance, update the line with all the Line2D properties passed
as keyword arguments, add the line to the Axes.lines container, and returns it to you:

In [213]: x, y = np.random.rand(2, 100)

In [214]: line, = ax.plot(x, y, ’-’, color=’blue’, linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking the first
element of the length one list into the line variable. The line has been added to the Axes.lines list:

In [229]: print ax.lines
[<matplotlib.lines.Line2D instance at 0xd378b0c>]

Similarly, methods that create patches, like bar() creates a list of rectangles, will add the patches to the
Axes.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50, facecolor=’yellow’)

In [234]: rectangles
Out[234]: <a list of 50 Patch objects>

In [235]: print len(ax.patches)

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know exactly
what you are doing, because the Axes needs to do a few things when it creates and adds an object. It sets the
figure and axes property of the Artist, as well as the default Axes transformation (unless a transformation is
set). It also inspects the data contained in the Artist to update the data structures controlling auto-scaling,
so that the view limits can be adjusted to contain the plotted data. You can, nonetheless, create objects
yourself and add them directly to the Axes using helper methods like add_line() and add_patch().
Here is an annotated interactive session illustrating what is going on:

In [261]: fig = plt.figure()

In [262]: ax = fig.add_subplot(111)

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1,1), width=5, height=12)

by default the axes instance is None
In [264]: print rect.get_axes()
None

and the transformation instance is set to the "identity transform"
In [265]: print rect.get_transform()
<Affine object at 0x13695544>

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes

9.4. Axes container 79

Matplotlib, Release 1.0.0

instance
In [267]: print rect.get_axes()
Axes(0.125,0.1;0.775x0.8)

and the transformation has been set too
In [268]: print rect.get_transform()
<Affine object at 0x15009ca4>

the default axes transformation is ax.transData
In [269]: print ax.transData
<Affine object at 0x15009ca4>

notice that the xlimits of the Axes have not been changed
In [270]: print ax.get_xlim()
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print ax.dataLim.bounds
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle
In [273]: print ax.get_xlim()
(1.0, 6.0)

we have to manually force a figure draw
In [274]: ax.figure.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to their respec-
tive containers. The table below summarizes a small sampling of them, the kinds of Artist they create,
and where they store them

Helper method Artist Container
ax.annotate - text annotations Annotate ax.texts
ax.bar - bar charts Rectangle ax.patches
ax.errorbar - error bar plots Line2D and Rectangle ax.lines and ax.patches
ax.fill - shared area Polygon ax.patches
ax.hist - histograms Rectangle ax.patches
ax.imshow - image data AxesImage ax.images
ax.legend - axes legends Legend ax.legends
ax.plot - xy plots Line2D ax.lines
ax.scatter - scatter charts PolygonCollection ax.collections
ax.text - text Text ax.texts

In addition to all of these Artists, the Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis and
yaxis. The XAxis and YAxis containers will be detailed below, but note that the Axes contains many
helper methods which forward calls on to the Axis instances so you often do not need to work with them
directly unless you want to. For example, you can set the font size of the XAxis ticklabels using the Axes

80 Chapter 9. Artist tutorial

Matplotlib, Release 1.0.0

helper method:

for label in ax.get_xticklabels():
label.set_color(’orange’)

Below is a summary of the Artists that the Axes contains

Axes attribute Description
artists A list of Artist instances
patch Rectangle instance for Axes background
collections A list of Collection instances
images A list of AxesImage
legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances
texts A list of Text instances
xaxis matplotlib.axis.XAxis instance
yaxis matplotlib.axis.YAxis instance

9.5 Axis containers

The matplotlib.axis.Axis instances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y-axis, and the upper and
lower ticks separately for the x-axis. The Axis also stores the data and view intervals used in auto-scaling,
panning and zooming, as well as the Locator and Formatter instances which control where the ticks are
placed and how they are represented as strings.

Each Axis object contains a label attribute (this is what pylab modifies in calls to xlabel() and
ylabel()) as well as a list of major and minor ticks. The ticks are XTick and YTick instances, which
contain the actual line and text primitives that render the ticks and ticklabels. Because the ticks are dynam-
ically created as needed (eg. when panning and zooming), you should access the lists of major and minor
ticks through their accessor methods get_major_ticks() and get_minor_ticks(). Although the ticks
contain all the primitives and will be covered below, the Axis methods contain accessor methods to return
the tick lines, tick labels, tick locations etc.:

In [285]: axis = ax.xaxis

In [286]: axis.get_ticklocs()
Out[286]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

In [287]: axis.get_ticklabels()
Out[287]: <a list of 10 Text major ticklabel objects>

note there are twice as many ticklines as labels because by
default there are tick lines at the top and bottom but only tick
labels below the xaxis; this can be customized
In [288]: axis.get_ticklines()
Out[288]: <a list of 20 Line2D ticklines objects>

9.5. Axis containers 81

Matplotlib, Release 1.0.0

by default you get the major ticks back
In [291]: axis.get_ticklines()
Out[291]: <a list of 20 Line2D ticklines objects>

but you can also ask for the minor ticks
In [292]: axis.get_ticklines(minor=True)
Out[292]: <a list of 0 Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding setters
where useful, such as set_major_formatter)

Accessor method Description
get_scale The scale of the axis, eg ‘log’ or ‘linear’
get_view_interval The interval instance of the axis view limits
get_data_interval The interval instance of the axis data limits
get_gridlines A list of grid lines for the Axis
get_label The axis label - a Text instance
get_ticklabels A list of Text instances - keyword minor=True|False
get_ticklines A list of Line2D instances - keyword minor=True|False
get_ticklocs A list of Tick locations - keyword minor=True|False
get_major_locator The matplotlib.ticker.Locator instance for major ticks
get_major_formatter The matplotlib.ticker.Formatter instance for major ticks
get_minor_locator The matplotlib.ticker.Locator instance for minor ticks
get_minor_formatter The matplotlib.ticker.Formatter instance for minor ticks
get_major_ticks A list of Tick instances for major ticks
get_minor_ticks A list of Tick instances for minor ticks
grid Turn the grid on or off for the major or minor ticks

Here is an example, not recommended for its beauty, which customizes the axes and tick properties

import numpy as np
import matplotlib.pyplot as plt

plt.figure creates a matplotlib.figure.Figure instance
fig = plt.figure()
rect = fig.patch # a rectangle instance
rect.set_facecolor(’lightgoldenrodyellow’)

ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = ax1.patch
rect.set_facecolor(’lightslategray’)

for label in ax1.xaxis.get_ticklabels():
label is a Text instance
label.set_color(’red’)
label.set_rotation(45)
label.set_fontsize(16)

for line in ax1.yaxis.get_ticklines():
line is a Line2D instance

82 Chapter 9. Artist tutorial

Matplotlib, Release 1.0.0

line.set_color(’green’)
line.set_markersize(25)
line.set_markeredgewidth(3)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

9.6 Tick containers

The matplotlib.axis.Tick is the final container object in our descent from the Figure to the Axes to
the Axis to the Tick. The Tick contains the tick and grid line instances, as well as the label instances for
the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick. In addition, there
are boolean variables that determine whether the upper labels and ticks are on for the x-axis and whether the
right labels and ticks are on for the y-axis.

9.6. Tick containers 83

Matplotlib, Release 1.0.0

Tick attribute Description
tick1line Line2D instance
tick2line Line2D instance
gridline Line2D instance
label1 Text instance
label2 Text instance
gridOn boolean which determines whether to draw the tickline
tick1On boolean which determines whether to draw the 1st tickline
tick2On boolean which determines whether to draw the 2nd tickline
label1On boolean which determines whether to draw tick label
label2On boolean which determines whether to draw tick label

Here is an example which sets the formatter for the right side ticks with dollar signs and colors them green
on the right side of the yaxis

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(100*np.random.rand(20))

formatter = ticker.FormatStrFormatter(’$%1.2f’)
ax.yaxis.set_major_formatter(formatter)

for tick in ax.yaxis.get_major_ticks():
tick.label1On = False
tick.label2On = True
tick.label2.set_color(’green’)

84 Chapter 9. Artist tutorial

Matplotlib, Release 1.0.0

0 5 10 15 20
$0.00

$20.00

$40.00

$60.00

$80.00

$100.00

9.6. Tick containers 85

Matplotlib, Release 1.0.0

86 Chapter 9. Artist tutorial

CHAPTER

TEN

CUSTOMIZING LOCATION OF SUBPLOT
USING GRIDSPEC

GridSpec specifies the geometry of the grid that a subplot will be placed. The
number of rows and number of columns of the grid need to be set. Optionally,
the subplot layout parameters (e.g., left, right, etc.) can be tuned.

SubplotSpec specifies the location of the subplot in the given GridSpec.

subplot2grid a helper function that is similar to “pyplot.subplot” but uses 0-based
indexing and let subplot to occupy multiple cells.

Basic Example of using subplot2grid

To use subplot2grid, you provide geometry of the grid and the location of the subplot in the grid. For a
simple single-cell subplot,

ax = plt.subplot2grid((2,2),(0, 0))

is identical to

ax = plt.subplot(2,2,1)

Note that, unlike matplotlib’s subplot, the index starts from 0 in gridspec.

To create a subplot that spans multiple cells,

ax2 = plt.subplot2grid((3,3), (1, 0), colspan=2)
ax3 = plt.subplot2grid((3,3), (1, 2), rowspan=2)

For example, the following commands

ax1 = plt.subplot2grid((3,3), (0,0), colspan=3)
ax2 = plt.subplot2grid((3,3), (1,0), colspan=2)
ax3 = plt.subplot2grid((3,3), (1, 2), rowspan=2)
ax4 = plt.subplot2grid((3,3), (2, 0))
ax5 = plt.subplot2grid((3,3), (2, 1))

87

Matplotlib, Release 1.0.0

creates

ax1

ax2

ax3

ax4 ax5

subplot2grid

10.1 GridSpec and SubplotSpec

You can create GridSpec explicitly and use them to create a Subplot.

For example,

ax = plt.subplot2grid((2,2),(0, 0))

is equal to

import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(2, 2)
ax = plt.subplot(gs[0, 0])

A gridspec instance provides array-like (2d or 1d) indexing that returns the SubplotSpec instance. For,
SubplotSpec that spans multiple cells, use slice.

ax2 = plt.subplot(gs[1,:-1])
ax3 = plt.subplot(gs[1:, -1])

88 Chapter 10. Customizing Location of Subplot Using GridSpec

Matplotlib, Release 1.0.0

The above example becomes

gs = gridspec.GridSpec(3, 3)
ax1 = plt.subplot(gs[0, :])
ax2 = plt.subplot(gs[1,:-1])
ax3 = plt.subplot(gs[1:, -1])
ax4 = plt.subplot(gs[-1,0])
ax5 = plt.subplot(gs[-1,-2])

ax1

ax2

ax3

ax4 ax5

GridSpec

10.2 Adjust GridSpec layout

When a GridSpec is explicitly used, you can adjust the layout parameters of subplots that are created from
the gridspec.

gs1 = gridspec.GridSpec(3, 3)
gs1.update(left=0.05, right=0.48, wspace=0.05)

This is similar to subplots_adjust, but it only affects the subplots that are created from the given GridSpec.

The code below

10.2. Adjust GridSpec layout 89

Matplotlib, Release 1.0.0

gs1 = gridspec.GridSpec(3, 3)
gs1.update(left=0.05, right=0.48, wspace=0.05)
ax1 = plt.subplot(gs1[:-1, :])
ax2 = plt.subplot(gs1[-1, :-1])
ax3 = plt.subplot(gs1[-1, -1])

gs2 = gridspec.GridSpec(3, 3)
gs2.update(left=0.55, right=0.98, hspace=0.05)
ax4 = plt.subplot(gs2[:, :-1])
ax5 = plt.subplot(gs2[:-1, -1])
ax6 = plt.subplot(gs2[-1, -1])

creates

ax1

ax2 ax3

ax4

ax5

ax6

GirdSpec w/ different subplotpars

10.3 GridSpec using SubplotSpec

You can create GridSpec from the SubplotSpec, in which case its layout parameters are set to that of the
location of the given SubplotSpec.

gs0 = gridspec.GridSpec(1, 2)

90 Chapter 10. Customizing Location of Subplot Using GridSpec

Matplotlib, Release 1.0.0

gs00 = gridspec.GridSpecFromSubplotSpec(3, 3, subplot_spec=gs0[0])
gs01 = gridspec.GridSpecFromSubplotSpec(3, 3, subplot_spec=gs0[1])

ax1

ax2 ax3

ax4

ax5

ax6

GirdSpec Inside GridSpec

10.4 GridSpec with Varying Cell Sizes

By default, GridSpec creates cells of equal sizes. You can adjust relative heights and widths of rows and
columns. Note that absolute values are meaningless, only their relative ratios matter.

gs = gridspec.GridSpec(2, 2,
width_ratios=[1,2],
height_ratios=[4,1]
)

ax1 = plt.subplot(gs[0])
ax2 = plt.subplot(gs[1])
ax3 = plt.subplot(gs[2])
ax4 = plt.subplot(gs[3])

10.4. GridSpec with Varying Cell Sizes 91

Matplotlib, Release 1.0.0

ax1 ax2

ax3 ax4

92 Chapter 10. Customizing Location of Subplot Using GridSpec

CHAPTER

ELEVEN

LEGEND GUIDE

Do not proceed unless you already have read legend() and matplotlib.legend.Legend!

11.1 What to be displayed

The legend command has a following call signature:

legend(*args, **kwargs)

If len(args) is 2, the first argument should be a list of artist to be labeled, and the second argument should a
list of string labels. If len(args) is 0, it automatically generate the legend from label properties of the child
artists by calling get_legend_handles_labels() method. For example, ax.legend() is equivalent to:

handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)

The get_legend_handles_labels() method returns a tuple of two lists, i.e., list of artists and list
of labels (python string). However, it does not return all of its child artists. It returns all artists in
ax.lines and ax.patches and some artists in ax.collection which are instance of LineCollection or
RegularPolyCollection. The label attributes (returned by get_label() method) of collected artists are
used as text labels. If label attribute is empty string or starts with “_”, that artist will be ignored.

• Note that not all kind of artists are supported by the legend. The following is the list of artists that are
currently supported.

– Line2D

– Patch

– LineCollection

– RegularPolyCollection

Unfortunately, there is no easy workaround when you need legend for an artist not in the above list
(You may use one of the supported artist as a proxy. See below), or customize it beyond what is
supported by matplotlib.legend.Legend.

93

Matplotlib, Release 1.0.0

• Remember that some pyplot commands return artist not supported by legend, e.g., fill_between()
returns PolyCollection that is not supported. Or some return multiple artists. For example, plot()
returns list of Line2D instances, and errorbar() returns a length 3 tuple of Line2D instances.

• The legend does not care about the axes that given artists belongs, i.e., the artists may belong to other
axes or even none.

11.1.1 Adjusting the Order of Legend items

When you want to customize the list of artists to be displayed in the legend, or their order of appearance.
There are a two options. First, you can keep lists of artists and labels, and explicitly use these for the first
two argument of the legend call.:

p1, = plot([1,2,3])
p2, = plot([3,2,1])
p3, = plot([2,3,1])
legend([p2, p1], ["line 2", "line 1"])

Or you may use get_legend_handles_labels() to retrieve list of artist and labels and manipulate them
before feeding them to legend call.:

ax = subplot(1,1,1)
p1, = ax.plot([1,2,3], label="line 1")
p2, = ax.plot([3,2,1], label="line 2")
p3, = ax.plot([2,3,1], label="line 3")

handles, labels = ax.get_legend_handles_labels()

reverse the order
ax.legend(handles[::-1], labels[::-1])

or sort them by labels
import operator
hl = sorted(zip(handles, labels),

key=operator.itemgetter(1))
handles2, labels2 = zip(*hl)

ax.legend(handles2, labels2)

11.1.2 Using Proxy Artist

When you want to display legend for an artist not supported by matplotlib, you may use another artist as a
proxy. For example, you may create a proxy artist without adding it to the axes (so the proxy artist will not
be drawn in the main axes) and feed it to the legend function.:

p = Rectangle((0, 0), 1, 1, fc="r")
legend([p], ["Red Rectangle"])

94 Chapter 11. Legend guide

Matplotlib, Release 1.0.0

11.2 Multicolumn Legend

By specifying the keyword argument ncol, you can have a multi-column legend. Also, mode=”expand”
horizontally expand the legend to fill the axes area. See legend_demo3.py for example.

11.3 Legend location

The location of the legend can be specified by the keyword argument loc, either by string or a integer number.

String Number
upper right 1
upper left 2
lower left 3
lower right 4
right 5
center left 6
center right 7
lower center 8
upper center 9
center 10

By default, the legend will anchor to the bbox of the axes (for legend) or the bbox of the figure (figle-
gend). You can specify your own bbox using bbox_to_anchor argument. bbox_to_anchor can be an in-
stance of BboxBase, a tuple of 4 floats (x, y, width, height of the bbox), or a tuple of 2 floats (x, y with
width=height=0). Unless bbox_transform argument is given, the coordinates (even for the bbox instance)
are considered as normalized axes coordinates.

For example, if you want your axes legend located at the figure corner (instead of the axes corner):

l = legend(bbox_to_anchor=(0, 0, 1, 1), transform=gcf().transFigure)

Also, you can place above or outer right-hand side of the axes,

from matplotlib.pyplot import *

subplot(211)
plot([1,2,3], label="test1")
plot([3,2,1], label="test2")
legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,

ncol=2, mode="expand", borderaxespad=0.)

subplot(223)
plot([1,2,3], label="test1")
plot([3,2,1], label="test2")
legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

show()

11.2. Multicolumn Legend 95

http://matplotlib.sourceforge.net/examples/pylab_examples/legend_demo3.html

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
test1 test2

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
test1
test2

11.4 Multiple Legend

Sometime, you want to split the legend into multiple ones.:

p1, = plot([1,2,3])
p2, = plot([3,2,1])
legend([p1], ["Test1"], loc=1)
legend([p2], ["Test2"], loc=4)

However, the above code only shows the second legend. When the legend command is called, a new legend
instance is created and old ones are removed from the axes. Thus, you need to manually add the removed
legend.

from matplotlib.pyplot import *

p1, = plot([1,2,3], label="test1")
p2, = plot([3,2,1], label="test2")

l1 = legend([p1], ["Label 1"], loc=1)
l2 = legend([p2], ["Label 2"], loc=4) # this removes l1 from the axes.
gca().add_artist(l1) # add l1 as a separate artist to the axes

show()

96 Chapter 11. Legend guide

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0

Label 1

Label 2

11.4. Multiple Legend 97

Matplotlib, Release 1.0.0

98 Chapter 11. Legend guide

CHAPTER

TWELVE

EVENT HANDLING AND PICKING

matplotlib works with 6 user interface toolkits (wxpython, tkinter, qt, gtk, fltk and macosx) and in order
to support features like interactive panning and zooming of figures, it is helpful to the developers to have
an API for interacting with the figure via key presses and mouse movements that is “GUI neutral” so we
don’t have to repeat a lot of code across the different user interfaces. Although the event handling API
is GUI neutral, it is based on the GTK model, which was the first user interface matplotlib supported.
The events that are triggered are also a bit richer vis-a-vis matplotlib than standard GUI events, including
information like which matplotlib.axes.Axes the event occurred in. The events also understand the
matplotlib coordinate system, and report event locations in both pixel and data coordinates.

12.1 Event connections

To receive events, you need to write a callback function and then connect your function to the event manager,
which is part of the FigureCanvasBase. Here is a simple example that prints the location of the mouse
click and which button was pressed:

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(np.random.rand(10))

def onclick(event):
print ’button=%d, x=%d, y=%d, xdata=%f, ydata=%f’%(

event.button, event.x, event.y, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect(’button_press_event’, onclick)

The FigureCanvas method mpl_connect() returns a connection id which is simply an integer. When you
want to disconnect the callback, just call:

fig.canvas.mpl_disconnect(cid)

Here are the events that you can connect to, the class instances that are sent back to you when the event
occurs, and the event descriptions

99

Matplotlib, Release 1.0.0

Event name Class and description
‘button_press_event’ MouseEvent - mouse button is pressed
‘button_release_event’ MouseEvent - mouse button is released
‘draw_event’ DrawEvent - canvas draw
‘key_press_event’ KeyEvent - key is pressed
‘key_release_event’ KeyEvent - key is released
‘motion_notify_event’ MouseEvent - mouse motion
‘pick_event’ PickEvent - an object in the canvas is selected
‘resize_event’ ResizeEvent - figure canvas is resized
‘scroll_event’ MouseEvent - mouse scroll wheel is rolled
‘figure_enter_event’ LocationEvent - mouse enters a new figure
‘figure_leave_event’ LocationEvent - mouse leaves a figure
‘axes_enter_event’ LocationEvent - mouse enters a new axes
‘axes_leave_event’ LocationEvent - mouse leaves an axes

12.2 Event attributes

All matplotlib events inherit from the base class matplotlib.backend_bases.Event, which store the
attributes:

name the event name

canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

The most common events that are the bread and butter of event handling are key press/release events and
mouse press/release and movement events. The KeyEvent and MouseEvent classes that handle these events
are both derived from the LocationEvent, which has the following attributes

x x position - pixels from left of canvas

y y position - pixels from bottom of canvas

inaxes the Axes instance if mouse is over axes

xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

Let’s look a simple example of a canvas, where a simple line segment is created every time a mouse is
pressed:

from matplotlib import pyplot as plt

class LineBuilder:
def __init__(self, line):

self.line = line
self.xs = list(line.get_xdata())
self.ys = list(line.get_ydata())
self.cid = line.figure.canvas.mpl_connect(’button_press_event’, self)

100 Chapter 12. Event handling and picking

Matplotlib, Release 1.0.0

def __call__(self, event):
print ’click’, event
if event.inaxes!=self.line.axes: return
self.xs.append(event.xdata)
self.ys.append(event.ydata)
self.line.set_data(self.xs, self.ys)
self.line.figure.canvas.draw()

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click to build line segments’)
line, = ax.plot([0], [0]) # empty line
linebuilder = LineBuilder(line)

plt.show()

The MouseEvent that we just used is a LocationEvent, so we have access to the data and pixel coordinates
in event.x and event.xdata. In addition to the LocationEvent attributes, it has

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, any character, ‘shift’, ‘win’, or ‘control’

12.2.1 Draggable rectangle exercise

Write draggable rectangle class that is initialized with a Rectangle instance but will move its x,y location
when dragged. Hint: you will need to store the original xy location of the rectangle which is stored as
rect.xy and connect to the press, motion and release mouse events. When the mouse is pressed, check to
see if the click occurs over your rectangle (see matplotlib.patches.Rectangle.contains()) and if it
does, store the rectangle xy and the location of the mouse click in data coords. In the motion event callback,
compute the deltax and deltay of the mouse movement, and add those deltas to the origin of the rectangle
you stored. The redraw the figure. On the button release event, just reset all the button press data you stored
as None.

Here is the solution:

import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
def __init__(self, rect):

self.rect = rect
self.press = None

def connect(self):
’connect to all the events we need’
self.cidpress = self.rect.figure.canvas.mpl_connect(

’button_press_event’, self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

’button_release_event’, self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

12.2. Event attributes 101

Matplotlib, Release 1.0.0

’motion_notify_event’, self.on_motion)

def on_press(self, event):
’on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return

contains, attrd = self.rect.contains(event)
if not contains: return
print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata

def on_motion(self, event):
’on motion we will move the rect if the mouse is over us’
if self.press is None: return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
#print ’x0=%f, xpress=%f, event.xdata=%f, dx=%f, x0+dx=%f’%(x0, xpress, event.xdata, dx, x0+dx)
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

self.rect.figure.canvas.draw()

def on_release(self, event):
’on release we reset the press data’
self.press = None
self.rect.figure.canvas.draw()

def disconnect(self):
’disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

Extra credit: use the animation blit techniques discussed in the animations recipe to make the animated
drawing faster and smoother.

Extra credit solution:

102 Chapter 12. Event handling and picking

http://www.scipy.org/Cookbook/Matplotlib/Animations

Matplotlib, Release 1.0.0

draggable rectangle with the animation blit techniques; see
http://www.scipy.org/Cookbook/Matplotlib/Animations
import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
lock = None # only one can be animated at a time
def __init__(self, rect):

self.rect = rect
self.press = None
self.background = None

def connect(self):
’connect to all the events we need’
self.cidpress = self.rect.figure.canvas.mpl_connect(

’button_press_event’, self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

’button_release_event’, self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

’motion_notify_event’, self.on_motion)

def on_press(self, event):
’on button press we will see if the mouse is over us and store some data’
if event.inaxes != self.rect.axes: return
if DraggableRectangle.lock is not None: return
contains, attrd = self.rect.contains(event)
if not contains: return
print ’event contains’, self.rect.xy
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata
DraggableRectangle.lock = self

draw everything but the selected rectangle and store the pixel buffer
canvas = self.rect.figure.canvas
axes = self.rect.axes
self.rect.set_animated(True)
canvas.draw()
self.background = canvas.copy_from_bbox(self.rect.axes.bbox)

now redraw just the rectangle
axes.draw_artist(self.rect)

and blit just the redrawn area
canvas.blit(axes.bbox)

def on_motion(self, event):
’on motion we will move the rect if the mouse is over us’
if DraggableRectangle.lock is not self:

return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress

12.2. Event attributes 103

Matplotlib, Release 1.0.0

dy = event.ydata - ypress
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

canvas = self.rect.figure.canvas
axes = self.rect.axes
restore the background region
canvas.restore_region(self.background)

redraw just the current rectangle
axes.draw_artist(self.rect)

blit just the redrawn area
canvas.blit(axes.bbox)

def on_release(self, event):
’on release we reset the press data’
if DraggableRectangle.lock is not self:

return

self.press = None
DraggableRectangle.lock = None

turn off the rect animation property and reset the background
self.rect.set_animated(False)
self.background = None

redraw the full figure
self.rect.figure.canvas.draw()

def disconnect(self):
’disconnect all the stored connection ids’
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig = plt.figure()
ax = fig.add_subplot(111)
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

12.3 Mouse enter and leave

If you want to be notified when the mouse enters or leaves a figure or axes, you can connect to the figure/axes
enter/leave events. Here is a simple example that changes the colors of the axes and figure background that

104 Chapter 12. Event handling and picking

Matplotlib, Release 1.0.0

the mouse is over:

"""
Illustrate the figure and axes enter and leave events by changing the
frame colors on enter and leave
"""
import matplotlib.pyplot as plt

def enter_axes(event):
print ’enter_axes’, event.inaxes
event.inaxes.patch.set_facecolor(’yellow’)
event.canvas.draw()

def leave_axes(event):
print ’leave_axes’, event.inaxes
event.inaxes.patch.set_facecolor(’white’)
event.canvas.draw()

def enter_figure(event):
print ’enter_figure’, event.canvas.figure
event.canvas.figure.patch.set_facecolor(’red’)
event.canvas.draw()

def leave_figure(event):
print ’leave_figure’, event.canvas.figure
event.canvas.figure.patch.set_facecolor(’grey’)
event.canvas.draw()

fig1 = plt.figure()
fig1.suptitle(’mouse hover over figure or axes to trigger events’)
ax1 = fig1.add_subplot(211)
ax2 = fig1.add_subplot(212)

fig1.canvas.mpl_connect(’figure_enter_event’, enter_figure)
fig1.canvas.mpl_connect(’figure_leave_event’, leave_figure)
fig1.canvas.mpl_connect(’axes_enter_event’, enter_axes)
fig1.canvas.mpl_connect(’axes_leave_event’, leave_axes)

fig2 = plt.figure()
fig2.suptitle(’mouse hover over figure or axes to trigger events’)
ax1 = fig2.add_subplot(211)
ax2 = fig2.add_subplot(212)

fig2.canvas.mpl_connect(’figure_enter_event’, enter_figure)
fig2.canvas.mpl_connect(’figure_leave_event’, leave_figure)
fig2.canvas.mpl_connect(’axes_enter_event’, enter_axes)
fig2.canvas.mpl_connect(’axes_leave_event’, leave_axes)

plt.show()

12.3. Mouse enter and leave 105

Matplotlib, Release 1.0.0

12.4 Object picking

You can enable picking by setting the picker property of an Artist (eg a matplotlib Line2D, Text, Patch,
Polygon, AxesImage, etc...)

There are a variety of meanings of the picker property:

None picking is disabled for this artist (default)

boolean if True then picking will be enabled and the artist will fire a pick event if the mouse
event is over the artist

float if picker is a number it is interpreted as an epsilon tolerance in points and the the artist
will fire off an event if its data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, eg the indices of the data within epsilon of the pick event.

function if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event. The signature is hit, props = picker(artist,
mouseevent) to determine the hit test. If the mouse event is over the artist, return
hit=True and props is a dictionary of properties you want added to the PickEvent at-
tributes

After you have enabled an artist for picking by setting the picker property, you need to connect to the figure
canvas pick_event to get pick callbacks on mouse press events. Eg:

def pick_handler(event):
mouseevent = event.mouseevent
artist = event.artist
now do something with this...

The PickEvent which is passed to your callback is always fired with two attributes:

mouseevent the mouse event that generate the pick event. The mouse event in turn has at-
tributes like x and y (the coords in display space, eg pixels from left, bottom) and xdata,
ydata (the coords in data space). Additionally, you can get information about which but-
tons were pressed, which keys were pressed, which Axes the mouse is over, etc. See
matplotlib.backend_bases.MouseEvent for details.

artist the Artist that generated the pick event.

Additionally, certain artists like Line2D and PatchCollection may attach additional meta data like the
indices into the data that meet the picker criteria (eg all the points in the line that are within the specified
epsilon tolerance)

12.4.1 Simple picking example

In the example below, we set the line picker property to a scalar, so it represents a tolerance in points (72
points per inch). The onpick callback function will be called when the pick event it within the tolerance
distance from the line, and has the indices of the data vertices that are within the pick distance tolerance.
Our onpick callback function simply prints the data that are under the pick location. Different matplotlib

106 Chapter 12. Event handling and picking

Matplotlib, Release 1.0.0

Artists can attach different data to the PickEvent. For example, Line2D attaches the ind property, which are
the indices into the line data under the pick point. See pick() for details on the PickEvent properties of
the line. Here is the code:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on points’)

line, = ax.plot(np.random.rand(100), ’o’, picker=5) # 5 points tolerance

def onpick(event):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print ’onpick points:’, zip(xdata[ind], ydata[ind])

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

12.4.2 Picking exercise

Create a data set of 100 arrays of 1000 Gaussian random numbers and compute the sample mean and
standard deviation of each of them (hint: numpy arrays have a mean and std method) and make a xy marker
plot of the 100 means vs the 100 standard deviations. Connect the line created by the plot command to the
pick event, and plot the original time series of the data that generated the clicked on points. If more than one
point is within the tolerance of the clicked on point, you can use multiple subplots to plot the multiple time
series.

Exercise solution:

"""
compute the mean and stddev of 100 data sets and plot mean vs stddev.
When you click on one of the mu, sigma points, plot the raw data from
the dataset that generated the mean and stddev
"""
import numpy as np
import matplotlib.pyplot as plt

X = np.random.rand(100, 1000)
xs = np.mean(X, axis=1)
ys = np.std(X, axis=1)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title(’click on point to plot time series’)
line, = ax.plot(xs, ys, ’o’, picker=5) # 5 points tolerance

12.4. Object picking 107

Matplotlib, Release 1.0.0

def onpick(event):

if event.artist!=line: return True

N = len(event.ind)
if not N: return True

figi = plt.figure()
for subplotnum, dataind in enumerate(event.ind):

ax = figi.add_subplot(N,1,subplotnum+1)
ax.plot(X[dataind])
ax.text(0.05, 0.9, ’mu=%1.3f\nsigma=%1.3f’%(xs[dataind], ys[dataind]),

transform=ax.transAxes, va=’top’)
ax.set_ylim(-0.5, 1.5)

figi.show()
return True

fig.canvas.mpl_connect(’pick_event’, onpick)

plt.show()

108 Chapter 12. Event handling and picking

CHAPTER

THIRTEEN

TRANSFORMATIONS TUTORIAL

Like any graphics packages, matplotlib is built on top of a transformation framework to easily move between
coordinate systems, the userland data coordinate system, the axes coordinate system, the figure coordinate
system, and the display coordinate system. In 95% of your plotting, you won’t need to think about this,
as it happens under the hood, but as you push the limits of custom figure generation, it helps to have an
understanding of these objects so you can reuse the existing transformations matplotlib makes available
to you, or create your own (see matplotlib.transforms). The table below summarizes the existing
coordinate systems, the transformation object you should use to work in that coordinate system, and the
description of that system. In the Transformation Object column, ax is a Axes instance, and fig is a
Figure instance.

Coor-
dinate

Transfor-
mation
Object

Description

data ax.transData The userland data coordinate system, controlled by the xlim and ylim
axes ax.transAxes The coordinate system of the Axes; (0,0) is bottom left of the axes, and (1,1)

is top right of the axes
figure fig.transFigureThe coordinate system of the Figure; (0,0) is bottom left of the figure, and

(1,1) is top right of the figure
dis-
play

None This is the pixel coordinate system of the display; (0,0) is the bottom left of
the display, and (width, height) is the top right of the display in pixels

All of the transformation objects in the table above take inputs in their coordinate system, and transform
the input to the display coordinate system. That is why the display coordinate system has None for the
Transformation Object column – it already is in display coordinates. The transformations also know how to
invert themselves, to go from display back to the native coordinate system. This is particularly useful when
processing events from the user interface, which typically occur in display space, and you want to know
where the mouse click or key-press occurred in your data coordinate system.

13.1 Data coordinates

Let’s start with the most commonly used coordinate, the data coordinate system. Whenever you add data to
the axes, matplotlib updates the datalimits, most commonly updated with the set_xlim() and set_ylim()
methods. For example, in the figure below, the data limits stretch from 0 to 10 on the x-axis, and -1 to 1 on
the y-axis.

109

Matplotlib, Release 1.0.0

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)

plt.show()

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

You can use the ax.transData instance to transform from your data to your display coordinate system,
either a single point or a sequence of points as shown below:

In [14]: type(ax.transData)
Out[14]: <class ’ matplotlib.transforms.CompositeGenericTransform’>

In [15]: ax.transData.transform((5, 0))
Out[15]: array([335.175, 247.])

In [16]: ax.transData.transform([(5, 0), (1,2)])

110 Chapter 13. Transformations Tutorial

Matplotlib, Release 1.0.0

Out[16]:
array([[335.175, 247.],

[132.435, 642.2]])

You can use the inverted() method to create a transform which will take you from display to data coordi-
nates:

In [41]: inv = ax.transData.inverted()

In [42]: type(inv)
Out[42]: <class ’ matplotlib.transforms.CompositeGenericTransform’>

In [43]: inv.transform((335.175, 247.))
Out[43]: array([5., 0.])

If your are typing along with this tutorial, the exact values of the display coordinates may differ if you have
a different window size or dpi setting. Likewise, in the figure below, the display labeled points are probably
not the same as in the ipython session because the documentation figure size defaults are different.

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

data = (5.0, 0.0)

display = (225.5, 180.0)

Note: If you run the source code in the example above in a GUI backend, you may also find that the
two arrows for the data and display annotations do not point to exactly the same point. This is because
the display point was computed before the figure was displayed, and the GUI backend may slightly resize
the figure when it is created. The effect is more pronounced if you resize the figure yourself. This is one

13.1. Data coordinates 111

Matplotlib, Release 1.0.0

good reason why you rarely want to work in display space, but you can connect to the ’on_draw’ Event to
update figure coordinates on figure draws; see Event handling and picking.

When you change the x or y limits of your axes, the data limits are updated so the transformation yields a
new display point. Note that when we just change the ylim, only the y-display coordinate is altered, and
when we change the xlim too, both are altered. More on this later when we talk about the Bbox.

In [54]: ax.transData.transform((5, 0))
Out[54]: array([335.175, 247.])

In [55]: ax.set_ylim(-1,2)
Out[55]: (-1, 2)

In [56]: ax.transData.transform((5, 0))
Out[56]: array([335.175 , 181.13333333])

In [57]: ax.set_xlim(10,20)
Out[57]: (10, 20)

In [58]: ax.transData.transform((5, 0))
Out[58]: array([-171.675 , 181.13333333])

13.2 Axes coordinates

After the data coordinate system, axes is probably the second most useful coordinate system. Here the point
(0,0) is the bottom left of your axes or subplot, (0.5, 0.5) is the center, and (1.0, 1.0) is the top right. You can
also refer to points outside the range, so (-0.1, 1.1) is to the left and above your axes. This coordinate system
is extremely useful when placing text in your axes, because you often want a text bubble in a fixed, location,
eg. the upper left of the axes pane, and have that location remain fixed when you pan or zoom. Here is a
simple example that creates four panels and labels them ‘A’, ‘B’, ‘C’, ‘D’ as you often see in journals.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
for i, label in enumerate((’A’, ’B’, ’C’, ’D’)):

ax = fig.add_subplot(2,2,i+1)
ax.text(0.05, 0.95, label, transform=ax.transAxes,
fontsize=16, fontweight=’bold’, va=’top’)

plt.show()

You can also make lines or patches in the axes coordinate system, but this is less useful in my experience
than using ax.transAxes for placing text. Nonetheless, here is a silly example which plots some random
dots in data space, and overlays a semi-transparent Circle centered in the middle of the axes with a radius
one quarter of the axes – if your axes does not preserve aspect ratio (see set_aspect()), this will look like
an ellipse. Use the pan/zoom tool to move around, or manually change the data xlim and ylim, and you
will see the data move, but the circle will remain fixed because it is not in data coordinates and will always
remain at the center of the axes.

112 Chapter 13. Transformations Tutorial

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
B

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
C

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
D

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
fig = plt.figure()
ax = fig.add_subplot(111)
x, y = 10*np.random.rand(2, 1000)
ax.plot(x, y, ’go’) # plot some data in data coordinates

circ = patches.Circle((0.5, 0.5), 0.25, transform=ax.transAxes,
facecolor=’yellow’, alpha=0.5)

ax.add_patch(circ)

plt.show()

13.3 Blended transformations

Drawing in blended coordinate spaces which mix axes with data coordinates is extremely useful, for ex-
ample to create a horizontal span which highlights some region of the y-data but spans across the x-axis
regardless of the data limits, pan or zoom level, etc. In fact these blended lines and spans are so useful, we
have built in functions to make them easy to plot (see axhline(), axvline(), axhspan(), axvspan())
but for didactic purposes we will implement the horizontal span here using a blended transformation. This

13.3. Blended transformations 113

Matplotlib, Release 1.0.0

0 2 4 6 8 10
0

2

4

6

8

10

trick only works for separable transformations, like you see in normal Cartesian coordinate systems, but not
on inseparable transformations like the PolarTransform.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms

fig = plt.figure()
ax = fig.add_subplot(111)

x = np.random.randn(1000)

ax.hist(x, 30)
ax.set_title(r’$\sigma=1 \/ \dots \/ \sigma=2$’, fontsize=16)

the x coords of this transformation are data, and the
y coord are axes
trans = transforms.blended_transform_factory(

ax.transData, ax.transAxes)

highlight the 1..2 stddev region with a span.
We want x to be in data coordinates and y to
span from 0..1 in axes coords

114 Chapter 13. Transformations Tutorial

Matplotlib, Release 1.0.0

rect = patches.Rectangle((1,0), width=1, height=1,
transform=trans, color=’yellow’,
alpha=0.5)

ax.add_patch(rect)

plt.show()

3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90
σ=1 σ=2

13.4 Using offset transforms to create a shadow effect

One use of transformations is to create a new transformation that is offset from another annotation, eg to
place one object shifted a bit relative to another object. Typically you want the shift to be in some physical
dimension, like points or inches rather than in data coordinates, so that the shift effect is constant at different
zoom levels and dpi settings.

One use for an offset is to create a shadow effect, where you draw one object identical to the first just to the
right of it, and just below it, adjusting the zorder to make sure the shadow is drawn first and then the object
it is shadowing above it. The transforms module has a helper transformation ScaledTranslation. It is
instantiated with:

trans = ScaledTranslation(xt, yt, scale_trans)

13.4. Using offset transforms to create a shadow effect 115

Matplotlib, Release 1.0.0

where xt and yt are the translation offsets, and scale_trans is a transformation which scales xt and yt at trans-
formation time before applying the offsets. A typical use case is to use the figure fig.dpi_scale_trans
transformation for the scale_trans argument, to first scale xt and yt specified in points to display space before
doing the final offset. The dpi and inches offset is a common-enough use case that we have a special helper
function to create it in matplotlib.transforms.offset_copy(), which returns a new transform with
an added offset. But in the example below, we’ll create the offset transform ourselves. Note the use of the
plus operator in:

offset = transforms.ScaledTranslation(dx, dy,
fig.dpi_scale_trans)

shadow_transform = ax.transData + offset

showing that can chain transformations using the addition operator. This code says: first apply the data
transformation ax.transData and then translate the data by dx and dy points.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.transforms as transforms

fig = plt.figure()
ax = fig.add_subplot(111)

make a simple sine wave
x = np.arange(0., 2., 0.01)
y = np.sin(2*np.pi*x)
line, = ax.plot(x, y, lw=3, color=’blue’)

shift the object over 2 points, and down 2 points
dx, dy = 2/72., -2/72.
offset = transforms.ScaledTranslation(dx, dy,
fig.dpi_scale_trans)

shadow_transform = ax.transData + offset

now plot the same data with our offset transform;
use the zorder to make sure we are below the line
ax.plot(x, y, lw=3, color=’gray’,
transform=shadow_transform,
zorder=0.5*line.get_zorder())

ax.set_title(’creating a shadow effect with an offset transform’)
plt.show()

13.5 The transformation pipeline

The ax.transData transform we have been working with in this tutorial is a composite of three different
transformations that comprise the transformation pipeline from data -> display coordinates. Michael Droet-
tboom implemented the transformations framework, taking care to provide a clean API that segregated the

116 Chapter 13. Transformations Tutorial

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0
creating a shadow effect with an offset transform

nonlinear projections and scales that happen in polar and logarithmic plots, from the linear affine transfor-
mations that happen when you pan and zoom. There is an efficiency here, because you can pan and zoom in
your axes which affects the affine transformation, but you may not need to compute the potentially expensive
nonlinear scales or projections on simple navigation events. It is also possible to multiply affine transfor-
mation matrices together, and then apply them to coordinates in one step. This is not true of all possible
transformations.

Here is how the ax.transData instance is defined in the basic separable axis Axes class:

self.transData = self.transScale + (self.transLimits + self.transAxes)

We’ve been introduced to the transAxes instance above in Axes coordinates, which maps the (0,0), (1,1)
corners of the axes or subplot bounding box to display space, so let’s look at these other two pieces.

self.transLimits is the transformation that takes you from data to axes coordinates; i.e., it maps your
view xlim and ylim to the unit space of the axes (and transAxes then takes that unit space to display space).
We can see this in action here

In [80]: ax = subplot(111)

In [81]: ax.set_xlim(0, 10)
Out[81]: (0, 10)

In [82]: ax.set_ylim(-1,1)

13.5. The transformation pipeline 117

Matplotlib, Release 1.0.0

Out[82]: (-1, 1)

In [84]: ax.transLimits.transform((0,-1))
Out[84]: array([0., 0.])

In [85]: ax.transLimits.transform((10,-1))
Out[85]: array([1., 0.])

In [86]: ax.transLimits.transform((10,1))
Out[86]: array([1., 1.])

In [87]: ax.transLimits.transform((5,0))
Out[87]: array([0.5, 0.5])

and we can use this same inverted transformation to go from the unit axes coordinates back to data coordi-
nates.

In [90]: inv.transform((0.25, 0.25))
Out[90]: array([2.5, -0.5])

The final piece is the self.transScale attribute, which is responsible for the optional non-linear scaling
of the data, eg. for logarithmic axes. When an Axes is initially setup, this is just set to the identity trans-
form, since the basic matplotlib axes has linear scale, but when you call a logarithmic scaling function like
semilogx() or explicitly set the scale to logarithmic with set_xscale(), then the ax.transScale at-
tribute is set to handle the nonlinear projection. The scales transforms are properties of the respective xaxis
and yaxis Axis instances. For example, when you call ax.set_xscale(’log’), the xaxis updates its
scale to a matplotlib.scale.LogScale instance.

For non-separable axes the PolarAxes, there is one more piece to consider, the projection transformation.
The transData matplotlib.projections.polar.PolarAxes is similar to that for the typical separable
matplotlib Axes, with one additional piece transProjection:

self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)

transProjection handles the projection from the space, eg. latitude and longitude for map data, or radius
and theta for polar data, to a separable Cartesian coordinate system. There are several projection examples
in the matplotlib.projections package, and the best way to learn more is to open the source for those
packages and see how to make your own, since matplotlib supports extensible axes and projections. Michael
Droettboom has provided a nice tutorial example of creating a hammer projection axes; see api example
code: custom_projection_example.py.

118 Chapter 13. Transformations Tutorial

CHAPTER

FOURTEEN

PATH TUTORIAL

The object underlying all of the matplotlib.patch objects is the Path, which supports the standard set of
moveto, lineto, curveto commands to draw simple and compound outlines consisting of line segments and
splines. The Path is instantiated with a (N,2) array of (x,y) vertices, and a N-length array of path codes. For
example to draw the unit rectangle from (0,0) to (1,1), we could use this code

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
(0., 0.), # left, bottom
(0., 1.), # left, top
(1., 1.), # right, top
(1., 0.), # right, bottom
(0., 0.), # ignored
]

codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]

path = Path(verts, codes)

fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor=’orange’, lw=2)
ax.add_patch(patch)
ax.set_xlim(-2,2)
ax.set_ylim(-2,2)
plt.show()

The following path codes are recognized

119

Matplotlib, Release 1.0.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Code Vertices Description
STOP 1 (ignored) A marker for the end of the entire path (currently not required and

ignored)
MOVETO 1 Pick up the pen and move to the given vertex.
LINETO 1 Draw a line from the current position to the given vertex.
CURVE3 2 (1 control point, 1

endpoint)
Draw a quadratic Bézier curve from the current position, with the
given control point, to the given end point.

CURVE4 3 (2 control points,
1 endpoint)

Draw a cubic Bézier curve from the current position, with the given
control points, to the given end point.

CLOSEPOLY1 (point itself is
ignored)

Draw a line segment to the start point of the current polyline.

14.1 Bézier example

Some of the path components require multiple vertices to specify them: for example CURVE 3 is a bézier
curve with one control point and one end point, and CURVE4 has three vertices for the two control points
and the end point. The example below shows a CURVE4 Bézier spline – the bézier curve will be contained
in the convex hull of the start point, the two control points, and the end point

import matplotlib.pyplot as plt
from matplotlib.path import Path

120 Chapter 14. Path Tutorial

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

Matplotlib, Release 1.0.0

import matplotlib.patches as patches

verts = [
(0., 0.), # P0
(0.2, 1.), # P1
(1., 0.8), # P2
(0.8, 0.), # P3
]

codes = [Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,
]

path = Path(verts, codes)

fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor=’none’, lw=2)
ax.add_patch(patch)

xs, ys = zip(*verts)
ax.plot(xs, ys, ’x--’, lw=2, color=’black’, ms=10)

ax.text(-0.05, -0.05, ’P0’)
ax.text(0.15, 1.05, ’P1’)
ax.text(1.05, 0.85, ’P2’)
ax.text(0.85, -0.05, ’P3’)

ax.set_xlim(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
plt.show()

14.2 Compound paths

All of the simple patch primitives in matplotlib, Rectangle, Circle, Polygon, etc, are implemented with
simple path. Plotting functions like hist() and bar(), which create a number of primitives, eg a bunch of
Rectangles, can usually be implemented more efficiently using a compound path. The reason bar creates
a list of rectangles and not a compound path is largely historical: the Path code is comparatively new and
bar predates it. While we could change it now, it would break old code, so here we will cover how to create
compound paths, replacing the functionality in bar, in case you need to do so in your own code for efficiency
reasons, eg you are creating an animated bar plot.

We will make the histogram chart by creating a series of rectangles for each histogram bar: the rectangle
width is the bin width and the rectangle height is the number of datapoints in that bin. First we’ll create
some random normally distributed data and compute the histogram. Because numpy returns the bin edges
and not centers, the length of bins is 1 greater than the length of n in the example below:

14.2. Compound paths 121

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P0

P1

P2

P3

histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

We’ll now extract the corners of the rectangles. Each of the left, bottom, etc, arrays below is len(n),
where n is the array of counts for each histogram bar:

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n

Now we have to construct our compound path, which will consist of a series of MOVETO, LINETO and
CLOSEPOLY for each rectangle. For each rectangle, we need 5 vertices: 1 for the MOVETO, 3 for the LINETO,
and 1 for the CLOSEPOLY. As indicated in the table above, the vertex for the closepoly is ignored but we still
need it to keep the codes aligned with the vertices:

nverts = nrects*(1+3+1)
verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO

122 Chapter 14. Path Tutorial

Matplotlib, Release 1.0.0

codes[4::5] = path.Path.CLOSEPOLY
verts[0::5,0] = left
verts[0::5,1] = bottom
verts[1::5,0] = left
verts[1::5,1] = top
verts[2::5,0] = right
verts[2::5,1] = top
verts[3::5,0] = right
verts[3::5,1] = bottom

All that remains is to create the path, attach it to a PathPatch, and add it to our axes:

barpath = path.Path(verts, codes)
patch = patches.PathPatch(barpath, facecolor=’green’,
edgecolor=’yellow’, alpha=0.5)

ax.add_patch(patch)

Here is the result

2 1 0 1 2
0

5

10

15

20

25

14.2. Compound paths 123

Matplotlib, Release 1.0.0

124 Chapter 14. Path Tutorial

CHAPTER

FIFTEEN

ANNOTATING AXES

Do not proceed unless you already have read Annotating text, text() and annotate()!

15.1 Annotating with Text with Box

Let’s start with a simple example.

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

Sample A

Sample B

Dire
ct

io
n

125

Matplotlib, Release 1.0.0

The text() function in the pyplot module (or text method of the Axes class) takes bbox keyword argument,
and when given, a box around the text is drawn.

bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2)
t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45,

size=15,
bbox=bbox_props)

The patch object associated with the text can be accessed by:

bb = t.get_bbox_patch()

The return value is an instance of FancyBboxPatch and the patch properties like facecolor, edgewidth, etc.
can be accessed and modified as usual. To change the shape of the box, use set_boxstyle method.

bb.set_boxstyle("rarrow", pad=0.6)

The arguments are the name of the box style with its attributes as keyword arguments. Currently, following
box styles are implemented.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

Note that the attributes arguments can be specified within the style name with separating comma (this form
can be used as “boxstyle” value of bbox argument when initializing the text instance)

bb.set_boxstyle("rarrow,pad=0.6")

15.2 Annotating with Arrow

The annotate() function in the pyplot module (or annotate method of the Axes class) is used to draw an
arrow connecting two points on the plot.

ax.annotate("Annotation",
xy=(x1, y1), xycoords=’data’,
xytext=(x2, y2), textcoords=’offset points’,
)

This annotates a point at xy in the given coordinate (xycoords) with the text at xytext given in
textcoords. Often, the annotated point is specified in the data coordinate and the annotating text in offset
points. See annotate() for available coordinate systems.

126 Chapter 15. Annotating Axes

Matplotlib, Release 1.0.0

square

sawtooth

roundtooth

rarrow

larrow

round4

round

15.2. Annotating with Arrow 127

Matplotlib, Release 1.0.0

An arrow connecting two point (xy & xytext) can be optionally drawn by specifying the arrowprops
argument. To draw only an arrow, use empty string as the first argument.

ax.annotate("",
xy=(0.2, 0.2), xycoords=’data’,
xytext=(0.8, 0.8), textcoords=’data’,
arrowprops=dict(arrowstyle="->",

connectionstyle="arc3"),
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

The arrow drawing takes a few steps.

1. a connecting path between two points are created. This is controlled by connectionstyle key value.

2. If patch object is given (patchA & patchB), the path is clipped to avoid the patch.

3. The path is further shrunk by given amount of pixels (shirnkA & shrinkB)

4. The path is transmuted to arrow patch, which is controlled by the arrowstyle key value.

connect clip shrink mutate

128 Chapter 15. Annotating Axes

Matplotlib, Release 1.0.0

The creation of the connecting path between two points is controlled by connectionstyle key and fol-
lowing styles are available.

Name Attrs
angle angleA=90,angleB=0,rad=0.0
angle3 angleA=90,angleB=0
arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
arc3 rad=0.0
bar armA=0.0,armB=0.0,fraction=0.3,angle=None

Note that “3” in angle3 and arc3 is meant to indicate that the resulting path is a quadratic spline segment
(three control points). As will be discussed below, some arrow style option only can be used when the
connecting path is a quadratic spline.

The behavior of each connection style is (limitedly) demonstrated in the example below. (Warning : The
behavior of the bar style is currently not well defined, it may be changed in the future).

angle3,
angleA=90,
angleB=0

arc3,rad=0. angle,
angleA=-90,
angleB=180,
rad=0

arc,
angleA=-90,
angleB=0,
armA=30,
armB=30,
rad=0

bar,
fraction=0.3

angle3,
angleA=0,
angleB=90

arc3,rad=0.3 angle,
angleA=-90,
angleB=180,
rad=5

arc,
angleA=-90,
angleB=0,
armA=30,
armB=30,
rad=5

bar,
fraction=-0.3

arc3,rad=-0.3 angle,
angleA=-90,
angleB=10,
rad=0

arc,
angleA=-90,
angleB=0,
armA=0,
armB=40,
rad=0

bar,
angle=180,
fraction=-0.2

The connecting path (after clipping and shrinking) is then mutated to an arrow patch, according to the given
arrowstyle.

15.2. Annotating with Arrow 129

Matplotlib, Release 1.0.0

Name Attrs
- None
-> head_length=0.4,head_width=0.2
-[widthB=1.0,lengthB=0.2,angleB=None
-|> head_length=0.4,head_width=0.2
<- head_length=0.4,head_width=0.2
<-> head_length=0.4,head_width=0.2
<|- head_length=0.4,head_width=0.2
<|-|> head_length=0.4,head_width=0.2
fancy head_length=0.4,head_width=0.4,tail_width=0.4
simple head_length=0.5,head_width=0.5,tail_width=0.2
wedge tail_width=0.3,shrink_factor=0.5

-

->

-[

-|>

<-

<->

<|-

<|-|>

]-

]-[

fancy

simple

wedge

|-|

Some arrowstyles only work with connection style that generates a quadratic-spline segment. They are
fancy, simple, and wedge. For these arrow styles, you must use “angle3” or “arc3” connection style.

If the annotation string is given, the patchA is set to the bbox patch of the text by default.

As in the text command, a box around the text can be drawn using the bbox argument.

By default, the starting point is set to the center of the text extent. This can be adjusted with relpos key
value. The values are normalized to the extent of the text. For example, (0,0) means lower-left corner and

130 Chapter 15. Annotating Axes

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

15.2. Annotating with Arrow 131

Matplotlib, Release 1.0.0

(1,1) means top-right.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

TestTest

15.3 Placing Artist at the anchored location of the Axes

There are class of artist that can be placed at the anchored location of the Axes. A common example is
the legend. This type of artists can be created by using the OffsetBox class. A few predefined classes are
available in mpl_toolkits.axes_grid.anchored_artists.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredText
at = AnchoredText("Figure 1a",

prop=dict(size=8), frameon=True,
loc=2,
)

at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
ax.add_artist(at)

The loc keyword has same meaning as in the legend command.

A simple application is when the size of the artist (or collection of artists) is known in pixel size during the
time of creation. For example, If you want to draw a circle with fixed size of 20 pixel x 20 pixel (radius =

10 pixel), you can utilize AnchoredDrawingArea. The instance is created with a size of the drawing area
(in pixel). And user can add arbitrary artist to the drawing area. Note that the extents of the artists that are
added to the drawing area has nothing to do with the placement of the drawing area itself. The initial size
only matters.

from mpl_toolkits.axes_grid.anchored_artists import AnchoredDrawingArea

ada = AnchoredDrawingArea(20, 20, 0, 0,
loc=1, pad=0., frameon=False)

p1 = Circle((10, 10), 10)

132 Chapter 15. Annotating Axes

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1a

ada.drawing_area.add_artist(p1)
p2 = Circle((30, 10), 5, fc="r")
ada.drawing_area.add_artist(p2)

The artists that are added to the drawing area should not have transform set (they will be overridden) and
the dimension of those artists are interpreted as a pixel coordinate, i.e., the radius of the circles in above
example are 10 pixel and 5 pixel, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sometimes, you want to your artists scale with data coordinate (or other coordinate than canvas pixel).
You can use AnchoredAuxTransformBox class. This is similar to AnchoredDrawingArea except that the
extent of the artist is determined during the drawing time respecting the specified transform.

15.3. Placing Artist at the anchored location of the Axes 133

Matplotlib, Release 1.0.0

from mpl_toolkits.axes_grid.anchored_artists import AnchoredAuxTransformBox

box = AnchoredAuxTransformBox(ax.transData, loc=2)
el = Ellipse((0,0), width=0.1, height=0.4, angle=30) # in data coordinates!
box.drawing_area.add_artist(el)

The ellipse in the above example will have width and height corresponds to 0.1 and 0.4 in data coordinate
and will be automatically scaled when the view limits of the axes change.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

As in the legend, the bbox_to_anchor argument can be set. Using the HPacker and VPacker, you can have
an arrangement(?) of artist as in the legend (as a matter of fact, this is how the legend is created).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 Test :

Note that unlike the legend, the bbox_transform is set to IdentityTransform by default.

134 Chapter 15. Annotating Axes

Matplotlib, Release 1.0.0

15.4 Using Complex Coordinate with Annotation

The Annotation in matplotlib support several types of coordinate as described in Annotating text. For an
advanced user who wants more control, it supports a few other options.

1. Transform instance. For example,

ax.annotate("Test", xy=(0.5, 0.5), xycoords=ax.transAxes)

is identical to

ax.annotate("Test", xy=(0.5, 0.5), xycoords="axes fraction")

With this, you can annotate a point in other axes.

ax1, ax2 = subplot(121), subplot(122)
ax2.annotate("Test", xy=(0.5, 0.5), xycoords=ax1.transData,

xytext=(0.5, 0.5), textcoords=ax2.transData,
arrowprops=dict(arrowstyle="->"))

2. Artist instance. The xy value (or xytext) is interpreted as a fractional coordinate of the bbox (return
value of get_window_extent) of the artist.

an1 = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",
va="center", ha="center",
bbox=dict(boxstyle="round", fc="w"))

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1, # (1,0.5) of the an1’s bbox
xytext=(30,0), textcoords="offset points",
va="center", ha="left",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test 1 Test 2

Note that it is your responsibility that the extent of the coordinate artist (an1 in above example) is
determined before an2 gets drawn. In most cases, it means that an2 needs to be drawn later than an1.

3. A callable object that returns an instance of either BboxBase or Transform. If a transform is returned,
it is same as 1 and if bbox is returned, it is same as 2. The callable object should take a single argument
of renderer instance. For example, following two commands give identical results

15.4. Using Complex Coordinate with Annotation 135

Matplotlib, Release 1.0.0

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1,
xytext=(30,0), textcoords="offset points")

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1.get_window_extent,
xytext=(30,0), textcoords="offset points")

4. A tuple of two coordinate specification. The first item is for x-coordinate and the second is for y-
coordinate. For example,

annotate("Test", xy=(0.5, 1), xycoords=("data", "axes fraction"))

0.5 is in data coordinate, and 1 is in normalized axes coordinate. You may use an atist or transform as
with a tuple. For example,

import matplotlib.pyplot as plt

plt.figure(figsize=(3,2))
ax=plt.axes([0.1, 0.1, 0.8, 0.7])
an1 = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",

va="center", ha="center",
bbox=dict(boxstyle="round", fc="w"))

an2 = ax.annotate("Test 2", xy=(0.5, 1.), xycoords=an1,
xytext=(0.5,1.1), textcoords=(an1, "axes fraction"),
va="bottom", ha="center",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))

plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test 1

Test 2

5. Sometimes, you want your annotation with some “offset points”, but not from the annotated point but
from other point. OffsetFrom is a helper class for such case.

import matplotlib.pyplot as plt

plt.figure(figsize=(3,2))
ax=plt.axes([0.1, 0.1, 0.8, 0.7])
an1 = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",

va="center", ha="center",

136 Chapter 15. Annotating Axes

Matplotlib, Release 1.0.0

bbox=dict(boxstyle="round", fc="w"))

from matplotlib.text import OffsetFrom
offset_from = OffsetFrom(an1, (0.5, 0))
an2 = ax.annotate("Test 2", xy=(0.1, 0.1), xycoords="data",

xytext=(0, -10), textcoords=offset_from,
xytext is offset points from "xy=(0.5, 0), xycoords=an1"
va="top", ha="center",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))

plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test 1

Test 2

You may take a look at this example pylab_examples example code: annotation_demo3.py.

15.5 Using ConnectorPatch

The ConnectorPatch is like an annotation without a text. While the annotate function is recommended in
most of situation, the ConnectorPatch is useful when you want to connect points in different axes.

from matplotlib.patches import ConnectionPatch
xy = (0.2, 0.2)
con = ConnectionPatch(xyA=xy, xyB=xy, coordsA="data", coordsB="data",

axesA=ax1, axesB=ax2)
ax2.add_artist(con)

The above code connects point xy in data coordinate of ax1 to point xy int data coordinate of ax2. Here is
a simple example.

While the ConnectorPatch instance can be added to any axes, but you may want it to be added to the axes in
the latter (?) of the axes drawing order to prevent overlap (?) by other axes.

15.5. Using ConnectorPatch 137

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

15.5.1 Advanced Topics

15.6 Zoom effect between Axes

mpl_toolkits.axes_grid.inset_locator defines some patch classes useful for interconnect two axes. Under-
standing the code requires some knowledge of how mpl’s transform works. But, utilizing it will be straight
forward.

Exception occurred rendering plot.

15.7 Define Custom BoxStyle

You can use a custom box style. The value for the boxstyle can be a callable object in following forms.:

def __call__(self, x0, y0, width, height, mutation_size,
aspect_ratio=1.):

"""
Given the location and size of the box, return the path of
the box around it.

- *x0*, *y0*, *width*, *height* : location and size of the box
- *mutation_size* : a reference scale for the mutation.
- *aspect_ratio* : aspect-ration for the mutation.

"""
path = ...
return path

Here is a complete example.

However, it is recommended that you derive from the matplotlib.patches.BoxStyle._Base as demonstrated
below.

138 Chapter 15. Annotating Axes

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

from matplotlib.path import Path
from matplotlib.patches import BoxStyle
import matplotlib.pyplot as plt

we may derive from matplotlib.patches.BoxStyle._Base class.
You need to overide transmute method in this case.

class MyStyle(BoxStyle._Base):
"""
A simple box.
"""

def __init__(self, pad=0.3):
"""
The arguments need to be floating numbers and need to have
default values.

pad
amount of padding

"""

self.pad = pad
super(MyStyle, self).__init__()

def transmute(self, x0, y0, width, height, mutation_size):
"""
Given the location and size of the box, return the path of
the box around it.

- *x0*, *y0*, *width*, *height* : location and size of the box
- *mutation_size* : a reference scale for the mutation.

Often, the *mutation_size* is the font size of the text.

15.7. Define Custom BoxStyle 139

Matplotlib, Release 1.0.0

You don’t need to worry about the rotation as it is
automatically taken care of.
"""

padding
pad = mutation_size * self.pad

width and height with padding added.
width, height = width + 2.*pad, \

height + 2.*pad,

boundary of the padded box
x0, y0 = x0-pad, y0-pad,
x1, y1 = x0+width, y0 + height

cp = [(x0, y0),
(x1, y0), (x1, y1), (x0, y1),
(x0-pad, (y0+y1)/2.), (x0, y0),
(x0, y0)]

com = [Path.MOVETO,
Path.LINETO, Path.LINETO, Path.LINETO,
Path.LINETO, Path.LINETO,
Path.CLOSEPOLY]

path = Path(cp, com)

return path

register the custom style
BoxStyle._style_list["angled"] = MyStyle

plt.figure(1, figsize=(3,3))
ax = plt.subplot(111)
ax.text(0.5, 0.5, "Test", size=30, va="center", ha="center", rotation=30,

bbox=dict(boxstyle="angled,pad=0.5", alpha=0.2))

del BoxStyle._style_list["angled"]

plt.show()

Similarly, you can define custom ConnectionStyle and custom ArrowStyle. See the source code of
lib/matplotlib/patches.py and check how each style class is defined.

140 Chapter 15. Annotating Axes

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Test

15.7. Define Custom BoxStyle 141

Matplotlib, Release 1.0.0

142 Chapter 15. Annotating Axes

CHAPTER

SIXTEEN

TOOLKITS

Toolkits are collections of application-specific functions that extend matplotlib.

16.1 Basemap

Plots data on map projections, with continental and political boundaries, see basemap docs.

16.2 GTK Tools

mpl_toolkits.gtktools provides some utilities for working with GTK. This toolkit ships with matplotlib, but
requires pygtk.

16.3 Excel Tools

mpl_toolkits.exceltools provides some utilities for working with Excel. This toolkit ships with matplotlib,
but requires pyExcelerator

16.4 Natgrid

mpl_toolkits.natgrid is an interface to natgrid C library for gridding irregularly spaced data. This requires a
separate installation of the natgrid toolkit from the sourceforge download page.

16.5 mplot3d

mpl_toolkits.mplot3d provides some basic 3D plotting (scatter, surf, line, mesh) tools. Not the fastest or
feature complete 3D library out there, but ships with matplotlib and thus may be a lighter weight solution
for some use cases.

See mplot3d for more documentation and examples.

143

http://matplotlib.sf.net/basemap/doc/html
http://www.pygtk.org/
http://sourceforge.net/projects/pyexcelerator
http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

Matplotlib, Release 1.0.0

16.6 AxesGrid

The matplotlib AxesGrid toolkit is a collection of helper classes to ease displaying multiple images in
matplotlib. The AxesGrid toolkit is distributed with matplotlib source.

See Matplotlib AxesGrid Toolkit for documentations.

144 Chapter 16. Toolkits

CHAPTER

SEVENTEEN

SCREENSHOTS

Here you will find a host of example figures with the code that generated them

17.1 Simple Plot

The most basic plot(), with text labels

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

v
o
lt

a
g
e
 (

m
V

)

About as simple as it gets, folks

145

Matplotlib, Release 1.0.0

17.2 Subplot demo

Multiple regular axes (numrows by numcolumns) are created with the subplot() command.

0 1 2 3 4 5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

D
a
m

p
e
d
 o

sc
ill

a
ti

o
n

A tale of 2 subplots

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

U
n
d
a
m

p
e
d

17.3 Histograms

The hist() command automatically generates histograms and will return the bin counts or probabilities

17.4 Path demo

You can add aribitrary paths in matplotlib as of release 0.98. See the matplotlib.path.

17.5 mplot3d

The mplot3d toolkit (see mplot3d tutorial and mplot3d Examples) has support for simple 3d graphs including
surface, wireframe, scatter, and bar charts (added in matlpotlib-0.99). Thanks to John Porter, Jonathon
Taylor and Reinier Heeres for the mplot3d toolkit. The toolkit is included with all standard matplotlib
installs.

146 Chapter 17. Screenshots

Matplotlib, Release 1.0.0

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030
P
ro

b
a
b
ili

ty
Histogram of IQ : µ=100, σ=15

17.6 Ellipses

In support of the Phoenix mission to Mars, which used matplotlib in ground tracking of the spacecraft,
Michael Droettboom built on work by Charlie Moad to provide an extremely accurate 8-spline approxi-
mation to elliptical arcs (see Arc) in the viewport. This provides a scale free, accurate graph of the arc
regardless of zoom level

17.7 Bar charts

The bar() command takes error bars as an optional argument. You can also use up and down bars, stacked
bars, candlestick bars, etc, ... See bar_stacked.py for another example. You can make horizontal bar charts
with the barh() command.

17.8 Pie charts

The pie() command uses a MATLAB compatible syntax to produce pie charts. Optional features include
auto-labeling the percentage of area, exploding one or more wedges out from the center of the pie, and a
shadow effect. Take a close look at the attached code that produced this figure; nine lines of code.

17.6. Ellipses 147

http://www.jpl.nasa.gov/news/phoenix/main.php

Matplotlib, Release 1.0.0

3 2 1 0 1 2 3 4
3

2

1

0

1

2

3

4
spline paths

17.9 Table demo

The table() command will place a text table on the axes

17.10 Scatter demo

The scatter() command makes a scatter plot with (optional) size and color arguments. This example plots
changes in Google stock price from one day to the next with the sizes coding trading volume and the colors
coding price change in day i. Here the alpha attribute is used to make semitransparent circle markers with
the Agg backend (see What is a backend?)

17.11 Slider demo

Matplotlib has basic GUI widgets that are independent of the graphical user interface you are using, allow-
ing you to write cross GUI figures and widgets. See matplotlib.widgets and the widget examples <exam-
ples/widgets>

148 Chapter 17. Screenshots

Matplotlib, Release 1.0.0

4
2

0
2

4 4
2
0

2
4

-1.010
-0.786
-0.561
-0.337
-0.112
0.112
0.337
0.561
0.786
1.010

4
2

0
2

4 4
2
0

2
4

-1.010
-0.786
-0.561
-0.337
-0.112
0.112
0.337
0.561
0.786
1.010

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

17.12 Fill demo

The fill() command lets you plot filled polygons. Thanks to Andrew Straw for providing this function

17.13 Date demo

You can plot date data with major and minor ticks and custom tick formatters for both the major and minor
ticks; see matplotlib.ticker and matplotlib.dates for details and usage.

17.14 Financial charts

You can make much more sophisticated financial plots. This example emulates one of the ChartDirector
financial plots. Some of the data in the plot, are real financial data, some are random traces that I used since
the goal was to illustrate plotting techniques, not market analysis!

17.12. Fill demo 149

http://www.advsofteng.com/gallery_finance.html

Matplotlib, Release 1.0.0

0 2 4 6 8 10
0

2

4

6

8

10

17.15 Basemap demo

Jeff Whitaker provided this example showing how to efficiently plot a collection of lines over a colormap
image using the Basemap . Many map projections are handled via the proj4 library: cylindrical equidistant,
mercator, lambert conformal conic, lambert azimuthal equal area, albers equal area conic and stereographic.
See the tutorial entry on the wiki.

Exception occurred rendering plot.

17.16 Log plots

The semilogx(), semilogy() and loglog() functions generate log scaling on the respective axes. The
lower subplot uses a base10 log on the xaxis and a base 4 log on the yaxis. Thanks to Andrew Straw, Darren
Dale and Gregory Lielens for contributions to the log scaling infrastructure.

17.17 Polar plots

The polar() command generates polar plots.

150 Chapter 17. Screenshots

http://www.scipy.org/wikis/topical_software/Maps

Matplotlib, Release 1.0.0

G1 G2 G3 G4 G5
0

5

10

15

20

25

30

35

40

S
co

re
s

20

35

30

35

27
25

32
34

20

25

Scores by group and gender

Men
Women

17.18 Legends

The legend() command automatically generates figure legends, with MATLAB compatible legend place-
ment commands. Thanks to Charles Twardy for input on the legend command

17.19 Mathtext_examples

A sampling of the many TeX expressions now supported by matplotlib’s internal mathtext engine. The
mathtext module provides TeX style mathematical expressions using freetype2 and the BaKoMa computer
modern or STIX fonts. See the matplotlib.mathtext module for additional. matplotlib mathtext is
an independent implementation, and does not required TeX or any external packages installed on your
computer. See the tutorial at Writing mathematical expressions.

17.20 Native TeX rendering

Although matplotlib’s internal math rendering engine is quite powerful, sometimes you need TeX, and
matplotlib supports external TeX rendering of strings with the usetex option.

Exception occurred rendering plot.

17.18. Legends 151

http://freetype.sourceforge.net/index2.html
http://www.stixfonts.org

Matplotlib, Release 1.0.0

Frogs

15.0%

Hogs

30.0%

Dogs

45.0%

Logs

10.0%

Raining Hogs and Dogs

152 Chapter 17. Screenshots

Matplotlib, Release 1.0.0

Freeze Wind Flood Quake Hail
100 year 431.5 1049.4 799.6 2149.8 917.9
50 year 292.2 717.8 456.4 1368.5 865.6
20 year 213.8 636.0 305.7 1175.2 796.0
10 year 124.6 555.4 153.2 677.2 192.5
5 year 66.4 174.3 75.1 577.9 32.0

0

500

1000

1500

2000

Lo
ss

 $
1

0
0

0
's

Loss by Disaster

17.21 EEG demo

You can embed matplotlib into pygtk, wxpython, Tk, FLTK or Qt applications. Here is a screenshot of
an eeg viewer called pbrain which is part of the NeuroImaging in Python suite NIPY. Pbrain is written
in pygtk using matplotlib. The lower axes uses specgram() to plot the spectrogram of one of the EEG
channels. For an example of how to use the navigation toolbar in your applications, see user_interfaces
example code: embedding_in_gtk2.py. If you want to use matplotlib in a wx application, see user_interfaces
example code: embedding_in_wx2.py. If you want to work with glade, see user_interfaces example code:
mpl_with_glade.py.

17.21. EEG demo 153

http://neuroimaging.scipy.org
http://glade.gnome.org

Matplotlib, Release 1.0.0

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25

∆i

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25
∆
i
+

1
Volume and percent change

154 Chapter 17. Screenshots

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
10

5

0

5

10

Freq 3.00
Amp 5.00

Reset

red
blue
green

17.21. EEG demo 155

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

156 Chapter 17. Screenshots

Matplotlib, Release 1.0.0

2004
2005

2006
2007

2008
2009

100

200

300

400

500

600

700

800

17.21. EEG demo 157

Matplotlib, Release 1.0.0

30

70
>70 = overbought

<30 = oversold

RSI (14)

SPY daily

80

100

120

140 25-Aug-2010 O:105.95 H:106.39 L:104.97 C:105.53, V:280.4M Chg:-0.42

MA (20)

MA (200)

May 2006

Nov 2006

May 2007

Nov 2007

May 2008

Nov 2008

May 2009

Nov 2009

May 2010

10
5
0
5

MACD (12, 26, 9)

158 Chapter 17. Screenshots

Matplotlib, Release 1.0.0

0 5 10 15 20
10-2

10-1

100 semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102 loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105Errorbars go negative

17.21. EEG demo 159

Matplotlib, Release 1.0.0

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5
2.0

And there was much rejoicing!

160 Chapter 17. Screenshots

Matplotlib, Release 1.0.0

Model complexity --->

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length

Data length

Total message length

17.21. EEG demo 161

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

a+b+ +ṡ+

x y

$100.00 α_

$100.00
y

xy

x+y x=y x<y x .y x,y x@y

100%y x ∗y x/yx$y

x←y x∀y x−y

xxxXx

x x x x x xx y

{
braces

}
[⌊

5
(3)

4

y
)]

(x)

sin(x)

x2

x2

x 2
y

x 2
y

∞∏
i=αi+1

x=
x+5

2

y+3

8

dz/dt=γx2 +sin(2πy+φ)

Foo: α j
i+1 =sin(2πfj ti)e

−5ti/τ

R
∞∏

i=αi+1

aisin(2πfxi)

Variable i is good

∆j
i

∆j
i+1

öéèÔı̆ñ~q

i

arccos((xi))

γ=
x=6

8

y δ

limsup
x→∞∮ ∞

0

f′

x2 888
y

3
√

X2

Y
=5

5

√
x

2π2∏
∞

3
√
x =5

X
X
Y

W
3β
δ1ρ1σ2

=U
3β
δ1ρ1

+ 1
8π2

∫ α2

α2

dα ′2

[
U

2β
δ1ρ1
−α ′2 U 1β

ρ1σ2

U 0β
ρ1σ2

]

H=

∫
dτ
(
εE2 +µH2

)
âbcd̃ef

Γ∆ΘΛΞΠΣΥΦΨΩ

αβγδεζηθιλµνξπ ρστυφχψ

162 Chapter 17. Screenshots

CHAPTER

EIGHTEEN

WHAT’S NEW IN MATPLOTLIB

This page just covers the highlights – for the full story, see the CHANGELOG

18.1 new in matplotlib-1.0

18.1.1 HTML5/Canvas backend

Simon Ratcliffe and Ludwig Schwardt have released an HTML5/Canvas backend for matplotlib. The back-
end is almost feature complete, and they have done a lot of work comparing their html5 rendered images
with our core renderer Agg. The backend features client/server interactive navigation of matplotlib figures
in an html5 compliant browser.

18.1.2 Sophisticated subplot grid layout

Jae-Joon Lee has written gridspec, a new module for doing complex subplot layouts, featuring row and
column spans and more. See Customizing Location of Subplot Using GridSpec for a tutorial overview.

18.1.3 Easy pythonic subplots

Fernando Perez got tired of all the boilerplate code needed to create a figure and multiple subplots when
using the matplotlib API, and wrote a subplots() helper function. Basic usage allows you to create the
figure and an array of subplots with numpy indexing (starts with 0). Eg:

fig, axarr = plt.subplots(2, 2)
axarr[0,0].plot([1,2,3]) # upper, left

See pylab_examples example code: subplots_demo.py for several code examples.

18.1.4 Contour fixes and and triplot

Ian Thomas has fixed a long-standing bug that has vexed our most talented developers for years.
contourf() now handles interior masked regions, and the boundaries of line and filled contours coincide.

163

http://matplotlib.sourceforge.net/_static/CHANGELOG
http://code.google.com/p/mplh5canvas/

Matplotlib, Release 1.0.0

ax1

ax2

ax3

ax4 ax5

subplot2grid

Additionally, he has contributed a new module matplotlib.tri and helper function triplot() for creating
and plotting unstructured triangular grids.

18.1.5 multiple calls to show supported

A long standing request is to support multiple calls to show(). This has been difficult because it is hard
to get consistent behavior across operating systems, user interface toolkits and versions. Eric Firing has
done a lot of work on rationalizing show across backends, with the desired behavior to make show raise all
newly created figures and block execution until they are closed. Repeated calls to show should raise newly
created figures since the last call. Eric has done a lot of testing on the user interface toolkits and versions
and platforms he has access to, but it is not possible to test them all, so please report problems to the mailing
list and bug tracker.

18.1.6 mplot3d graphs can be embedded in arbitrary axes

You can now place an mplot3d graph into an arbitrary axes location, supporting mixing of 2D and 3D graphs
in the same figure, and/or multiple 3D graphs in a single figure, using the “projection” keyword argument to
add_axes or add_subplot. Thanks Ben Root.

164 Chapter 18. What’s new in matplotlib

http://sourceforge.net/mailarchive/forum.php?forum_name=matplotlib-users
http://sourceforge.net/mailarchive/forum.php?forum_name=matplotlib-users
http://sourceforge.net/tracker/?group_id=80706&atid=560720

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
triplot of Delaunay triangulation

18.1.7 tick_params

Eric Firing wrote tick_params, a convenience method for changing the appearance of ticks and tick labels.
See pyplot function tick_params() and associated Axes method tick_params().

18.1.8 Lots of performance and feature enhancements

• Faster magnification of large images, and the ability to zoom in to a single pixel

• Local installs of documentation work better

• Improved “widgets” – mouse grabbing is supported

• More accurate snapping of lines to pixel boundaries

• More consistent handling of color, particularly the alpha channel, throughout the API

18.1.9 Much improved software carpentry

The matplotlib trunk is probably in as good a shape as it has ever been, thanks to improved software carpen-
try. We now have a buildbot which runs a suite of nose regression tests on every svn commit, auto-generating
a set of images and comparing them against a set of known-goods, sending emails to developers on failures

18.1. new in matplotlib-1.0 165

http://software-carpentry.org/
http://software-carpentry.org/
http://buildbot.net/trac
http://code.google.com/p/python-nose/

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58

La
ti

tu
d
e
 (

d
e
g
re

e
s)

triplot of user-specified triangulation

with a pixel-by-pixel image comparison. Releases and release bugfixes happen in branches, allowing ac-
tive new feature development to happen in the trunk while keeping the release branches stable. Thanks to
Andrew Straw, Michael Droettboom and other matplotlib developers for the heavy lifting.

18.1.10 Bugfix marathon

Eric Firing went on a bug fixing and closing marathon, closing over 100 bugs on the bug tracker with help
from Jae-Joon Lee, Michael Droettboom, Christoph Gohlke and Michiel de Hoon.

18.2 new in matplotlib-0.99

18.2.1 New documentation

Jae-Joon Lee has written two new guides Legend guide and Annotating Axes. Michael Sarahan has written
Image tutorial. John Hunter has written two new tutorials on working with paths and transformations: Path
Tutorial and Transformations Tutorial.

166 Chapter 18. What’s new in matplotlib

http://mpl.code.astraw.com/overview.html
http://sourceforge.net/tracker/?group_id=80706&atid=560720

Matplotlib, Release 1.0.0

4
2
0

2
4 4

2
0
2
4

1.0

0.5

0.0

0.5

1.0

4
2
0

2
4 4

2
0
2
4

1.0

0.5

0.0

0.5

1.0

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

30201001020 30
20
10
0
10
20

60
40
20
0
20
40
60
80

30201001020 30
20
10
0
10
20

60
40
20
0
20
40
60
80

18.2.2 mplot3d

Reinier Heeres has ported John Porter’s mplot3d over to the new matplotlib transformations framework, and
it is now available as a toolkit mpl_toolkits.mplot3d (which now comes standard with all mpl installs). See
mplot3d Examples and mplot3d tutorial

18.2.3 axes grid toolkit

Jae-Joon Lee has added a new toolkit to ease displaying multiple images in matplotlib, as well as some
support for curvilinear grids to support the world coordinate system. The toolkit is included standard with
all new mpl installs. See axes_grid Examples and The Matplotlib AxesGrid Toolkit User’s Guide.

18.2.4 Axis spine placement

Andrew Straw has added the ability to place “axis spines” – the lines that denote the data limits – in various
arbitrary locations. No longer are your axis lines constrained to be a simple rectangle around the figure –
you can turn on or off left, bottom, right and top, as well as “detach” the spine to offset it away from the
data. See pylab_examples example code: spine_placement_demo.py and matplotlib.spines.Spine.

18.2. new in matplotlib-0.99 167

Matplotlib, Release 1.0.0

4
2

0
2

4
4

2
0

2
4

0.5

0.0

0.5

18.3 new in 0.98.4

It’s been four months since the last matplotlib release, and there are a lot of new features and bug-fixes.

Thanks to Charlie Moad for testing and preparing the source release, including binaries for OS X and
Windows for python 2.4 and 2.5 (2.6 and 3.0 will not be available until numpy is available on those re-
leases). Thanks to the many developers who contributed to this release, with contributions from Jae-Joon
Lee, Michael Droettboom, Ryan May, Eric Firing, Manuel Metz, Jouni K. Seppänen, Jeff Whitaker, Darren
Dale, David Kaplan, Michiel de Hoon and many others who submitted patches

18.3.1 Legend enhancements

Jae-Joon has rewritten the legend class, and added support for multiple columns and rows, as well as fancy
box drawing. See legend() and matplotlib.legend.Legend.

18.3.2 Fancy annotations and arrows

Jae-Joon has added lot’s of support to annotations for drawing fancy boxes and connectors in annotations.
See annotate() and BoxStyle, ArrowStyle, and ConnectionStyle.

168 Chapter 18. What’s new in matplotlib

Matplotlib, Release 1.0.0

2

4

6

8

10

0 2 4 6 8

18.3.3 Native OS X backend

Michiel de Hoon has provided a native Mac OSX backend that is almost completely implemented in C. The
backend can therefore use Quartz directly and, depending on the application, can be orders of magnitude
faster than the existing backends. In addition, no third-party libraries are needed other than Python and
NumPy. The backend is interactive from the usual terminal application on Mac using regular Python. It
hasn’t been tested with ipython yet, but in principle it should to work there as well. Set ‘backend : macosx’
in your matplotlibrc file, or run your script with:

> python myfile.py -dmacosx

18.3.4 psd amplitude scaling

Ryan May did a lot of work to rationalize the amplitude scaling of psd() and friends. See pylab_examples
example code: psd_demo2.py. and pylab_examples example code: psd_demo3.py. The changes should
increase MATLAB compatabililty and increase scaling options.

18.3.5 Fill between

Added a fill_between() function to make it easier to do shaded region plots in the presence of masked
data. You can pass an x array and a ylower and yupper array to fill betweem, and an optional where argument

18.3. new in 0.98.4 169

Matplotlib, Release 1.0.0

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 1 2 3 4 5 6 7

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 1 2 3 4 5 6 7

which is a logical mask where you want to do the filling.

18.3.6 Lots more

Here are the 0.98.4 notes from the CHANGELOG:

Added mdehoon’s native macosx backend from sf patch 2179017 - JDH

Removed the prints in the set_*style commands. Return the list of
pprinted strings instead - JDH

Some of the changes Michael made to improve the output of the
property tables in the rest docs broke of made difficult to use
some of the interactive doc helpers, eg setp and getp. Having all
the rest markup in the ipython shell also confused the docstrings.
I added a new rc param docstring.harcopy, to format the docstrings
differently for hardcopy and other use. Ther ArtistInspector
could use a little refactoring now since there is duplication of
effort between the rest out put and the non-rest output - JDH

Updated spectral methods (psd, csd, etc.) to scale one-sided
densities by a factor of 2 and, optionally, scale all densities by
the sampling frequency. This gives better MATLAB

170 Chapter 18. What’s new in matplotlib

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n=1
n=2

n=3
n=4

compatibility. -RM

Fixed alignment of ticks in colorbars. -MGD

drop the deprecated "new" keyword of np.histogram() for numpy 1.2
or later. -JJL

Fixed a bug in svg backend that new_figure_manager() ignores
keywords arguments such as figsize, etc. -JJL

Fixed a bug that the handlelength of the new legend class set too
short when numpoints=1 -JJL

Added support for data with units (e.g. dates) to
Axes.fill_between. -RM

Added fancybox keyword to legend. Also applied some changes for
better look, including baseline adjustment of the multiline texts
so that it is center aligned. -JJL

The transmuter classes in the patches.py are reorganized as
subclasses of the Style classes. A few more box and arrow styles
are added. -JJL

18.3. new in 0.98.4 171

Matplotlib, Release 1.0.0

square

sawtooth

roundtooth

rarrow

larrow

round4

round

<|-

<|-|>

]-

]-[

fancy

simple

wedge

|-|

172 Chapter 18. What’s new in matplotlib

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

Fixed a bug in the new legend class that didn’t allowed a tuple of
coordinate vlaues as loc. -JJL

Improve checks for external dependencies, using subprocess
(instead of deprecated popen*) and distutils (for version
checking) - DSD

Reimplementaion of the legend which supports baseline alignement,
multi-column, and expand mode. - JJL

Fixed histogram autoscaling bug when bins or range are given
explicitly (fixes Debian bug 503148) - MM

Added rcParam axes.unicode_minus which allows plain hypen for
minus when False - JDH

Added scatterpoints support in Legend. patch by Erik Tollerud -
JJL

Fix crash in log ticking. - MGD

Added static helper method BrokenHBarCollection.span_where and
Axes/pyplot method fill_between. See
examples/pylab/fill_between.py - JDH

18.3. new in 0.98.4 173

Matplotlib, Release 1.0.0

Add x_isdata and y_isdata attributes to Artist instances, and use
them to determine whether either or both coordinates are used when
updating dataLim. This is used to fix autoscaling problems that
had been triggered by axhline, axhspan, axvline, axvspan. - EF

Update the psd(), csd(), cohere(), and specgram() methods of Axes
and the csd() cohere(), and specgram() functions in mlab to be in
sync with the changes to psd(). In fact, under the hood, these
all call the same core to do computations. - RM

Add ’pad_to’ and ’sides’ parameters to mlab.psd() to allow
controlling of zero padding and returning of negative frequency
components, respecitively. These are added in a way that does not
change the API. - RM

Fix handling of c kwarg by scatter; generalize is_string_like to
accept numpy and numpy.ma string array scalars. - RM and EF

Fix a possible EINTR problem in dviread, which might help when
saving pdf files from the qt backend. - JKS

Fix bug with zoom to rectangle and twin axes - MGD

Added Jae Joon’s fancy arrow, box and annotation enhancements --
see examples/pylab_examples/annotation_demo2.py

Autoscaling is now supported with shared axes - EF

Fixed exception in dviread that happened with Minion - JKS

set_xlim, ylim now return a copy of the viewlim array to avoid
modify inplace surprises

Added image thumbnail generating function
matplotlib.image.thumbnail. See examples/misc/image_thumbnail.py
- JDH

Applied scatleg patch based on ideas and work by Erik Tollerud and
Jae-Joon Lee. - MM

Fixed bug in pdf backend: if you pass a file object for output
instead of a filename, e.g. in a wep app, we now flush the object
at the end. - JKS

Add path simplification support to paths with gaps. - EF

Fix problem with AFM files that don’t specify the font’s full name
or family name. - JKS

Added ’scilimits’ kwarg to Axes.ticklabel_format() method, for
easy access to the set_powerlimits method of the major
ScalarFormatter. - EF

174 Chapter 18. What’s new in matplotlib

Matplotlib, Release 1.0.0

Experimental new kwarg borderpad to replace pad in legend, based
on suggestion by Jae-Joon Lee. - EF

Allow spy to ignore zero values in sparse arrays, based on patch
by Tony Yu. Also fixed plot to handle empty data arrays, and
fixed handling of markers in figlegend. - EF

Introduce drawstyles for lines. Transparently split linestyles
like ’steps--’ into drawstyle ’steps’ and linestyle ’--’. Legends
always use drawstyle ’default’. - MM

Fixed quiver and quiverkey bugs (failure to scale properly when
resizing) and added additional methods for determining the arrow
angles - EF

Fix polar interpolation to handle negative values of theta - MGD

Reorganized cbook and mlab methods related to numerical
calculations that have little to do with the goals of those two
modules into a separate module numerical_methods.py Also, added
ability to select points and stop point selection with keyboard in
ginput and manual contour labeling code. Finally, fixed contour
labeling bug. - DMK

Fix backtick in Postscript output. - MGD

[2089958] Path simplification for vector output backends
Leverage the simplification code exposed through path_to_polygons
to simplify certain well-behaved paths in the vector backends
(PDF, PS and SVG). "path.simplify" must be set to True in
matplotlibrc for this to work. - MGD

Add "filled" kwarg to Path.intersects_path and
Path.intersects_bbox. - MGD

Changed full arrows slightly to avoid an xpdf rendering problem
reported by Friedrich Hagedorn. - JKS

Fix conversion of quadratic to cubic Bezier curves in PDF and PS
backends. Patch by Jae-Joon Lee. - JKS

Added 5-point star marker to plot command q- EF

Fix hatching in PS backend - MGD

Fix log with base 2 - MGD

Added support for bilinear interpolation in
NonUniformImage; patch by Gregory Lielens. - EF

Added support for multiple histograms with data of
different length - MM

18.3. new in 0.98.4 175

Matplotlib, Release 1.0.0

Fix step plots with log scale - MGD

Fix masked arrays with markers in non-Agg backends - MGD

Fix clip_on kwarg so it actually works correctly - MGD

Fix locale problems in SVG backend - MGD

fix quiver so masked values are not plotted - JSW

improve interactive pan/zoom in qt4 backend on windows - DSD

Fix more bugs in NaN/inf handling. In particular, path
simplification (which does not handle NaNs or infs) will be turned
off automatically when infs or NaNs are present. Also masked
arrays are now converted to arrays with NaNs for consistent
handling of masks and NaNs - MGD and EF

176 Chapter 18. What’s new in matplotlib

CHAPTER

NINETEEN

LICENSE

Matplotlib only uses BSD compatible code, and its license is based on the PSF license. See the Open
Source Initiative licenses page for details on individual licenses. Non-BSD compatible licenses (eg LGPL)
are acceptable in matplotlib Toolkits. For a discussion of the motivations behind the licencing choice, see
Testing.

19.1 License agreement for matplotlib 1.0.0

1. This LICENSE AGREEMENT is between John D. Hunter (“JDH”), and the Individual or Organization
(“Licensee”) accessing and otherwise using matplotlib software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, JDH hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use matplotlib 1.0.0 alone or in any derivative version, provided,
however, that JDH’s License Agreement and JDH’s notice of copyright, i.e., “Copyright (c) 2002-2009 John
D. Hunter; All Rights Reserved” are retained in matplotlib 1.0.0 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates matplotlib 1.0.0 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to matplotlib 1.0.0.

4. JDH is making matplotlib 1.0.0 available to Licensee on an “AS IS” basis. JDH MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, JDH MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
MATPLOTLIB 1.0.0 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. JDH SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB 1.0.0
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING MATPLOTLIB 1.0.0, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

177

http://www.python.org/psf/license
http://www.opensource.org/licenses

Matplotlib, Release 1.0.0

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between JDH and Licensee. This License Agreement does not grant permission to use JDH
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using matplotlib 1.0.0, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

178 Chapter 19. License

CHAPTER

TWENTY

CREDITS

matplotlib was written by John Hunter and is now developed and maintained by a number of active devel-
opers.

Special thanks to those who have made valuable contributions (roughly in order of first contribution by date)

Jeremy O’Donoghue wrote the wx backend

Andrew Straw provided much of the log scaling architecture, the fill command, PIL support for
imshow, and provided many examples. He also wrote the support for dropped axis spines and the
buildbot unit testing infrastructure which triggers the JPL/James Evans platform specific builds and
regression test image comparisons from svn matplotlib across platforms on svn commits.

Charles Twardy provided the impetus code for the legend class and has made countless bug reports and
suggestions for improvement.

Gary Ruben made many enhancements to errorbar to support x and y errorbar plots, and added a number
of new marker types to plot.

John Gill wrote the table class and examples, helped with support for auto-legend placement, and added
support for legending scatter plots.

David Moore wrote the paint backend (no longer used)

Todd Miller supported by STSCI contributed the TkAgg backend and the numerix module, which allows
matplotlib to work with either numeric or numarray. He also ported image support to the postscript
backend, with much pain and suffering.

Paul Barrett supported by STSCI overhauled font management to provide an improved, free-standing,
platform independent font manager with a WC3 compliant font finder and cache mechanism and
ported truetype and mathtext to PS.

Perry Greenfield supported by STSCI overhauled and modernized the goals and priorities page, imple-
mented an improved colormap framework, and has provided many suggestions and a lot of insight to
the overall design and organization of matplotlib.

Jared Wahlstrand wrote the initial SVG backend.

Steve Chaplin served as the GTK maintainer and wrote the Cairo and GTKCairo backends.

Jim Benson provided the patch to handle vertical mathttext.

179

http://www.ohloh.net/projects/matplotlib/contributors
http://mpl-buildbot.code.astraw.com/
http://www.stsci.edu
http://www.stsci.edu
http://www.stsci.edu

Matplotlib, Release 1.0.0

Gregory Lielens provided the FltkAgg backend and several patches for the frontend, including contribu-
tions to toolbar2, and support for log ticking with alternate bases and major and minor log ticking.

Darren Dale

did the work to do mathtext exponential labeling for log plots, added improved support for scalar
formatting, and did the lions share of the psfrag LaTeX support for postscript. He has made
substantial contributions to extending and maintaining the PS and Qt backends, and wrote the
site.cfg and matplotlib.conf build and runtime configuration support. He setup the infrastructure
for the sphinx documentation that powers the mpl docs.

Paul Mcguire provided the pyparsing module on which mathtext relies, and made a number of optimiza-
tions to the matplotlib mathtext grammar.

Fernando Perez has provided numerous bug reports and patches for cleaning up backend imports and ex-
panding pylab functionality, and provided matplotlib support in the pylab mode for ipython. He also
provided the matshow() command, and wrote TConfig, which is the basis for the experimental traited
mpl configuration.

Andrew Dalke of Dalke Scientific Software contributed the strftime formatting code to handle years earlier
than 1900.

Jochen Voss served as PS backend maintainer and has contributed several bugfixes.

Nadia Dencheva

supported by STSCI provided the contouring and contour labeling code.

Baptiste Carvello provided the key ideas in a patch for proper shared axes support that underlies ganged
plots and multiscale plots.

Jeffrey Whitaker at NOAA wrote the Basemap tookit

Sigve Tjoraand, Ted Drain, James Evans and colleagues at the JPL collaborated on the QtAgg backend
and sponsored development of a number of features including custom unit types, datetime support,
scale free ellipses, broken bar plots and more. The JPL team wrote the unit testing image comparison
infrastructure for regression test image comparisons.

James Amundson did the initial work porting the qt backend to qt4

Eric Firing has contributed significantly to contouring, masked array, pcolor, image and quiver support,
in addition to ongoing support and enhancements in performance, design and code quality in most
aspects of matplotlib.

Daishi Harada added support for “Dashed Text”. See dashpointlabel.py and TextWithDash.

Nicolas Young added support for byte images to imshow, which are more efficient in CPU and memory,
and added support for irregularly sampled images.

The brainvisa Orsay team and Fernando Perez added Qt support to ipython in pylab mode.

Charlie Moad contributed work to matplotlib’s Cocoa support and has done a lot of work on the OSX and
win32 binary releases.

Jouni K. Seppänen wrote the PDF backend and contributed numerous fixes to the code, to tex support and
to the get_sample_data handler

180 Chapter 20. Credits

http://www.ctan.org/tex-archive/help/Catalogue/entries/psfrag.html?action=/tex-archive/macros/latex/contrib/supported/psfrag
http://ipython.scipy.org
http://www.dalkescientific.com/
http://www.stsci.edu
http://www.boulder.noaa.gov
http://www.jpl.nasa.gov
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/matplotlib/test
http://brainvisa.info
http://ipython.scipy.org

Matplotlib, Release 1.0.0

Paul Kienzle improved the picking infrastruture for interactive plots, and with Alex Mont contributed fast
rendering code for quadrilateral meshes.

Michael Droettboom supported by STSCI wrote the enhanced mathtext support, implementing Knuth’s
box layout algorithms, saving to file-like objects across backends, and is responsible for numerous
bug-fixes, much better font and unicode support, and feature and performance enhancements across
the matplotlib code base. He also rewrote the transformation infrastructure to support custom projec-
tions and scales.

John Porter, Jonathon Taylor and Reinier Heeres John Porter wrote the mplot3d module for basic 3D
plotting in matplotlib, and Jonathon Taylor and Reinier Heeres ported it to the refactored transform
trunk.

Jae-Joon Lee implemented fancy arrows and boxes, rewrote the legend support to handle multiple
columns and fancy text boxes, wrote the axes grid toolkit, and has made numerous contributions
to the code and documentation

181

http://www.stsci.edu

Matplotlib, Release 1.0.0

182 Chapter 20. Credits

Part II

The Matplotlib FAQ

183

CHAPTER

TWENTYONE

INSTALLATION FAQ

Contents

• Installation FAQ
– Report a compilation problem
– matplotlib compiled fine, but nothing shows up with plot
– Cleanly rebuild and reinstall everything

* Easy Install

* Windows installer

* Source install
– Install from svn
– Install from git
– Backends

* What is a backend?

* Compile matplotlib with PyGTK-2.4
– OS-X questions

* Which python for OS X?

* Installing OSX binaries

* easy_install from egg

* Building and installing from source on OSX with EPD
– Windows questions

* Binary installers for windows

21.1 Report a compilation problem

See Report a problem.

21.2 matplotlib compiled fine, but nothing shows up with plot

The first thing to try is a clean install and see if that helps. If not, the best way to test your install is
by running a script, rather than working interactively from a python shell or an integrated development
environment such as IDLE which add additional complexities. Open up a UNIX shell or a DOS command

185

Matplotlib, Release 1.0.0

prompt and cd into a directory containing a minimal example in a file. Something like simple_plot.py,
or for example:

from pylab import *
plot([1,2,3])
show()

and run it with:

python simple_plot.py --verbose-helpful

This will give you additional information about which backends matplotlib is loading, version information,
and more. At this point you might want to make sure you understand matplotlib’s configuration process,
governed by the matplotlibrc configuration file which contains instructions within and the concept of the
matplotlib backend.

If you are still having trouble, see Report a problem.

21.3 Cleanly rebuild and reinstall everything

The steps depend on your platform and installation method.

21.3.1 Easy Install

1. Delete the caches from your .matplotlib configuration directory.

2. Run:

easy_install -m PackageName

3. Delete any .egg files or directories from your installation directory.

21.3.2 Windows installer

1. Delete the caches from your .matplotlib configuration directory.

2. Use Start→ Control Panel to start the Add and Remove Software utility.

21.3.3 Source install

Unfortunately:

python setup.py clean

does not properly clean the build directory, and does nothing to the install directory. To cleanly rebuild:

1. Delete the caches from your .matplotlib configuration directory.

186 Chapter 21. Installation FAQ

Matplotlib, Release 1.0.0

2. Delete the build directory in the source tree

3. Delete any matplotlib directories or eggs from your installation directory <locating-matplotlib-
install>

21.4 Install from svn

Checking out the main source:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/matplotlib matplotlib

and build and install as usual with:

> cd matplotlib
> python setup.py install

If you want to be able to follow the development branch as it changes just replace the last step with (Make
sure you have setuptools installed):

> python setupegg.py develop

This creates links in the right places and installs the command line script to the appropriate places. Then, if
you want to update your matplotlib at any time, just do:

> svn update

When you run svn update, if the output shows that only Python files have been updated, you are all set. If C
files have changed, you need to run the python setupegg develop command again to compile them.

There is more information on using Subversion in the developer docs.

21.5 Install from git

See Using git.

21.6 Backends

21.6.1 What is a backend?

A lot of documentation on the website and in the mailing lists refers to the “backend” and many new
users are confused by this term. matplotlib targets many different use cases and output formats. Some
people use matplotlib interactively from the python shell and have plotting windows pop up when they type
commands. Some people embed matplotlib into graphical user interfaces like wxpython or pygtk to build
rich applications. Others use matplotlib in batch scripts to generate postscript images from some numerical
simulations, and still others in web application servers to dynamically serve up graphs.

21.4. Install from svn 187

Matplotlib, Release 1.0.0

To support all of these use cases, matplotlib can target different outputs, and each of these capabililities is
called a backend; the “frontend” is the user facing code, ie the plotting code, whereas the “backend” does
all the dirty work behind the scenes to make the figure. There are two types of backends: user interface
backends (for use in pygtk, wxpython, tkinter, qt, macosx, or fltk) and hardcopy backends to make image
files (PNG, SVG, PDF, PS).

There are a two primary ways to configure your backend. One is to set the backend parameter in you
matplotlibrc file (see Customizing matplotlib):

backend : WXAgg # use wxpython with antigrain (agg) rendering

The other is to use the matplotlib use() directive:

import matplotlib
matplotlib.use(’PS’) # generate postscript output by default

If you use the use directive, this must be done before importing matplotlib.pyplot or
matplotlib.pylab.

If you are unsure what to do, and just want to get cranking, just set your backend to TkAgg. This will do
the right thing for 95% of the users. It gives you the option of running your scripts in batch or working
interactively from the python shell, with the least amount of hassles, and is smart enough to do the right
thing when you ask for postscript, or pdf, or other image formats.

If however, you want to write graphical user interfaces, or a web application server (Matplotlib in a web
application server), or need a better understanding of what is going on, read on. To make things a little
more customizable for graphical user interfaces, matplotlib separates the concept of the renderer (the thing
that actually does the drawing) from the canvas (the place where the drawing goes). The canonical renderer
for user interfaces is Agg which uses the antigrain C++ library to make a raster (pixel) image of the figure.
All of the user interfaces can be used with agg rendering, eg WXAgg, GTKAgg, QTAgg, TkAgg, CocoaAgg. In
addition, some of the user interfaces support other rendering engines. For example, with GTK, you can also
select GDK rendering (backend GTK) or Cairo rendering (backend GTKCairo).

For the rendering engines, one can also distinguish between vector or raster renderers. Vector graphics
languages issue drawing commands like “draw a line from this point to this point” and hence are scale free,
and raster backends generate a pixel represenation of the line whose accuracy depends on a DPI setting.

Here is a summary of the matplotlib renderers (there is an eponymous backed for each):

Renderer Filetypes Description
AGG png raster graphics – high quality images using the Anti-Grain Geometry engine
PS ps eps vector graphics – Postscript output
PDF pdf vector graphics – Portable Document Format
SVG svg vector graphics – Scalable Vector Graphics
Cairo png ps pdf svg ... vector graphics – Cairo graphics
GDK png jpg tiff ... raster graphics – the Gimp Drawing Kit

And here are the user interfaces and renderer combinations supported:

188 Chapter 21. Installation FAQ

http://antigrain.html
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://www.antigrain.com/
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Cairo_(graphics)
http://en.wikipedia.org/wiki/GDK

Matplotlib, Release 1.0.0

Backend Description
GTKAgg Agg rendering to a GTK canvas (requires PyGTK)
GTK GDK rendering to a GTK canvas (not recommended) (requires PyGTK)
GTKCairo Cairo rendering to a GTK Canvas (requires PyGTK)
WXAgg Agg rendering to to a wxWidgets canvas (requires wxPython)
WX Native wxWidgets drawing to a wxWidgets Canvas (not recommended) (requires wxPython)
TkAgg Agg rendering to a Tk canvas (requires TkInter)
QtAgg Agg rendering to a Qt canvas (requires PyQt)
Qt4Agg Agg rendering to a Qt4 canvas (requires PyQt4)
FLTKAgg Agg rendering to a FLTK canvas (requires pyFLTK)
macosx Cocoa rendering in OSX windows

21.6.2 Compile matplotlib with PyGTK-2.4

There is a bug in PyGTK-2.4. You need to edit pygobject.h to add the G_BEGIN_DECLS and G_END_DECLS
macros, and rename typename parameter to typename_:

- const char *typename,
+ const char *typename_,

21.7 OS-X questions

21.7.1 Which python for OS X?

Apple ships with its own python, many users have had trouble with it so there are alternatives. If it is feasible
for you, we recommend the enthought python distribution EPD for OS X (which comes with matplotlib and
much more) or the MacPython or the official OS X version from python.org.

21.7.2 Installing OSX binaries

If you want to install matplotlib from one of the binary installers we build, you have two choices: a
mpkg installer, which is a typical Installer.app, or an binary OSX egg, which you can install via setuptools
easy_install.

The mkpg installer will have a “zip” extension, and will have a name like file:matplotlib-0.99.0.rc1-py2.5-
macosx10.5_mpkg.zip depending on the python, matplotlib, and OSX versions. You need to unzip this file
using either the “unzip” command on OSX, or simply double clicking on it to run StuffIt Expander. When
you double click on the resultant mpkd directory, which will have a name like file:matplotlib-0.99.0.rc1-
py2.5-macosx10.5.mpkg, it will run the Installer.app, prompt you for a password if you need system wide
installation privileges, and install to a directory like file:/Library/Python/2.5/site-packages/, again depedend-
ing on your python version. This directory may not be in your python path, so you can test your installation
with:

> python -c ’import matplotlib; print matplotlib.__version__, matplotlib.__file__’

21.7. OS-X questions 189

http://www.pygtk.org
http://www.pygtk.org
http://www.pygtk.org
http://www.wxpython.org/
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://pyfltk.sourceforge.net
http://bugzilla.gnome.org/show_bug.cgi?id=155304
http://www.enthought.com/products/epd.php
http://wiki.python.org/moin/MacPython/Leopard
http://www.python.org/download/

Matplotlib, Release 1.0.0

If you get an error like:

Traceback (most recent call last):
File "<string>", line 1, in <module>

ImportError: No module named matplotlib

then you will need to set your PYTHONPATH, eg:

export PYTHONPATH=/Library/Python/2.5/site-packages:$PYTHONPATH

See also ref:environment-variables.

21.7.3 easy_install from egg

You can also us the eggs we build for OSX (see the installation instructions for easy_install if you do not
have it on your system already). You can try:

> easy_install matplotlib

which should grab the latest egg from the sourceforge site, but the naming conventions for OSX eggs appear
to be broken (see below) so there is no guarantee the right egg will be found. We recommend you download
the latest egg from our download site directly to your harddrive, and manually install it with

> easy_install –install-dir=~/dev/lib/python2.5/site-packages/ matplotlib-0.99.0.rc1-py2.5-
macosx-10.5-i386.egg

Some users have reported problems with the egg for 0.98 from the matplotlib download site, with
easy_install, getting an error:

> easy_install ./matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg
Processing matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg
removing ’/Library/Python/2.5/site-packages/matplotlib-0.98.0-py2.5-
...snip...
Reading http://matplotlib.sourceforge.net
Reading http://cheeseshop.python.org/pypi/matplotlib/0.91.3
No local packages or download links found for matplotlib==0.98.0
error: Could not find suitable distribution for
Requirement.parse(’matplotlib==0.98.0’)

If you rename matplotlib-0.98.0-py2.5-macosx-10.3-fat.egg to
matplotlib-0.98.0-py2.5.egg, easy_install will install it from the disk. Many Mac OS X
eggs with cruft at the end of the filename, which prevents their installation through easy_install. Renaming
is all it takes to install them; still, it’s annoying.

21.7.4 Building and installing from source on OSX with EPD

If you have the EPD installed (Which python for OS X?), it might turn out to be rather tricky to install a
new version of matplotlib from source on the Mac OS 10.5 . Here’s a procedure that seems to work, at least
sometimes:

190 Chapter 21. Installation FAQ

http://pypi.python.org/pypi/setuptools#cygwin-mac-os-x-linux-other
http://sourceforge.net/projects/matplotlib/files/

Matplotlib, Release 1.0.0

1. Remove the ~/.matplotlib folder (“rm -rf ~/.matplotlib”).

1. Edit the file (make a backup before you start, just in case):
/Library/Frameworks/Python.framework/Versions/Current/lib/python2.5/config/Makefile,
removing all occurrences of the string -arch ppc, changing the line MACOSX_DEPLOYMENT_TARGET=10.3
to MACOSX_DEPLOYMENT_TARGET=10.5 and changing the occurrences of MacOSX10.4u.sdk into
MacOSX10.5.sdk

2. In /Library/Frameworks/Python.framework/Versions/Current/lib/pythonX.Y/site-packages/easy-install.pth,
(where X.Y is the version of Python you are building against) Comment out the line containing the
name of the directory in which the previous version of MPL was installed (Looks something like
./matplotlib-0.98.5.2n2-py2.5-macosx-10.3-fat.egg).

1. Save the following as a shell script , for example ./install-matplotlib-epd-osx.sh

NAME=matplotlib
VERSION=0_99
PREFIX=$HOME
#branch="release"
branch="trunk"
if [$branch = "trunk"]

then
echo getting the trunk
svn co https://matplotlib.svn.sourceforge.net/svnroot/$NAME/trunk/$NAME $NAME
cd $NAME

fi
if [$branch = "release"]

then
echo getting the maintenance branch
svn co https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v${VERSION}_maint $NAME$VERSION
cd $NAME$VERSION

fi
export CFLAGS="-Os -arch i386"
export LDFLAGS="-Os -arch i386"
export PKG_CONFIG_PATH="/usr/x11/lib/pkgconfig"
export ARCHFLAGS="-arch i386"
python setup.py build
python setup.py install #--prefix=$PREFIX #Use this if you don’t want it installed into your default location
cd ..

Run this script (for example sh ./install-matplotlib-epd-osx.sh) in the directory in which you
want the source code to be placed, or simply type the commands in the terminal command line. This script
sets some local variable (CFLAGS, LDFLAGS, PKG_CONFIG_PATH, ARCHFLAGS), removes previous
installations, checks out the source from svn, builds and installs it. The backend seems to be set to MacOSX.

21.7. OS-X questions 191

Matplotlib, Release 1.0.0

21.8 Windows questions

21.8.1 Binary installers for windows

If you have already installed python, you can use one of the matplotlib binary installers for windows – you
can get these from the sourceforge download site. Choose the files that match your version of python (eg
py2.5 if you installed Python 2.5) which have the exe extension. If you haven’t already installed python,
you can get the official version from the python web site. There are also two packaged distributions of
python that come preloaded with matplotlib and many other tools like ipython, numpy, scipy, vtk and user
interface toolkits. These packages are quite large because they come with so much, but you get everything
with a single click installer.

• the enthought python distribution EPD

• python (x, y)

192 Chapter 21. Installation FAQ

http://sourceforge.net/project/platformdownload.php?group_id=80706
http://python.org/download/
http://www.enthought.com/products/epd.php
http://www.pythonxy.com/foreword.php

CHAPTER

TWENTYTWO

USAGE

Contents

• Usage
– Matplotlib, pylab, and pyplot: how are they related?

22.1 Matplotlib, pylab, and pyplot: how are they related?

Matplotlib is the whole package; pylab is a module in matplotlib that gets installed alongside matplotlib;
and matplotlib.pyplot is a module in matplotlib.

Pyplot provides a MATLAB-style state-machine interface to the underlying object-oriented plotting library
in matplotlib.

Pylab combines the pyplot functionality (for plotting) with the numpy functionality (for mathematics and for
working with arrays) in a single namespace, making that namespace (or environment) even more MATLAB-
like. This is what you get if you use the ipython shell with the -pylab option, which imports everything from
pylab and makes plotting fully interactive.

We have been gradually converting the matplotlib examples from pure MATLAB-style, using “from pylab
import *”, to a preferred style in which pyplot is used for some convenience functions, either pyplot or the
object-oriented style is used for the remainder of the plotting code, and numpy is used explicitly for numeric
array operations.

In this preferred style, the imports at the top are:

import matplotlib.pyplot as plt
import numpy as np

Then one calls, for example, np.arange, np.zeros, np.pi, plt.figure, plt.plot, plt.show, etc.

Example, pure MATLAB-style:

from pylab import *
x = arange(0, 10, 0.2)
y = sin(x)

193

Matplotlib, Release 1.0.0

plot(x, y)
show()

Now in preferred style, but still using pyplot interface:

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
plt.plot(x, y)
plt.show()

And using pyplot convenience functions, but object-orientation for the rest:

import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y)
plt.show()

So, why do all the extra typing required as one moves away from the pure MATLAB-style? For very simple
things like this example, the only advantage is educational: the wordier styles are more explicit, more clear
as to where things come from and what is going on. For more complicated applications, the explicitness and
clarity become increasingly valuable, and the richer and more complete object-oriented interface will likely
make the program easier to write and maintain.

194 Chapter 22. Usage

CHAPTER

TWENTYTHREE

HOWTO

Contents

• Howto
– Plotting: howto

* Find all objects in figure of a certain type

* Save transparent figures

* Save multiple plots in one pdf file

* Move the edge of an axes to make room for tick labels

* Automatically make room for tick labels

* Configure the tick linewidths

* Align my ylabels across multiple subplots

* Skip dates where there is no data

* Test whether a point is inside a polygon

* Control the depth of plot elements

* Make the aspect ratio for plots equal

* Make a movie

* Multiple y-axis scales

* Generate images without having a window popup

* Use show()
– Contributing: howto

* Submit a patch

* Contribute to matplotlib documentation
– Matplotlib in a web application server

* matplotlib with apache

* matplotlib with django

* matplotlib with zope

* Clickable images for HTML
– Search examples

195

Matplotlib, Release 1.0.0

23.1 Plotting: howto

23.1.1 Find all objects in figure of a certain type

Every matplotlib artist (see Artist tutorial) has a method called findobj() that can be used to recursively
search the artist for any artists it may contain that meet some criteria (eg match all Line2D instances or
match some arbitrary filter function). For example, the following snippet finds every object in the figure
which has a set_color property and makes the object blue:

def myfunc(x):
return hasattr(x, ’set_color’)

for o in fig.findobj(myfunc):
o.set_color(’blue’)

You can also filter on class instances:

import matplotlib.text as text
for o in fig.findobj(text.Text):

o.set_fontstyle(’italic’)

23.1.2 Save transparent figures

The savefig() command has a keyword argument transparent which, if True, will make the figure and
axes backgrounds transparent when saving, but will not affect the displayed image on the screen. If you
need finer grained control, eg you do not want full transparency or you to affect the screen displayed version
as well, you can set the alpha properties directly. The figure has a matplotlib.patches.Rectangle
instance called patch and the axes has a Rectangle instance called patch. You can set any property on them
directly (facecolor, edgecolor, linewidth, linestyle, alpha). Eg:

fig = plt.figure()
fig.patch.set_alpha(0.5)
ax = fig.add_subplot(111)
ax.patch.set_alpha(0.5)

If you need all the figure elements to be transparent, there is currently no global alpha setting, but you can
set the alpha channel on individual elements, eg:

ax.plot(x, y, alpha=0.5)
ax.set_xlabel(’volts’, alpha=0.5)

23.1.3 Save multiple plots in one pdf file

Many image file formats can only have one image per file, but some formats support multi-page files.
Currently only the pdf backend has support for this. To make a multi-page pdf file, first initialize the file:

196 Chapter 23. Howto

Matplotlib, Release 1.0.0

from matplotlib.backends.backend_pdf import PdfPages
pp = PdfPages(’multipage.pdf’)

You can give the PdfPages object to savefig(), but you have to specify the format:

savefig(pp, format=’pdf’)

A simpler way is to call PdfPages.savefig:

pp.savefig()

Finally, the multipage pdf object has to be closed:

pp.close()

23.1.4 Move the edge of an axes to make room for tick labels

For subplots, you can control the default spacing on the left, right, bottom, and top as
well as the horizontal and vertical spacing between multiple rows and columns using the
matplotlib.figure.Figure.subplots_adjust() method (in pyplot it is subplots_adjust()). For
example, to move the bottom of the subplots up to make room for some rotated x tick labels:

fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

You can control the defaults for these parameters in your matplotlibrc file; see Customizing matplotlib.
For example, to make the above setting permanent, you would set:

figure.subplot.bottom : 0.2 # the bottom of the subplots of the figure

The other parameters you can configure are, with their defaults

left = 0.125 the left side of the subplots of the figure

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = 0.2 the amount of width reserved for blank space between subplots

hspace = 0.2 the amount of height reserved for white space between subplots

If you want additional control, you can create an Axes using the axes() command (or equivalently the figure
matplotlib.figure.Figure.add_axes() method), which allows you to specify the location explicitly:

ax = fig.add_axes([left, bottom, width, height])

23.1. Plotting: howto 197

Matplotlib, Release 1.0.0

where all values are in fractional (0 to 1) coordinates. See axes_demo.py for an example of placing axes
manually.

23.1.5 Automatically make room for tick labels

In most use cases, it is enough to simpy change the subplots adjust parameters as described in Move the
edge of an axes to make room for tick labels. But in some cases, you don’t know ahead of time what your
tick labels will be, or how large they will be (data and labels outside your control may be being fed into
your graphing application), and you may need to automatically adjust your subplot parameters based on the
size of the tick labels. Any matplotlib.text.Text instance can report its extent in window coordinates
(a negative x coordinate is outside the window), but there is a rub.

The matplotlib.backend_bases.RendererBase instance, which is used to calculate the text size, is
not known until the figure is drawn (matplotlib.figure.Figure.draw()). After the window is drawn
and the text instance knows its renderer, you can call matplotlib.text.Text.get_window_extent().
One way to solve this chicken and egg problem is to wait until the figure is draw by con-
necting (matplotlib.backend_bases.FigureCanvasBase.mpl_connect()) to the “on_draw” signal
(DrawEvent) and get the window extent there, and then do something with it, eg move the left of the canvas
over; see Event handling and picking.

Here is that gets a bounding box in relative figure coordinates (0..1) of each of the labels and uses it to move
the left of the subplots over so that the tick labels fit in the figure

import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(10))
ax.set_yticks((2,5,7))
labels = ax.set_yticklabels((’really, really, really’, ’long’, ’labels’))

def on_draw(event):
bboxes = []
for label in labels:

bbox = label.get_window_extent()
the figure transform goes from relative coords->pixels and we
want the inverse of that
bboxi = bbox.inverse_transformed(fig.transFigure)
bboxes.append(bboxi)

this is the bbox that bounds all the bboxes, again in relative
figure coords
bbox = mtransforms.Bbox.union(bboxes)
if fig.subplotpars.left < bbox.width:

we need to move it over
fig.subplots_adjust(left=1.1*bbox.width) # pad a little
fig.canvas.draw()

return False

fig.canvas.mpl_connect(’draw_event’, on_draw)

198 Chapter 23. Howto

http://matplotlib.sf.net/examples/axes_demo.py

Matplotlib, Release 1.0.0

plt.show()

0 1 2 3 4 5 6 7 8 9

really, really, really

long

labels

23.1.6 Configure the tick linewidths

In matplotlib, the ticks are markers. All Line2D objects support a line (solid, dashed, etc) and a marker
(circle, square, tick). The tick linewidth is controlled by the “markeredgewidth” property:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(range(10))

for line in ax.get_xticklines() + ax.get_yticklines():
line.set_markersize(10)

plt.show()

The other properties that control the tick marker, and all markers, are markerfacecolor,
markeredgecolor, markeredgewidth, markersize. For more information on configuring ticks, see
Axis containers and Tick containers.

23.1. Plotting: howto 199

Matplotlib, Release 1.0.0

23.1.7 Align my ylabels across multiple subplots

If you have multiple subplots over one another, and the y data have different scales, you can often get ylabels
that do not align vertically across the multiple subplots, which can be unattractive. By default, matplotlib
positions the x location of the ylabel so that it does not overlap any of the y ticks. You can override this
default behavior by specifying the coordinates of the label. The example below shows the default behavior
in the left subplots, and the manual setting in the right subplots.

import numpy as np
import matplotlib.pyplot as plt

box = dict(facecolor=’yellow’, pad=5, alpha=0.2)

fig = plt.figure()
fig.subplots_adjust(left=0.2, wspace=0.6)

ax1 = fig.add_subplot(221)
ax1.plot(2000*np.random.rand(10))
ax1.set_title(’ylabels not aligned’)
ax1.set_ylabel(’misaligned 1’, bbox=box)
ax1.set_ylim(0, 2000)
ax3 = fig.add_subplot(223)
ax3.set_ylabel(’misaligned 2’,bbox=box)
ax3.plot(np.random.rand(10))

labelx = -0.3 # axes coords

ax2 = fig.add_subplot(222)
ax2.set_title(’ylabels aligned’)
ax2.plot(2000*np.random.rand(10))
ax2.set_ylabel(’aligned 1’, bbox=box)
ax2.yaxis.set_label_coords(labelx, 0.5)
ax2.set_ylim(0, 2000)

ax4 = fig.add_subplot(224)
ax4.plot(np.random.rand(10))
ax4.set_ylabel(’aligned 2’, bbox=box)
ax4.yaxis.set_label_coords(labelx, 0.5)

plt.show()

23.1.8 Skip dates where there is no data

When plotting time series, eg financial time series, one often wants to leave out days on which there is no
data, eg weekends. By passing in dates on the x-xaxis, you get large horizontal gaps on periods when there
is not data. The solution is to pass in some proxy x-data, eg evenly sampled indicies, and then use a custom
formatter to format these as dates. The example below shows how to use an ‘index formatter’ to achieve the
desired plot:

200 Chapter 23. Howto

Matplotlib, Release 1.0.0

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

m
is

a
lig

n
e
d
 1

ylabels not aligned

0 1 2 3 4 5 6 7 8 9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

m
is

a
lig

n
e
d
 2

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

a
lig

n
e
d
 1

ylabels aligned

0 1 2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
lig

n
e
d
 2

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as ticker

r = mlab.csv2rec(’../data/aapl.csv’)
r.sort()
r = r[-30:] # get the last 30 days

N = len(r)
ind = np.arange(N) # the evenly spaced plot indices

def format_date(x, pos=None):
thisind = np.clip(int(x+0.5), 0, N-1)
return r.date[thisind].strftime(’%Y-%m-%d’)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ind, r.adj_close, ’o-’)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
fig.autofmt_xdate()

plt.show()

23.1. Plotting: howto 201

Matplotlib, Release 1.0.0

23.1.9 Test whether a point is inside a polygon

The matplotlib.nxutils provides two high performance methods: for a single point use pnpoly() and
for an array of points use points_inside_poly(). For a discussion of the implementation see pnpoly.

In [25]: import numpy as np

In [26]: import matplotlib.nxutils as nx

In [27]: verts = np.array([[0,0], [0, 1], [1, 1], [1,0]], float)

In [28]: nx.pnpoly(0.5, 0.5, verts)
Out[28]: 1

In [29]: nx.pnpoly(0.5, 1.5, verts)
Out[29]: 0

In [30]: points = np.random.rand(10,2)*2

In [31]: points
Out[31]:
array([[1.03597426, 0.61029911],

[1.94061056, 0.65233947],
[1.08593748, 1.16010789],
[0.9255139 , 1.79098751],
[1.54564936, 1.15604046],
[1.71514397, 1.26147554],
[1.19133536, 0.56787764],
[0.40939549, 0.35190339],
[1.8944715 , 0.61785408],
[0.03128518, 0.48144145]])

In [32]: nx.points_inside_poly(points, verts)
Out[32]: array([False, False, False, False, False, False, False, True, False, True], dtype=bool)

23.1.10 Control the depth of plot elements

Within an axes, the order that the various lines, markers, text, collections, etc appear is determined by
the matplotlib.artist.Artist.set_zorder() property. The default order is patches, lines, text, with
collections of lines and collections of patches appearing at the same level as regular lines and patches,
respectively:

line, = ax.plot(x, y, zorder=10)

You can also use the Axes property matplotlib.axes.Axes.set_axisbelow() to control whether the
grid lines are placed above or below your other plot elements.

202 Chapter 23. Howto

http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

Matplotlib, Release 1.0.0

23.1.11 Make the aspect ratio for plots equal

The Axes property matplotlib.axes.Axes.set_aspect() controls the aspect ratio of the axes. You can
set it to be ‘auto’, ‘equal’, or some ratio which controls the ratio:

ax = fig.add_subplot(111, aspect=’equal’)

23.1.12 Make a movie

If you want to take an animated plot and turn it into a movie, the best approach is to save a series of image
files (eg PNG) and use an external tool to convert them to a movie. You can use mencoder, which is part of
the mplayer suite for this:

#fps (frames per second) controls the play speed
mencoder ’mf://*.png’ -mf type=png:fps=10 -ovc \\

lavc -lavcopts vcodec=wmv2 -oac copy -o animation.avi

The swiss army knife of image tools, ImageMagick’s convert works for this as well.

Here is a simple example script that saves some PNGs, makes them into a movie, and then cleans up:

import os, sys
import matplotlib.pyplot as plt

files = []
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111)
for i in range(50): # 50 frames

ax.cla()
ax.imshow(rand(5,5), interpolation=’nearest’)
fname = ’_tmp%03d.png’%i
print ’Saving frame’, fname
fig.savefig(fname)
files.append(fname)

print ’Making movie animation.mpg - this make take a while’
os.system("mencoder ’mf://_tmp*.png’ -mf type=png:fps=10 \\
-ovc lavc -lavcopts vcodec=wmv2 -oac copy -o animation.mpg")

23.1.13 Multiple y-axis scales

A frequent request is to have two scales for the left and right y-axis, which is possible using twinx() (more
than two scales are not currently supported, though it is on the wish list). This works pretty well, though
there are some quirks when you are trying to interactively pan and zoom, since both scales do not get the
signals.

The approach twinx() (and its sister twiny()) uses is to use 2 different axes, turning the axes rectangular
frame off on the 2nd axes to keep it from obscuring the first, and manually setting the tick locs and labels

23.1. Plotting: howto 203

http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
http://www.mplayerhq.hu
http://www.imagemagick.org/script/convert.php

Matplotlib, Release 1.0.0

as desired. You can use separate matplotlib.ticker formatters and locators as desired since the two axes are
independent:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(111)
t = np.arange(0.01, 10.0, 0.01)
s1 = np.exp(t)
ax1.plot(t, s1, ’b-’)
ax1.set_xlabel(’time (s)’)
ax1.set_ylabel(’exp’)

ax2 = ax1.twinx()
s2 = np.sin(2*np.pi*t)
ax2.plot(t, s2, ’r.’)
ax2.set_ylabel(’sin’)
plt.show()

23.1.14 Generate images without having a window popup

The easiest way to do this is use an image backend (see What is a backend?) such as Agg (for PNGs), PDF,
SVG or PS. In your figure generating script, just place call matplotlib.use() directive before importing
pylab or pyplot:

import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig(’myfig’)

See Also:

Matplotlib in a web application server For information about running matplotlib inside of a web application.

23.1.15 Use show()

The user interface backends need to start the GUI mainloop, and this is what show() does. It tells matplotlib
to raise all of the figure windows and start the mainloop. Because the mainloop is blocking, you should only
call this once per script, at the end. If you are using matplotlib to generate images only and do not want a
user interface window, you do not need to call show (see Generate images without having a window popup
and What is a backend?).

Because it is expensive to draw, matplotlib does not want to redrawing the figure many times in a script such
as the following:

plot([1,2,3]) # draw here ?
xlabel(’time’) # and here ?

204 Chapter 23. Howto

Matplotlib, Release 1.0.0

ylabel(’volts’) # and here ?
title(’a simple plot’) # and here ?
show()

It is possible to force matplotlib to draw after every command, which is what you usually want when working
interactively at the python console (see Using matplotlib in a python shell), but in a script you want to defer
all drawing until the script has executed. This is especially important for complex figures that take some
time to draw. show() is designed to tell matplotlib that you’re all done issuing commands and you want to
draw the figure now.

Note: show() should be called at most once per script and it should be the last line of your script. At that
point, the GUI takes control of the interpreter. If you want to force a figure draw, use draw() instead.

Many users are frustrated by show because they want it to be a blocking call that raises the figure, pauses the
script until the figure is closed, and then allows the script to continue running until the next figure is created
and the next show is made. Something like this:

WARNING : illustrating how NOT to use show
for i in range(10):

make figure i
show()

This is not what show does and unfortunately, because doing blocking calls across user interfaces can be
tricky, is currently unsupported, though we have made some progress towards supporting blocking events.

23.2 Contributing: howto

23.2.1 Submit a patch

First obtain a copy of matplotlib svn (see Install from svn) and make your changes to the matplotlib source
code or documentation and apply a svn diff. If it is feasible, do your diff from the top level directory, the one
that contains setup.py. Eg,:

> cd /path/to/matplotlib/source
> svn diff > mypatch.diff

and then post your patch to the matplotlib-devel mailing list. If you do not get a response within 24 hours,
post your patch to the sourceforge patch tracker, and follow up on the mailing list with a link to the source-
forge patch submissions. If you still do not hear anything within a week (this shouldn’t happen!), send us a
kind and gentle reminder on the mailing list.

If you have made lots of local changes and do not want to a diff against the entire tree, but rather against
a single directory or file, that is fine, but we do prefer svn diffs against the top level (where setup.py lives)
since it is nice to have a consistent way to apply them.

If you are posting a patch to fix a code bug, please explain your patch in words – what was broken before
and how you fixed it. Also, even if your patch is particularly simple, just a few lines or a single function
replacement, we encourage people to submit svn diffs against HEAD or the branch they are patching. It just

23.2. Contributing: howto 205

http://sourceforge.net/mail/?group_id=80706
http://sourceforge.net/tracker2/?atid=560722&group_id=80706&func=browse

Matplotlib, Release 1.0.0

makes life simpler for us, since we (fortunately) get a lot of contributions, and want to receive them in a stan-
dard format. If possible, for any non-trivial change, please include a complete, free-standing example that
the developers can run unmodified which shows the undesired behavior pre-patch and the desired behavior
post-patch, with a clear verbal description of what to look for. The original developer may have written the
function you are working on years ago, and may no longer be with the project, so it is quite possible you are
the world expert on the code you are patching and we want to hear as much detail as you can offer.

When emailing your patch and examples, feel free to paste any code into the text of the message, indeed we
encourage it, but also attach the patches and examples since many email clients screw up the formatting of
plain text, and we spend lots of needless time trying to reformat the code to make it usable.

You should check out the guide to developing matplotlib to make sure your patch abides by our coding
conventions The Matplotlib Developers’ Guide.

23.2.2 Contribute to matplotlib documentation

matplotlib is a big library, which is used in many ways, and the documentation we have only scratches the
surface of everything it can do. So far, the place most people have learned all these features are through
studying the examples (Search examples), which is a recommended and great way to learn, but it would
be nice to have more official narrative documentation guiding people through all the dark corners. This is
where you come in.

There is a good chance you know more about matplotlib usage in some areas, the stuff you do every day,
than many of the core developers who write most of the documentation. Just pulled your hair out compiling
matplotlib for windows? Write a FAQ or a section for the Installing page. Are you a digital signal processing
wizard? Write a tutorial on the signal analysis plotting functions like xcorr(), psd() and specgram().
Do you use matplotlib with django or other popular web application servers? Write a FAQ or tutorial and
we’ll find a place for it in the User’s Guide. Bundle matplotlib in a py2exe app? ... I think you get the idea.

matplotlib is documented using the sphinx extensions to restructured text ReST. sphinx is a extensible
python framework for documentation projects which generates HTML and PDF, and is pretty easy to write;
you can see the source for this document or any page on this site by clicking on Show Source link at the end
of the page in the sidebar (or here for this document).

The sphinx website is a good resource for learning sphinx, but we have put together a cheat-sheet at Docu-
menting matplotlib which shows you how to get started, and outlines the matplotlib conventions and exten-
sions, eg for including plots directly from external code in your documents.

Once your documentation contributions are working (and hopefully tested by actually building the docs) you
can submit them as a patch against svn. See Install from svn and Submit a patch. Looking for something to
do? Search for TODO.

23.3 Matplotlib in a web application server

Many users report initial problems trying to use maptlotlib in web application servers, because by default
matplotlib ships configured to work with a graphical user interface which may require an X11 connection.
Since many barebones application servers do not have X11 enabled, you may get errors if you don’t config-
ure matplotlib for use in these environments. Most importantly, you need to decide what kinds of images
you want to generate (PNG, PDF, SVG) and configure the appropriate default backend. For 99% of users,

206 Chapter 23. Howto

http://www.djangoproject.com/
http://www.py2exe.org/
http://sphinx.pocoo.org/index.html
http://docutils.sourceforge.net/rst.html

Matplotlib, Release 1.0.0

this will be the Agg backend, which uses the C++ antigrain rendering engine to make nice PNGs. The Agg
backend is also configured to recognize requests to generate other output formats (PDF, PS, EPS, SVG).
The easiest way to configure matplotlib to use Agg is to call:

do this before importing pylab or pyplot
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt

For more on configuring your backend, see What is a backend?.

Alternatively, you can avoid pylab/pyplot altogeher, which will give you a little more control, by calling the
API directly as shown in agg_oo.py .

You can either generate hardcopy on the filesystem by calling savefig:

do this before importing pylab or pyplot
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot([1,2,3])
fig.savefig(’test.png’)

or by saving to a file handle:

import sys
fig.savefig(sys.stdout)

Here is an example using the Python Imaging Library PIL. First the figure is saved to a StringIO objectm
which is then fed to PIL for further processing:

import StringIO, Image
imgdata = StringIO.StringIO()
fig.savefig(imgdata, format=’png’)
imgdata.seek(0) # rewind the data
im = Image.open(imgdata)

23.3.1 matplotlib with apache

TODO; see Contribute to matplotlib documentation.

23.3.2 matplotlib with django

TODO; see Contribute to matplotlib documentation.

23.3. Matplotlib in a web application server 207

http://antigrain.com
http://matplotlib.sf.net/examples/api/agg_oo.py

Matplotlib, Release 1.0.0

23.3.3 matplotlib with zope

TODO; see Contribute to matplotlib documentation.

23.3.4 Clickable images for HTML

Andrew Dalke of Dalke Scientific has written a nice article on how to make html click maps with matplotlib
agg PNGs. We would also like to add this functionality to SVG and add a SWF backend to support these
kind of images. If you are interested in contributing to these efforts that would be great.

23.4 Search examples

The nearly 300 code Matplotlib Examples included with the matplotlib source distribution are full-text
searchable from the Search Page page, but sometimes when you search, you get a lot of results from the The
Matplotlib API or other documentation that you may not be interested in if you just want to find a complete,
free-standing, working piece of example code. To facilitate example searches, we have tagged every code
example page with the keyword codex for code example which shouldn’t appear anywhere else on this site
except in the FAQ and in every example. So if you want to search for an example that uses an ellipse, Search
Page for codex ellipse.

208 Chapter 23. Howto

http://www.dalkescientific.com
http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html

CHAPTER

TWENTYFOUR

TROUBLESHOOTING

Contents

• Troubleshooting
– Obtaining matplotlib version
– matplotlib install location
– .matplotlib directory location
– Report a problem
– Problems with recent svn versions

24.1 Obtaining matplotlib version

To find out your matplotlib version number, import it and print the __version__ attribute:

>>> import matplotlib
>>> matplotlib.__version__
’0.98.0’

24.2 matplotlib install location

You can find what directory matplotlib is installed in by importing it and printing the __file__ attribute:

>>> import matplotlib
>>> matplotlib.__file__
’/home/jdhunter/dev/lib64/python2.5/site-packages/matplotlib/__init__.pyc’

24.3 .matplotlib directory location

Each user has a .matplotlib/ directory which may contain a matplotlibrc file and vari-
ous caches to improve matplotlib’s performance. To locate your .matplotlib/ directory, use
matplotlib.get_configdir():

209

Matplotlib, Release 1.0.0

>>> import matplotlib as mpl
>>> mpl.get_configdir()
’/home/darren/.matplotlib’

On unix like systems, this directory is generally located in your HOME directory. On windows, it is in your
documents and settings directory by default:

>>> import matplotlib
>>> mpl.get_configdir()

’C:\\Documents and Settings\\jdhunter\\.matplotlib’

If you would like to use a different configuration directory, you can do so by specifying the location in your
MPLCONFIGDIR environment variable – see Setting environment variables in Linux and OS-X.

24.4 Report a problem

If you are having a problem with matplotlib, search the mailing lists first: there’s a good chance someone
else has already run into your problem.

If not, please provide the following information in your e-mail to the mailing list:

• your operating system; on Linux/UNIX post the output of uname -a

• matplotlib version:

python -c ‘import matplotlib; print matplotlib.__version__‘

• where you obtained matplotlib (e.g. your Linux distribution’s packages or the matplotlib Sourceforge
site, or the enthought python distribution EPD.

• any customizations to your matplotlibrc file (see Customizing matplotlib).

• if the problem is reproducible, please try to provide a minimal, standalone Python script that demon-
strates the problem. This is the critical step. If you can’t post a piece of code that we can run and
reproduce your error, the chances of getting help are significantly diminished. Very often, the mere
act of trying to minimize your code to the smallest bit that produces the error will help you find a bug
in your code that is causing the problem.

• you can get very helpful debugging output from matlotlib by running your script with a
verbose-helpful or --verbose-debug flags and posting the verbose output the lists:

> python simple_plot.py --verbose-helpful > output.txt

If you compiled matplotlib yourself, please also provide

• any changes you have made to setup.py or setupext.py

• the output of:

210 Chapter 24. Troubleshooting

http://lists.sourceforge.net/mailman/listinfo/matplotlib-users
http://www.enthought.com/products/epd.php

Matplotlib, Release 1.0.0

rm -rf build
python setup.py build

The beginning of the build output contains lots of details about your platform that are useful for the
matplotlib developers to diagnose your problem.

• your compiler version – eg, gcc --version

Including this information in your first e-mail to the mailing list will save a lot of time.

You will likely get a faster response writing to the mailing list than filing a bug in the bug tracker. Most
developers check the bug tracker only periodically. If your problem has been determined to be a bug and
can not be quickly solved, you may be asked to file a bug in the tracker so the issue doesn’t get lost.

24.5 Problems with recent svn versions

First make sure you have a clean build and install (see Cleanly rebuild and reinstall everything), get the
latest svn update, install it and run a simple test script in debug mode:

rm -rf build
rm -rf /path/to/site-packages/matplotlib*
svn up
python setup.py install > build.out
python examples/pylab_examples/simple_plot.py --verbose-debug > run.out

and post build.out and run.out to the matplotlib-devel mailing list (please do not post svn problems to
the users list).

Of course, you will want to clearly describe your problem, what you are expecting and what you are getting,
but often a clean build and install will help. See also Report a problem.

24.5. Problems with recent svn versions 211

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel
http://lists.sourceforge.net/mailman/listinfo/matplotlib-users

Matplotlib, Release 1.0.0

212 Chapter 24. Troubleshooting

Part III

The Matplotlib Developers’ Guide

213

CHAPTER

TWENTYFIVE

CODING GUIDE

25.1 Version control

25.1.1 svn checkouts

Checking out everything in the trunk (matplotlib and toolkits):

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk \
matplotlib --username=youruser --password=yourpass

Checking out the main source:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/\
matplotlib mpl --username=youruser --password=yourpass

Branch checkouts, eg the 1.0.x maintenance branch:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/branches/\
v1_0_maint mpl1 --username=youruser --password=yourpass

25.1.2 Committing changes

When committing changes to matplotlib, there are a few things to bear in mind.

• if your changes are non-trivial, please make an entry in the CHANGELOG

• if you change the API, please document it in doc/api/api_changes.rst, and consider posting to
matplotlib-devel

• Are your changes python2.4 compatible? We still support 2.4, so avoid features new to 2.5

• Can you pass examples/tests/backend_driver.py? This is our poor man’s unit test.

• Can you add a test to unit/nose_tests.py to test your changes?

• If you have altered extension code, do you pass unit/memleak_hawaii3.py?

215

http://lists.sourceforge.net/mailman/listinfo/matplotlib-devel

Matplotlib, Release 1.0.0

• if you have added new files or directories, or reorganized existing ones, are the new files included in
the match patterns in MANIFEST.in. This file determines what goes into the source distribution of the
mpl build.

• Keep the maintenance branch (0.91) the latest release branch (eg 0.98.4) and trunk in sync where it
makes sense. If there is a bug on both that needs fixing, use svnmerge.py to keep them in sync. See
Using svnmerge below.

25.1.3 Using svnmerge

svnmerge is useful for making bugfixes to a maintenance branch, and then bringing those changes into the
trunk.

The basic procedure is:

• install svnmerge.py in your PATH:

> wget http://svn.apache.org/repos/asf/subversion/trunk/contrib/\
client-side/svnmerge/svnmerge.py

• get a svn checkout of the branch you’ll be making bugfixes to and the trunk (see above)

• Create and commit the bugfix on the branch.

• Then make sure you svn upped on the trunk and have no local modifications, and then from your
checkout of the svn trunk do:

svnmerge.py merge -S BRANCHNAME

Where BRANCHNAME is the name of the branch to merge from, e.g. v1_0_maint.

If you wish to merge only specific revisions (in an unusual situation), do:

> svnmerge.py merge -rNNN1-NNN2

where the NNN are the revision numbers. Ranges are also acceptable.

The merge may have found some conflicts (code that must be manually resolved). Correct those
conflicts, build matplotlib and test your choices. If you have resolved any conflicts, you can let svn
clean up the conflict files for you:

> svn -R resolved .

svnmerge.py automatically creates a file containing the commit messages, so you are ready to make
the commit:

> svn commit -F svnmerge-commit-message.txt

216 Chapter 25. Coding guide

http://www.orcaware.com/svn/wiki/Svnmerge.py

Matplotlib, Release 1.0.0

Setting up svnmerge

Note: The following applies only to release managers when there is a new release. Most developers will
not have to concern themselves with this.

• Creating a new branch from the trunk (if the release version is 1.0 at revision 8503):

> svn copy \
https://matplotlib.svn.sf.net/svnroot/matplotlib/trunk/matplotlib@8503 \
https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v1_0_maint \
-m "Creating maintenance branch for 1.0"

• You can add a new branch for the trunk to “track” using “svnmerge.py init”, e.g., from a working copy
of the trunk:

> svnmerge.py init https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/branches/v1_0_maint
property ’svnmerge-integrated’ set on ’.’

After doing a “svn commit” on this, this merge tracking is available to everyone, so there’s no need
for anyone else to do the “svnmerge init”.

• Tracking can later be removed with the “svnmerge.py uninit” command, e.g.:

> svnmerge.py -S v1_0_maint uninit

25.1.4 Using git

Some matplotlib developers are experimenting with using git on top of the subversion repository. Developers
are not required to use git, as subversion will remain the canonical central repository for the foreseeable
future.

Cloning the git mirror

There is an experimental matplotlib github mirror of the subversion repository. To make a local clone of it
in the directory matplotlib, enter the following commands:

Download the entire git repository into "matplotlib", name the source repository "svn".
git clone --origin svn git@github.com:astraw/matplotlib.git

Change into the newly created git repository.
cd matplotlib

Setup the subversion mirroring.
git svn init --trunk=trunk/matplotlib --prefix=svn/ https://matplotlib.svn.sourceforge.net/svnroot/matplotlib

Tell git svn to analyze the subversion history
git svn rebase -l

To install from this cloned repository, use the commands in the svn installation section:

25.1. Version control 217

http://github.com/astraw/matplotlib

Matplotlib, Release 1.0.0

> cd matplotlib
> python setup.py install

Note that it is not possible to interact with the matplotlib maintenance branches through git due to different
representations of source code repositories in svnmerge and git.

An example git workflow

The following is a suggested workflow for git/git-svn.

Start with a virgin tree in sync with the svn trunk on the git branch “trunk”:

git checkout trunk
git svn rebase

To create a new, local branch called “whizbang-branch”:

git checkout -b whizbang-branch

Do make commits to the local branch:

hack on a bunch of files
git add bunch of files
git commit -m "modified a bunch of files"
repeat this as necessary

Now, go back to the trunk branch and append the history of your branch to the git trunk branch, which will
end up as the svn trunk:

git checkout trunk
git svn rebase # Ensure we have most recent svn
git rebase whizbang-branch # Append whizbang changes to trunk branch
git svn dcommit -n # Check that this will apply to svn
git svn dcommit # Actually apply to svn

Finally, you may want to continue working on your whizbang-branch, so rebase it to the new trunk:

git checkout whizbang-branch
git rebase trunk

How was this git mirror set up?

These are notes for those interested in mirroring a subversion repository on github. I pieced this together by
lots of trial-and-error.

Step 1: Create a local mirror of the svn repository

218 Chapter 25. Coding guide

Matplotlib, Release 1.0.0

rsync -avzP rsync://matplotlib.svn.sourceforge.net/svn/matplotlib/ matplotlib-svn-rsync/

Step 2: Import the svn history into a new git repository

#!/bin/bash
set -e

TARGET=mpl.git.fixed
GIT=/home/astraw/git/bin/git
TRUNKBRANCH=trunk
SVNBRANCHPREFIX="svn/"

rm -rf $TARGET
mkdir $TARGET
cd $TARGET

$GIT init
$GIT svn init --rewrite-root=https://matplotlib.svn.sourceforge.net/svnroot/matplotlib \

--trunk=trunk/matplotlib --prefix=$SVNBRANCHPREFIX file:///mnt/workdisk/tmp/matplotlib-svn-rsync
$GIT svn fetch

now, make master branch track ${SVNBRANCHPREFIX}trunk
$GIT checkout master -b tmp
$GIT branch -d master
$GIT checkout ${SVNBRANCHPREFIX}trunk -b $TRUNKBRANCH
$GIT branch -D tmp
$GIT svn rebase -l

Step 3: Upload the git repository to github

#!/bin/bash
set -e

TARGET=mpl.git.fixed
GIT=/home/astraw/git/bin/git
TRUNKBRANCH=trunk
SVNBRANCHPREFIX="svn/"

cd $TARGET

$GIT remote add github git@github.com:astraw/matplotlib.git
git push github $TRUNKBRANCH:master

25.2 Style guide

25.2.1 Importing and name spaces

For numpy, use:

25.2. Style guide 219

http://www.numpy.org

Matplotlib, Release 1.0.0

import numpy as np
a = np.array([1,2,3])

For masked arrays, use:

import numpy.ma as ma

For matplotlib main module, use:

import matplotlib as mpl
mpl.rcParams[’xtick.major.pad’] = 6

For matplotlib modules (or any other modules), use:

import matplotlib.cbook as cbook

if cbook.iterable(z):
pass

We prefer this over the equivalent from matplotlib import cbook because the latter is ambiguous as
to whether cbook is a module or a function. The former makes it explicit that you are importing a module
or package. There are some modules with names that match commonly used local variable names, eg
matplotlib.lines or matplotlib.colors. To avoid the clash, use the prefix ‘m’ with the import
some.thing as mthing syntax, eg:

import matplotlib.lines as mlines
import matplotlib.transforms as transforms # OK
import matplotlib.transforms as mtransforms # OK, if you want to disambiguate
import matplotlib.transforms as mtrans # OK, if you want to abbreviate

25.2.2 Naming, spacing, and formatting conventions

In general, we want to hew as closely as possible to the standard coding guidelines for python written by
Guido in PEP 0008, though we do not do this throughout.

• functions and class methods: lower or lower_underscore_separated

• attributes and variables: lower or lowerUpper

• classes: Upper or MixedCase

Prefer the shortest names that are still readable.

Configure your editor to use spaces, not hard tabs. The standard indentation unit is always four spaces; if
there is a file with tabs or a different number of spaces it is a bug – please fix it. To detect and fix these and
other whitespace errors (see below), use reindent.py as a command-line script. Unless you are sure your
editor always does the right thing, please use reindent.py before checking changes into svn.

220 Chapter 25. Coding guide

http://www.python.org/dev/peps/pep-0008
http://svn.python.org/projects/doctools/trunk/utils/reindent.py

Matplotlib, Release 1.0.0

Keep docstrings uniformly indented as in the example below, with nothing to the left of the triple quotes.
The matplotlib.cbook.dedent() function is needed to remove excess indentation only if something
will be interpolated into the docstring, again as in the example below.

Limit line length to 80 characters. If a logical line needs to be longer, use parentheses to break it; do not use
an escaped newline. It may be preferable to use a temporary variable to replace a single long line with two
shorter and more readable lines.

Please do not commit lines with trailing white space, as it causes noise in svn diffs. Tell your editor to strip
whitespace from line ends when saving a file. If you are an emacs user, the following in your .emacs will
cause emacs to strip trailing white space upon saving for python, C and C++:

; and similarly for c++-mode-hook and c-mode-hook
(add-hook ’python-mode-hook

(lambda ()
(add-hook ’write-file-functions ’delete-trailing-whitespace)))

for older versions of emacs (emacs<22) you need to do:

(add-hook ’python-mode-hook
(lambda ()
(add-hook ’local-write-file-hooks ’delete-trailing-whitespace)))

25.2.3 Keyword argument processing

Matplotlib makes extensive use of **kwargs for pass-through customizations from one function to another.
A typical example is in matplotlib.pylab.text(). The definition of the pylab text function is a simple
pass-through to matplotlib.axes.Axes.text():

in pylab.py
def text(*args, **kwargs):

ret = gca().text(*args, **kwargs)
draw_if_interactive()
return ret

text() in simplified form looks like this, i.e., it just passes all args and kwargs on to
matplotlib.text.Text.__init__():

in axes.py
def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):

t = Text(x=x, y=y, text=s, **kwargs)

and __init__() (again with liberties for illustration) just passes them on to the
matplotlib.artist.Artist.update() method:

in text.py
def __init__(self, x=0, y=0, text=’’, **kwargs):

Artist.__init__(self)
self.update(kwargs)

25.2. Style guide 221

Matplotlib, Release 1.0.0

update does the work looking for methods named like set_property if property is a keyword argument.
I.e., no one looks at the keywords, they just get passed through the API to the artist constructor which looks
for suitably named methods and calls them with the value.

As a general rule, the use of **kwargs should be reserved for pass-through keyword arguments, as in the
example above. If all the keyword args are to be used in the function, and not passed on, use the key/value
keyword args in the function definition rather than the **kwargs idiom.

In some cases, you may want to consume some keys in the local function, and let others pass through. You
can pop the ones to be used locally and pass on the rest. For example, in plot(), scalex and scaley are
local arguments and the rest are passed on as Line2D() keyword arguments:

in axes.py
def plot(self, *args, **kwargs):

scalex = kwargs.pop(’scalex’, True)
scaley = kwargs.pop(’scaley’, True)
if not self._hold: self.cla()
lines = []
for line in self._get_lines(*args, **kwargs):

self.add_line(line)
lines.append(line)

Note: there is a use case when kwargs are meant to be used locally in the function (not passed on), but
you still need the **kwargs idiom. That is when you want to use *args to allow variable numbers of non-
keyword args. In this case, python will not allow you to use named keyword args after the *args usage, so
you will be forced to use **kwargs. An example is matplotlib.contour.ContourLabeler.clabel():

in contour.py
def clabel(self, *args, **kwargs):

fontsize = kwargs.get(’fontsize’, None)
inline = kwargs.get(’inline’, 1)
self.fmt = kwargs.get(’fmt’, ’%1.3f’)
colors = kwargs.get(’colors’, None)
if len(args) == 0:

levels = self.levels
indices = range(len(self.levels))

elif len(args) == 1:
...etc...

25.3 Documentation and docstrings

Matplotlib uses artist introspection of docstrings to support properties. All properties that you want to
support through setp and getp should have a set_property and get_property method in the Artist
class. Yes, this is not ideal given python properties or enthought traits, but it is a historical legacy for now.
The setter methods use the docstring with the ACCEPTS token to indicate the type of argument the method
accepts. Eg. in matplotlib.lines.Line2D:

in lines.py
def set_linestyle(self, linestyle):

222 Chapter 25. Coding guide

Matplotlib, Release 1.0.0

"""
Set the linestyle of the line

ACCEPTS: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’ | ’ ’ | ’’]
"""

Since matplotlib uses a lot of pass-through kwargs, eg. in every function that creates a line (plot(),
semilogx(), semilogy(), etc...), it can be difficult for the new user to know which kwargs are supported.
Matplotlib uses a docstring interpolation scheme to support documentation of every function that takes a
**kwargs. The requirements are:

1. single point of configuration so changes to the properties don’t require multiple docstring edits.

2. as automated as possible so that as properties change, the docs are updated automagically.

The functions matplotlib.artist.kwdocd and matplotlib.artist.kwdoc() to facilitate this. They
combine python string interpolation in the docstring with the matplotlib artist introspection facility that
underlies setp and getp. The kwdocd is a single dictionary that maps class name to a docstring of kwargs.
Here is an example from matplotlib.lines:

in lines.py
artist.kwdocd[’Line2D’] = artist.kwdoc(Line2D)

Then in any function accepting Line2D pass-through kwargs, eg. matplotlib.axes.Axes.plot():

in axes.py
def plot(self, *args, **kwargs):

"""
Some stuff omitted

The kwargs are Line2D properties:
%(Line2D)s

kwargs scalex and scaley, if defined, are passed on
to autoscale_view to determine whether the x and y axes are
autoscaled; default True. See Axes.autoscale_view for more
information
"""
pass

plot.__doc__ = cbook.dedent(plot.__doc__) % artist.kwdocd

Note there is a problem for Artist __init__ methods, eg. matplotlib.patches.Patch.__init__(),
which supports Patch kwargs, since the artist inspector cannot work until the class is fully defined
and we can’t modify the Patch.__init__.__doc__ docstring outside the class definition. There are
some some manual hacks in this case, violating the “single entry point” requirement above – see the
artist.kwdocd[’Patch’] setting in matplotlib.patches.

25.3. Documentation and docstrings 223

Matplotlib, Release 1.0.0

25.4 Developing a new backend

If you are working on a custom backend, the backend setting in matplotlibrc (Customizing matplotlib)
supports an external backend via the module directive. if my_backend.py is a matplotlib backend in your
PYTHONPATH, you can set use it on one of several ways

• in matplotlibrc:

backend : module://my_backend

• with the use directive is your script:

import matplotlib
matplotlib.use(’module://my_backend’)

• from the command shell with the -d flag:

> python simple_plot.py -d module://my_backend

25.5 Writing examples

We have hundreds of examples in subdirectories of file:matplotlib/examples in the trunk, and these are
automatically generated when the website it built to show up both in the examples and gallery sec-
tions of the website. Many people find these examples from the website, and do not have ready ac-
cess to the file:examples directory in which they reside. Thus any example data that is required for the
example should be provided through the sample_data svn directory, which can then be accessed using
matplotlib.cbook.get_sample_data(). First get a copy of the repository and svn add your data:

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/sample_data
cp ~/path/to/mydata.dat sample_data/
cd sample_data
svn add mydata.dat
svn commit -m ’added my data’

and then in your example code you can load it into a file handle with:

import matplotlib.cbook as cbook
fh = cbook.get_sample_data(’mydata.dat’)

The file will be fetched from the svn repo using urllib and updated when the revision number changes.

If you prefer just to get the full path to the file instead of an file object:

import matplotlib.cbook as cbook
datafile = cbook.get_sample_data(’mydata.dat’, asfileobj=False)
print ’datafile’, datafile

224 Chapter 25. Coding guide

http://matplotlib.sourceforge.net/examples/index.html
http://matplotlib.sourceforge.net/gallery.html

Matplotlib, Release 1.0.0

25.6 Testing

Matplotlib has a testing infrastructure based on nose, making it easy to write new tests. The tests are in
matplotlib.tests, and customizations to the nose testing infrastructure are in matplotlib.testing.
(There is other old testing cruft around, please ignore it while we consolidate our testing to these locations.)

25.6.1 Running the tests

Running the tests is simple. Make sure you have nose installed and type from within Python:

import matplotlib
matplotlib.test()

To run a single test from the command line, you can provide a dot-separated path to the module and function,
eg. (this is assuming the test is installed):

nosetests matplotlib.tests.test_simplification:test_clipping

25.6.2 Writing a simple test

Many elements of Matplotlib can be tested using standard tests. For example, here is a test from
matplotlib.tests.test_basic:

from nose.tools import assert_equal

def test_simple():
’’’very simple example test’’’
assert_equal(1+1,2)

Nose determines which functions are tests by searching for functions beginning with “test” in their name.

25.6.3 Writing an image comparison test

Writing an image based test is only slightly more difficult than a simple test. The main consideration is that
you must specify the “baseline”, or expected, images in the image_comparison() decorator. For example,
this test generates a single image and automatically tests it:

import numpy as np
import matplotlib
from matplotlib.testing.decorators import image_comparison
import matplotlib.pyplot as plt

@image_comparison(baseline_images=[’spines_axes_positions.png’])
def test_spines_axes_positions():

SF bug 2852168
fig = plt.figure()

25.6. Testing 225

http://somethingaboutorange.com/mrl/projects/nose/

Matplotlib, Release 1.0.0

x = np.linspace(0,2*np.pi,100)
y = 2*np.sin(x)
ax = fig.add_subplot(1,1,1)
ax.set_title(’centered spines’)
ax.plot(x,y)
ax.spines[’right’].set_position((’axes’,0.1))
ax.yaxis.set_ticks_position(’right’)
ax.spines[’top’].set_position((’axes’,0.25))
ax.xaxis.set_ticks_position(’top’)
ax.spines[’left’].set_color(’none’)
ax.spines[’bottom’].set_color(’none’)
fig.savefig(’spines_axes_positions.png’)

The mechanism for comparing images is extremely simple – it compares an image saved in the current
directory with one from the Matplotlib sample_data repository. The correspondence is done by matching
filenames, so ensure that:

• The filename given to savefig() is exactly the same as the filename given to image_comparison()
in the baseline_images argument.

• The correct image gets added to the sample_data respository with the name
test_baseline_<IMAGE_FILENAME.png>. (See Writing examples above for a description of
how to add files to the sample_data repository.)

25.6.4 Known failing tests

If you’re writing a test, you may mark it as a known failing test with the knownfailureif() decorator.
This allows the test to be added to the test suite and run on the buildbots without causing undue alarm. For
example, although the following test will fail, it is an expected failure:

from nose.tools import assert_equal
from matplotlib.testing.decorators import knownfailureif

@knownfailureif(True)
def test_simple_fail():

’’’very simple example test that should fail’’’
assert_equal(1+1,3)

Note that the first argument to the knownfailureif() decorator is a fail condition, which can be a value
such as True, False, or ‘indeterminate’, or may be a dynamically evaluated expression.

25.6.5 Creating a new module in matplotlib.tests

Let’s say you’ve added a new module named matplotlib.tests.test_whizbang_features. To
add this module to the list of default tests, append its name to default_test_modules in
lib/matplotlib/__init__.py.

226 Chapter 25. Coding guide

Matplotlib, Release 1.0.0

25.7 Licenses

Matplotlib only uses BSD compatible code. If you bring in code from another project make sure it has a
PSF, BSD, MIT or compatible license (see the Open Source Initiative licenses page for details on individual
licenses). If it doesn’t, you may consider contacting the author and asking them to relicense it. GPL and
LGPL code are not acceptable in the main code base, though we are considering an alternative way of
distributing L/GPL code through an separate channel, possibly a toolkit. If you include code, make sure you
include a copy of that code’s license in the license directory if the code’s license requires you to distribute
the license with it. Non-BSD compatible licenses are acceptable in matplotlib toolkits (eg basemap), but
make sure you clearly state the licenses you are using.

25.7.1 Why BSD compatible?

The two dominant license variants in the wild are GPL-style and BSD-style. There are countless other
licenses that place specific restrictions on code reuse, but there is an important difference to be considered
in the GPL and BSD variants. The best known and perhaps most widely used license is the GPL, which
in addition to granting you full rights to the source code including redistribution, carries with it an extra
obligation. If you use GPL code in your own code, or link with it, your product must be released under a
GPL compatible license. I.e., you are required to give the source code to other people and give them the
right to redistribute it as well. Many of the most famous and widely used open source projects are released
under the GPL, including linux, gcc, emacs and sage.

The second major class are the BSD-style licenses (which includes MIT and the python PSF license). These
basically allow you to do whatever you want with the code: ignore it, include it in your own open source
project, include it in your proprietary product, sell it, whatever. python itself is released under a BSD
compatible license, in the sense that, quoting from the PSF license page:

There is no GPL-like "copyleft" restriction. Distributing
binary-only versions of Python, modified or not, is allowed. There
is no requirement to release any of your source code. You can also
write extension modules for Python and provide them only in binary
form.

Famous projects released under a BSD-style license in the permissive sense of the last paragraph are the
BSD operating system, python and TeX.

There are several reasons why early matplotlib developers selected a BSD compatible license. matplotlib
is a python extension, and we choose a license that was based on the python license (BSD compatible).
Also, we wanted to attract as many users and developers as possible, and many software companies will
not use GPL code in software they plan to distribute, even those that are highly committed to open source
development, such as enthought, out of legitimate concern that use of the GPL will “infect” their code base
by its viral nature. In effect, they want to retain the right to release some proprietary code. Companies and
institutions who use matplotlib often make significant contributions, because they have the resources to get
a job done, even a boring one. Two of the matplotlib backends (FLTK and WX) were contributed by private
companies. The final reason behind the licensing choice is compatibility with the other python extensions
for scientific computing: ipython, numpy, scipy, the enthought tool suite and python itself are all distributed
under BSD compatible licenses. The other reason is licensing compatibility with the other python extensions

25.7. Licenses 227

http://www.opensource.org/licenses
http://enthought.com

Matplotlib, Release 1.0.0

for scientific computing: ipython, numpy, scipy, the enthought tool suite and python itself are all distributed
under BSD compatible licenses.

228 Chapter 25. Coding guide

CHAPTER

TWENTYSIX

DOCUMENTING MATPLOTLIB

26.1 Getting started

The documentation for matplotlib is generated from ReStructured Text using the Sphinx documentation
generation tool. Sphinx-0.5 or later is required. You might still run into problems, so most developers work
from the sphinx source repository (Mercurial based) because it is a rapidly evolving project:

hg clone http://bitbucket.org/birkenfeld/sphinx/
cd sphinx
python setup.py install

The documentation sources are found in the doc/ directory in the trunk. To build the users guide in html
format, cd into doc/ and do:

python make.py html

or:

./make.py html

you can also pass a latex flag to make.py to build a pdf, or pass no arguments to build everything.

The output produced by Sphinx can be configured by editing the conf.py file located in the doc/.

26.2 Organization of matplotlib’s documentation

The actual ReStructured Text files are kept in doc/users, doc/devel, doc/api and doc/faq. The main
entry point is doc/index.rst, which pulls in the index.rst file for the users guide, developers guide,
api reference, and faqs. The documentation suite is built as a single document in order to make the most
effective use of cross referencing, we want to make navigating the Matplotlib documentation as easy as
possible.

Additional files can be added to the various guides by including their base file name (the .rst extension is
not necessary) in the table of contents. It is also possible to include other documents through the use of an
include statement, such as:

229

http://sphinx.pocoo.org/

Matplotlib, Release 1.0.0

.. include:: ../../TODO

26.3 Formatting

The Sphinx website contains plenty of documentation concerning ReST markup and working with Sphinx
in general. Here are a few additional things to keep in mind:

• Please familiarize yourself with the Sphinx directives for inline markup. Matplotlib’s documentation
makes heavy use of cross-referencing and other semantic markup. For example, when referring to
external files, use the :file: directive.

• Function arguments and keywords should be referred to using the emphasis role. This will keep
matplotlib’s documentation consistant with Python’s documentation:

Here is a description of *argument*

Please do not use the default role:

Please do not describe ‘argument‘ like this.

nor the literal role:

Please do not describe ‘‘argument‘‘ like this.

• Sphinx does not support tables with column- or row-spanning cells for latex output. Such tables can
not be used when documenting matplotlib.

• Mathematical expressions can be rendered as png images in html, and in the usual way by latex. For
example:

:math:‘\sin(x_n^2)‘ yields: sin(x2
n), and:

.. math::

\int_{-\infty}^{\infty}\frac{e^{i\phi}}{1+x^2\frac{e^{i\phi}}{1+x^2}}

yields: ∫ ∞

−∞

eiφ

1 + x2 eiφ

1+x2

(26.1)

• Interactive IPython sessions can be illustrated in the documentation using the following directive:

.. sourcecode:: ipython

In [69]: lines = plot([1,2,3])

which would yield:

230 Chapter 26. Documenting matplotlib

http://sphinx.pocoo.org/contents.html
http://sphinx.pocoo.org/markup/inline.html

Matplotlib, Release 1.0.0

In [69]: lines = plot([1,2,3])

• Footnotes 1 can be added using [#]_, followed later by:

.. rubric:: Footnotes

.. [#]

• Use the note and warning directives, sparingly, to draw attention to important comments:

.. note::
Here is a note

yields:

Note: here is a note

also:

Warning: here is a warning

• Use the deprecated directive when appropriate:

.. deprecated:: 0.98
This feature is obsolete, use something else.

yields: Deprecated since version 0.98: This feature is obsolete, use something else.

• Use the versionadded and versionchanged directives, which have similar syntax to the deprecated
role:

.. versionadded:: 0.98
The transforms have been completely revamped.

New in version 0.98: The transforms have been completely revamped.

• Use the seealso directive, for example:

.. seealso::

Using ReST :ref:‘emacs-helpers‘:
One example

A bit about :ref:‘referring-to-mpl-docs‘:
One more

yields:

See Also:
1 For example.

26.3. Formatting 231

Matplotlib, Release 1.0.0

Using ResT Emacs helpers: One example

A bit about Referring to mpl documents: One more

• Please keep the Glossary in mind when writing documentation. You can create a references to a term
in the glossary with the :term: role.

• The autodoc extension will handle index entries for the API, but additional entries in the index need
to be explicitly added.

26.3.1 Docstrings

In addition to the aforementioned formatting suggestions:

• Please limit the text width of docstrings to 70 characters.

• Keyword arguments should be described using a definition list.

Note: matplotlib makes extensive use of keyword arguments as pass-through arguments, there are a
many cases where a table is used in place of a definition list for autogenerated sections of docstrings.

26.4 Figures

26.4.1 Dynamically generated figures

Figures can be automatically generated from scripts and included in the docs. It is not necessary to explicitly
save the figure in the script, this will be done automatically at build time to ensure that the code that is
included runs and produces the advertised figure. Several figures will be saved with the same basename as
the filename when the documentation is generated (low and high res PNGs, a PDF). Matplotlib includes a
Sphinx extension (sphinxext/plot_directive.py) for generating the images from the python script and
including either a png copy for html or a pdf for latex:

.. plot:: pyplots/pyplot_simple.py
:include-source:

If the script produces multiple figures (through multiple calls to pyplot.figure()), each will be given a
numbered file name and included.

The path should be relative to the doc directory. Any plots specific to the documentation should be added to
the doc/pyplots directory and committed to SVN. Plots from the examples directory may be referenced
through the symlink mpl_examples in the doc directory. eg.:

.. plot:: mpl_examples/pylab_examples/simple_plot.py

The :scale: directive rescales the image to some percentage of the original size, though we don’t recom-
mend using this in most cases since it is probably better to choose the correct figure size and dpi in mpl
and let it handle the scaling. :include-source: will present the contents of the file, marked up as source
code.

232 Chapter 26. Documenting matplotlib

http://sphinx.pocoo.org/markup/para.html#index-generating-markup

Matplotlib, Release 1.0.0

26.4.2 Static figures

Any figures that rely on optional system configurations need to be handled a little differently. These figures
are not to be generated during the documentation build, in order to keep the prerequisites to the documen-
tation effort as low as possible. Please run the doc/pyplots/make.py script when adding such figures,
and commit the script and the images to svn. Please also add a line to the README in doc/pyplots for any
additional requirements necessary to generate a new figure. Once these steps have been taken, these figures
can be included in the usual way:

.. plot:: pyplots/tex_unicode_demo.py
:include-source:

26.4.3 Examples

The source of the files in the examples directory are automatically included in the HTML docs. An image
is generated and included for all examples in the api and pylab_examples directories. To exclude the
example from having an image rendered, insert the following special comment anywhere in the script:

-*- noplot -*-

26.5 Referring to mpl documents

In the documentation, you may want to include to a document in the matplotlib src, e.g. a license file or an
image file from mpl-data, refer to it via a relative path from the document where the rst file resides, eg, in
users/navigation_toolbar.rst, we refer to the image icons with:

.. image:: ../../lib/matplotlib/mpl-data/images/subplots.png

In the users subdirectory, if I want to refer to a file in the mpl-data directory, I use the symlink directory. For
example, from customizing.rst:

.. literalinclude:: ../../lib/matplotlib/mpl-data/matplotlibrc

One exception to this is when referring to the examples dir. Relative paths are extremely confusing in the
sphinx plot extensions, so without getting into the dirty details, it is easier to simply include a symlink to the
files at the top doc level directory. This way, API documents like matplotlib.pyplot.plot() can refer
to the examples in a known location.

In the top level doc directory we have symlinks pointing to the mpl examples:

home:~/mpl/doc> ls -l mpl_*
mpl_examples -> ../examples

So we can include plots from the examples dir using the symlink:

26.5. Referring to mpl documents 233

Matplotlib, Release 1.0.0

.. plot:: mpl_examples/pylab_examples/simple_plot.py

We used to use a symlink for mpl-data too, but the distro becomes very large on platforms that do not
support links (eg the font files are duplicated and large)

26.6 Internal section references

To maximize internal consistency in section labeling and references, use hypen separated, descriptive labels
for section references, eg:

.. _howto-webapp:

and refer to it using the standard reference syntax:

See :ref:‘howto-webapp‘

Keep in mind that we may want to reorganize the contents later, so let’s avoid top level names in references
like user or devel or faq unless necesssary, because for example the FAQ “what is a backend?” could
later become part of the users guide, so the label:

.. _what-is-a-backend

is better than:

.. _faq-backend

In addition, since underscores are widely used by Sphinx itself, let’s prefer hyphens to separate words.

26.7 Section names, etc

For everything but top level chapters, please use Upper lower for section titles, eg Possible hangups
rather than Possible Hangups

26.8 Inheritance diagrams

Class inheritance diagrams can be generated with the inheritance-diagram directive. To use it, you
provide the directive with a number of class or module names (separated by whitespace). If a module name
is provided, all classes in that module will be used. All of the ancestors of these classes will be included in
the inheritance diagram.

A single option is available: parts controls how many of parts in the path to the class are shown. For
example, if parts == 1, the class matplotlib.patches.Patch is shown as Patch. If parts == 2, it is
shown as patches.Patch. If parts == 0, the full path is shown.

234 Chapter 26. Documenting matplotlib

Matplotlib, Release 1.0.0

Example:

.. inheritance-diagram:: matplotlib.patches matplotlib.lines matplotlib.text
:parts: 2

patches.YAArrow

patches.Patch

patches.Wedge

patches.Ellipse

patches.RegularPolygon

patches.FancyArrowPatch

patches.Rectangle

patches.PathPatch

patches.FancyBboxPatch

patches.Shadow

patches.Polygon

patches.Arrow

artist.Artist text.Text

lines.Line2D

text.TextWithDash

text.Annotation

patches.Circle

patches.Arc

patches.CirclePolygon

patches.ConnectionPatch

patches.ArrowStyle

patches._Style patches.BoxStyle

patches.ConnectionStyle

lines.VertexSelector

patches.FancyArrow

text._AnnotationBase

text.OffsetFrom

26.9 Emacs helpers

There is an emacs mode rst.el which automates many important ReST tasks like building and updateing
table-of-contents, and promoting or demoting section headings. Here is the basic .emacs configuration:

(require ’rst)
(setq auto-mode-alist

(append ’(("\\.txt$" . rst-mode)
("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

26.9. Emacs helpers 235

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

Matplotlib, Release 1.0.0

C-c TAB - rst-toc-insert

Insert table of contents at point

C-c C-u - rst-toc-update

Update the table of contents at point

C-c C-l rst-shift-region-left

Shift region to the left

C-c C-r rst-shift-region-right

Shift region to the right

236 Chapter 26. Documenting matplotlib

CHAPTER

TWENTYSEVEN

DOING A MATPLOLIB RELEASE

A guide for developers who are doing a matplotlib release

• Edit __init__.py and bump the version number

When doing a release

27.1 Testing

• Make sure examples/tests/backend_driver.py runs without errors and check the output of the
PNG, PDF, PS and SVG backends

• Run unit/memleak_hawaii3.py and make sure there are no memory leaks

• Run unit/nose_tests.py and make sure all the unit tests are passing

• try some GUI examples, eg simple_plot.py with GTKAgg, TkAgg, etc...

• remove font cache and tex cache from .matplotlib and test with and without cache on some exam-
ple script

27.2 Branching

Once all the tests are passing and you are ready to do a release, you need to create a release branch and
configure svn-merge to use it; Michael Droettboom should probably handle this step, but if he is not available
see instructions at Setting up svnmerge. On the bracnh, do any additional testing you want to do, and then
build binaries and source distributions for testing as release candidates.

27.3 Packaging

• Make sure the MANIFEST.in us up to date and remove MANIFEST so it will be rebuilt by MANI-
FEST.in

• run svn-clean from in the mpl svn directory before building the sdist

• unpack the sdist and make sure you can build from that directory

237

http://svn.collab.net/repos/svn/trunk/contrib/client-side/svn-clean

Matplotlib, Release 1.0.0

• Use setup.cfg to set the default backends. For windows and OSX, the default backend should be
TkAgg. You should also turn on or off any platform specific build options you need. Importantly,
you also need to make sure that you delete the build dir after any changes to file:setup.cfg before
rebuilding since cruft in the build dir can get carried along.

• on windows, unix2dos the rc file

• We have a Makefile for the OS X builds in the mpl source dir release/osx, so use this to prepare
the OS X releases.

• We have a Makefile for the win32 mingw builds in the mpl source dir release/win32
which you can use this to prepare the windows releases, but this is currently bro-
ken for python2.6 as described at http://www.nabble.com/binary-installers-for-python2.6–libpng-
segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html

27.4 Release candidate testing:

Post the release candidates to http://matplotlib.sf.net/release-candidates and post a message to matplotlib-
users and devel requesting testing. To post to the server, you can do:

> scp somefile.tgz jdh2358,matplotlib@shell.sf.net:/home/groups/m/ma/matplotlib/htdocs/release-candidates/

replacing ‘jdh2358’ with your sourceforge login.

Any changes to fix bugs in the release candidate should be fixed in the release branch and merged into the
trunk with svn-merge; see Using svnmerge. When the release candidate is signed off on, build the final sdist,
binaries and eggs, and upload them to the sourceforge release area.

27.5 Uploading

• Post the win32 and OS-X binaries for testing and make a request on matplotlib-devel for testing.
Pester us if we don’t respond

• ftp the source and binaries to the anonymous FTP site:

mpl> svn-clean
mpl> python setup.py sdist
mpl> cd dist/
dist> sftp jdh2358@frs.sourceforge.net
Connecting to frs.sourceforge.net...
sftp> cd uploads
sftp> ls
sftp> lls
matplotlib-0.98.2.tar.gz
sftp> put matplotlib-0.98.2.tar.gz
Uploading matplotlib-0.98.2.tar.gz to /incoming/j/jd/jdh2358/uploads/matplotlib-0.98.2.tar.gz

• go https://sourceforge.net/project/admin/explorer.php?group_id=80706 and do a file release. Click
on the “Admin” tab to log in as an admin, and then the “File Releases” tab. Go to the bottom and

238 Chapter 27. Doing a matplolib release

http://www.nabble.com/binary-installers-for-python2.6--libpng-segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html
http://www.nabble.com/binary-installers-for-python2.6--libpng-segfault%2C-MSVCR90.DLL-and-%09mingw-td23971661.html
http://matplotlib.sf.net/release-candidates
https://sourceforge.net/project/admin/explorer.php?group_id=80706

Matplotlib, Release 1.0.0

click “add release” and enter the package name but not the version number in the “Package Name”
box. You will then be prompted for the “New release name” at which point you can add the version
number, eg somepackage-0.1 and click “Create this release”.

You will then be taken to a fairly self explanatory page where you can enter the Change notes, the
release notes, and select which packages from the incoming ftp archive you want to include in this
release. For each binary, you will need to select the platform and file type, and when you are done
you click on the “notify users who are monitoring this package link”

27.6 Announcing

Announce the release on matplotlib-announce, matplotlib-users and matplotlib-devel. Include a summary
of highlights from the CHANGELOG and/or post the whole CHANGELOG since the last release.

27.6. Announcing 239

Matplotlib, Release 1.0.0

240 Chapter 27. Doing a matplolib release

CHAPTER

TWENTYEIGHT

WORKING WITH TRANSFORMATIONS

Affine2DBase

BboxTransformTo

BboxTransformFrom

Affine2D

ScaledTranslation

BboxTransform

CompositeAffine2D

IdentityTransform

BlendedAffine2D

AffineBase

Transform

TransformWrapper

CompositeGenericTransform

BlendedGenericTransform

BboxTransformToMaxOnly

Path

TransformedPathTransformNode

BboxBase TransformedBbox

Bbox

28.1 matplotlib.transforms

matplotlib includes a framework for arbitrary geometric transformations that is used determine the final
position of all elements drawn on the canvas.

Transforms are composed into trees of TransformNode objects whose actual value depends on their chil-
dren. When the contents of children change, their parents are automatically invalidated. The next time
an invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching
approach prevents unnecessary recomputations of transforms, and contributes to better interactive perfor-
mance.

For example, here is a graph of the transform tree used to plot data to the graph:

241

Matplotlib, Release 1.0.0

The framework can be used for both affine and non-affine transformations. However, for speed, we want
use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to
perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed
to occur after the non-affine. For any transform:

full transform == non-affine part + affine part

The backends are not expected to handle non-affine transformations themselves.

242 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

class TransformNode()
Bases: object

TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such as
bounding boxes, since some transforms depend on bounding boxes to compute their values.

Creates a new TransformNode.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

invalidate()
Invalidate this TransformNode and all of its ancestors. Should be called any time the transform
changes.

set_children(*children)
Set the children of the transform, to let the invalidation system know which transforms can
invalidate this transform. Should be called from the constructor of any transforms that depend
on other transforms.

class BboxBase()
Bases: matplotlib.transforms.TransformNode

This is the base class of all bounding boxes, and provides read-only access to its data. A mutable
bounding box is provided by the Bbox class.

The canonical representation is as two points, with no restrictions on their ordering. Convenience
properties are provided to get the left, bottom, right and top edges and width and height, but these are
not stored explicity.

Creates a new TransformNode.

anchored(c, container=None)
Return a copy of the Bbox, shifted to position c within a container.

c: may be either:

•a sequence (cx, cy) where cx and cy range from 0 to 1, where 0 is left or bottom and 1 is
right or top

•a string: - ‘C’ for centered - ‘S’ for bottom-center - ‘SE’ for bottom-left - ‘E’ for left - etc.

Optional argument container is the box within which the Bbox is positioned; it defaults to the
initial Bbox.

bounds
(property) Returns (x0, y0, width, height).

contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box or on its edge.

containsx(x)
Returns True if x is between or equal to x0 and x1.

28.1. matplotlib.transforms 243

Matplotlib, Release 1.0.0

containsy(y)
Returns True if y is between or equal to y0 and y1.

corners()
Return an array of points which are the four corners of this rectangle. For example, if this Bbox
is defined by the points (a, b) and (c, d), corners() returns (a, b), (a, d), (c, b) and (c, d).

count_contains(vertices)
Count the number of vertices contained in the Bbox.

vertices is a Nx2 Numpy array.

count_overlaps(bboxes)
Count the number of bounding boxes that overlap this one.

bboxes is a sequence of BboxBase objects

expanded(sw, sh)
Return a new Bbox which is this Bbox expanded around its center by the given factors sw and
sh.

extents
(property) Returns (x0, y0, x1, y1).

frozen()
TransformNode is the base class for anything that participates in the transform tree and needs to
invalidate its parents or be invalidated. This includes classes that are not really transforms, such
as bounding boxes, since some transforms depend on bounding boxes to compute their values.

fully_contains(x, y)
Returns True if (x, y) is a coordinate inside the bounding box, but not on its edge.

fully_containsx(x)
Returns True if x is between but not equal to x0 and x1.

fully_containsy(y)
Returns True if y is between but not equal to y0 and y1.

fully_overlaps(other)
Returns True if this bounding box overlaps with the given bounding box other, but not on its
edge alone.

height
(property) The height of the bounding box. It may be negative if y1 < y0.

intervalx
(property) intervalx is the pair of x coordinates that define the bounding box. It is not guar-
anteed to be sorted from left to right.

intervaly
(property) intervaly is the pair of y coordinates that define the bounding box. It is not guar-
anteed to be sorted from bottom to top.

inverse_transformed(transform)
Return a new Bbox object, statically transformed by the inverse of the given transform.

244 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

is_unit()
Returns True if the Bbox is the unit bounding box from (0, 0) to (1, 1).

max
(property) max is the top-right corner of the bounding box.

min
(property) min is the bottom-left corner of the bounding box.

overlaps(other)
Returns True if this bounding box overlaps with the given bounding box other.

p0
(property) p0 is the first pair of (x, y) coordinates that define the bounding box. It is not guaran-
teed to be the bottom-left corner. For that, use min.

p1
(property) p1 is the second pair of (x, y) coordinates that define the bounding box. It is not
guaranteed to be the top-right corner. For that, use max.

padded(p)
Return a new Bbox that is padded on all four sides by the given value.

rotated(radians)
Return a new bounding box that bounds a rotated version of this bounding box by the given
radians. The new bounding box is still aligned with the axes, of course.

shrunk(mx, my)
Return a copy of the Bbox, shrunk by the factor mx in the x direction and the factor my in the y
direction. The lower left corner of the box remains unchanged. Normally mx and my will be less
than 1, but this is not enforced.

shrunk_to_aspect(box_aspect, container=None, fig_aspect=1.0)
Return a copy of the Bbox, shrunk so that it is as large as it can be while having the desired
aspect ratio, box_aspect. If the box coordinates are relative—that is, fractions of a larger box
such as a figure—then the physical aspect ratio of that figure is specified with fig_aspect, so that
box_aspect can also be given as a ratio of the absolute dimensions, not the relative dimensions.

size
(property) The width and height of the bounding box. May be negative, in the same way as
width and height.

splitx(*args)
e.g., bbox.splitx(f1, f2, ...)

Returns a list of new Bbox objects formed by splitting the original one with vertical lines at
fractional positions f1, f2, ...

splity(*args)
e.g., bbox.splitx(f1, f2, ...)

Returns a list of new Bbox objects formed by splitting the original one with horizontal lines at
fractional positions f1, f2, ...

28.1. matplotlib.transforms 245

Matplotlib, Release 1.0.0

transformed(transform)
Return a new Bbox object, statically transformed by the given transform.

translated(tx, ty)
Return a copy of the Bbox, statically translated by tx and ty.

static union(bboxes)
Return a Bbox that contains all of the given bboxes.

width
(property) The width of the bounding box. It may be negative if x1 < x0.

x0
(property) x0 is the first of the pair of x coordinates that define the bounding box. x0 is not
guaranteed to be less than x1. If you require that, use xmin.

x1
(property) x1 is the second of the pair of x coordinates that define the bounding box. x1 is not
guaranteed to be greater than x0. If you require that, use xmax.

xmax
(property) xmax is the right edge of the bounding box.

xmin
(property) xmin is the left edge of the bounding box.

y0
(property) y0 is the first of the pair of y coordinates that define the bounding box. y0 is not
guaranteed to be less than y1. If you require that, use ymin.

y1
(property) y1 is the second of the pair of y coordinates that define the bounding box. y1 is not
guaranteed to be greater than y0. If you require that, use ymax.

ymax
(property) ymax is the top edge of the bounding box.

ymin
(property) ymin is the bottom edge of the bounding box.

class Bbox(points)
Bases: matplotlib.transforms.BboxBase

A mutable bounding box.

points: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]

If you need to create a Bbox object from another form of data, consider the static methods unit(),
from_bounds() and from_extents().

static from_bounds(x0, y0, width, height)
(staticmethod) Create a new Bbox from x0, y0, width and height.

width and height may be negative.

static from_extents(*args)
(staticmethod) Create a new Bbox from left, bottom, right and top.

246 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

The y-axis increases upwards.

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

ignore(value)
Set whether the existing bounds of the box should be ignored by subsequent calls to
update_from_data() or update_from_data_xy().

value:

•When True, subsequent calls to update_from_data() will ignore the existing bounds of
the Bbox.

•When False, subsequent calls to update_from_data() will include the existing bounds of
the Bbox.

mutated()
return whether the bbox has changed since init

mutatedx()
return whether the x-limits have changed since init

mutatedy()
return whether the y-limits have changed since init

set(other)
Set this bounding box from the “frozen” bounds of another Bbox.

set_points(points)
Set the points of the bounding box directly from a numpy array of the form: [[x0, y0], [x1, y1]].
No error checking is performed, as this method is mainly for internal use.

static unit()
(staticmethod) Create a new unit Bbox from (0, 0) to (1, 1).

update_from_data(x, y, ignore=None)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

x: a numpy array of x-values

y: a numpy array of y-values

ignore:

• when True, ignore the existing bounds of the Bbox.

• when False, include the existing bounds of the Bbox.

• when None, use the last value passed to ignore().

update_from_data_xy(xy, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

xy: a numpy array of 2D points

28.1. matplotlib.transforms 247

Matplotlib, Release 1.0.0

ignore:

• when True, ignore the existing bounds of the Bbox.

• when False, include the existing bounds of the Bbox.

• when None, use the last value passed to ignore().

updatex: when True, update the x values

updatey: when True, update the y values

update_from_path(path, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will have
positive width and height; x0 and y0 will be the minimal values.

path: a Path instance

ignore:

• when True, ignore the existing bounds of the Bbox.

• when False, include the existing bounds of the Bbox.

• when None, use the last value passed to ignore().

updatex: when True, update the x values

updatey: when True, update the y values

class TransformedBbox(bbox, transform)
Bases: matplotlib.transforms.BboxBase

A Bbox that is automatically transformed by a given transform. When either the child bounding box
or transform changes, the bounds of this bbox will update accordingly.

bbox: a child Bbox

transform: a 2D Transform

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]].

class Transform()
Bases: matplotlib.transforms.TransformNode

The base class of all TransformNode instances that actually perform a transformation.

All non-affine transformations should be subclasses of this class. New affine transformations should
be subclasses of Affine2D.

Subclasses of this class should override the following members (at minimum):

•input_dims

•output_dims

•transform()

•is_separable

248 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

•has_inverse

•inverted() (if has_inverse() can return True)

If the transform needs to do something non-standard with mathplotlib.path.Path objects, such
as adding curves where there were once line segments, it should override:

•transform_path()

Creates a new TransformNode.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(values)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(values)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_angles(angles, pts, radians=False, pushoff=1.0000000000000001e-05)
Performs transformation on a set of angles anchored at specific locations.

The angles must be a column vector (i.e., numpy array).

The pts must be a two-column numpy array of x,y positions (angle transforms currently only
work in 2D). This array must have the same number of rows as angles.

radians indicates whether or not input angles are given in radians (True) or degrees (False;
the default).

pushoff is the distance to move away from pts for determining transformed angles (see dis-
cussion of method below).

The transformed angles are returned in an array with the same size as angles.

The generic version of this method uses a very generic algorithm that transforms pts, as well as
locations very close to pts, to find the angle in the transformed system.

28.1. matplotlib.transforms 249

Matplotlib, Release 1.0.0

transform_non_affine(values)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed copy of path.

path: a Path instance.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_point(point)
A convenience function that returns the transformed copy of a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class TransformWrapper(child)
Bases: matplotlib.transforms.Transform

A helper class that holds a single child transform and acts equivalently to it.

This is useful if a node of the transform tree must be replaced at run time with a transform of a different
type. This class allows that replacement to correctly trigger invalidation.

Note that TransformWrapper instances must have the same input and output dimensions during their
entire lifetime, so the child transform may only be replaced with another child transform of the same
dimensions.

child: A class:Transform instance. This child may later be replaced with set().

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

250 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

set(child)
Replace the current child of this transform with another one.

The new child must have the same number of input and output dimensions as the current child.

class AffineBase()
Bases: matplotlib.transforms.Transform

The base class of all affine transformations of any number of dimensions.

get_affine()
Get the affine part of this transform.

get_matrix()
Get the underlying transformation matrix as a numpy array.

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class Affine2DBase()
Bases: matplotlib.transforms.AffineBase

The base class of all 2D affine transformations.

2D affine transformations are performed using a 3x3 numpy array:

a c e
b d f
0 0 1

This class provides the read-only interface. For a mutable 2D affine transformation, use Affine2D.

Subclasses of this class will generally only need to override a constructor and get_matrix() that
generates a custom 3x3 matrix.

28.1. matplotlib.transforms 251

Matplotlib, Release 1.0.0

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

static matrix_from_values(a, b, c, d, e, f)
(staticmethod) Create a new transformation matrix as a 3x3 numpy array of the form:

a c e
b d f
0 0 1

to_values()
Return the values of the matrix as a sequence (a,b,c,d,e,f)

transform(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_point(point)
A convenience function that returns the transformed copy of a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as a
sequence of length output_dims.

class Affine2D(matrix=None)
Bases: matplotlib.transforms.Affine2DBase

A mutable 2D affine transformation.

Initialize an Affine transform from a 3x3 numpy float array:

252 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

a c e
b d f
0 0 1

If matrix is None, initialize with the identity transform.

clear()
Reset the underlying matrix to the identity transform.

static from_values(a, b, c, d, e, f)
(staticmethod) Create a new Affine2D instance from the given values:

a c e
b d f
0 0 1

get_matrix()
Get the underlying transformation matrix as a 3x3 numpy array:

a c e
b d f
0 0 1

static identity()
(staticmethod) Return a new Affine2D object that is the identity transform.

Unless this transform will be mutated later on, consider using the faster IdentityTransform
class instead.

rotate(theta)
Add a rotation (in radians) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_around(x, y, theta)
Add a rotation (in radians) around the point (x, y) in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_deg(degrees)
Add a rotation (in degrees) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

rotate_deg_around(x, y, degrees)
Add a rotation (in degrees) around the point (x, y) in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

28.1. matplotlib.transforms 253

Matplotlib, Release 1.0.0

scale(sx, sy=None)
Adds a scale in place.

If sy is None, the same scale is applied in both the x- and y-directions.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

set(other)
Set this transformation from the frozen copy of another Affine2DBase object.

set_matrix(mtx)
Set the underlying transformation matrix from a 3x3 numpy array:

a c e
b d f
0 0 1

translate(tx, ty)
Adds a translation in place.

Returns self, so this method can easily be chained with more calls to rotate(), rotate_deg(),
translate() and scale().

class IdentityTransform()
Bases: matplotlib.transforms.Affine2DBase

A special class that does on thing, the identity transform, in a fast way.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

get_matrix()
Get the underlying transformation matrix as a numpy array.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

254 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class BlendedGenericTransform(x_transform, y_transform)
Bases: matplotlib.transforms.Transform

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This “generic” version can handle any given child transform in the x- and y-directions.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

28.1. matplotlib.transforms 255

Matplotlib, Release 1.0.0

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

class BlendedAffine2D(x_transform, y_transform)
Bases: matplotlib.transforms.Affine2DBase

A “blended” transform uses one transform for the x-direction, and another transform for the y-
direction.

This version is an optimization for the case where both child transforms are of type Affine2DBase.

Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

256 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

Both x_transform and y_transform must be 2D affine transforms.

You will generally not call this constructor directly but use the blended_transform_factory()
function instead, which can determine automatically which kind of blended transform to create.

get_matrix()
Get the underlying transformation matrix as a numpy array.

blended_transform_factory(x_transform, y_transform)
Create a new “blended” transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

A faster version of the blended transform is returned for the case where both child transforms are
affine.

class CompositeGenericTransform(a, b)
Bases: matplotlib.transforms.Transform

A composite transform formed by applying transform a then transform b.

This “generic” version can handle any two arbitrary transformations.

Create a new composite transform that is the result of applying transform a then transform b.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

frozen()
Returns a frozen copy of this transform node. The frozen copy will not update when its children
change. Useful for storing a previously known state of a transform where copy.deepcopy()
might normally be used.

get_affine()
Get the affine part of this transform.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(points)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_affine(points)
Performs only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

28.1. matplotlib.transforms 257

Matplotlib, Release 1.0.0

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_non_affine(points)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x
output_dims).

transform_path(path)
Returns a transformed copy of path.

path: a Path instance.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Returns a copy of path, transformed only by the affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

class CompositeAffine2D(a, b)
Bases: matplotlib.transforms.Affine2DBase

A composite transform formed by applying transform a then transform b.

This version is an optimization that handles the case where both a and b are 2D affines.

Create a new composite transform that is the result of applying transform a then transform b.

Both a and b must be instances of Affine2DBase.

You will generally not call this constructor directly but use the composite_transform_factory()
function instead, which can automatically choose the best kind of composite transform instance to
create.

get_matrix()
Get the underlying transformation matrix as a numpy array.

composite_transform_factory(a, b)
Create a new composite transform that is the result of applying transform a then transform b.

Shortcut versions of the blended transform are provided for the case where both child transforms are
affine, or one or the other is the identity transform.

258 Chapter 28. Working with transformations

Matplotlib, Release 1.0.0

Composite transforms may also be created using the ‘+’ operator, e.g.:

c = a + b

class BboxTransform(boxin, boxout)
Bases: matplotlib.transforms.Affine2DBase

BboxTransform linearly transforms points from one Bbox to another Bbox.

Create a new BboxTransform that linearly transforms points from boxin to boxout.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class BboxTransformTo(boxout)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformTo is a transformation that linearly transforms points from the unit bounding box to
a given Bbox.

Create a new BboxTransformTo that linearly transforms points from the unit bounding box to boxout.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class BboxTransformFrom(boxin)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformFrom linearly transforms points from a given Bbox to the unit bounding box.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class ScaledTranslation(xt, yt, scale_trans)
Bases: matplotlib.transforms.Affine2DBase

A transformation that translates by xt and yt, after xt and yt have been transformad by the given
transform scale_trans.

get_matrix()
Get the underlying transformation matrix as a numpy array.

class TransformedPath(path, transform)
Bases: matplotlib.transforms.TransformNode

A TransformedPath caches a non-affine transformed copy of the Path. This cached copy is auto-
matically updated when the non-affine part of the transform changes.

Create a new TransformedPath from the given Path and Transform.

get_fully_transformed_path()
Return a fully-transformed copy of the child path.

get_transformed_path_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied, along
with the affine part of the path necessary to complete the transformation.

28.1. matplotlib.transforms 259

Matplotlib, Release 1.0.0

get_transformed_points_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied,
along with the affine part of the path necessary to complete the transformation. Unlike
get_transformed_path_and_affine(), no interpolation will be performed.

nonsingular(vmin, vmax, expander=0.001, tiny=1.0000000000000001e-15, increasing=True)
Ensure the endpoints of a range are finite and not too close together.

“too close” means the interval is smaller than ‘tiny’ times the maximum absolute value.

If they are too close, each will be moved by the ‘expander’. If ‘increasing’ is True and vmin > vmax,
they will be swapped, regardless of whether they are too close.

If either is inf or -inf or nan, return - expander, expander.

260 Chapter 28. Working with transformations

CHAPTER

TWENTYNINE

ADDING NEW SCALES AND
PROJECTIONS TO MATPLOTLIB

Matplotlib supports the addition of custom procedures that transform the data before it is displayed.

There is an important distinction between two kinds of transformations. Separable transformations, working
on a single dimension, are called “scales”, and non-separable transformations, that handle data in two or
more dimensions at a time, are called “projections”.

From the user’s perspective, the scale of a plot can be set with set_xscale() and set_xscale(). Pro-
jections can be chosen using the projection keyword argument to the plot() or subplot() functions,
e.g.:

plot(x, y, projection="custom")

This document is intended for developers and advanced users who need to create new scales and projections
for matplotlib. The necessary code for scales and projections can be included anywhere: directly within a
plot script, in third-party code, or in the matplotlib source tree itself.

29.1 Creating a new scale

Adding a new scale consists of defining a subclass of matplotlib.scale.ScaleBase, that includes the
following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• A function to limit the range of the axis to acceptable values (limit_range_for_scale()). A log
scale, for instance, would prevent the range from including values less than or equal to zero.

• Locators (major and minor) that determine where to place ticks in the plot, and optionally, how to
adjust the limits of the plot to some “good” values. Unlike limit_range_for_scale(), which is
always enforced, the range setting here is only used when automatically setting the range of the plot.

• Formatters (major and minor) that specify how the tick labels should be drawn.

261

Matplotlib, Release 1.0.0

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_scale_example.py. There
are also some classes in matplotlib.scale that may be used as starting points.

29.2 Creating a new projection

Adding a new projection consists of defining a subclass of matplotlib.axes.Axes, that includes the
following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• Transformations for the gridlines, ticks and ticklabels. Custom projections will often need to place
these elements in special locations, and matplotlib has a facility to help with doing so.

• Setting up default values (overriding cla()), since the defaults for a rectilinear axes may not be
appropriate.

• Defining the shape of the axes, for example, an elliptical axes, that will be used to draw the background
of the plot and for clipping any data elements.

• Defining custom locators and formatters for the projection. For example, in a geographic projection,
it may be more convenient to display the grid in degrees, even if the data is in radians.

• Set up interactive panning and zooming. This is left as an “advanced” feature left to the reader, but
there is an example of this for polar plots in matplotlib.projections.polar.

• Any additional methods for additional convenience or features.

Once the class is defined, it must be registered with matplotlib so that the user can select it.

A full-fledged and heavily annotated example is in examples/api/custom_projection_example.py.
The polar plot functionality in matplotlib.projections.polar may also be of interest.

29.3 API documentation

29.3.1 matplotlib.scale

class LinearScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

The default linear scale.

get_transform()
The transform for linear scaling is just the IdentityTransform.

set_default_locators_and_formatters(axis)
Set the locators and formatters to reasonable defaults for linear scaling.

262 Chapter 29. Adding new scales and projections to matplotlib

Matplotlib, Release 1.0.0

class LogScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

A standard logarithmic scale. Care is taken so non-positive values are not plotted.

For computational efficiency (to push as much as possible to Numpy C code in the common cases),
this scale provides different transforms depending on the base of the logarithm:

•base 10 (Log10Transform)

•base 2 (Log2Transform)

•base e (NaturalLogTransform)

•arbitrary base (LogTransform)

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as invalid, or clipped
to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be a sequence of integers.
For example, in a log10 scale: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

get_transform()
Return a Transform instance appropriate for the given logarithm base.

limit_range_for_scale(vmin, vmax, minpos)
Limit the domain to positive values.

set_default_locators_and_formatters(axis)
Set the locators and formatters to specialized versions for log scaling.

class ScaleBase()
Bases: object

The base class for all scales.

Scales are separable transformations, working on a single dimension.

Any subclasses will want to override:

•name

•get_transform()

And optionally:

• set_default_locators_and_formatters()

• limit_range_for_scale()

get_transform()
Return the Transform object associated with this scale.

29.3. API documentation 263

Matplotlib, Release 1.0.0

limit_range_for_scale(vmin, vmax, minpos)
Returns the range vmin, vmax, possibly limited to the domain supported by this scale.

minpos should be the minimum positive value in the data. This is used by log scales to de-
termine a minimum value.

set_default_locators_and_formatters(axis)
Set the Locator and Formatter objects on the given axis to match this scale.

class SymmetricalLogScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the
origin.

Since the values close to zero tend toward infinity, there is a need to have a range around zero that is
linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid having the plot go to
infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be a sequence of integers.
For example, in a log10 scale: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

get_transform()
Return a SymmetricalLogTransform instance.

set_default_locators_and_formatters(axis)
Set the locators and formatters to specialized versions for symmetrical log scaling.

get_scale_docs()
Helper function for generating docstrings related to scales.

register_scale(scale_class)
Register a new kind of scale.

scale_class must be a subclass of ScaleBase.

scale_factory(scale, axis, **kwargs)
Return a scale class by name.

ACCEPTS: [linear | log | symlog]

29.3.2 matplotlib.projections

class ProjectionRegistry()
Bases: object

Manages the set of projections available to the system.

get_projection_class(name)
Get a projection class from its name.

264 Chapter 29. Adding new scales and projections to matplotlib

Matplotlib, Release 1.0.0

get_projection_names()
Get a list of the names of all projections currently registered.

register(*projections)
Register a new set of projection(s).

get_projection_class(projection=None)
Get a projection class from its name.

If projection is None, a standard rectilinear projection is returned.

get_projection_names()
Get a list of acceptable projection names.

projection_factory(projection, figure, rect, **kwargs)
Get a new projection instance.

projection is a projection name.

figure is a figure to add the axes to.

rect is a Bbox object specifying the location of the axes within the figure.

Any other kwargs are passed along to the specific projection constructor being used.

matplotlib.projections.polar

class PolarAxes(*args, **kwargs)
Bases: matplotlib.axes.Axes

A polar graph projection, where the input dimensions are theta, r.

Theta starts pointing east and goes anti-clockwise.

class InvertedPolarTransform(axis=None)
Bases: matplotlib.transforms.Transform

The inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta
and r.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(xy)
Performs the transformation on the given array of values.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

class PolarAffine(scale_transform, limits)
Bases: matplotlib.transforms.Affine2DBase

29.3. API documentation 265

Matplotlib, Release 1.0.0

The affine part of the polar projection. Scales the output so that maximum radius rests on the
edge of the axes circle.

limits is the view limit of the data. The only part of its bounds that is used is ymax (for the radius
maximum). The theta range is always fixed to (0, 2π).

get_matrix()
Get the underlying transformation matrix as a numpy array.

class PolarTransform(axis=None)
Bases: matplotlib.transforms.Transform

The base polar transform. This handles projection theta and r into Cartesian coordinate space x
and y, but does not perform the ultimate affine transformation into the correct position.

inverted()
Return the corresponding inverse transformation.

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

x === self.inverted().transform(self.transform(x))

transform(tr)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

transform_non_affine(tr)
Performs only the non-affine part of the transformation.

transform(values) is always equivalent to transform_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N
x output_dims).

transform_path(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Returns a copy of path, transformed only by the non-affine part of this transform.

path: a Path instance.

transform_path(path) is equivalent to transform_path_affine(transform_path_non_affine(values)).

266 Chapter 29. Adding new scales and projections to matplotlib

Matplotlib, Release 1.0.0

class RadialLocator(base)
Bases: matplotlib.ticker.Locator

Used to locate radius ticks.

Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base Locator
(which may be different depending on the scale of the r-axis.

class ThetaFormatter()
Bases: matplotlib.ticker.Formatter

Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a
degree symbol (°).

can_zoom()
Return True if this axes support the zoom box

format_coord(theta, r)
Return a format string formatting the coordinate using Unicode characters.

get_data_ratio()
Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0

set_rgrids(radii, labels=None, angle=None, rpad=None, fmt=None, **kwargs)
Set the radial locations and labels of the r grids.

The labels will appear at radial distances radii at the given angle in degrees.

labels, if not None, is a len(radii) list of strings of the labels to use at each radius.

If labels is None, the built-in formatter will be used.

rpad is a fraction of the max of radii which will pad each of the radial labels in the radial
direction.

Return value is a list of tuples (line, label), where line is Line2D instances and the label is Text
instances.

kwargs are optional text properties for the labels:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance

Continued on next page

29.3. API documentation 267

Matplotlib, Release 1.0.0

Table 29.1 – continued from previous page
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of floats

set_rscale(value, **kwargs)
call signature:

set_yscale(value)

Set the scaling of the y-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]

Different kwargs are accepted, depending on the scale: ‘linear’

‘log’

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be
masked as invalid, or clipped to a very small positive number

268 Chapter 29. Adding new scales and projections to matplotlib

Matplotlib, Release 1.0.0

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to
avoid having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

set_rticks(ticks, minor=False)
Set the y ticks with list of ticks

ACCEPTS: sequence of floats

Keyword arguments:

minor: [False | True] Sets the minor ticks if True

set_thetagrids(angles, labels=None, frac=None, fmt=None, **kwargs)
Set the angles at which to place the theta grids (these gridlines are equal along the theta dimen-
sion). angles is in degrees.

labels, if not None, is a len(angles) list of strings of the labels to use at each angle.

If labels is None, the labels will be fmt % angle

frac is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is
outside the axes and 0.95 is inside the axes.

Return value is a list of tuples (line, label), where line is Line2D instances and the label is Text
instances.

kwargs are optional text properties for the labels:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color

Continued on next page

29.3. API documentation 269

Matplotlib, Release 1.0.0

Table 29.2 – continued from previous page
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of floats

270 Chapter 29. Adding new scales and projections to matplotlib

CHAPTER

THIRTY

DOCS OUTLINE

Proposed chapters for the docs, who has responsibility for them, and who reviews them. The “unit” doesn’t
have to be a full chapter (though in some cases it will be), it may be a chapter or a section in a chapter.

User’s guide unit Author Status Reviewer
plotting 2-D arrays Eric has author Perry ? Darren
colormapping Eric has author ?
quiver plots Eric has author ?
histograms Manuel ? no author Erik Tollerud ?
bar / errorbar ? no author ?
x-y plots ? no author Darren
time series plots ? no author ?
date plots John has author ?
working with data John has author Darren
custom ticking ? no author ?
masked data Eric has author ?
patches ? no author ?
legends ? no author ?
animation John has author ?
collections ? no author ?
text - mathtext Michael accepted John
text - usetex Darren accepted John
text - annotations John submitted ?
fonts et al Michael ? no author Darren
pyplot tut John submitted Eric
configuration Darren submitted ?
win32 install Charlie ? no author Darren
os x install Charlie ? no author ?
linux install Darren has author ?
artist api John submitted ?
event handling John submitted ?
navigation John submitted ?
interactive usage ? no author ?
widgets ? no author ?
ui - gtk ? no author ?

Continued on next page

271

Matplotlib, Release 1.0.0

Table 30.1 – continued from previous page
ui - wx ? no author ?
ui - tk ? no author ?
ui - qt Darren has author ?
backend - pdf Jouni ? no author ?
backend - ps Darren has author ?
backend - svg ? no author ?
backend - agg ? no author ?
backend - cairo ? no author ?

Here is the ouline for the dev guide, much less fleshed out

Developer’s guide unit Author Status Reviewer
the renderer John has author Michael ?
the canvas John has author ?
the artist John has author ?
transforms Michael submitted John
documenting mpl Darren submitted John, Eric, Mike?
coding guide John complete Eric
and_much_more ? ? ?

We also have some work to do converting docstrings to ReST for the API Reference. Please be sure to
follow the few guidelines described in Formatting. Once it is converted, please include the module in the
API documentation and update the status in the table to “converted”. Once docstring conversion is complete
and all the modules are available in the docs, we can figure out how best to organize the API Reference and
continue from there.

Module Author Status
backend_agg needs conversion
backend_cairo needs conversion
backend_cocoa needs conversion
backend_emf needs conversion
backend_fltkagg needs conversion
backend_gdk needs conversion
backend_gtk needs conversion
backend_gtkagg needs conversion
backend_gtkcairo needs conversion
backend_mixed needs conversion
backend_pdf needs conversion
backend_ps Darren needs conversion
backend_qt Darren needs conversion
backend_qtagg Darren needs conversion
backend_qt4 Darren needs conversion
backend_qt4agg Darren needs conversion
backend_svg needs conversion
backend_template needs conversion
backend_tkagg needs conversion
backend_wx needs conversion

Continued on next page

272 Chapter 30. Docs outline

Matplotlib, Release 1.0.0

Table 30.2 – continued from previous page
backend_wxagg needs conversion
backends/tkagg needs conversion
config/checkdep Darren needs conversion
config/cutils Darren needs conversion
config/mplconfig Darren needs conversion
config/mpltraits Darren needs conversion
config/rcparams Darren needs conversion
config/rcsetup Darren needs conversion
config/tconfig Darren needs conversion
config/verbose Darren needs conversion
projections/__init__ Mike converted
projections/geo Mike converted (not included–experimental)
projections/polar Mike converted
afm converted
artist converted
axes converted
axis converted
backend_bases converted
cbook converted
cm converted
collections converted
colorbar converted
colors converted
contour needs conversion
dates Darren needs conversion
dviread Darren needs conversion
figure Darren needs conversion
finance Darren needs conversion
font_manager Mike converted
fontconfig_pattern Mike converted
image needs conversion
legend needs conversion
lines Mike & ??? converted
mathtext Mike converted
mlab John/Mike converted
mpl N/A
patches Mike converted
path Mike converted
pylab N/A
pyplot converted
quiver needs conversion
rcsetup needs conversion
scale Mike converted
table needs conversion
texmanager Darren needs conversion
text Mike converted

Continued on next page

273

Matplotlib, Release 1.0.0

Table 30.2 – continued from previous page
ticker John converted
transforms Mike converted
type1font needs conversion
units needs conversion
widgets needs conversion

And we might want to do a similar table for the FAQ, but that may also be overkill...

If you agree to author a unit, remove the question mark by your name (or add your name if there is no
candidate), and change the status to “has author”. Once you have completed draft and checked it in, you can
change the status to “submitted” and try to find a reviewer if you don’t have one. The reviewer should read
your chapter, test it for correctness (eg try your examples) and change the status to “complete” when done.

You are free to lift and convert as much material from the web site or the existing latex user’s guide as you
see fit. The more the better.

The UI chapters should give an example or two of using mpl with your GUI and any relevant info, such as
version, installation, config, etc... The backend chapters should cover backend specific configuration (eg PS
only options), what features are missing, etc...

Please feel free to add units, volunteer to review or author a chapter, etc...

It is probably easiest to be an editor. Once you have signed up to be an editor, if you have an author pester
the author for a submission every so often. If you don’t have an author, find one, and then pester them!
Your only two responsibilities are getting your author to produce and checking their work, so don’t be shy.
You do not need to be an expert in the subject you are editing – you should know something about it and be
willing to read, test, give feedback and pester!

30.1 Reviewer notes

If you want to make notes for the authorwhen you have reviewed a submission, you can put them here. As
the author cleans them up or addresses them, they should be removed.

30.1.1 mathtext user’s guide– reviewed by JDH

This looks good (see Writing mathematical expressions) – there are a few minor things to close the book on
this chapter:

1. The main thing to wrap this up is getting the mathtext module ported over to rest and included in
the API so the links from the user’s guide tutorial work.

• There’s nothing in the mathtext module that I really consider a “public” API (i.e. that would be
useful to people just doing plots). If mathtext.py were to be documented, I would put it in the
developer’s docs. Maybe I should just take the link in the user’s guide out. - MGD

2. This section might also benefit from a little more detail on the customizations that are possible (eg an
example fleshing out the rc options a little bit). Admittedly, this is pretty clear from readin ghte rc file,
but it might be helpful to a newbie.

274 Chapter 30. Docs outline

Matplotlib, Release 1.0.0

• The only rcParam that is currently useful is mathtext.fontset, which is documented here. The
others only apply when mathtext.fontset == ‘custom’, which I’d like to declare “unsupported”.
It’s really hard to get a good set of math fonts working that way, though it might be useful in
a bind when someone has to use a specific wacky font for mathtext and only needs basics, like
sub/superscripts. - MGD

3. There is still a TODO in the file to include a complete list of symbols

• Done. It’s pretty extensive, thanks to STIX... - MGD

30.1. Reviewer notes 275

Matplotlib, Release 1.0.0

276 Chapter 30. Docs outline

Part IV

The Matplotlib API

277

CHAPTER

THIRTYONE

API CHANGES

This chapter is a log of changes to matplotlib that affect the outward-facing API. If updating matplotlib
breaks your scripts, this list may help describe what changes may be necessary in your code.

31.1 Changes beyond 0.99.x

• The default behavior of matplotlib.axes.Axes.set_xlim(),
matplotlib.axes.Axes.set_ylim(), and matplotlib.axes.Axes.axis(), and their corre-
sponding pyplot functions, has been changed: when view limits are set explicitly with one of these
methods, autoscaling is turned off for the matching axis. A new auto kwarg is available to control
this behavior. The limit kwargs have been renamed to left and right instead of xmin and xmax, and
bottom and top instead of ymin and ymax. The old names may still be used, however.

• There are five new Axes methods with corresponding pyplot functions to facilitate autoscaling, tick
location, and tick label formatting, and the general appearance of ticks and tick labels:

– matplotlib.axes.Axes.autoscale() turns autoscaling on or off, and applies it.

– matplotlib.axes.Axes.margins() sets margins used to autoscale the
matplotlib.axes.Axes.viewLim based on the matplotlib.axes.Axes.dataLim.

– matplotlib.axes.Axes.locator_params() allows one to adjust axes locator parameters
such as nbins.

– matplotlib.axes.Axes.ticklabel_format() is a convenience method for controlling the
matplotlib.ticker.ScalarFormatter that is used by default with linear axes.

– matplotlib.axes.Axes.tick_params() controls direction, size, visibility, and color of
ticks and their labels.

• The matplotlib.axes.Axes.bar() method accepts a error_kw kwarg; it is a dictionary of kwargs
to be passed to the errorbar function.

• The matplotlib.axes.Axes.hist() color kwarg now accepts a sequence of color specs to match
a sequence of datasets.

• The :class:’~matplotlib.collections.EllipseCollection’ has been changed in two ways:

279

Matplotlib, Release 1.0.0

– There is a new units option, ‘xy’, that scales the ellipse with the data units. This matches the
:class:’~matplotlib.patches.Ellipse‘ scaling.

– The height and width kwargs have been changed to specify the height and width, again for
consistency with Ellipse, and to better match their names; previously they specified the half-
height and half-width.

• There is a new rc parameter axes.color_cycle, and the color cycle is now independent of the rc
parameter lines.color. matplotlib.Axes.set_default_color_cycle() is deprecated.

• You can now print several figures to one pdf file and modify the document information dictionary of a
pdf file. See the docstrings of the class matplotlib.backends.backend_pdf.PdfPages for more
information.

• Removed configobj and enthought.traits packages, which are only required by the experimental traited
config and are somewhat out of date. If needed, install them independently.

• The new rc parameter savefig.extension sets the filename extension that is used by
matplotlib.figure.Figure.savefig() if its fname argument lacks an extension.

• In an effort to simplify the backend API, all clipping rectangles and paths are now passed in using
GraphicsContext objects, even on collections and images. Therefore:

draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets,
offsetTrans, facecolors, edgecolors, linewidths,
linestyles, antialiaseds, urls)

is now

draw_path_collection(self, gc, master_transform, paths, all_transforms,
offsets, offsetTrans, facecolors, edgecolors,
linewidths, linestyles, antialiaseds, urls)

draw_quad_mesh(self, master_transform, cliprect, clippath,
clippath_trans, meshWidth, meshHeight, coordinates,
offsets, offsetTrans, facecolors, antialiased,
showedges)

is now

draw_quad_mesh(self, gc, master_transform, meshWidth, meshHeight,
coordinates, offsets, offsetTrans, facecolors,
antialiased, showedges)

draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None)

is now

draw_image(self, gc, x, y, im)

280 Chapter 31. API Changes

http://www.voidspace.org.uk/python/configobj.html
http://code.enthought.com/projects/traits

Matplotlib, Release 1.0.0

• There are four new Axes methods with corresponding pyplot functions that deal with unstructured
triangular grids:

– matplotlib.axes.Axes.tricontour() draws contour lines on a triangular grid.

– matplotlib.axes.Axes.tricontourf() draws filled contours on a triangular grid.

– matplotlib.axes.Axes.tripcolor() draws a pseudocolor plot on a triangular grid.

– matplotlib.axes.Axes.triplot() draws a triangular grid as lines and/or markers.

31.2 Changes in 0.99

• pylab no longer provides a load and save function. These are available in matplotlib.mlab, or you can
use numpy.loadtxt and numpy.savetxt for text files, or np.save and np.load for binary numpy arrays.

• User-generated colormaps can now be added to the set recognized by matplotlib.cm.get_cmap().
Colormaps can be made the default and applied to the current image using
matplotlib.pyplot.set_cmap().

• changed use_mrecords default to False in mlab.csv2rec since this is partially broken

• Axes instances no longer have a “frame” attribute. Instead, use the new “spines” attribute. Spines is a
dictionary where the keys are the names of the spines (e.g. ‘left’,’right’ and so on) and the values are
the artists that draw the spines. For normal (rectilinear) axes, these artists are Line2D instances. For
other axes (such as polar axes), these artists may be Patch instances.

• Polar plots no longer accept a resolution kwarg. Instead, each Path must specify its own number of
interpolation steps. This is unlikely to be a user-visible change – if interpolation of data is required,
that should be done before passing it to matplotlib.

31.3 Changes for 0.98.x

• psd(), csd(), and cohere() will now automatically wrap negative frequency components to the begin-
ning of the returned arrays. This is much more sensible behavior and makes them consistent with
specgram(). The previous behavior was more of an oversight than a design decision.

• Added new keyword parameters nonposx, nonposy to matplotlib.axes.Axes methods that set log
scale parameters. The default is still to mask out non-positive values, but the kwargs accept ‘clip’,
which causes non-positive values to be replaced with a very small positive value.

• Added new matplotlib.pyplot.fignum_exists() and matplotlib.pyplot.get_fignums();
they merely expose information that had been hidden in matplotlib._pylab_helpers.

• Deprecated numerix package.

• Added new matplotlib.image.imsave() and exposed it to the matplotlib.pyplot interface.

• Remove support for pyExcelerator in exceltools – use xlwt instead

• Changed the defaults of acorr and xcorr to use usevlines=True, maxlags=10 and normed=True since
these are the best defaults

31.2. Changes in 0.99 281

Matplotlib, Release 1.0.0

• Following keyword parameters for matplotlib.label.Label are now deprecated and new set of
parameters are introduced. The new parameters are given as a fraction of the font-size. Also, scat-
teryoffsets, fancybox and columnspacing are added as keyword parameters.

Deprecated New
pad borderpad
labelsep labelspacing
handlelen handlelength
handlestextsep handletextpad
axespad borderaxespad

• Removed the configobj and experimental traits rc support

• Modified matplotlib.mlab.psd(), matplotlib.mlab.csd(), matplotlib.mlab.cohere(),
and matplotlib.mlab.specgram() to scale one-sided densities by a factor of 2. Also, option-
ally scale the densities by the sampling frequency, which gives true values of densities that can be
integrated by the returned frequency values. This also gives better MATLAB compatibility. The cor-
responding matplotlib.axes.Axes methods and matplotlib.pyplot functions were updated as
well.

• Font lookup now uses a nearest-neighbor approach rather than an exact match. Some fonts may be
different in plots, but should be closer to what was requested.

• matplotlib.axes.Axes.set_xlim(), matplotlib.axes.Axes.set_ylim() now return a copy
of the viewlim array to avoid modify-in-place surprises.

• matplotlib.afm.AFM.get_fullname() and matplotlib.afm.AFM.get_familyname() no
longer raise an exception if the AFM file does not specify these optional attributes, but returns a
guess based on the required FontName attribute.

• Changed precision kwarg in matplotlib.pyplot.spy(); default is 0, and the string value ‘present’
is used for sparse arrays only to show filled locations.

• matplotlib.collections.EllipseCollection added.

• Added angles kwarg to matplotlib.pyplot.quiver() for more flexible specification of the ar-
row angles.

• Deprecated (raise NotImplementedError) all the mlab2 functions from matplotlib.mlab out of con-
cern that some of them were not clean room implementations.

• Methods matplotlib.collections.Collection.get_offsets() and
matplotlib.collections.Collection.set_offsets() added to Collection base class.

• matplotlib.figure.Figure.figurePatch renamed matplotlib.figure.Figure.patch;
matplotlib.axes.Axes.axesPatch renamed matplotlib.axes.Axes.patch;
matplotlib.axes.Axes.axesFrame renamed matplotlib.axes.Axes.frame.
matplotlib.axes.Axes.get_frame(), which returns matplotlib.axes.Axes.patch, is
deprecated.

• Changes in the matplotlib.contour.ContourLabeler attributes
(matplotlib.pyplot.clabel() function) so that they all have a form like .labelAttribute.
The three attributes that are most likely to be used by end users, .cl, .cl_xy and .cl_cvalues

282 Chapter 31. API Changes

Matplotlib, Release 1.0.0

have been maintained for the moment (in addition to their renamed versions), but they are deprecated
and will eventually be removed.

• Moved several functions in matplotlib.mlab and matplotlib.cbook into a separate module
matplotlib.numerical_methods because they were unrelated to the initial purpose of mlab or
cbook and appeared more coherent elsewhere.

31.4 Changes for 0.98.1

• Removed broken matplotlib.axes3d support and replaced it with a non-implemented error point-
ing to 0.91.x

31.5 Changes for 0.98.0

• matplotlib.image.imread() now no longer always returns RGBA data—if the image is lumi-
nance or RGB, it will return a MxN or MxNx3 array if possible. Also uint8 is no longer always forced
to float.

• Rewrote the matplotlib.cm.ScalarMappable callback infrastructure to use
matplotlib.cbook.CallbackRegistry rather than custom callback handling. Any users of
matplotlib.cm.ScalarMappable.add_observer() of the ScalarMappable should use the
matplotlib.cm.ScalarMappable.callbacks CallbackRegistry instead.

• New axes function and Axes method provide control over the plot
color cycle: matplotlib.axes.set_default_color_cycle() and
matplotlib.axes.Axes.set_color_cycle().

• matplotlib now requires Python 2.4, so matplotlib.cbook will no longer provide set,
enumerate(), reversed() or izip() compatibility functions.

• In Numpy 1.0, bins are specified by the left edges only. The axes method
matplotlib.axes.Axes.hist() now uses future Numpy 1.3 semantics for histograms. Pro-
viding binedges, the last value gives the upper-right edge now, which was implicitly set to +infinity
in Numpy 1.0. This also means that the last bin doesn’t contain upper outliers any more by default.

• New axes method and pyplot function, hexbin(), is an alternative to scatter() for large datasets.
It makes something like a pcolor() of a 2-D histogram, but uses hexagonal bins.

• New kwarg, symmetric, in matplotlib.ticker.MaxNLocator allows one require an axis to be
centered around zero.

• Toolkits must now be imported from mpl_toolkits (not matplotlib.toolkits)

31.5.1 Notes about the transforms refactoring

A major new feature of the 0.98 series is a more flexible and extensible transformation infrastructure, written
in Python/Numpy rather than a custom C extension.

31.4. Changes for 0.98.1 283

Matplotlib, Release 1.0.0

The primary goal of this refactoring was to make it easier to extend matplotlib to support new kinds of
projections. This is mostly an internal improvement, and the possible user-visible changes it allows are yet
to come.

See matplotlib.transforms for a description of the design of the new transformation framework.

For efficiency, many of these functions return views into Numpy arrays. This means that if you hold on to a
reference to them, their contents may change. If you want to store a snapshot of their current values, use the
Numpy array method copy().

The view intervals are now stored only in one place – in the matplotlib.axes.Axes instance, not in the
locator instances as well. This means locators must get their limits from their matplotlib.axis.Axis,
which in turn looks up its limits from the Axes. If a locator is used temporarily and not assigned to an
Axis or Axes, (e.g. in matplotlib.contour), a dummy axis must be created to store its bounds. Call
matplotlib.ticker.Locator.create_dummy_axis() to do so.

The functionality of Pbox has been merged with Bbox. Its methods now all return copies rather than modi-
fying in place.

The following lists many of the simple changes necessary to update code from the old transformation frame-
work to the new one. In particular, methods that return a copy are named with a verb in the past tense,
whereas methods that alter an object in place are named with a verb in the present tense.

284 Chapter 31. API Changes

Matplotlib, Release 1.0.0

matplotlib.transforms

Old method New method
Bbox.get_bounds() transforms.Bbox.bounds
Bbox.width() transforms.Bbox.width
Bbox.height() transforms.Bbox.height
Bbox.intervalx().get_bounds()transforms.Bbox.intervalx
Bbox.intervalx().set_bounds()[Bbox.intervalx is now a property.]
Bbox.intervaly().get_bounds()transforms.Bbox.intervaly
Bbox.intervaly().set_bounds()[Bbox.intervaly is now a property.]
Bbox.xmin() transforms.Bbox.x0 or transforms.Bbox.xmin 1

Bbox.ymin() transforms.Bbox.y0 or transforms.Bbox.ymin 1

Bbox.xmax() transforms.Bbox.x1 or transforms.Bbox.xmax 1

Bbox.ymax() transforms.Bbox.y1 or transforms.Bbox.ymax 1

Bbox.overlaps(bboxes)Bbox.count_overlaps(bboxes)
bbox_all(bboxes) Bbox.union(bboxes) [transforms.Bbox.union() is a staticmethod.]
lbwh_to_bbox(l, b,
w, h)

Bbox.from_bounds(x0, y0, w, h) [transforms.Bbox.from_bounds() is a
staticmethod.]

in-
verse_transform_bbox(trans,
bbox)

Bbox.inverse_transformed(trans)

Inter-
val.contains_open(v)

interval_contains_open(tuple, v)

Interval.contains(v) interval_contains(tuple, v)
iden-
tity_transform()

matplotlib.transforms.IdentityTransform

blend_xy_sep_transform(xtrans,
ytrans)

blended_transform_factory(xtrans, ytrans)

scale_transform(xs,
ys)

Affine2D().scale(xs[, ys])

get_bbox_transform(boxin,
boxout)

BboxTransform(boxin, boxout) or BboxTransformFrom(boxin) or
BboxTransformTo(boxout)

Trans-
form.seq_xy_tup(points)

Transform.transform(points)

Trans-
form.inverse_xy_tup(points)

Transform.inverted().transform(points)

1The Bbox is bound by the points (x0, y0) to (x1, y1) and there is no defined order to these points, that is, x0 is not necessarily
the left edge of the box. To get the left edge of the Bbox, use the read-only property xmin.

31.5. Changes for 0.98.0 285

Matplotlib, Release 1.0.0

matplotlib.axes

Old method New method
Axes.get_position()matplotlib.axes.Axes.get_position() 2

Axes.set_position()matplotlib.axes.Axes.set_position() 3

Axes.toggle_log_lineary()matplotlib.axes.Axes.set_yscale() 4

Subplot class removed.

The Polar class has moved to matplotlib.projections.polar.

matplotlib.artist

Old method New method
Artist.set_clip_path(path)Artist.set_clip_path(path, transform) 5

matplotlib.collections

Old
method

New method

linestyle linestyles 6

matplotlib.colors

Old method New method
ColorConver-
tor.to_rgba_list(c)

ColorConvertor.to_rgba_array(c)
[matplotlib.colors.ColorConvertor.to_rgba_array() returns an Nx4
Numpy array of RGBA color quadruples.]

matplotlib.contour

Old method New method
Con-
tour._segments

matplotlib.contour.Contour.get_paths‘() [Returns a list of
matplotlib.path.Path instances.]

2matplotlib.axes.Axes.get_position() used to return a list of points, now it returns a matplotlib.transforms.Bbox
instance.

3matplotlib.axes.Axes.set_position() now accepts either four scalars or a matplotlib.transforms.Bbox instance.
4Since the recfactoring allows for more than two scale types (‘log’ or ‘linear’), it no longer makes sense to have a toggle.

Axes.toggle_log_lineary() has been removed.
5matplotlib.artist.Artist.set_clip_path() now accepts a matplotlib.path.Path instance and a

matplotlib.transforms.Transform that will be applied to the path immediately before clipping.
6Linestyles are now treated like all other collection attributes, i.e. a single value or multiple values may be provided.

286 Chapter 31. API Changes

Matplotlib, Release 1.0.0

matplotlib.figure

Old method New method
Figure.dpi.get() / Figure.dpi.set() matplotlib.figure.Figure.dpi (a property)

matplotlib.patches

Old method New method
Patch.get_verts() matplotlib.patches.Patch.get_path() [Returns a matplotlib.path.Path

instance]

matplotlib.backend_bases

Old method New method
GraphicsCon-
text.set_clip_rectangle(tuple)

GraphicsContext.set_clip_rectangle(bbox)

GraphicsCon-
text.get_clip_path()

GraphicsContext.get_clip_path() 7

GraphicsCon-
text.set_clip_path()

GraphicsContext.set_clip_path() 8

RendererBase

New methods:

• draw_path(self, gc, path, transform, rgbFace)

• draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace)

• draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors,
edgecolors, linewidths, linestyles, antialiaseds) [optional]

Changed methods:

• draw_image(self, x, y, im, bbox) is now draw_image(self, x, y, im, bbox, clippath,
clippath_trans)

Removed methods:

• draw_arc

• draw_line_collection

• draw_line
7matplotlib.backend_bases.GraphicsContext.get_clip_path() returns a tuple of the form (path, affine_transform),

where path is a matplotlib.path.Path instance and affine_transform is a matplotlib.transforms.Affine2D instance.
8matplotlib.backend_bases.GraphicsContext.set_clip_path() now only accepts a

matplotlib.transforms.TransformedPath instance.

31.5. Changes for 0.98.0 287

Matplotlib, Release 1.0.0

• draw_lines

• draw_point

• draw_quad_mesh

• draw_poly_collection

• draw_polygon

• draw_rectangle

• draw_regpoly_collection

31.6 Changes for 0.91.2

• For csv2rec(), checkrows=0 is the new default indicating all rows will be checked for type inference

• A warning is issued when an image is drawn on log-scaled axes, since it will not log-scale the image
data.

• Moved rec2gtk() to matplotlib.toolkits.gtktools

• Moved rec2excel() to matplotlib.toolkits.exceltools

• Removed, dead/experimental ExampleInfo, Namespace and Importer code from
matplotlib.__init__

31.7 Changes for 0.91.1

31.8 Changes for 0.91.0

• Changed cbook.is_file_like() to cbook.is_writable_file_like() and corrected behavior.

• Added ax kwarg to pyplot.colorbar() and Figure.colorbar() so that one can specify the axes
object from which space for the colorbar is to be taken, if one does not want to make the colorbar axes
manually.

• Changed cbook.reversed() so it yields a tuple rather than a (index, tuple). This agrees with the
python reversed builtin, and cbook only defines reversed if python doesnt provide the builtin.

• Made skiprows=1 the default on csv2rec()

• The gd and paint backends have been deleted.

• The errorbar method and function now accept additional kwargs so that upper and lower limits can be
indicated by capping the bar with a caret instead of a straight line segment.

• The matplotlib.dviread file now has a parser for files like psfonts.map and pdftex.map, to map
TeX font names to external files.

288 Chapter 31. API Changes

Matplotlib, Release 1.0.0

• The file matplotlib.type1font contains a new class for Type 1 fonts. Currently it simply reads
pfa and pfb format files and stores the data in a way that is suitable for embedding in pdf files. In the
future the class might actually parse the font to allow e.g. subsetting.

• matplotlib.FT2Font now supports FT_Attach_File(). In practice this can be used to read an
afm file in addition to a pfa/pfb file, to get metrics and kerning information for a Type 1 font.

• The AFM class now supports querying CapHeight and stem widths. The get_name_char method now
has an isord kwarg like get_width_char.

• Changed pcolor() default to shading=’flat’; but as noted now in the docstring, it is preferable to
simply use the edgecolor kwarg.

• The mathtext font commands (\cal, \rm, \it, \tt) now behave as TeX does: they are in effect
until the next font change command or the end of the grouping. Therefore uses of \cal{R}
should be changed to ${\cal R}$. Alternatively, you may use the new LaTeX-style font com-
mands (\mathcal, \mathrm, \mathit, \mathtt) which do affect the following group, eg.
\mathcal{R}.

• Text creation commands have a new default linespacing and a new linespacing kwarg, which is a
multiple of the maximum vertical extent of a line of ordinary text. The default is 1.2; linespacing=2
would be like ordinary double spacing, for example.

• Changed default kwarg in matplotlib.colors.Normalize.__init__‘() to clip=False; clip-
ping silently defeats the purpose of the special over, under, and bad values in the colormap, thereby
leading to unexpected behavior. The new default should reduce such surprises.

• Made the emit property of set_xlim() and set_ylim() True by default; removed the Axes custom
callback handling into a ‘callbacks’ attribute which is a CallbackRegistry instance. This now
supports the ‘xlim_changed’ and ‘ylim_changed’ Axes events.

31.9 Changes for 0.90.1

The file dviread.py has a (very limited and fragile) dvi reader
for usetex support. The API might change in the future so don’t
depend on it yet.

Removed deprecated support for a float value as a gray-scale;
now it must be a string, like ’0.5’. Added alpha kwarg to
ColorConverter.to_rgba_list.

New method set_bounds(vmin, vmax) for formatters, locators sets
the viewInterval and dataInterval from floats.

Removed deprecated colorbar_classic.

Line2D.get_xdata and get_ydata valid_only=False kwarg is replaced
by orig=True. When True, it returns the original data, otherwise
the processed data (masked, converted)

Some modifications to the units interface.

31.9. Changes for 0.90.1 289

Matplotlib, Release 1.0.0

units.ConversionInterface.tickers renamed to
units.ConversionInterface.axisinfo and it now returns a
units.AxisInfo object rather than a tuple. This will make it
easier to add axis info functionality (eg I added a default label
on this iteration) w/o having to change the tuple length and hence
the API of the client code everytime new functionality is added.
Also, units.ConversionInterface.convert_to_value is now simply
named units.ConversionInterface.convert.

Axes.errorbar uses Axes.vlines and Axes.hlines to draw its error
limits int he vertical and horizontal direction. As you’ll see
in the changes below, these funcs now return a LineCollection
rather than a list of lines. The new return signature for
errorbar is ylins, caplines, errorcollections where
errorcollections is a xerrcollection, yerrcollection

Axes.vlines and Axes.hlines now create and returns a LineCollection, not a list
of lines. This is much faster. The kwarg signature has changed,
so consult the docs

MaxNLocator accepts a new Boolean kwarg (’integer’) to force
ticks to integer locations.

Commands that pass an argument to the Text constructor or to
Text.set_text() now accept any object that can be converted
with ’%s’. This affects xlabel(), title(), etc.

Barh now takes a **kwargs dict instead of most of the old
arguments. This helps ensure that bar and barh are kept in sync,
but as a side effect you can no longer pass e.g. color as a
positional argument.

ft2font.get_charmap() now returns a dict that maps character codes
to glyph indices (until now it was reversed)

Moved data files into lib/matplotlib so that setuptools’ develop
mode works. Re-organized the mpl-data layout so that this source
structure is maintained in the installation. (I.e. the ’fonts’ and
’images’ sub-directories are maintained in site-packages.).
Suggest removing site-packages/matplotlib/mpl-data and
~/.matplotlib/ttffont.cache before installing

31.10 Changes for 0.90.0

All artists now implement a "pick" method which users should not
call. Rather, set the "picker" property of any artist you want to
pick on (the epsilon distance in points for a hit test) and
register with the "pick_event" callback. See
examples/pick_event_demo.py for details

290 Chapter 31. API Changes

Matplotlib, Release 1.0.0

Bar, barh, and hist have "log" binary kwarg: log=True
sets the ordinate to a log scale.

Boxplot can handle a list of vectors instead of just
an array, so vectors can have different lengths.

Plot can handle 2-D x and/or y; it plots the columns.

Added linewidth kwarg to bar and barh.

Made the default Artist._transform None (rather than invoking
identity_transform for each artist only to have it overridden
later). Use artist.get_transform() rather than artist._transform,
even in derived classes, so that the default transform will be
created lazily as needed

New LogNorm subclass of Normalize added to colors.py.
All Normalize subclasses have new inverse() method, and
the __call__() method has a new clip kwarg.

Changed class names in colors.py to match convention:
normalize -> Normalize, no_norm -> NoNorm. Old names
are still available for now.

Removed obsolete pcolor_classic command and method.

Removed lineprops and markerprops from the Annotation code and
replaced them with an arrow configurable with kwarg arrowprops.
See examples/annotation_demo.py - JDH

31.11 Changes for 0.87.7

Completely reworked the annotations API because I found the old
API cumbersome. The new design is much more legible and easy to
read. See matplotlib.text.Annotation and
examples/annotation_demo.py

markeredgecolor and markerfacecolor cannot be configured in
matplotlibrc any more. Instead, markers are generally colored
automatically based on the color of the line, unless marker colors
are explicitely set as kwargs - NN

Changed default comment character for load to ’#’ - JDH

math_parse_s_ft2font_svg from mathtext.py & mathtext2.py now returns
width, height, svg_elements. svg_elements is an instance of Bunch (
cmbook.py) and has the attributes svg_glyphs and svg_lines, which are both
lists.

Renderer.draw_arc now takes an additional parameter, rotation.

31.11. Changes for 0.87.7 291

Matplotlib, Release 1.0.0

It specifies to draw the artist rotated in degrees anti-
clockwise. It was added for rotated ellipses.

Renamed Figure.set_figsize_inches to Figure.set_size_inches to
better match the get method, Figure.get_size_inches.

Removed the copy_bbox_transform from transforms.py; added
shallowcopy methods to all transforms. All transforms already
had deepcopy methods.

FigureManager.resize(width, height): resize the window
specified in pixels

barh: x and y args have been renamed to width and bottom
respectively, and their order has been swapped to maintain
a (position, value) order.

bar and barh: now accept kwarg ’edgecolor’.

bar and barh: The left, height, width and bottom args can
now all be scalars or sequences; see docstring.

barh: now defaults to edge aligned instead of center
aligned bars

bar, barh and hist: Added a keyword arg ’align’ that
controls between edge or center bar alignment.

Collections: PolyCollection and LineCollection now accept
vertices or segments either in the original form [(x,y),
(x,y), ...] or as a 2D numerix array, with X as the first column
and Y as the second. Contour and quiver output the numerix
form. The transforms methods Bbox.update() and
Transformation.seq_xy_tups() now accept either form.

Collections: LineCollection is now a ScalarMappable like
PolyCollection, etc.

Specifying a grayscale color as a float is deprecated; use
a string instead, e.g., 0.75 -> ’0.75’.

Collections: initializers now accept any mpl color arg, or
sequence of such args; previously only a sequence of rgba
tuples was accepted.

Colorbar: completely new version and api; see docstring. The
original version is still accessible as colorbar_classic, but
is deprecated.

Contourf: "extend" kwarg replaces "clip_ends"; see docstring.
Masked array support added to pcolormesh.

Modified aspect-ratio handling:

292 Chapter 31. API Changes

Matplotlib, Release 1.0.0

Removed aspect kwarg from imshow
Axes methods:

set_aspect(self, aspect, adjustable=None, anchor=None)
set_adjustable(self, adjustable)
set_anchor(self, anchor)

Pylab interface:
axis(’image’)

Backend developers: ft2font’s load_char now takes a flags
argument, which you can OR together from the LOAD_XXX
constants.

31.12 Changes for 0.86

Matplotlib data is installed into the matplotlib module.
This is similar to package_data. This should get rid of
having to check for many possibilities in _get_data_path().
The MATPLOTLIBDATA env key is still checked first to allow
for flexibility.

1) Separated the color table data from cm.py out into
a new file, _cm.py, to make it easier to find the actual
code in cm.py and to add new colormaps. Everything
from _cm.py is imported by cm.py, so the split should be
transparent.
2) Enabled automatic generation of a colormap from
a list of colors in contour; see modified
examples/contour_demo.py.
3) Support for imshow of a masked array, with the
ability to specify colors (or no color at all) for
masked regions, and for regions that are above or
below the normally mapped region. See
examples/image_masked.py.
4) In support of the above, added two new classes,
ListedColormap, and no_norm, to colors.py, and modified
the Colormap class to include common functionality. Added
a clip kwarg to the normalize class.

31.13 Changes for 0.85

Made xtick and ytick separate props in rc

made pos=None the default for tick formatters rather than 0 to
indicate "not supplied"

Removed "feature" of minor ticks which prevents them from
overlapping major ticks. Often you want major and minor ticks at

31.12. Changes for 0.86 293

Matplotlib, Release 1.0.0

the same place, and can offset the major ticks with the pad. This
could be made configurable

Changed the internal structure of contour.py to a more OO style.
Calls to contour or contourf in axes.py or pylab.py now return
a ContourSet object which contains references to the
LineCollections or PolyCollections created by the call,
as well as the configuration variables that were used.
The ContourSet object is a "mappable" if a colormap was used.

Added a clip_ends kwarg to contourf. From the docstring:
* clip_ends = True
If False, the limits for color scaling are set to the
minimum and maximum contour levels.
True (default) clips the scaling limits. Example:
if the contour boundaries are V = [-100, 2, 1, 0, 1, 2, 100],
then the scaling limits will be [-100, 100] if clip_ends
is False, and [-3, 3] if clip_ends is True.

Added kwargs linewidths, antialiased, and nchunk to contourf. These
are experimental; see the docstring.

Changed Figure.colorbar():
kw argument order changed;
if mappable arg is a non-filled ContourSet, colorbar() shows

lines instead hof polygons.
if mappable arg is a filled ContourSet with clip_ends=True,

the endpoints are not labelled, so as to give the
correct impression of open-endedness.

Changed LineCollection.get_linewidths to get_linewidth, for
consistency.

31.14 Changes for 0.84

Unified argument handling between hlines and vlines. Both now
take optionally a fmt argument (as in plot) and a keyword args
that can be passed onto Line2D.

Removed all references to "data clipping" in rc and lines.py since
these were not used and not optimized. I’m sure they’ll be
resurrected later with a better implementation when needed.

’set’ removed - no more deprecation warnings. Use ’setp’ instead.

Backend developers: Added flipud method to image and removed it
from to_str. Removed origin kwarg from backend.draw_image.
origin is handled entirely by the frontend now.

294 Chapter 31. API Changes

Matplotlib, Release 1.0.0

31.15 Changes for 0.83

- Made HOME/.matplotlib the new config dir where the matplotlibrc
file, the ttf.cache, and the tex.cache live. The new default
filenames in .matplotlib have no leading dot and are not hidden.
Eg, the new names are matplotlibrc, tex.cache, and ttffont.cache.
This is how ipython does it so it must be right.

If old files are found, a warning is issued and they are moved to
the new location.

- backends/__init__.py no longer imports new_figure_manager,
draw_if_interactive and show from the default backend, but puts
these imports into a call to pylab_setup. Also, the Toolbar is no
longer imported from WX/WXAgg. New usage:

from backends import pylab_setup
new_figure_manager, draw_if_interactive, show = pylab_setup()

- Moved Figure.get_width_height() to FigureCanvasBase. It now
returns int instead of float.

31.16 Changes for 0.82

- toolbar import change in GTKAgg, GTKCairo and WXAgg

- Added subplot config tool to GTK* backends -- note you must now
import the NavigationToolbar2 from your backend of choice rather
than from backend_gtk because it needs to know about the backend
specific canvas -- see examples/embedding_in_gtk2.py. Ditto for
wx backend -- see examples/embedding_in_wxagg.py

- hist bin change

Sean Richards notes there was a problem in the way we created
the binning for histogram, which made the last bin
underrepresented. From his post:

I see that hist uses the linspace function to create the bins
and then uses searchsorted to put the values in their correct
bin. Thats all good but I am confused over the use of linspace
for the bin creation. I wouldn’t have thought that it does
what is needed, to quote the docstring it creates a "Linear
spaced array from min to max". For it to work correctly
shouldn’t the values in the bins array be the same bound for
each bin? (i.e. each value should be the lower bound of a
bin). To provide the correct bins for hist would it not be
something like

31.15. Changes for 0.83 295

Matplotlib, Release 1.0.0

def bins(xmin, xmax, N):
if N==1: return xmax
dx = (xmax-xmin)/N # instead of N-1
return xmin + dx*arange(N)

This suggestion is implemented in 0.81. My test script with these
changes does not reveal any bias in the binning

from matplotlib.numerix.mlab import randn, rand, zeros, Float
from matplotlib.mlab import hist, mean

Nbins = 50
Ntests = 200
results = zeros((Ntests,Nbins), typecode=Float)
for i in range(Ntests):

print ’computing’, i
x = rand(10000)
n, bins = hist(x, Nbins)
results[i] = n

print mean(results)

31.17 Changes for 0.81

- pylab and artist "set" functions renamed to setp to avoid clash
with python2.4 built-in set. Current version will issue a
deprecation warning which will be removed in future versions

- imshow interpolation arguments changes for advanced interpolation
schemes. See help imshow, particularly the interpolation,
filternorm and filterrad kwargs

- Support for masked arrays has been added to the plot command and
to the Line2D object. Only the valid points are plotted. A
"valid_only" kwarg was added to the get_xdata() and get_ydata()
methods of Line2D; by default it is False, so that the original
data arrays are returned. Setting it to True returns the plottable
points.

- contour changes:

Masked arrays: contour and contourf now accept masked arrays as
the variable to be contoured. Masking works correctly for
contour, but a bug remains to be fixed before it will work for
contourf. The "badmask" kwarg has been removed from both
functions.

Level argument changes:

296 Chapter 31. API Changes

Matplotlib, Release 1.0.0

Old version: a list of levels as one of the positional
arguments specified the lower bound of each filled region; the
upper bound of the last region was taken as a very large
number. Hence, it was not possible to specify that z values
between 0 and 1, for example, be filled, and that values
outside that range remain unfilled.

New version: a list of N levels is taken as specifying the
boundaries of N-1 z ranges. Now the user has more control over
what is colored and what is not. Repeated calls to contourf
(with different colormaps or color specifications, for example)
can be used to color different ranges of z. Values of z
outside an expected range are left uncolored.

Example:
Old: contourf(z, [0, 1, 2]) would yield 3 regions: 0-1, 1-2, and >2.
New: it would yield 2 regions: 0-1, 1-2. If the same 3 regions were
desired, the equivalent list of levels would be [0, 1, 2,
1e38].

31.18 Changes for 0.80

- xlim/ylim/axis always return the new limits regardless of
arguments. They now take kwargs which allow you to selectively
change the upper or lower limits while leaving unnamed limits
unchanged. See help(xlim) for example

31.19 Changes for 0.73

- Removed deprecated ColormapJet and friends

- Removed all error handling from the verbose object

- figure num of zero is now allowed

31.20 Changes for 0.72

- Line2D, Text, and Patch copy_properties renamed update_from and
moved into artist base class

- LineCollecitons.color renamed to LineCollections.set_color for
consistency with set/get introspection mechanism,

- pylab figure now defaults to num=None, which creates a new figure

31.18. Changes for 0.80 297

Matplotlib, Release 1.0.0

with a guaranteed unique number

- contour method syntax changed - now it is MATLAB compatible

unchanged: contour(Z)
old: contour(Z, x=Y, y=Y)
new: contour(X, Y, Z)

see http://matplotlib.sf.net/matplotlib.pylab.html#-contour

- Increased the default resolution for save command.

- Renamed the base attribute of the ticker classes to _base to avoid conflict
with the base method. Sitt for subs

- subs=none now does autosubbing in the tick locator.

- New subplots that overlap old will delete the old axes. If you
do not want this behavior, use fig.add_subplot or the axes
command

31.21 Changes for 0.71

Significant numerix namespace changes, introduced to resolve
namespace clashes between python built-ins and mlab names.
Refactored numerix to maintain separate modules, rather than
folding all these names into a single namespace. See the following
mailing list threads for more information and background

http://sourceforge.net/mailarchive/forum.php?thread_id=6398890&forum_id=36187
http://sourceforge.net/mailarchive/forum.php?thread_id=6323208&forum_id=36187

OLD usage

from matplotlib.numerix import array, mean, fft

NEW usage

from matplotlib.numerix import array
from matplotlib.numerix.mlab import mean
from matplotlib.numerix.fft import fft

numerix dir structure mirrors numarray (though it is an incomplete
implementation)

numerix
numerix/mlab
numerix/linear_algebra

298 Chapter 31. API Changes

Matplotlib, Release 1.0.0

numerix/fft
numerix/random_array

but of course you can use ’numerix : Numeric’ and still get the
symbols.

pylab still imports most of the symbols from Numerix, MLab, fft,
etc, but is more cautious. For names that clash with python names
(min, max, sum), pylab keeps the builtins and provides the numeric
versions with an a* prefix, eg (amin, amax, asum)

31.22 Changes for 0.70

MplEvent factored into a base class Event and derived classes
MouseEvent and KeyEvent

Removed definct set_measurement in wx toolbar

31.23 Changes for 0.65.1

removed add_axes and add_subplot from backend_bases. Use
figure.add_axes and add_subplot instead. The figure now manages the
current axes with gca and sca for get and set current axe. If you
have code you are porting which called, eg, figmanager.add_axes, you
can now simply do figmanager.canvas.figure.add_axes.

31.24 Changes for 0.65

mpl_connect and mpl_disconnect in the MATLAB interface renamed to
connect and disconnect

Did away with the text methods for angle since they were ambiguous.
fontangle could mean fontstyle (obligue, etc) or the rotation of the
text. Use style and rotation instead.

31.25 Changes for 0.63

Dates are now represented internally as float days since 0001-01-01,
UTC.

All date tickers and formatters are now in matplotlib.dates, rather

31.22. Changes for 0.70 299

Matplotlib, Release 1.0.0

than matplotlib.tickers

converters have been abolished from all functions and classes.
num2date and date2num are now the converter functions for all date
plots

Most of the date tick locators have a different meaning in their
constructors. In the prior implementation, the first argument was a
base and multiples of the base were ticked. Eg

HourLocator(5) # old: tick every 5 minutes

In the new implementation, the explicit points you want to tick are
provided as a number or sequence

HourLocator(range(0,5,61)) # new: tick every 5 minutes

This gives much greater flexibility. I have tried to make the
default constructors (no args) behave similarly, where possible.

Note that YearLocator still works under the base/multiple scheme.
The difference between the YearLocator and the other locators is
that years are not recurrent.

Financial functions:

matplotlib.finance.quotes_historical_yahoo(ticker, date1, date2)

date1, date2 are now datetime instances. Return value is a list
of quotes where the quote time is a float - days since gregorian
start, as returned by date2num

See examples/finance_demo.py for example usage of new API

31.26 Changes for 0.61

canvas.connect is now deprecated for event handling. use
mpl_connect and mpl_disconnect instead. The callback signature is
func(event) rather than func(widget, evet)

31.27 Changes for 0.60

ColormapJet and Grayscale are deprecated. For backwards
compatibility, they can be obtained either by doing

from matplotlib.cm import ColormapJet

300 Chapter 31. API Changes

Matplotlib, Release 1.0.0

or

from matplotlib.matlab import *

They are replaced by cm.jet and cm.grey

31.28 Changes for 0.54.3

removed the set_default_font / get_default_font scheme from the
font_manager to unify customization of font defaults with the rest of
the rc scheme. See examples/font_properties_demo.py and help(rc) in
matplotlib.matlab.

31.29 Changes for 0.54

31.29.1 MATLAB interface

dpi

Several of the backends used a PIXELS_PER_INCH hack that I added to try and make images render
consistently across backends. This just complicated matters. So you may find that some font sizes and line
widths appear different than before. Apologies for the inconvenience. You should set the dpi to an accurate
value for your screen to get true sizes.

pcolor and scatter

There are two changes to the MATLAB interface API, both involving the patch drawing commands. For
efficiency, pcolor and scatter have been rewritten to use polygon collections, which are a new set of objects
from matplotlib.collections designed to enable efficient handling of large collections of objects. These new
collections make it possible to build large scatter plots or pcolor plots with no loops at the python level,
and are significantly faster than their predecessors. The original pcolor and scatter functions are retained as
pcolor_classic and scatter_classic.

The return value from pcolor is a PolyCollection. Most of the propertes that are available on rectangles or
other patches are also available on PolyCollections, eg you can say:

c = scatter(blah, blah)
c.set_linewidth(1.0)
c.set_facecolor(’r’)
c.set_alpha(0.5)

or:

31.28. Changes for 0.54.3 301

Matplotlib, Release 1.0.0

c = scatter(blah, blah)
set(c, ’linewidth’, 1.0, ’facecolor’, ’r’, ’alpha’, 0.5)

Because the collection is a single object, you no longer need to loop over the return value of scatter or pcolor
to set properties for the entire list.

If you want the different elements of a collection to vary on a property, eg to have different line widths, see
matplotlib.collections for a discussion on how to set the properties as a sequence.

For scatter, the size argument is now in points^2 (the area of the symbol in points) as in MATLAB and is
not in data coords as before. Using sizes in data coords caused several problems. So you will need to adjust
your size arguments accordingly or use scatter_classic.

mathtext spacing

For reasons not clear to me (and which I’ll eventually fix) spacing no longer works in font groups. However,
I added three new spacing commands which compensate for this ‘’ (regular space), ‘/’ (small space) and
‘hspace{frac}’ where frac is a fraction of fontsize in points. You will need to quote spaces in font strings,
is:

title(r’$\rm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$’)

31.29.2 Object interface - Application programmers

Autoscaling

The x and y axis instances no longer have autoscale view. These are handled by
axes.autoscale_view

Axes creation

You should not instantiate your own Axes any more using the OO API. Rather, create a Figure
as before and in place of:

f = Figure(figsize=(5,4), dpi=100)
a = Subplot(f, 111)
f.add_axis(a)

use:

f = Figure(figsize=(5,4), dpi=100)
a = f.add_subplot(111)

That is, add_axis no longer exists and is replaced by:

302 Chapter 31. API Changes

Matplotlib, Release 1.0.0

add_axes(rect, axisbg=defaultcolor, frameon=True)
add_subplot(num, axisbg=defaultcolor, frameon=True)

Artist methods

If you define your own Artists, you need to rename the _draw method to draw

Bounding boxes

matplotlib.transforms.Bound2D is replaced by matplotlib.transforms.Bbox. If you want to
construct a bbox from left, bottom, width, height (the signature for Bound2D), use mat-
plotlib.transforms.lbwh_to_bbox, as in

bbox = clickBBox = lbwh_to_bbox(left, bottom, width, height)

The Bbox has a different API than the Bound2D. Eg, if you want to get the width and height of
the bbox

OLD:: width = fig.bbox.x.interval() height = fig.bbox.y.interval()

New:: width = fig.bbox.width() height = fig.bbox.height()

Object constructors

You no longer pass the bbox, dpi, or transforms to the various Artist constructors. The old way
or creating lines and rectangles was cumbersome because you had to pass so many attributes to
the Line2D and Rectangle classes not related directly to the gemoetry and properties of the ob-
ject. Now default values are added to the object when you call axes.add_line or axes.add_patch,
so they are hidden from the user.

If you want to define a custom transformation on these objects, call o.set_transform(trans)
where trans is a Transformation instance.

In prior versions of you wanted to add a custom line in data coords, you would have to do

l = Line2D(dpi, bbox, x, y, color = color, transx = transx, transy = transy,)

now all you need is

l = Line2D(x, y, color=color)

and the axes will set the transformation for you (unless you have set your own already, in which
case it will eave it unchanged)

Transformations

The entire transformation architecture has been rewritten. Previously the x and y transforma-
tions where stored in the xaxis and yaxis insstances. The problem with this approach is it only

31.29. Changes for 0.54 303

Matplotlib, Release 1.0.0

allows for separable transforms (where the x and y transformations don’t depend on one an-
other). But for cases like polar, they do. Now transformations operate on x,y together. There is
a new base class matplotlib.transforms.Transformation and two concrete implemetations, mat-
plotlib.transforms.SeparableTransformation and matplotlib.transforms.Affine. The Separable-
Transformation is constructed with the bounding box of the input (this determines the rectangu-
lar coordinate system of the input, ie the x and y view limits), the bounding box of the display,
and possibily nonlinear transformations of x and y. The 2 most frequently used transforma-
tions, data cordinates -> display and axes coordinates -> display are available as ax.transData
and ax.transAxes. See alignment_demo.py which uses axes coords.

Also, the transformations should be much faster now, for two reasons

• they are written entirely in extension code

• because they operate on x and y together, they can do the entire transformation in one
loop. Earlier I did something along the lines of:

xt = sx*func(x) + tx
yt = sy*func(y) + ty

Although this was done in numerix, it still involves 6 length(x) for-loops (the multiply,
add, and function evaluation each for x and y). Now all of that is done in a single pass.

If you are using transformations and bounding boxes to get the cursor position in data coor-
dinates, the method calls are a little different now. See the updated examples/coords_demo.py
which shows you how to do this.

Likewise, if you are using the artist bounding boxes to pick items on the canvas with the
GUI, the bbox methods are somewhat different. You will need to see the updated exam-
ples/object_picker.py.

See unit/transforms_unit.py for many examples using the new transformations.

31.30 Changes for 0.50

* refactored Figure class so it is no longer backend dependent.
FigureCanvasBackend takes over the backend specific duties of the
Figure. matplotlib.backend_bases.FigureBase moved to
matplotlib.figure.Figure.

* backends must implement FigureCanvasBackend (the thing that
controls the figure and handles the events if any) and
FigureManagerBackend (wraps the canvas and the window for MATLAB
interface). FigureCanvasBase implements a backend switching
mechanism

* Figure is now an Artist (like everything else in the figure) and
is totally backend independent

* GDFONTPATH renamed to TTFPATH

304 Chapter 31. API Changes

Matplotlib, Release 1.0.0

* backend faceColor argument changed to rgbFace

* colormap stuff moved to colors.py

* arg_to_rgb in backend_bases moved to class ColorConverter in
colors.py

* GD users must upgrade to gd-2.0.22 and gdmodule-0.52 since new gd
features (clipping, antialiased lines) are now used.

* Renderer must implement points_to_pixels

Migrating code:

MATLAB interface:

The only API change for those using the MATLAB interface is in how
you call figure redraws for dynamically updating figures. In the
old API, you did

fig.draw()

In the new API, you do

manager = get_current_fig_manager()
manager.canvas.draw()

See the examples system_monitor.py, dynamic_demo.py, and anim.py

API

There is one important API change for application developers.
Figure instances used subclass GUI widgets that enabled them to be
placed directly into figures. Eg, FigureGTK subclassed
gtk.DrawingArea. Now the Figure class is independent of the
backend, and FigureCanvas takes over the functionality formerly
handled by Figure. In order to include figures into your apps,
you now need to do, for example

gtk example
fig = Figure(figsize=(5,4), dpi=100)
canvas = FigureCanvasGTK(fig) # a gtk.DrawingArea
canvas.show()
vbox.pack_start(canvas)

If you use the NavigationToolbar, this in now intialized with a
FigureCanvas, not a Figure. The examples embedding_in_gtk.py,
embedding_in_gtk2.py, and mpl_with_glade.py all reflect the new
API so use these as a guide.

All prior calls to

31.30. Changes for 0.50 305

Matplotlib, Release 1.0.0

figure.draw() and
figure.print_figure(args)

should now be

canvas.draw() and
canvas.print_figure(args)

Apologies for the inconvenience. This refactorization brings
significant more freedom in developing matplotlib and should bring
better plotting capabilities, so I hope the inconvenience is worth
it.

31.31 Changes for 0.42

* Refactoring AxisText to be backend independent. Text drawing and
get_window_extent functionality will be moved to the Renderer.

* backend_bases.AxisTextBase is now text.Text module

* All the erase and reset functionality removed frmo AxisText - not
needed with double buffered drawing. Ditto with state change.
Text instances have a get_prop_tup method that returns a hashable
tuple of text properties which you can use to see if text props
have changed, eg by caching a font or layout instance in a dict
with the prop tup as a key -- see RendererGTK.get_pango_layout in
backend_gtk for an example.

* Text._get_xy_display renamed Text.get_xy_display

* Artist set_renderer and wash_brushes methods removed

* Moved Legend class from matplotlib.axes into matplotlib.legend

* Moved Tick, XTick, YTick, Axis, XAxis, YAxis from matplotlib.axes
to matplotlib.axis

* moved process_text_args to matplotlib.text

* After getting Text handled in a backend independent fashion, the
import process is much cleaner since there are no longer cyclic
dependencies

* matplotlib.matlab._get_current_fig_manager renamed to
matplotlib.matlab.get_current_fig_manager to allow user access to
the GUI window attribute, eg figManager.window for GTK and
figManager.frame for wx

306 Chapter 31. API Changes

Matplotlib, Release 1.0.0

31.32 Changes for 0.40

- Artist
* __init__ takes a DPI instance and a Bound2D instance which is
the bounding box of the artist in display coords

* get_window_extent returns a Bound2D instance
* set_size is removed; replaced by bbox and dpi
* the clip_gc method is removed. Artists now clip themselves with
their box

* added _clipOn boolean attribute. If True, gc clip to bbox.

- AxisTextBase
* Initialized with a transx, transy which are Transform instances
* set_drawing_area removed
* get_left_right and get_top_bottom are replaced by get_window_extent

- Line2D Patches now take transx, transy
* Initialized with a transx, transy which are Transform instances

- Patches
* Initialized with a transx, transy which are Transform instances

- FigureBase attributes dpi is a DPI intance rather than scalar and
new attribute bbox is a Bound2D in display coords, and I got rid
of the left, width, height, etc... attributes. These are now
accessible as, for example, bbox.x.min is left, bbox.x.interval()
is width, bbox.y.max is top, etc...

- GcfBase attribute pagesize renamed to figsize

- Axes
* removed figbg attribute
* added fig instance to __init__
* resizing is handled by figure call to resize.

- Subplot
* added fig instance to __init__

- Renderer methods for patches now take gcEdge and gcFace instances.
gcFace=None takes the place of filled=False

- True and False symbols provided by cbook in a python2.3 compatible
way

- new module transforms supplies Bound1D, Bound2D and Transform
instances and more

- Changes to the MATLAB helpers API

* _matlab_helpers.GcfBase is renamed by Gcf. Backends no longer
need to derive from this class. Instead, they provide a factory
function new_figure_manager(num, figsize, dpi). The destroy

31.32. Changes for 0.40 307

Matplotlib, Release 1.0.0

method of the GcfDerived from the backends is moved to the derived
FigureManager.

* FigureManagerBase moved to backend_bases

* Gcf.get_all_figwins renamed to Gcf.get_all_fig_managers

Jeremy:

Make sure to self._reset = False in AxisTextWX._set_font. This was
something missing in my backend code.

308 Chapter 31. API Changes

CHAPTER

THIRTYTWO

MATPLOTLIB CONFIGURATION

32.1 matplotlib

This is an object-orient plotting library.

A procedural interface is provided by the companion pyplot module, which may be imported directly, e.g:

from matplotlib.pyplot import *

To include numpy functions too, use:

from pylab import *

or using ipython:

ipython -pylab

For the most part, direct use of the object-oriented library is encouraged when programming; pyplot is
primarily for working interactively. The exceptions are the pyplot commands figure(), subplot(),
subplots(), show(), and savefig(), which can greatly simplify scripting.

Modules include:

matplotlib.axes defines the Axes class. Most pylab commands are wrappers for Axes
methods. The axes module is the highest level of OO access to the library.

matplotlib.figure defines the Figure class.

matplotlib.artist defines the Artist base class for all classes that draw things.

matplotlib.lines defines the Line2D class for drawing lines and markers

matplotlib.patches defines classes for drawing polygons

matplotlib.text defines the Text, TextWithDash, and Annotate classes

matplotlib.image defines the AxesImage and FigureImage classes

matplotlib.collections classes for efficient drawing of groups of lines or polygons

matplotlib.colors classes for interpreting color specifications and for making colormaps

309

Matplotlib, Release 1.0.0

matplotlib.cm colormaps and the ScalarMappable mixin class for providing color map-
ping functionality to other classes

matplotlib.ticker classes for calculating tick mark locations and for formatting tick labels

matplotlib.backends a subpackage with modules for various gui libraries and output for-
mats

The base matplotlib namespace includes:

rcParams a global dictionary of default configuration settings. It is initialized by code which
may be overridded by a matplotlibrc file.

rc() a function for setting groups of rcParams values

use() a function for setting the matplotlib backend. If used, this function must be called
immediately after importing matplotlib for the first time. In particular, it must be called
before importing pylab (if pylab is imported).

matplotlib was initially written by John D. Hunter (jdh2358 at gmail.com) and is now developed and main-
tained by a host of others.

Occasionally the internal documentation (python docstrings) will refer to MATLAB®, a registered trade-
mark of The MathWorks, Inc.

rc(group, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg. for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, eg. (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color=’r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = ’r’

The following aliases are available to save typing for interactive users:

Alias Property
‘lw’ ‘linewidth’
‘ls’ ‘linestyle’
‘c’ ‘color’
‘fc’ ‘facecolor’
‘ec’ ‘edgecolor’
‘mew’ ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

rc(’lines’, lw=2, c=’r’)

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. Eg,
you can customize the font rc as follows:

310 Chapter 32. matplotlib configuration

Matplotlib, Release 1.0.0

font = {’family’ : ’monospace’,
’weight’ : ’bold’,
’size’ : ’larger’}

rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

rcdefaults()
Restore the default rc params - the ones that were created at matplotlib load time.

use(arg, warn=True)
Set the matplotlib backend to one of the known backends.

The argument is case-insensitive. For the Cairo backend, the argument can have an extension to
indicate the type of output. Example:

use(‘cairo.pdf’)

will specify a default of pdf output generated by Cairo.

Note: this function must be called before importing pylab for the first time; or, if you are not using
pylab, it must be called before importing matplotlib.backends. If warn is True, a warning is issued
if you try and callthis after pylab or pyplot have been loaded. In certain black magic use cases, eg
pyplot.switch_backends, we are doing the reloading necessary to make the backend switch work (in
some cases, eg pure image backends) so one can set warn=False to supporess the warnings

32.1. matplotlib 311

Matplotlib, Release 1.0.0

312 Chapter 32. matplotlib configuration

CHAPTER

THIRTYTHREE

MATPLOTLIB AFM

33.1 matplotlib.afm

This is a python interface to Adobe Font Metrics Files. Although a number of other python implementations
exist (and may be more complete than mine) I decided not to go with them because either they were either

1. copyrighted or used a non-BSD compatible license

2. had too many dependencies and I wanted a free standing lib

3. Did more than I needed and it was easier to write my own than figure out how to just get what I needed
from theirs

It is pretty easy to use, and requires only built-in python libs:

>>> from afm import AFM
>>> fh = file(’ptmr8a.afm’)
>>> afm = AFM(fh)
>>> afm.string_width_height(’What the heck?’)
(6220.0, 683)
>>> afm.get_fontname()
’Times-Roman’
>>> afm.get_kern_dist(’A’, ’f’)
0
>>> afm.get_kern_dist(’A’, ’y’)
-92.0
>>> afm.get_bbox_char(’!’)
[130, -9, 238, 676]
>>> afm.get_bbox_font()
[-168, -218, 1000, 898]

AUTHOR: John D. Hunter <jdh2358@gmail.com>

class AFM(fh)
Parse the AFM file in file object fh

get_angle()
Return the fontangle as float

get_bbox_char(c, isord=False)

313

mailto:jdh2358@gmail.com

Matplotlib, Release 1.0.0

get_capheight()
Return the cap height as float

get_familyname()
Return the font family name, eg, ‘Times’

get_fontname()
Return the font name, eg, ‘Times-Roman’

get_fullname()
Return the font full name, eg, ‘Times-Roman’

get_height_char(c, isord=False)
Get the height of character c from the bounding box. This is the ink height (space is 0)

get_horizontal_stem_width()
Return the standard horizontal stem width as float, or None if not specified in AFM file.

get_kern_dist(c1, c2)
Return the kerning pair distance (possibly 0) for chars c1 and c2

get_kern_dist_from_name(name1, name2)
Return the kerning pair distance (possibly 0) for chars name1 and name2

get_name_char(c, isord=False)
Get the name of the character, ie, ‘;’ is ‘semicolon’

get_str_bbox(s)
Return the string bounding box

get_str_bbox_and_descent(s)
Return the string bounding box

get_underline_thickness()
Return the underline thickness as float

get_vertical_stem_width()
Return the standard vertical stem width as float, or None if not specified in AFM file.

get_weight()
Return the font weight, eg, ‘Bold’ or ‘Roman’

get_width_char(c, isord=False)
Get the width of the character from the character metric WX field

get_width_from_char_name(name)
Get the width of the character from a type1 character name

get_xheight()
Return the xheight as float

string_width_height(s)
Return the string width (including kerning) and string height as a (w, h) tuple.

parse_afm(fh)
Parse the Adobe Font Metics file in file handle fh. Return value is a (dhead, dcmet-
rics, dkernpairs, dcomposite) tuple where dhead is a _parse_header() dict, dcmetrics is a

314 Chapter 33. matplotlib afm

Matplotlib, Release 1.0.0

_parse_composites() dict, dkernpairs is a _parse_kern_pairs() dict (possibly {}), and dcom-
posite is a _parse_composites() dict (possibly {})

33.1. matplotlib.afm 315

Matplotlib, Release 1.0.0

316 Chapter 33. matplotlib afm

CHAPTER

THIRTYFOUR

MATPLOTLIB ARTISTS

patches.YAArrow

patches.Patch

patches.Wedge

patches.Ellipse

patches.RegularPolygon

patches.FancyArrowPatch

patches.Rectangle

patches.PathPatch

patches.FancyBboxPatch

patches.Shadow

patches.Polygon

patches.Arrow

artist.Artist text.Text

lines.Line2D

text.TextWithDash

text.Annotation

patches.Circle

patches.Arc

patches.CirclePolygon

patches.ConnectionPatch

patches.ArrowStyle

patches._Style patches.BoxStyle

patches.ConnectionStyle

lines.VertexSelector

patches.FancyArrow

text._AnnotationBase

text.OffsetFrom

34.1 matplotlib.artist

class Artist()
Bases: object

Abstract base class for someone who renders into a FigureCanvas.

317

Matplotlib, Release 1.0.0

add_callback(func)
Adds a callback function that will be called whenever one of the Artist‘s properties changes.

Returns an id that is useful for removing the callback with remove_callback() later.

contains(mouseevent)
Test whether the artist contains the mouse event.

Returns the truth value and a dictionary of artist specific details of selection, such as which
points are contained in the pick radius. See individual artists for details.

convert_xunits(x)
For artists in an axes, if the xaxis has units support, convert x using xaxis unit type

convert_yunits(y)
For artists in an axes, if the yaxis has units support, convert y using yaxis unit type

draw(renderer, *args, **kwargs)
Derived classes drawing method

findobj(match=None)

pyplot signature: findobj(o=gcf(), match=None)

Recursively find all :class:matplotlib.artist.Artist instances contained in self.

match can be

•None: return all objects contained in artist (including artist)

•function with signature boolean = match(artist) used to filter matches

•class instance: eg Line2D. Only return artists of class type

get_agg_filter()
return filter function to be used for agg filter

get_alpha()
Return the alpha value used for blending - not supported on all backends

get_animated()
Return the artist’s animated state

get_axes()
Return the Axes instance the artist resides in, or None

get_children()
Return a list of the child Artist‘s this :class:‘Artist contains.

get_clip_box()
Return artist clipbox

get_clip_on()
Return whether artist uses clipping

get_clip_path()
Return artist clip path

318 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Model complexity --->

0

5

10

15

20

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length
Data length
Total message length

get_contains()
Return the _contains test used by the artist, or None for default.

get_figure()
Return the Figure instance the artist belongs to.

get_gid()
Returns the group id

get_label()
Get the label used for this artist in the legend.

get_picker()
Return the picker object used by this artist

get_rasterized()
return True if the artist is to be rasterized

get_snap()
Returns the snap setting which may be:

•True: snap vertices to the nearest pixel center

•False: leave vertices as-is

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

34.1. matplotlib.artist 319

Matplotlib, Release 1.0.0

Only supported by the Agg and MacOSX backends.

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_url()
Returns the url

get_visible()
Return the artist’s visiblity

get_zorder()
Return the Artist‘s zorder.

have_units()
Return True if units are set on the x or y axes

hitlist(event)
List the children of the artist which contain the mouse event event.

is_figure_set()
Returns True if the artist is assigned to a Figure.

is_transform_set()
Returns True if Artist has a transform explicitly set.

pchanged()
Fire an event when property changed, calling all of the registered callbacks.

pick(mouseevent)
call signature:

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pickable()
Return True if Artist is pickable.

properties()
return a dictionary mapping property name -> value for all Artist props

remove()
Remove the artist from the figure if possible. The effect will not be visible un-
til the figure is redrawn, e.g., with matplotlib.axes.Axes.draw_idle(). Call
matplotlib.axes.Axes.relim() to update the axes limits if desired.

Note: relim() will not see collections even if the collection was added to axes with autolim =

True.

Note: there is no support for removing the artist’s legend entry.

320 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

remove_callback(oid)
Remove a callback based on its id.

See Also:

add_callback() For adding callbacks

set(**kwargs)
A tkstyle set command, pass kwargs to set properties

set_agg_filter(filter_func)
set agg_filter fuction.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

ACCEPTS: float (0.0 transparent through 1.0 opaque)

set_animated(b)
Set the artist’s animation state.

ACCEPTS: [True | False]

set_axes(axes)
Set the Axes instance in which the artist resides, if any.

ACCEPTS: an Axes instance

set_clip_box(clipbox)
Set the artist’s clip Bbox.

ACCEPTS: a matplotlib.transforms.Bbox instance

set_clip_on(b)
Set whether artist uses clipping.

ACCEPTS: [True | False]

set_clip_path(path, transform=None)
Set the artist’s clip path, which may be:

•a Patch (or subclass) instance

•a Path instance, in which case an optional Transform instance may be provided, which
will be applied to the path before using it for clipping.

•None, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clip-
ping box to the corresponding rectangle and set the clipping path to None.

ACCEPTS: [(Path, Transform) | Patch | None]

set_contains(picker)
Replace the contains test used by this artist. The new picker should be a callable function which
determines whether the artist is hit by the mouse event:

34.1. matplotlib.artist 321

Matplotlib, Release 1.0.0

hit, props = picker(artist, mouseevent)

If the mouse event is over the artist, return hit = True and props is a dictionary of properties you
want returned with the contains test.

ACCEPTS: a callable function

set_figure(fig)
Set the Figure instance the artist belongs to.

ACCEPTS: a matplotlib.figure.Figure instance

set_gid(gid)
Sets the (group) id for the artist

ACCEPTS: an id string

set_label(s)
Set the label to s for auto legend.

ACCEPTS: any string

set_lod(on)
Set Level of Detail on or off. If on, the artists may examine things like the pixel width of the
axes and draw a subset of their contents accordingly

ACCEPTS: [True | False]

set_picker(picker)
Set the epsilon for picking used by this artist

picker can be one of the following:

•None: picking is disabled for this artist (default)

•A boolean: if True then picking will be enabled and the artist will fire a pick event if the
mouse event is over the artist

•A float: if picker is a number it is interpreted as an epsilon tolerance in points and the artist
will fire off an event if it’s data is within epsilon of the mouse event. For some artists like
lines and patch collections, the artist may provide additional data to the pick event that is
generated, e.g. the indices of the data within epsilon of the pick event

•A function: if picker is callable, it is a user supplied function which determines whether the
artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True and props is a
dictionary of properties you want added to the PickEvent attributes.

ACCEPTS: [None|float|boolean|callable]

set_rasterized(rasterized)
Force rasterized (bitmap) drawing in vector backend output.

322 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Defaults to None, which implies the backend’s default behavior

ACCEPTS: [True | False | None]

set_snap(snap)
Sets the snap setting which may be:

•True: snap vertices to the nearest pixel center

•False: leave vertices as-is

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

Only supported by the Agg and MacOSX backends.

set_transform(t)
Set the Transform instance used by this artist.

ACCEPTS: Transform instance

set_url(url)
Sets the url for the artist

ACCEPTS: a url string

set_visible(b)
Set the artist’s visiblity.

ACCEPTS: [True | False]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

ACCEPTS: any number

update(props)
Update the properties of this Artist from the dictionary prop.

update_from(other)
Copy properties from other to self.

class ArtistInspector(o)
A helper class to inspect an Artist and return information about it’s settable properties and their
current values.

Initialize the artist inspector with an Artist or sequence of Artists. If a sequence is used, we
assume it is a homogeneous sequence (all Artists are of the same type) and it is your responsibility
to make sure this is so.

aliased_name(s)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME.

E.g. for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

aliased_name_rest(s, target)
return ‘PROPNAME or alias’ if s has an alias, else return PROPNAME formatted for ReST

34.1. matplotlib.artist 323

Matplotlib, Release 1.0.0

E.g. for the line markerfacecolor property, which has an alias, return ‘markerfacecolor or mfc’
and for the transform property, which does not, return ‘transform’

findobj(match=None)
Recursively find all matplotlib.artist.Artist instances contained in self.

If match is not None, it can be

•function with signature boolean = match(artist)

•class instance: eg Line2D

used to filter matches.

get_aliases()
Get a dict mapping fullname -> alias for each alias in the ArtistInspector.

Eg., for lines:

{’markerfacecolor’: ’mfc’,
’linewidth’ : ’lw’,
}

get_setters()
Get the attribute strings with setters for object. Eg., for a line, return [’markerfacecolor’,
’linewidth’,].

get_valid_values(attr)
Get the legal arguments for the setter associated with attr.

This is done by querying the docstring of the function set_attr for a line that begins with AC-
CEPTS:

Eg., for a line linestyle, return “[’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]”

is_alias(o)
Return True if method object o is an alias for another function.

pprint_getters()
Return the getters and actual values as list of strings.

pprint_setters(prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values.

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

pprint_setters_rest(prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properies and their valid values. Format the
output for ReST

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

properties()
return a dictionary mapping property name -> value

324 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

allow_rasterization(draw)
Decorator for Artist.draw method. Provides routines that run before and after the draw call. The
before and after functions are useful for changing artist-dependant renderer attributes or making other
setup function calls, such as starting and flushing a mixed-mode renderer.

get(obj, property=None)
Return the value of object’s property. property is an optional string for the property you want to return

Example usage:

getp(obj) # get all the object properties
getp(obj, ’linestyle’) # get the linestyle property

obj is a Artist instance, eg Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

obj.get_somename()

getp() can be used to query all the gettable properties with getp(obj). Many properties have aliases
for shorter typing, e.g. ‘lw’ is an alias for ‘linewidth’. In the output, aliases and full property names
will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

getp(obj, property=None)
Return the value of object’s property. property is an optional string for the property you want to return

Example usage:

getp(obj) # get all the object properties
getp(obj, ’linestyle’) # get the linestyle property

obj is a Artist instance, eg Line2D or an instance of a Axes or matplotlib.text.Text. If the
property is ‘somename’, this function returns

obj.get_somename()

getp() can be used to query all the gettable properties with getp(obj). Many properties have aliases
for shorter typing, e.g. ‘lw’ is an alias for ‘linewidth’. In the output, aliases and full property names
will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

kwdoc(a)

setp(obj, *args, **kwargs)
matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties,

34.1. matplotlib.artist 325

Matplotlib, Release 1.0.0

as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed,
you can do:

>>> line, = plot([1,2,3])
>>> setp(line, linestyle=’--’)

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’linestyle’)
linestyle: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
... long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. E.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)
>>> y1 = sin(2*pi*x)
>>> y2 = sin(4*pi*x)
>>> lines = plot(x, y1, x, y2)
>>> setp(lines, linewidth=2, color=’r’)

setp() works with the MATLAB style string/value pairs or with python kwargs. For example, the
following are equivalent:

>>> setp(lines, ’linewidth’, 2, ’color’, r’) # MATLAB style

>>> setp(lines, linewidth=2, color=’r’) # python style

34.2 matplotlib.legend

Place a legend on the axes at location loc. Labels are a sequence of strings and loc can be a string or an
integer specifying the legend location

The location codes are

‘best’ : 0, (only implemented for axis legends) ‘upper right’ : 1, ‘upper left’ : 2, ‘lower left’ : 3,
‘lower right’ : 4, ‘right’ : 5, ‘center left’ : 6, ‘center right’ : 7, ‘lower center’ : 8, ‘upper center’
: 9, ‘center’ : 10,

Return value is a sequence of text, line instances that make up the legend

326 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

class DraggableLegend(legend, use_blit=False)
Bases: matplotlib.offsetbox.DraggableOffsetBox

artist_picker(legend, evt)

finalize_offset()

class Legend(parent, handles, labels, loc=None, numpoints=None, markerscale=None, scatterpoints=3,
scatteryoffsets=None, prop=None, pad=None, labelsep=None, handlelen=None, handle-
textsep=None, axespad=None, borderpad=None, labelspacing=None, handlelength=None,
handletextpad=None, borderaxespad=None, columnspacing=None, ncol=1, mode=None,
fancybox=None, shadow=None, title=None, bbox_to_anchor=None, bbox_transform=None,
frameon=True)

Bases: matplotlib.artist.Artist

Place a legend on the axes at location loc. Labels are a sequence of strings and loc can be a string or
an integer specifying the legend location

The location codes are:

’best’ : 0, (only implemented for axis legends)
’upper right’ : 1,
’upper left’ : 2,
’lower left’ : 3,
’lower right’ : 4,
’right’ : 5,
’center left’ : 6,
’center right’ : 7,
’lower center’ : 8,
’upper center’ : 9,
’center’ : 10,

loc can be a tuple of the noramilzed coordinate values with respect its parent.

Return value is a sequence of text, line instances that make up the legend

•parent : the artist that contains the legend

•handles : a list of artists (lines, patches) to add to the legend

•labels : a list of strings to label the legend

Optional keyword arguments:

34.2. matplotlib.legend 327

Matplotlib, Release 1.0.0

Keyword Description
loc a location code
prop the font property
markerscale the relative size of legend markers vs. original
numpoints the number of points in the legend for line
scatterpoints the number of points in the legend for scatter plot
scatteryoffsets a list of yoffsets for scatter symbols in legend
frameon if True, draw a frame (default is True)
fancybox if True, draw a frame with a round fancybox. If None, use rc
shadow if True, draw a shadow behind legend
ncol number of columns
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns
title the legend title
bbox_to_anchor the bbox that the legend will be anchored.
bbox_transform the transform for the bbox. transAxes if None.

The pad and spacing parameters are measure in font-size units. E.g., a fontsize of 10 points and a
handlelength=5 implies a handlelength of 50 points. Values from rcParams will be used if None.

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argument.
bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. See
set_bbox_to_anchor() for more detail.

The legend location can be specified by setting loc with a tuple of 2 floats, which is interpreted as the
lower-left corner of the legend in the normalized axes coordinate.

draggable(state=None, use_blit=False)
Set the draggable state – if state is

•None : toggle the current state

•True : turn draggable on

•False : turn draggable off

If draggable is on, you can drag the legend on the canvas with the mouse. The DraggableLegend
helper instance is returned if draggable is on.

draw(artist, renderer, *args, **kwargs)
Draw everything that belongs to the legend

draw_frame(b)
b is a boolean. Set draw frame to b

get_bbox_to_anchor()
return the bbox that the legend will be anchored

get_children()
return a list of child artists

328 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

get_frame()
return the Rectangle instance used to frame the legend

get_frame_on()
Get whether the legend box patch is drawn

get_lines()
return a list of lines.Line2D instances in the legend

get_patches()
return a list of patch instances in the legend

get_texts()
return a list of text.Text instance in the legend

get_title()
return Text instance for the legend title

get_window_extent()
return a extent of the the legend

set_bbox_to_anchor(bbox, transform=None)
set the bbox that the legend will be anchored.

bbox can be a BboxBase instance, a tuple of [left, bottom, width, height] in the given transform
(normalized axes coordinate if None), or a tuple of [left, bottom] where the width and height
will be assumed to be zero.

set_frame_on(b)
Set whether the legend box patch is drawn

ACCEPTS: [True | False]

set_title(title)
set the legend title

34.3 matplotlib.lines

This module contains all the 2D line class which can draw with a variety of line styles, markers and colors.

class Line2D(xdata, ydata, linewidth=None, linestyle=None, color=None, marker=None, marker-
size=None, markeredgewidth=None, markeredgecolor=None, markerfacecolor=None,
markerfacecoloralt=’none’, fillstyle=’full’, antialiased=None, dash_capstyle=None,
solid_capstyle=None, dash_joinstyle=None, solid_joinstyle=None, pickradius=5, draw-
style=None, markevery=None, **kwargs)

Bases: matplotlib.artist.Artist

A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex.
Additionally, the drawing of the solid line is influenced by the drawstyle, eg one can create “stepped”
lines in various styles.

Create a Line2D instance with x and y data in sequences xdata, ydata.

The kwargs are Line2D properties:

34.3. matplotlib.lines 329

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See set_linestyle() for a decription of the line styles, set_marker() for a description of the
markers, and set_drawstyle() for a description of the draw styles.

330 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

contains(mouseevent)
Test whether the mouse event occurred on the line. The pick radius determines the preci-
sion of the location test (usually within five points of the value). Use get_pickradius()
or set_pickradius() to view or modify it.

Returns True if any values are within the radius along with {’ind’: pointlist}, where
pointlist is the set of points within the radius.

TODO: sort returned indices by distance

draw(artist, renderer, *args, **kwargs)

get_aa()
alias for get_antialiased

get_antialiased()

get_c()
alias for get_color

get_color()

get_dash_capstyle()
Get the cap style for dashed linestyles

get_dash_joinstyle()
Get the join style for dashed linestyles

get_data(orig=True)
Return the xdata, ydata.

If orig is True, return the original data

get_drawstyle()

get_fillstyle()
return the marker fillstyle

get_linestyle()

get_linewidth()

get_ls()
alias for get_linestyle

get_lw()
alias for get_linewidth

get_marker()

get_markeredgecolor()

get_markeredgewidth()

get_markerfacecolor()

get_markerfacecoloralt()

get_markersize()

34.3. matplotlib.lines 331

Matplotlib, Release 1.0.0

get_markevery()
return the markevery setting

get_mec()
alias for get_markeredgecolor

get_mew()
alias for get_markeredgewidth

get_mfc()
alias for get_markerfacecolor

get_mfcalt(alt=False)
alias for get_markerfacecoloralt

get_ms()
alias for get_markersize

get_path()
Return the Path object associated with this line.

get_pickradius()
return the pick radius used for containment tests

get_solid_capstyle()
Get the cap style for solid linestyles

get_solid_joinstyle()
Get the join style for solid linestyles

get_window_extent(renderer)

get_xdata(orig=True)
Return the xdata.

If orig is True, return the original data, else the processed data.

get_xydata()
Return the xy data as a Nx2 numpy array.

get_ydata(orig=True)
Return the ydata.

If orig is True, return the original data, else the processed data.

is_dashed()
return True if line is dashstyle

recache(always=False)

recache_always()

set_aa(val)
alias for set_antialiased

set_antialiased(b)
True if line should be drawin with antialiased rendering

332 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

ACCEPTS: [True | False]

set_axes(ax)
Set the Axes instance in which the artist resides, if any.

ACCEPTS: an Axes instance

set_c(val)
alias for set_color

set_color(color)
Set the color of the line

ACCEPTS: any matplotlib color

set_dash_capstyle(s)
Set the cap style for dashed linestyles

ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

set_dash_joinstyle(s)
Set the join style for dashed linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

set_dashes(seq)
Set the dash sequence, sequence of dashes with on off ink in points. If seq is empty or if seq =

(None, None), the linestyle will be set to solid.

ACCEPTS: sequence of on/off ink in points

set_data(*args)
Set the x and y data

ACCEPTS: 2D array (rows are x, y) or two 1D arrays

set_drawstyle(drawstyle)
Set the drawstyle of the plot

‘default’ connects the points with lines. The steps variants produce step-plots. ‘steps’ is equiva-
lent to ‘steps-pre’ and is maintained for backward-compatibility.

ACCEPTS: [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]

set_fillstyle(fs)
Set the marker fill style; ‘full’ means fill the whole marker. The other options are for half filled
markers

ACCEPTS: [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]

set_linestyle(linestyle)
Set the linestyle of the line (also accepts drawstyles)

34.3. matplotlib.lines 333

Matplotlib, Release 1.0.0

linestyle description
’-’ solid
’--’ dashed
’-.’ dash_dot
’:’ dotted
’None’ draw nothing
’ ’ draw nothing
” draw nothing

‘steps’ is equivalent to ‘steps-pre’ and is maintained for backward-compatibility.

See Also:

set_drawstyle() To set the drawing style (stepping) of the plot.

ACCEPTS: [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination
with a linestyle, e.g. ’steps--’.

set_linewidth(w)
Set the line width in points

ACCEPTS: float value in points

set_ls(val)
alias for set_linestyle

set_lw(val)
alias for set_linewidth

set_marker(marker)
Set the line marker

marker description
’.’ point
’,’ pixel
’o’ circle
’v’ triangle_down
’^’ triangle_up
’<’ triangle_left
’>’ triangle_right
’1’ tri_down
’2’ tri_up
’3’ tri_left
’4’ tri_right
’s’ square
’p’ pentagon
’*’ star
’h’ hexagon1
’H’ hexagon2
’+’ plus
’x’ x

Continued on next page

334 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Table 34.2 – continued from previous page
’D’ diamond
’d’ thin_diamond
’|’ vline
’_’ hline
TICKLEFT tickleft
TICKRIGHT tickright
TICKUP tickup
TICKDOWN tickdown
CARETLEFT caretleft
CARETRIGHT caretright
CARETUP caretup
CARETDOWN caretdown
’None’ nothing
’ ’ nothing
” nothing
‘$...$’ render the string using mathtext

ACCEPTS: [’+’ | ’*’ | ’,’ | ’.’ ’1’ | ’2’ | ’3’ | ’4’
’<’ | ’>’ | ’D’ | ’H’
’^’ | ’_’ | ’d’ | ’h’
’o’ | ’p’ | ’s’ | ’v’
’x’ | ’|’
TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT
CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT
’None’ | ’ ’ | ” | ’$...$’]

set_markeredgecolor(ec)
Set the marker edge color

ACCEPTS: any matplotlib color

set_markeredgewidth(ew)
Set the marker edge width in points

ACCEPTS: float value in points

set_markerfacecolor(fc)
Set the marker face color.

ACCEPTS: any matplotlib color

set_markerfacecoloralt(fc)
Set the alternate marker face color.

ACCEPTS: any matplotlib color

set_markersize(sz)
Set the marker size in points

ACCEPTS: float

34.3. matplotlib.lines 335

Matplotlib, Release 1.0.0

set_markevery(every)
Set the markevery property to subsample the plot when using markers. Eg if markevery=5,
every 5-th marker will be plotted. every can be

None Every point will be plotted

an integer N Every N-th marker will be plotted starting with marker 0

A length-2 tuple of integers every=(start, N) will start at point start and plot every N-th marker

ACCEPTS: None | integer | (startind, stride)

set_mec(val)
alias for set_markeredgecolor

set_mew(val)
alias for set_markeredgewidth

set_mfc(val)
alias for set_markerfacecolor

set_mfcalt(val)
alias for set_markerfacecoloralt

set_ms(val)
alias for set_markersize

set_picker(p)
Sets the event picker details for the line.

ACCEPTS: float distance in points or callable pick function fn(artist, event)

set_pickradius(d)
Sets the pick radius used for containment tests

ACCEPTS: float distance in points

set_solid_capstyle(s)
Set the cap style for solid linestyles

ACCEPTS: [’butt’ | ‘round’ | ‘projecting’]

set_solid_joinstyle(s)
Set the join style for solid linestyles ACCEPTS: [’miter’ | ‘round’ | ‘bevel’]

set_transform(t)
set the Transformation instance used by this artist

ACCEPTS: a matplotlib.transforms.Transform instance

set_xdata(x)
Set the data np.array for x

ACCEPTS: 1D array

set_ydata(y)
Set the data np.array for y

ACCEPTS: 1D array

336 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

update_from(other)
copy properties from other to self

class VertexSelector(line)
Manage the callbacks to maintain a list of selected vertices for matplotlib.lines.Line2D. Derived
classes should override process_selected() to do something with the picks.

Here is an example which highlights the selected verts with red circles:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as lines

class HighlightSelected(lines.VertexSelector):
def __init__(self, line, fmt=’ro’, **kwargs):

lines.VertexSelector.__init__(self, line)
self.markers, = self.axes.plot([], [], fmt, **kwargs)

def process_selected(self, ind, xs, ys):
self.markers.set_data(xs, ys)
self.canvas.draw()

fig = plt.figure()
ax = fig.add_subplot(111)
x, y = np.random.rand(2, 30)
line, = ax.plot(x, y, ’bs-’, picker=5)

selector = HighlightSelected(line)
plt.show()

Initialize the class with a matplotlib.lines.Line2D instance. The line should already be added to
some matplotlib.axes.Axes instance and should have the picker property set.

onpick(event)
When the line is picked, update the set of selected indicies.

process_selected(ind, xs, ys)
Default “do nothing” implementation of the process_selected() method.

ind are the indices of the selected vertices. xs and ys are the coordinates of the selected vertices.

segment_hits(cx, cy, x, y, radius)
Determine if any line segments are within radius of a point. Returns the list of line segments that are
within that radius.

34.4 matplotlib.patches

class Arc(xy, width, height, angle=0.0, theta1=0.0, theta2=360.0, **kwargs)
Bases: matplotlib.patches.Ellipse

An elliptical arc. Because it performs various optimizations, it can not be filled.

34.4. matplotlib.patches 337

Matplotlib, Release 1.0.0

The arc must be used in an Axes instance—it can not be added directly to a Figure—because it is
optimized to only render the segments that are inside the axes bounding box with high resolution.

The following args are supported:

xy center of ellipse

width length of horizontal axis

height length of vertical axis

angle rotation in degrees (anti-clockwise)

theta1 starting angle of the arc in degrees

theta2 ending angle of the arc in degrees

If theta1 and theta2 are not provided, the arc will form a complete ellipse.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(artist, renderer, *args, **kwargs)
Ellipses are normally drawn using an approximation that uses eight cubic bezier splines. The

338 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

error of this approximation is 1.89818e-6, according to this unverified source:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

http://www.tinaja.com/glib/ellipse4.pdf

There is a use case where very large ellipses must be drawn with very high accuracy, and it is
too expensive to render the entire ellipse with enough segments (either splines or line segments).
Therefore, in the case where either radius of the ellipse is large enough that the error of the spline
approximation will be visible (greater than one pixel offset from the ideal), a different technique
is used.

In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed
number of spline segments (8). The algorithm proceeds as follows:

1.The points where the ellipse intersects the axes bounding box are located. (This is done
be performing an inverse transformation on the axes bbox such that it is relative to the
unit circle – this makes the intersection calculation much easier than doing rotated ellipse
intersection directly).

This uses the “line intersecting a circle” algorithm from:

Vince, John. Geometry for Computer Graphics: Formulae, Examples & Proofs.
London: Springer-Verlag, 2005.

2.The angles of each of the intersection points are calculated.

3.Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-
segments between the pairs of vertices are drawn using the bezier arc approximation tech-
nique implemented in matplotlib.path.Path.arc().

class Arrow(x, y, dx, dy, width=1.0, **kwargs)
Bases: matplotlib.patches.Patch

An arrow patch.

Draws an arrow, starting at (x, y), direction and length given by (dx, dy) the width of the arrow is
scaled by width.

Valid kwargs are:

34.4. matplotlib.patches 339

http://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

class ArrowStyle()
Bases: matplotlib.patches._Style

ArrowStyle is a container class which defines several arrowstyle classes, which is used to create an
arrow path along a given path. These are mainly used with FancyArrowPatch.

A arrowstyle object can be either created as:

ArrowStyle.Fancy(head_length=.4, head_width=.4, tail_width=.4)

or:

ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4)

or:

340 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4")

The following classes are defined

Class Name Attrs
Curve - None
CurveB -> head_length=0.4,head_width=0.2
BracketB -[widthB=1.0,lengthB=0.2,angleB=None
CurveFilledB -|> head_length=0.4,head_width=0.2
CurveA <- head_length=0.4,head_width=0.2
CurveAB <-> head_length=0.4,head_width=0.2
CurveFilledA <|- head_length=0.4,head_width=0.2
Curve-
FilledAB

<|-|> head_length=0.4,head_width=0.2

BracketA]- widthA=1.0,lengthA=0.2,angleA=None
BracketAB]-[widthA=1.0,lengthA=0.2,angleA=None,widthB=1.0,lengthB=0.2,angleB=None
Fancy fancy head_length=0.4,head_width=0.4,tail_width=0.4
Simple simple head_length=0.5,head_width=0.5,tail_width=0.2
Wedge wedge tail_width=0.3,shrink_factor=0.5
BarAB |-| widthA=1.0,angleA=None,widthB=1.0,angleB=None

An instance of any arrow style class is an callable object, whose call signature is:

__call__(self, path, mutation_size, linewidth, aspect_ratio=1.)

and it returns a tuple of a Path instance and a boolean value. path is a Path instance along witch the
arrow will be drawn. mutation_size and aspect_ratio has a same meaning as in BoxStyle. linewidth
is a line width to be stroked. This is meant to be used to correct the location of the head so that it does
not overshoot the destination point, but not all classes support it.

class BarAB(widthA=1.0, angleA=None, widthB=1.0, angleB=None)
Bases: matplotlib.patches._Bracket

An arrow with a bracket(]) at both ends.

widthA width of the bracket

lengthA length of the bracket

angleA angle between the bracket and the line

widthB width of the bracket

lengthB length of the bracket

angleB angle between the bracket and the line

class BracketA(widthA=1.0, lengthA=0.20000000000000001, angleA=None)
Bases: matplotlib.patches._Bracket

An arrow with a bracket(]) at its end.

widthA width of the bracket

34.4. matplotlib.patches 341

Matplotlib, Release 1.0.0

-

->

-[

-|>

<-

<->

<|-

<|-|>

]-

]-[

fancy

simple

wedge

|-|

342 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

lengthA length of the bracket

angleA angle between the bracket and the line

class BracketAB(widthA=1.0, lengthA=0.20000000000000001, angleA=None, widthB=1.0,
lengthB=0.20000000000000001, angleB=None)

Bases: matplotlib.patches._Bracket

An arrow with a bracket(]) at both ends.

widthA width of the bracket

lengthA length of the bracket

angleA angle between the bracket and the line

widthB width of the bracket

lengthB length of the bracket

angleB angle between the bracket and the line

class BracketB(widthB=1.0, lengthB=0.20000000000000001, angleB=None)
Bases: matplotlib.patches._Bracket

An arrow with a bracket([) at its end.

widthB width of the bracket

lengthB length of the bracket

angleB angle between the bracket and the line

class Curve()
Bases: matplotlib.patches._Curve

A simple curve without any arrow head.

class CurveA(head_length=0.40000000000000002, head_width=0.20000000000000001)
Bases: matplotlib.patches._Curve

An arrow with a head at its begin point.

head_length length of the arrow head

head_width width of the arrow head

class CurveAB(head_length=0.40000000000000002, head_width=0.20000000000000001)
Bases: matplotlib.patches._Curve

An arrow with heads both at the begin and the end point.

head_length length of the arrow head

head_width width of the arrow head

class CurveB(head_length=0.40000000000000002, head_width=0.20000000000000001)
Bases: matplotlib.patches._Curve

An arrow with a head at its end point.

34.4. matplotlib.patches 343

Matplotlib, Release 1.0.0

head_length length of the arrow head

head_width width of the arrow head

class CurveFilledA(head_length=0.40000000000000002, head_width=0.20000000000000001)
Bases: matplotlib.patches._Curve

An arrow with filled triangle head at the begin.

head_length length of the arrow head

head_width width of the arrow head

class CurveFilledAB(head_length=0.40000000000000002, head_width=0.20000000000000001)
Bases: matplotlib.patches._Curve

An arrow with filled triangle heads both at the begin and the end point.

head_length length of the arrow head

head_width width of the arrow head

class CurveFilledB(head_length=0.40000000000000002, head_width=0.20000000000000001)
Bases: matplotlib.patches._Curve

An arrow with filled triangle head at the end.

head_length length of the arrow head

head_width width of the arrow head

class Fancy(head_length=0.40000000000000002, head_width=0.40000000000000002,
tail_width=0.40000000000000002)

Bases: matplotlib.patches._Base

A fancy arrow. Only works with a quadratic bezier curve.

head_length length of the arrow head

head_with width of the arrow head

tail_width width of the arrow tail

transmute(path, mutation_size, linewidth)

class Simple(head_length=0.5, head_width=0.5, tail_width=0.20000000000000001)
Bases: matplotlib.patches._Base

A simple arrow. Only works with a quadratic bezier curve.

head_length length of the arrow head

head_with width of the arrow head

tail_width width of the arrow tail

transmute(path, mutation_size, linewidth)

class Wedge(tail_width=0.29999999999999999, shrink_factor=0.5)
Bases: matplotlib.patches._Base

344 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Wedge(?) shape. Only wokrs with a quadratic bezier curve. The begin point has a
width of the tail_width and the end point has a width of 0. At the middle, the width is
shrink_factor*tail_width.

tail_width width of the tail

shrink_factor fraction of the arrow width at the middle point

transmute(path, mutation_size, linewidth)

class BoxStyle()
Bases: matplotlib.patches._Style

BoxStyle is a container class which defines several boxstyle classes, which are used for
FancyBoxPatch.

A style object can be created as:

BoxStyle.Round(pad=0.2)

or:

BoxStyle("Round", pad=0.2)

or:

BoxStyle("Round, pad=0.2")

Following boxstyle classes are defined.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

An instance of any boxstyle class is an callable object, whose call signature is:

__call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.)

and returns a Path instance. x0, y0, width and height specify the location and size of the box to be
drawn. mutation_scale determines the overall size of the mutation (by which I mean the transforma-
tion of the rectangle to the fancy box). mutation_aspect determines the aspect-ratio of the mutation.

class LArrow(pad=0.29999999999999999)
Bases: matplotlib.patches._Base

(left) Arrow Box

34.4. matplotlib.patches 345

Matplotlib, Release 1.0.0

square

sawtooth

roundtooth

rarrow

larrow

round4

round

346 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

transmute(x0, y0, width, height, mutation_size)

class RArrow(pad=0.29999999999999999)
Bases: matplotlib.patches.LArrow

(right) Arrow Box

transmute(x0, y0, width, height, mutation_size)

class Round(pad=0.29999999999999999, rounding_size=None)
Bases: matplotlib.patches._Base

A box with round corners.

pad amount of padding

rounding_size rounding radius of corners. pad if None

transmute(x0, y0, width, height, mutation_size)

class Round4(pad=0.29999999999999999, rounding_size=None)
Bases: matplotlib.patches._Base

Another box with round edges.

pad amount of padding

rounding_size rounding size of edges. pad if None

transmute(x0, y0, width, height, mutation_size)

class Roundtooth(pad=0.29999999999999999, tooth_size=None)
Bases: matplotlib.patches.Sawtooth

A roundtooth(?) box.

pad amount of padding

tooth_size size of the sawtooth. pad* if None

transmute(x0, y0, width, height, mutation_size)

class Sawtooth(pad=0.29999999999999999, tooth_size=None)
Bases: matplotlib.patches._Base

A sawtooth box.

pad amount of padding

tooth_size size of the sawtooth. pad* if None

transmute(x0, y0, width, height, mutation_size)

class Square(pad=0.29999999999999999)
Bases: matplotlib.patches._Base

A simple square box.

pad amount of padding

transmute(x0, y0, width, height, mutation_size)

34.4. matplotlib.patches 347

Matplotlib, Release 1.0.0

class Circle(xy, radius=5, **kwargs)
Bases: matplotlib.patches.Ellipse

A circle patch.

Create true circle at center xy = (x, y) with given radius. Unlike CirclePolygon which is a polygonal
approximation, this uses Bézier splines and is much closer to a scale-free circle.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_radius()
return the radius of the circle

radius
return the radius of the circle

set_radius(radius)
Set the radius of the circle

ACCEPTS: float

class CirclePolygon(xy, radius=5, resolution=20, **kwargs)

348 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Bases: matplotlib.patches.RegularPolygon

A polygon-approximation of a circle patch.

Create a circle at xy = (x, y) with given radius. This circle is approximated by a regular polygon with
resolution sides. For a smoother circle drawn with splines, see Circle.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

class ConnectionPatch(xyA, xyB, coordsA, coordsB=None, axesA=None, axesB=None, arrowstyle=’-
’, arrow_transmuter=None, connectionstyle=’arc3’, connector=None,
patchA=None, patchB=None, shrinkA=0.0, shrinkB=0.0, mutation_scale=10.0,
mutation_aspect=None, clip_on=False, **kwargs)

Bases: matplotlib.patches.FancyArrowPatch

A ConnectionPatch class is to make connecting lines between two points (possibly in different
axes).

Connect point xyA in coordsA with point xyB in coordsB

Valid keys are

34.4. matplotlib.patches 349

Matplotlib, Release 1.0.0

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

coordsA and coordsB are strings that indicate the coordinates of xyA and xyB.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using
a polar axes, you do not need to specify polar for the coordinate system since that is the
native “data” coordinate system.

draw(renderer)
Draw.

get_annotation_clip()
Return annotation_clip attribute. See set_annotation_clip() for the meaning of return val-
ues.

get_path_in_displaycoord()
Return the mutated path of the arrow in the display coord

set_annotation_clip(b)
set annotation_clip attribute.

•True : the annotation will only be drawn when self.xy is inside the axes.

•False : the annotation will always be drawn regardless of its position.

350 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

•None : the self.xy will be checked only if xycoords is “data”

class ConnectionStyle()
Bases: matplotlib.patches._Style

ConnectionStyle is a container class which defines several connectionstyle classes, which is used
to create a path between two points. These are mainly used with FancyArrowPatch.

A connectionstyle object can be either created as:

ConnectionStyle.Arc3(rad=0.2)

or:

ConnectionStyle("Arc3", rad=0.2)

or:

ConnectionStyle("Arc3, rad=0.2")

The following classes are defined

Class Name Attrs
Angle angle angleA=90,angleB=0,rad=0.0
Angle3 angle3 angleA=90,angleB=0
Arc arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
Arc3 arc3 rad=0.0
Bar bar armA=0.0,armB=0.0,fraction=0.3,angle=None

An instance of any connection style class is an callable object, whose call signature is:

__call__(self, posA, posB, patchA=None, patchB=None, shrinkA=2., shrinkB=2.)

and it returns a Path instance. posA and posB are tuples of x,y coordinates of the two points to be
connected. patchA (or patchB) is given, the returned path is clipped so that it start (or end) from the
boundary of the patch. The path is further shrunk by shrinkA (or shrinkB) which is given in points.

class Angle(angleA=90, angleB=0, rad=0.0)
Bases: matplotlib.patches._Base

Creates a picewise continuous quadratic bezier path between two points. The path has a one
passing-through point placed at the intersecting point of two lines which crosses the start (or
end) point and has a angle of angleA (or angleB). The connecting edges are rounded with rad.

angleA starting angle of the path

angleB ending angle of the path

rad rounding radius of the edge

connect(posA, posB)

34.4. matplotlib.patches 351

Matplotlib, Release 1.0.0

class Angle3(angleA=90, angleB=0)
Bases: matplotlib.patches._Base

Creates a simple quadratic bezier curve between two points. The middle control points is placed
at the intersecting point of two lines which crosses the start (or end) point and has a angle of
angleA (or angleB).

angleA starting angle of the path

angleB ending angle of the path

connect(posA, posB)

class Arc(angleA=0, angleB=0, armA=None, armB=None, rad=0.0)
Bases: matplotlib.patches._Base

Creates a picewise continuous quadratic bezier path between two points. The path can have two
passing-through points, a point placed at the distance of armA and angle of angleA from point
A, another point with respect to point B. The edges are rounded with rad.

angleA : starting angle of the path

angleB : ending angle of the path

armA : length of the starting arm

armB : length of the ending arm

rad : rounding radius of the edges

connect(posA, posB)

class Arc3(rad=0.0)
Bases: matplotlib.patches._Base

Creates a simple quadratic bezier curve between two points. The curve is created so that the
middle contol points (C1) is located at the same distance from the start (C0) and end points(C2)
and the distance of the C1 to the line connecting C0-C2 is rad times the distance of C0-C2.

rad curvature of the curve.

connect(posA, posB)

class Bar(armA=0.0, armB=0.0, fraction=0.29999999999999999, angle=None)
Bases: matplotlib.patches._Base

A line with angle between A and B with armA and armB. One of the arm is extend so that they
are connected in a right angle. The length of armA is determined by (armA + fraction x AB
distance). Same for armB.

armA : minimum length of armA armB : minimum length of armB fraction : a fraction of
the distance between two points that will be added to armA and armB. angle : anlge of the
connecting line (if None, parallel to A and B)

connect(posA, posB)

class Ellipse(xy, width, height, angle=0.0, **kwargs)
Bases: matplotlib.patches.Patch

352 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

A scale-free ellipse.

xy center of ellipse

width total length (diameter) of horizontal axis

height total length (diameter) of vertical axis

angle rotation in degrees (anti-clockwise)

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

contains(ev)

get_patch_transform()

get_path()
Return the vertices of the rectangle

class FancyArrow(x, y, dx, dy, width=0.001, length_includes_head=False, head_width=None,
head_length=None, shape=’full’, overhang=0, head_starts_at_zero=False, **kwargs)

Bases: matplotlib.patches.Polygon

34.4. matplotlib.patches 353

Matplotlib, Release 1.0.0

Like Arrow, but lets you set head width and head height independently.

Constructor arguments

length_includes_head: True if head is counted in calculating the length.

shape: [’full’, ‘left’, ‘right’]

overhang: distance that the arrow is swept back (0 overhang means triangular shape).

head_starts_at_zero: If True, the head starts being drawn at coordinate 0 instead of ending
at coordinate 0.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

class FancyArrowPatch(posA=None, posB=None, path=None, arrowstyle=’simple’, ar-
row_transmuter=None, connectionstyle=’arc3’, connector=None,
patchA=None, patchB=None, shrinkA=2.0, shrinkB=2.0, mutation_scale=1.0,
mutation_aspect=None, **kwargs)

Bases: matplotlib.patches.Patch

A fancy arrow patch. It draws an arrow using the :class:ArrowStyle.

354 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

If posA and posB is given, a path connecting two point are created according to the connectionstyle.
The path will be clipped with patchA and patchB and further shirnked by shrinkA and shrinkB. An
arrow is drawn along this resulting path using the arrowstyle parameter. If path provided, an arrow is
drawn along this path and patchA, patchB, shrinkA, and shrinkB are ignored.

The connectionstyle describes how posA and posB are connected. It can be an instance of the Con-
nectionStyle class (matplotlib.patches.ConnectionStlye) or a string of the connectionstyle name, with
optional comma-separated attributes. The following connection styles are available.

Class Name Attrs
Angle angle angleA=90,angleB=0,rad=0.0
Angle3 angle3 angleA=90,angleB=0
Arc arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
Arc3 arc3 rad=0.0
Bar bar armA=0.0,armB=0.0,fraction=0.3,angle=None

The arrowstyle describes how the fancy arrow will be drawn. It can be string of the available ar-
rowstyle names, with optional comma-separated attributes, or one of the ArrowStyle instance. The
optional attributes are meant to be scaled with the mutation_scale. The following arrow styles are
available.

Class Name Attrs
Curve - None
CurveB -> head_length=0.4,head_width=0.2
BracketB -[widthB=1.0,lengthB=0.2,angleB=None
CurveFilledB -|> head_length=0.4,head_width=0.2
CurveA <- head_length=0.4,head_width=0.2
CurveAB <-> head_length=0.4,head_width=0.2
CurveFilledA <|- head_length=0.4,head_width=0.2
Curve-
FilledAB

<|-|> head_length=0.4,head_width=0.2

BracketA]- widthA=1.0,lengthA=0.2,angleA=None
BracketAB]-[widthA=1.0,lengthA=0.2,angleA=None,widthB=1.0,lengthB=0.2,angleB=None
Fancy fancy head_length=0.4,head_width=0.4,tail_width=0.4
Simple simple head_length=0.5,head_width=0.5,tail_width=0.2
Wedge wedge tail_width=0.3,shrink_factor=0.5
BarAB |-| widthA=1.0,angleA=None,widthB=1.0,angleB=None

mutation_scale [a value with which attributes of arrowstyle] (e.g., head_length) will be scaled. de-
fault=1.

mutation_aspect [The height of the rectangle will be] squeezed by this value before the mutation and
the mutated box will be stretched by the inverse of it. default=None.

Valid kwargs are:

34.4. matplotlib.patches 355

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(renderer)

get_arrowstyle()
Return the arrowstyle object

get_connectionstyle()
Return the ConnectionStyle instance

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()
return the path of the arrow in the data coordinate. Use get_path_in_displaycoord() medthod to
retrieve the arrow path in the disaply coord.

get_path_in_displaycoord()
Return the mutated path of the arrow in the display coord

356 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

set_arrowstyle(arrowstyle=None, **kw)
Set the arrow style.

arrowstyle can be a string with arrowstyle name with optional comma-separated attributes.
Alternatively, the attrs can be provided as keywords.

set_arrowstyle(“Fancy,head_length=0.2”) set_arrowstyle(“fancy”, head_length=0.2)

Old attrs simply are forgotten.

Without argument (or with arrowstyle=None), return available box styles as a list of strings.

set_connectionstyle(connectionstyle, **kw)
Set the connection style.

connectionstyle can be a string with connectionstyle name with optional comma-separated
attributes. Alternatively, the attrs can be probided as keywords.

set_connectionstyle(“arc,angleA=0,armA=30,rad=10”) set_connectionstyle(“arc”, an-
gleA=0,armA=30,rad=10)

Old attrs simply are forgotten.

Without argument (or with connectionstyle=None), return available styles as a list of strings.

set_mutation_aspect(aspect)
Set the aspect ratio of the bbox mutation.

ACCEPTS: float

set_mutation_scale(scale)
Set the mutation scale.

ACCEPTS: float

set_patchA(patchA)
set the begin patch.

set_patchB(patchB)
set the begin patch

set_positions(posA, posB)
set the begin end end positions of the connecting path. Use current vlaue if None.

class FancyBboxPatch(xy, width, height, boxstyle=’round’, bbox_transmuter=None, mutation_scale=1.0,
mutation_aspect=None, **kwargs)

Bases: matplotlib.patches.Patch

Draw a fancy box around a rectangle with lower left at xy*=(*x, y) with specified width and height.

FancyBboxPatch class is similar to Rectangle class, but it draws a fancy box around the rectangle.
The transformation of the rectangle box to the fancy box is delegated to the BoxTransmuterBase
and its derived classes.

xy = lower left corner

width, height

34.4. matplotlib.patches 357

Matplotlib, Release 1.0.0

boxstyle determines what kind of fancy box will be drawn. It can be a string of the style name with a
comma separated attribute, or an instance of BoxStyle. Following box styles are available.

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

mutation_scale : a value with which attributes of boxstyle (e.g., pad) will be scaled. default=1.

mutation_aspect : The height of the rectangle will be squeezed by this value before the mutation and
the mutated box will be stretched by the inverse of it. default=None.

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_bbox()

358 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

get_boxstyle()
Return the boxstyle object

get_height()
Return the height of the rectangle

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()
Return the mutated path of the rectangle

get_width()
Return the width of the rectangle

get_x()
Return the left coord of the rectangle

get_y()
Return the bottom coord of the rectangle

set_bounds(*args)
Set the bounds of the rectangle: l,b,w,h

ACCEPTS: (left, bottom, width, height)

set_boxstyle(boxstyle=None, **kw)
Set the box style.

boxstyle can be a string with boxstyle name with optional comma-separated attributes. Alterna-
tively, the attrs can be provided as keywords:

set_boxstyle("round,pad=0.2")
set_boxstyle("round", pad=0.2)

Old attrs simply are forgotten.

Without argument (or with boxstyle = None), it returns available box styles.

ACCEPTS: [

Class Name Attrs
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

]

34.4. matplotlib.patches 359

Matplotlib, Release 1.0.0

set_height(h)
Set the width rectangle

ACCEPTS: float

set_mutation_aspect(aspect)
Set the aspect ratio of the bbox mutation.

ACCEPTS: float

set_mutation_scale(scale)
Set the mutation scale.

ACCEPTS: float

set_width(w)
Set the width rectangle

ACCEPTS: float

set_x(x)
Set the left coord of the rectangle

ACCEPTS: float

set_y(y)
Set the bottom coord of the rectangle

ACCEPTS: float

class Patch(edgecolor=None, facecolor=None, color=None, linewidth=None, linestyle=None, an-
tialiased=None, hatch=None, fill=True, path_effects=None, **kwargs)

Bases: matplotlib.artist.Artist

A patch is a 2D thingy with a face color and an edge color.

If any of edgecolor, facecolor, linewidth, or antialiased are None, they default to their rc params
setting.

The following kwarg properties are supported

360 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

contains(mouseevent)
Test whether the mouse event occurred in the patch.

Returns T/F, {}

contains_point(point)
Returns True if the given point is inside the path (transformed with its transform attribute).

draw(artist, renderer, *args, **kwargs)
Draw the Patch to the given renderer.

get_aa()
Returns True if the Patch is to be drawn with antialiasing.

get_antialiased()
Returns True if the Patch is to be drawn with antialiasing.

get_data_transform()

get_ec()
Return the edge color of the Patch.

34.4. matplotlib.patches 361

Matplotlib, Release 1.0.0

get_edgecolor()
Return the edge color of the Patch.

get_extents()
Return a Bbox object defining the axis-aligned extents of the Patch.

get_facecolor()
Return the face color of the Patch.

get_fc()
Return the face color of the Patch.

get_fill()
return whether fill is set

get_hatch()
Return the current hatching pattern

get_linestyle()
Return the linestyle. Will be one of [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_linewidth()
Return the line width in points.

get_ls()
Return the linestyle. Will be one of [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

get_lw()
Return the line width in points.

get_patch_transform()

get_path()
Return the path of this patch

get_path_effects()

get_transform()
Return the Transform applied to the Patch.

get_verts()
Return a copy of the vertices used in this patch

If the patch contains Bezier curves, the curves will be interpolated by line segments. To access
the curves as curves, use get_path().

get_window_extent(renderer=None)

set_aa(aa)
alias for set_antialiased

set_alpha(alpha)
Set the alpha tranparency of the patch.

ACCEPTS: float or None

set_antialiased(aa)
Set whether to use antialiased rendering

362 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

ACCEPTS: [True | False] or None for default

set_color(c)
Set both the edgecolor and the facecolor.

ACCEPTS: matplotlib color spec

See Also:

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_ec(color)
alias for set_edgecolor

set_edgecolor(color)
Set the patch edge color

ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_facecolor(color)
Set the patch face color

ACCEPTS: mpl color spec, or None for default, or ‘none’ for no color

set_fc(color)
alias for set_facecolor

set_fill(b)
Set whether to fill the patch

ACCEPTS: [True | False]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter
repeats, it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

ACCEPTS: [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]

34.4. matplotlib.patches 363

Matplotlib, Release 1.0.0

set_linestyle(ls)
Set the patch linestyle

ACCEPTS: [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

set_linewidth(w)
Set the patch linewidth in points

ACCEPTS: float or None for default

set_ls(ls)
alias for set_linestyle

set_lw(lw)
alias for set_linewidth

set_path_effects(path_effects)
set path_effects, which should be a list of instances of matplotlib.patheffect._Base class or its
derivatives.

update_from(other)
Updates this Patch from the properties of other.

class PathPatch(path, **kwargs)
Bases: matplotlib.patches.Patch

A general polycurve path patch.

path is a matplotlib.path.Path object.

Valid kwargs are:

364 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See Also:

Patch For additional kwargs

get_path()

class Polygon(xy, closed=True, **kwargs)
Bases: matplotlib.patches.Patch

A general polygon patch.

xy is a numpy array with shape Nx2.

If closed is True, the polygon will be closed so the starting and ending points are the same.

Valid kwargs are:

34.4. matplotlib.patches 365

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See Also:

Patch For additional kwargs

get_closed()

get_path()

get_xy()

set_closed(closed)

set_xy(vertices)

xy
Set/get the vertices of the polygon. This property is provided for backward compatibility with
matplotlib 0.91.x only. New code should use get_xy() and set_xy() instead.

class Rectangle(xy, width, height, **kwargs)
Bases: matplotlib.patches.Patch

Draw a rectangle with lower left at xy = (x, y) with specified width and height.

366 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

fill is a boolean indicating whether to fill the rectangle

Valid kwargs are:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

contains(mouseevent)

get_bbox()

get_height()
Return the height of the rectangle

get_patch_transform()

get_path()
Return the vertices of the rectangle

get_width()
Return the width of the rectangle

get_x()
Return the left coord of the rectangle

34.4. matplotlib.patches 367

Matplotlib, Release 1.0.0

get_xy()
Return the left and bottom coords of the rectangle

get_y()
Return the bottom coord of the rectangle

set_bounds(*args)
Set the bounds of the rectangle: l,b,w,h

ACCEPTS: (left, bottom, width, height)

set_height(h)
Set the width rectangle

ACCEPTS: float

set_width(w)
Set the width rectangle

ACCEPTS: float

set_x(x)
Set the left coord of the rectangle

ACCEPTS: float

set_xy(xy)
Set the left and bottom coords of the rectangle

ACCEPTS: 2-item sequence

set_y(y)
Set the bottom coord of the rectangle

ACCEPTS: float

xy
Return the left and bottom coords of the rectangle

class RegularPolygon(xy, numVertices, radius=5, orientation=0, **kwargs)
Bases: matplotlib.patches.Patch

A regular polygon patch.

Constructor arguments:

xy A length 2 tuple (x, y) of the center.

numVertices the number of vertices.

radius The distance from the center to each of the vertices.

orientation rotates the polygon (in radians).

Valid kwargs are:

368 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

numvertices

orientation

radius

xy

class Shadow(patch, ox, oy, props=None, **kwargs)
Bases: matplotlib.patches.Patch

Create a shadow of the given patch offset by ox, oy. props, if not None, is a patch property update
dictionary. If None, the shadow will have have the same color as the face, but darkened.

kwargs are

34.4. matplotlib.patches 369

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

draw(renderer)

get_patch_transform()

get_path()

class Wedge(center, r, theta1, theta2, width=None, **kwargs)
Bases: matplotlib.patches.Patch

Wedge shaped patch.

Draw a wedge centered at x, y center with radius r that sweeps theta1 to theta2 (in degrees). If width
is given, then a partial wedge is drawn from inner radius r - width to outer radius r.

Valid kwargs are:

370 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_path()

class YAArrow(figure, xytip, xybase, width=4, frac=0.10000000000000001, headwidth=12, **kwargs)
Bases: matplotlib.patches.Patch

Yet another arrow class.

This is an arrow that is defined in display space and has a tip at x1, y1 and a base at x2, y2.

Constructor arguments:

xytip (x, y) location of arrow tip

xybase (x, y) location the arrow base mid point

figure The Figure instance (fig.dpi)

width The width of the arrow in points

frac The fraction of the arrow length occupied by the head

headwidth The width of the base of the arrow head in points

Valid kwargs are:

34.4. matplotlib.patches 371

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

get_patch_transform()

get_path()

getpoints(x1, y1, x2, y2, k)
For line segment defined by (x1, y1) and (x2, y2) return the points on the line that is perpendicular
to the line and intersects (x2, y2) and the distance from (x2, y2) of the returned points is k.

bbox_artist(artist, renderer, props=None, fill=True)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent() of an artist, to test whether the artist is returning the correct bbox.

props is a dict of rectangle props with the additional property ‘pad’ that sets the padding around the
bbox in points.

draw_bbox(bbox, renderer, color=’k’, trans=None)
This is a debug function to draw a rectangle around the bounding box returned by
get_window_extent() of an artist, to test whether the artist is returning the correct bbox.

372 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

34.5 matplotlib.text

Classes for including text in a figure.

class Annotation(s, xy, xytext=None, xycoords=’data’, textcoords=None, arrowprops=None, annota-
tion_clip=None, **kwargs)

Bases: matplotlib.text.Text, matplotlib.text._AnnotationBase

A Text class to make annotating things in the figure, such as Figure, Axes, Rectangle, etc., easier.

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given dictionary
and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys for YAArow are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point
being annotated. If d is the distance between the text and annotated point, shrink will shorten
the arrow so the tip and base are shink percent of the distance d away from the endpoints. ie,
shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

34.5. matplotlib.text 373

Matplotlib, Release 1.0.0

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using
a polar axes, you do not need to specify polar for the coordinate system since that is the
native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

You may use an instance of Transform or Artist. See Annotating Axes for more details.

The annotation_clip attribute contols the visibility of the annotation when it goes outside the axes
area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the annotation
will always be drawn regardless of its position. The default is None, which behave as True only if
xycoords is”data”.

Additional kwargs are Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function

Continued on next page

374 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Table 34.3 – continued from previous page
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

contains(event)

draw(artist, renderer, *args, **kwargs)
Draw the Annotation object to the given renderer.

set_figure(fig)

update_bbox_position_size(renderer)
Update the location and the size of the bbox. This method should be used when the position and
size of the bbox needs to be updated before actually drawing the bbox.

update_positions(renderer)
Update the pixel positions of the annotated point and the text.

FT2Font()
FT2Font

34.5. matplotlib.text 375

Matplotlib, Release 1.0.0

class OffsetFrom(artist, ref_coord, unit=’points’)
Bases: object

get_unit()

set_unit(unit)

class Text(x=0, y=0, text=”, color=None, verticalalignment=’baseline’, horizontalalignment=’left’,
multialignment=None, fontproperties=None, rotation=None, linespacing=None, rota-
tion_mode=None, path_effects=None, **kwargs)

Bases: matplotlib.artist.Artist

Handle storing and drawing of text in window or data coordinates.

Create a Text instance at x, y with string text.

Valid kwargs are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.

Continued on next page

376 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

Table 34.4 – continued from previous page
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

contains(mouseevent)
Test whether the mouse event occurred in the patch.

In the case of text, a hit is true anywhere in the axis-aligned bounding-box containing the text.

Returns True or False.

draw(artist, renderer, *args, **kwargs)
Draws the Text object to the given renderer.

get_bbox_patch()
Return the bbox Patch object. Returns None if the the FancyBboxPatch is not made.

get_color()
Return the color of the text

get_family()
Return the list of font families used for font lookup

get_font_properties()
alias for get_fontproperties

get_fontfamily()
alias for get_family

get_fontname()
alias for get_name

get_fontproperties()
Return the FontProperties object

get_fontsize()
alias for get_size

get_fontstretch()
alias for get_stretch

get_fontstyle()
alias for get_style

get_fontvariant()
alias for get_variant

34.5. matplotlib.text 377

Matplotlib, Release 1.0.0

get_fontweight()
alias for get_weight

get_ha()
alias for get_horizontalalignment

get_horizontalalignment()
Return the horizontal alignment as string. Will be one of ‘left’, ‘center’ or ‘right’.

get_name()
Return the font name as string

get_path_effects()

get_position()
Return the position of the text as a tuple (x, y)

get_prop_tup()
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_rotation()
return the text angle as float in degrees

get_rotation_mode()
get text rotation mode

get_size()
Return the font size as integer

get_stretch()
Get the font stretch as a string or number

get_style()
Return the font style as string

get_text()
Get the text as string

get_va()
alias for getverticalalignment()

get_variant()
Return the font variant as a string

get_verticalalignment()
Return the vertical alignment as string. Will be one of ‘top’, ‘center’, ‘bottom’ or ‘baseline’.

get_weight()
Get the font weight as string or number

get_window_extent(renderer=None, dpi=None)
Return a Bbox object bounding the text, in display units.

378 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

In addition to being used internally, this is useful for specifying clickable regions in a png file
on a web page.

renderer defaults to the _renderer attribute of the text object. This is not assigned until the first
execution of draw(), so you must use this kwarg if you want to call get_window_extent()
prior to the first draw(). For getting web page regions, it is simpler to call the method after
saving the figure.

dpi defaults to self.figure.dpi; the renderer dpi is irrelevant. For the web application, if figure.dpi
is not the value used when saving the figure, then the value that was used must be specified as
the dpi argument.

static is_math_text(s)
Returns a cleaned string and a boolean flag. The flag indicates if the given string s contains any
mathtext, determined by counting unescaped dollar signs. If no mathtext is present, the cleaned
string has its dollar signs unescaped. If usetex is on, the flag always has the value “TeX”.

set_backgroundcolor(color)
Set the background color of the text by updating the bbox.

See Also:

set_bbox() To change the position of the bounding box.

ACCEPTS: any matplotlib color

set_bbox(rectprops)
Draw a bounding box around self. rectprops are any settable properties for a rectangle, eg
facecolor=’red’, alpha=0.5.

t.set_bbox(dict(facecolor=’red’, alpha=0.5))

If rectprops has “boxstyle” key. A FancyBboxPatch is initialized with rectprops and will be
drawn. The mutation scale of the FancyBboxPath is set to the fontsize.

ACCEPTS: rectangle prop dict

set_color(color)
Set the foreground color of the text

ACCEPTS: any matplotlib color

set_family(fontname)
Set the font family. May be either a single string, or a list of strings in decreasing priority. Each
string may be either a real font name or a generic font class name. If the latter, the specific font
names will be looked up in the matplotlibrc file.

ACCEPTS: [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]

set_font_properties(fp)
alias for set_fontproperties

set_fontname(fontname)
alias for set_family

34.5. matplotlib.text 379

Matplotlib, Release 1.0.0

set_fontproperties(fp)
Set the font properties that control the text. fp must be a
matplotlib.font_manager.FontProperties object.

ACCEPTS: a matplotlib.font_manager.FontProperties instance

set_fontsize(fontsize)
alias for set_size

set_fontstretch(stretch)
alias for set_stretch

set_fontstyle(fontstyle)
alias for set_style

set_fontvariant(variant)
alias for set_variant

set_fontweight(weight)
alias for set_weight

set_ha(align)
alias for set_horizontalalignment

set_horizontalalignment(align)
Set the horizontal alignment to one of

ACCEPTS: [‘center’ | ‘right’ | ‘left’]

set_linespacing(spacing)
Set the line spacing as a multiple of the font size. Default is 1.2.

ACCEPTS: float (multiple of font size)

set_ma(align)
alias for set_verticalalignment

set_multialignment(align)
Set the alignment for multiple lines layout. The layout of the bounding box of all the lines is
determined bu the horizontalalignment and verticalalignment properties, but the multiline text
within that box can be

ACCEPTS: [’left’ | ‘right’ | ‘center’]

set_name(fontname)
alias for set_family

set_path_effects(path_effects)

set_position(xy)
Set the (x, y) position of the text

ACCEPTS: (x,y)

set_rotation(s)
Set the rotation of the text

ACCEPTS: [angle in degrees | ‘vertical’ | ‘horizontal’]

380 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

set_rotation_mode(m)
set text rotation mode. If “anchor”, the un-rotated text will first aligned according to their ha and
va, and then will be rotated with the alignement reference point as a origin. If None (default),
the text will be rotated first then will be aligned.

set_size(fontsize)
Set the font size. May be either a size string, relative to the default font size, or an absolute font
size in points.

ACCEPTS: [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ |

‘xx-large’]

set_stretch(stretch)
Set the font stretch (horizontal condensation or expansion).

ACCEPTS: [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘con-
densed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-
expanded’]

set_style(fontstyle)
Set the font style.

ACCEPTS: [‘normal’ | ‘italic’ | ‘oblique’]

set_text(s)
Set the text string s

It may contain newlines (\n) or math in LaTeX syntax.

ACCEPTS: string or anything printable with ‘%s’ conversion.

set_va(align)
alias for set_verticalalignment

set_variant(variant)
Set the font variant, either ‘normal’ or ‘small-caps’.

ACCEPTS: [‘normal’ | ‘small-caps’]

set_verticalalignment(align)
Set the vertical alignment

ACCEPTS: [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]

set_weight(weight)
Set the font weight.

ACCEPTS: [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’
| ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]

set_x(x)
Set the x position of the text

ACCEPTS: float

set_y(y)
Set the y position of the text

34.5. matplotlib.text 381

Matplotlib, Release 1.0.0

ACCEPTS: float

update_bbox_position_size(renderer)
Update the location and the size of the bbox. This method should be used when the position and
size of the bbox needs to be updated before actually drawing the bbox.

update_from(other)
Copy properties from other to self

class TextWithDash(x=0, y=0, text=”, color=None, verticalalignment=’center’, horizontalalign-
ment=’center’, multialignment=None, fontproperties=None, rotation=None, lines-
pacing=None, dashlength=0.0, dashdirection=0, dashrotation=None, dashpad=3,
dashpush=0)

Bases: matplotlib.text.Text

This is basically a Text with a dash (drawn with a Line2D) before/after it. It is intended to be a
drop-in replacement for Text, and should behave identically to it when dashlength = 0.0.

The dash always comes between the point specified by set_position() and the text. When a dash
exists, the text alignment arguments (horizontalalignment, verticalalignment) are ignored.

dashlength is the length of the dash in canvas units. (default = 0.0).

dashdirection is one of 0 or 1, where 0 draws the dash after the text and 1 before. (default = 0).

dashrotation specifies the rotation of the dash, and should generally stay None. In this case
get_dashrotation() returns get_rotation(). (I.e., the dash takes its rotation from the text’s
rotation). Because the text center is projected onto the dash, major deviations in the rotation cause
what may be considered visually unappealing results. (default = None)

dashpad is a padding length to add (or subtract) space between the text and the dash, in canvas units.
(default = 3)

dashpush “pushes” the dash and text away from the point specified by set_position() by the
amount in canvas units. (default = 0)

Note: The alignment of the two objects is based on the bounding box of the Text, as obtained
by get_window_extent(). This, in turn, appears to depend on the font metrics as given by the
rendering backend. Hence the quality of the “centering” of the label text with respect to the dash
varies depending on the backend used.

Note: I’m not sure that I got the get_window_extent() right, or whether that’s sufficient for
providing the object bounding box.

draw(renderer)
Draw the TextWithDash object to the given renderer.

get_dashdirection()
Get the direction dash. 1 is before the text and 0 is after.

get_dashlength()
Get the length of the dash.

get_dashpad()
Get the extra spacing between the dash and the text, in canvas units.

382 Chapter 34. matplotlib artists

Matplotlib, Release 1.0.0

get_dashpush()
Get the extra spacing between the dash and the specified text position, in canvas units.

get_dashrotation()
Get the rotation of the dash in degrees.

get_figure()
return the figure instance the artist belongs to

get_position()
Return the position of the text as a tuple (x, y)

get_prop_tup()
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (eg layouts) and need to know if the text has changed.

get_window_extent(renderer=None)
Return a Bbox object bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file
on a web page.

renderer defaults to the _renderer attribute of the text object. This is not assigned until the first
execution of draw(), so you must use this kwarg if you want to call get_window_extent()
prior to the first draw(). For getting web page regions, it is simpler to call the method after
saving the figure.

set_dashdirection(dd)
Set the direction of the dash following the text. 1 is before the text and 0 is after. The default is
0, which is what you’d want for the typical case of ticks below and on the left of the figure.

ACCEPTS: int (1 is before, 0 is after)

set_dashlength(dl)
Set the length of the dash.

ACCEPTS: float (canvas units)

set_dashpad(dp)
Set the “pad” of the TextWithDash, which is the extra spacing between the dash and the text, in
canvas units.

ACCEPTS: float (canvas units)

set_dashpush(dp)
Set the “push” of the TextWithDash, which is the extra spacing between the beginning of the
dash and the specified position.

ACCEPTS: float (canvas units)

set_dashrotation(dr)
Set the rotation of the dash, in degrees

ACCEPTS: float (degrees)

34.5. matplotlib.text 383

Matplotlib, Release 1.0.0

set_figure(fig)
Set the figure instance the artist belong to.

ACCEPTS: a matplotlib.figure.Figure instance

set_position(xy)
Set the (x, y) position of the TextWithDash.

ACCEPTS: (x, y)

set_transform(t)
Set the matplotlib.transforms.Transform instance used by this artist.

ACCEPTS: a matplotlib.transforms.Transform instance

set_x(x)
Set the x position of the TextWithDash.

ACCEPTS: float

set_y(y)
Set the y position of the TextWithDash.

ACCEPTS: float

update_coords(renderer)
Computes the actual x, y coordinates for text based on the input x, y and the dashlength. Since
the rotation is with respect to the actual canvas’s coordinates we need to map back and forth.

get_rotation(rotation)
Return the text angle as float.

rotation may be ‘horizontal’, ‘vertical’, or a numeric value in degrees.

384 Chapter 34. matplotlib artists

CHAPTER

THIRTYFIVE

MATPLOTLIB AXES

35.1 matplotlib.axes

class Axes(fig, rect, axisbg=None, frameon=True, sharex=None, sharey=None, label=”, xscale=None,
yscale=None, **kwargs)

Bases: matplotlib.artist.Artist

The Axes contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets
the coordinate system.

The Axes instance supports callbacks through a callbacks attribute which is a CallbackRegistry
instance. The events you can connect to are ‘xlim_changed’ and ‘ylim_changed’ and the callback will
be called with func(ax) where ax is the Axes instance.

acorr(x, **kwargs)
call signature:

acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,
maxlags=10, **kwargs)

Plot the autocorrelation of x. If normed = True, normalize the data by the autocorrelation at 0-th
lag. x is detrended by the detrend callable (default no normalization).

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True, vlines() rather than plot() is used to draw vertical lines from the origin
to the acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties.

maxlags is a positive integer detailing the number of lags to show. The default value of None
will return all 2imeslen(x) − 1 lags.

385

Matplotlib, Release 1.0.0

The return value is a tuple (lags, c, linecol, b) where

•linecol is the LineCollection

•b is the x-axis.

See Also:

plot() or vlines()

For documentation on valid kwargs.

Example:

xcorr() above, and acorr() below.

Example:

60 40 20 0 20 40 60
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

60 40 20 0 20 40 60
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

add_artist(a)
Add any Artist to the axes.

Returns the artist.

add_collection(collection, autolim=True)
Add a Collection instance to the axes.

Returns the collection.

386 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

add_line(line)
Add a Line2D to the list of plot lines

Returns the line.

add_patch(p)
Add a Patch p to the list of axes patches; the clipbox will be set to the Axes clipping box. If the
transform is not set, it will be set to transData.

Returns the patch.

add_table(tab)
Add a Table instance to the list of axes tables

Returns the table.

annotate(*args, **kwargs)
call signature:

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords=’data’, arrowprops=None, **kwargs)

Keyword arguments:

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and
if textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D)
for the arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given
dictionary and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys
for YAArow are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point
being annotated. If d is the distance between the text and annotated point, shrink will shorten
the arrow so the tip and base are shink percent of the distance d away from the endpoints. ie,
shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

35.1. matplotlib.axes 387

Matplotlib, Release 1.0.0

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using
a polar axes, you do not need to specify polar for the coordinate system since that is the
native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

You may use an instance of Transform or Artist. See Annotating Axes for more details.

The annotation_clip attribute contols the visibility of the annotation when it goes outside the
axes area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the
annotation will always be drawn regardless of its position. The default is None, which behave
as True only if xycoords is”data”.

Additional kwargs are Text properties:

388 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

apply_aspect(position=None)
Use _aspect() and _adjustable() to modify the axes box or the view limits.

35.1. matplotlib.axes 389

Matplotlib, Release 1.0.0

1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

arrowstyle

arc3

arc

arc

angle

angle3

angle

angle

angle

1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

−>

fancy simple

wedge

wedge

wedge

390 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

arrow(x, y, dx, dy, **kwargs)
call signature:

arrow(x, y, dx, dy, **kwargs)

Draws arrow on specified axis from (x, y) to (x + dx, y + dy).

Optional kwargs control the arrow properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

Exception occurred rendering plot.

autoscale(enable=True, axis=’both’, tight=None)
Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then,
if autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes.

enable: [True | False | None] True (default) turns autoscaling on, False turns it off. None leaves
the autoscaling state unchanged.

axis: [’x’ | ‘y’ | ‘both’] which axis to operate on; default is ‘both’

35.1. matplotlib.axes 391

Matplotlib, Release 1.0.0

tight: [True | False | None] If True, set view limits to data limits; if False, let the locator and
margins expand the view limits; if None, use tight scaling if the only artist is an image,
otherwise treat tight as False. The tight setting is retained for future autoscaling until it is
explicitly changed.

Returns None.

autoscale_view(tight=None, scalex=True, scaley=True)
autoscale the view limits using the data limits. You can selectively autoscale only a single axis,
eg, the xaxis by setting scaley to False. The autoscaling preserves any axis direction reversal
that has already been done.

axhline(y=0, xmin=0, xmax=1, **kwargs)
call signature:

axhline(y=0, xmin=0, xmax=1, **kwargs)

Axis Horizontal Line

Draw a horizontal line at y from xmin to xmax. With the default values of xmin = 0 and xmax
= 1, this line will always span the horizontal extent of the axes, regardless of the xlim settings,
even if you change them, eg. with the set_xlim() command. That is, the horizontal extent is
in axes coords: 0=left, 0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to
control the line properties. Eg.,

•draw a thick red hline at y = 0 that spans the xrange

>>> axhline(linewidth=4, color=’r’)

•draw a default hline at y = 1 that spans the xrange

>>> axhline(y=1)

•draw a default hline at y = .5 that spans the the middle half of the xrange

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Valid kwargs are Line2D properties, with the exception of ‘transform’:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]

Continued on next page

392 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.2 – continued from previous page
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

axhspan() for example plot and source code

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
call signature:

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

Axis Horizontal Span.

35.1. matplotlib.axes 393

Matplotlib, Release 1.0.0

y coords are in data units and x coords are in axes (relative 0-1) units.

Draw a horizontal span (rectangle) from ymin to ymax. With the default values of xmin = 0 and
xmax = 1, this always spans the xrange, regardless of the xlim settings, even if you change them,
eg. with the set_xlim() command. That is, the horizontal extent is in axes coords: 0=left,
0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is a matplotlib.patches.Polygon instance.

Examples:

•draw a gray rectangle from y = 0.25-0.75 that spans the horizontal extent of the axes

>>> axhspan(0.25, 0.75, facecolor=’0.5’, alpha=0.5)

Valid kwargs are Polygon properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

axis(*v, **kwargs)
Convenience method for manipulating the x and y view limits and the aspect ratio of the plot.

394 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

kwargs are passed on to set_xlim() and set_ylim()

axvline(x=0, ymin=0, ymax=1, **kwargs)
call signature:

axvline(x=0, ymin=0, ymax=1, **kwargs)

Axis Vertical Line

Draw a vertical line at x from ymin to ymax. With the default values of ymin = 0 and ymax =

1, this line will always span the vertical extent of the axes, regardless of the ylim settings, even
if you change them, eg. with the set_ylim() command. That is, the vertical extent is in axes
coords: 0=bottom, 0.5=middle, 1.0=top but the x location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to
control the line properties. Eg.,

•draw a thick red vline at x = 0 that spans the yrange

>>> axvline(linewidth=4, color=’r’)

•draw a default vline at x = 1 that spans the yrange

35.1. matplotlib.axes 395

Matplotlib, Release 1.0.0

>>> axvline(x=1)

•draw a default vline at x = .5 that spans the the middle half of the yrange

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Valid kwargs are Line2D properties, with the exception of ‘transform’:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string

Continued on next page

396 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.3 – continued from previous page
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

axhspan() for example plot and source code

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
call signature:

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

Axis Vertical Span.

x coords are in data units and y coords are in axes (relative 0-1) units.

Draw a vertical span (rectangle) from xmin to xmax. With the default values of ymin = 0 and
ymax = 1, this always spans the yrange, regardless of the ylim settings, even if you change them,
eg. with the set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the y location is in data coordinates.

Return value is the matplotlib.patches.Polygon instance.

Examples:

•draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the
axes

>>> axvspan(1.25, 1.55, facecolor=’g’, alpha=0.5)

Valid kwargs are Polygon properties:

35.1. matplotlib.axes 397

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

See Also:

axhspan() for example plot and source code

bar(left, height, width=0.80000000000000004, bottom=None, **kwargs)
call signature:

bar(left, height, width=0.8, bottom=0, **kwargs)

Make a bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

left, height, width, and bottom can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

398 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Argument Description
left the x coordinates of the left sides of the bars
height the heights of the bars

Optional keyword arguments:

Key-
word

Description

width the widths of the bars
bottom the y coordinates of the bottom edges of the bars
color the colors of the bars
edge-
color

the colors of the bar edges

linewidth width of bar edges; None means use default linewidth; 0 means don’t draw edges.
xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
er-
ror_kw

dictionary of kwargs to be passed to errorbar method. ecolor and capsize may be specified
here rather than as independent kwargs.

align ‘edge’ (default) | ‘center’
orien-
tation

‘vertical’ | ‘horizontal’

log [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale

For vertical bars, align = ‘edge’ aligns bars by their left edges in left, while align = ‘center’
interprets these values as the x coordinates of the bar centers. For horizontal bars, align = ‘edge’
aligns bars by their bottom edges in bottom, while align = ‘center’ interprets these values as the
y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or se-
quences of length equal to the number of bars. This enables you to use bar as the basis for stacked
bar charts, or candlestick plots. Detail: xerr and yerr are passed directly to errorbar(), so they
can also have shape 2xN for independent specification of lower and upper errors.

Other optional kwargs:

35.1. matplotlib.axes 399

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example: A stacked bar chart.

barbs(*args, **kw)
Plot a 2-D field of barbs.

call signatures:

barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)

Arguments:

X, Y: The x and y coordinates of the barb locations (default is head of barb; see pivot
kwarg)

U, V: give the x and y components of the barb shaft

C: an optional array used to map colors to the barbs

400 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

G1 G2 G3 G4 G5
0

10

20

30

40

50

60

70

80

S
co

re
s

Scores by group and gender

Men
Women

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be
generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X)
and len(Y) match the column and row dimensions of U, then X and Y will be expanded with
numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

length: Length of the barb in points; the other parts of the barb are scaled against this.
Default is 9

pivot: [‘tip’ | ‘middle’] The part of the arrow that is at the grid point; the arrow ro-
tates about this point, hence the name pivot. Default is ‘tip’

barbcolor: [color | color sequence] Specifies the color all parts of the barb except
any flags. This parameter is analagous to the edgecolor parameter for polygons,
which can be used instead. However this parameter will override facecolor.

flagcolor: [color | color sequence] Specifies the color of any flags on the barb. This
parameter is analagous to the facecolor parameter for polygons, which can be used
instead. However this parameter will override facecolor. If this is not set (and C
has not either) then flagcolor will be set to match barbcolor so that the barb has a
uniform color. If C has been set, flagcolor has no effect.

sizes: A dictionary of coefficients specifying the ratio of a given feature to the length

35.1. matplotlib.axes 401

Matplotlib, Release 1.0.0

of the barb. Only those values one wishes to override need to be included. These
features include:

• ‘spacing’ - space between features (flags, full/half barbs)

• ‘height’ - height (distance from shaft to top) of a flag or full barb

• ‘width’ - width of a flag, twice the width of a full barb

• ‘emptybarb’ - radius of the circle used for low magnitudes

fill_empty: A flag on whether the empty barbs (circles) that are drawn should be filled
with the flag color. If they are not filled, they will be drawn such that no color is
applied to the center. Default is False

rounding: A flag to indicate whether the vector magnitude should be rounded when
allocating barb components. If True, the magnitude is rounded to the nearest mul-
tiple of the half-barb increment. If False, the magnitude is simply truncated to the
next lowest multiple. Default is True

barb_increments: A dictionary of increments specifying values to associate with dif-
ferent parts of the barb. Only those values one wishes to override need to be
included.

• ‘half’ - half barbs (Default is 5)

• ‘full’ - full barbs (Default is 10)

• ‘flag’ - flags (default is 50)

flip_barb: Either a single boolean flag or an array of booleans. Single boolean indi-
cates whether the lines and flags should point opposite to normal for all barbs. An
array (which should be the same size as the other data arrays) indicates whether to
flip for each individual barb. Normal behavior is for the barbs and lines to point
right (comes from wind barbs having these features point towards low pressure in
the Northern Hemisphere.) Default is False

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind ob-
servations, but can technically be used to plot any two dimensional vector quantity. As opposed
to arrows, which give vector magnitude by the length of the arrow, the barbs give more quanti-
tative information about the vector magnitude by putting slanted lines or a triangle for various
increments in magnitude, as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or “flag”). After those come full lines (barbs).
The smallest increment is a half line. There is only, of course, ever at most 1 half line. If the
magnitude is small and only needs a single half-line and no full lines or triangles, the half-line
is offset from the end of the barb so that it can be easily distinguished from barbs with a single

402 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

full line. The magnitude for the barb shown above would nominally be 65, using the standard
increments of 50, 10, and 5.

linewidths and edgecolors can be used to customize the barb. Additional PolyCollection
keyword arguments:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Example:

barh(bottom, width, height=0.80000000000000004, left=None, **kwargs)
call signature:

35.1. matplotlib.axes 403

Matplotlib, Release 1.0.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

barh(bottom, width, height=0.8, left=0, **kwargs)

Make a horizontal bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

bottom, width, height, and left can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

Argument Description
bottom the vertical positions of the bottom edges of the bars
width the lengths of the bars

Optional keyword arguments:

404 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Keyword Description
height the heights (thicknesses) of the bars
left the x coordinates of the left edges of the bars
color the colors of the bars
edgecolor the colors of the bar edges
linewidth width of bar edges; None means use default linewidth; 0 means don’t draw edges.
xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
log [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale

Setting align = ‘edge’ aligns bars by their bottom edges in bottom, while align = ‘center’ inter-
prets these values as the y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or se-
quences of length equal to the number of bars. This enables you to use barh as the basis for
stacked bar charts, or candlestick plots.

other optional kwargs:

35.1. matplotlib.axes 405

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

boxplot(x, notch=0, sym=’b+’, vert=1, whis=1.5, positions=None, widths=None, patch_artist=False,
bootstrap=None)

call signature:

boxplot(x, notch=0, sym=’+’, vert=1, whis=1.5,
positions=None, widths=None, patch_artist=False)

Make a box and whisker plot for each column of x or each vector in sequence x. The box
extends from the lower to upper quartile values of the data, with a line at the median. The
whiskers extend from the box to show the range of the data. Flier points are those past the end
of the whiskers.

x is an array or a sequence of vectors.

•notch = 0 (default) produces a rectangular box plot.

•notch = 1 will produce a notched box plot

sym (default ‘b+’) is the default symbol for flier points. Enter an empty string (‘’) if you don’t
want to show fliers.

406 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

•vert = 1 (default) makes the boxes vertical.

•vert = 0 makes horizontal boxes. This seems goofy, but that’s how MATLAB did it.

whis (default 1.5) defines the length of the whiskers as a function of the inner quartile range.
They extend to the most extreme data point within (whis*(75%-25%)) data range.

bootstrap (default None) specifies whether to bootstrap the confidence intervals around the me-
dian for notched boxplots. If bootstrap==None, no bootstrapping is performed, and notches are
calculated using a Gaussian-based asymptotic approximation (see McGill, R., Tukey, J.W., and
Larsen, W.A., 1978, and Kendall and Stuart, 1967). Otherwise, bootstrap specifies the number
of times to bootstrap the median to determine it’s 95% confidence intervals. Values between
1000 and 10000 are recommended.

positions (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are
automatically set to match the positions.

widths is either a scalar or a vector and sets the width of each box. The default is 0.5, or
0.15*(distance between extreme positions) if that is smaller.

•patch_artist = False (default) produces boxes with the Line2D artist

•patch_artist = True produces boxes with the Patch artist

Returns a dictionary mapping each component of the boxplot to a list of the
matplotlib.lines.Line2D instances created.

Example:

broken_barh(xranges, yrange, **kwargs)
call signature:

broken_barh(self, xranges, yrange, **kwargs)

A collection of horizontal bars spanning yrange with a sequence of xranges.

Required arguments:

Argument Description
xranges sequence of (xmin, xwidth)
yrange sequence of (ymin, ywidth)

kwargs are matplotlib.collections.BrokenBarHCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance

Continued on next page

35.1. matplotlib.axes 407

Matplotlib, Release 1.0.0

Table 35.5 – continued from previous page
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

these can either be a single argument, ie:

facecolors = ’black’

or a sequence of arguments for the various bars, ie:

facecolors = (’black’, ’red’, ’green’)

Example:

can_zoom()
Return True if this axes support the zoom box

cla()
Clear the current axes

clabel(CS, *args, **kwargs)
call signature:

408 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

1
100

50

0

50

100

150

200

clabel(cs, **kwargs)

adds labels to line contours in cs, where cs is a ContourSet object returned by contour.

clabel(cs, v, **kwargs)

only labels contours listed in v.

Optional keyword arguments:

fontsize: See http://matplotlib.sf.net/fonts.html

colors:

• if None, the color of each label matches the color of the corresponding contour

• if one string color, e.g. colors = ‘r’ or colors = ‘red’, all labels will be plotted in
this color

• if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be
plotted in different colors in the order specified

inline: controls whether the underlying contour is removed or not. Default is True.

35.1. matplotlib.axes 409

http://matplotlib.sf.net/fonts.html

Matplotlib, Release 1.0.0

1
100

50

0

50

100

150

200

inline_spacing: space in pixels to leave on each side of label when placing inline.
Defaults to 5. This spacing will be exact for labels at locations where the contour
is straight, less so for labels on curved contours.

fmt: a format string for the label. Default is ‘%1.3f’ Alternatively, this can be a dic-
tionary matching contour levels with arbitrary strings to use for each contour level
(i.e., fmt[level]=string)

manual: if True, contour labels will be placed manually using mouse clicks. Click the
first button near a contour to add a label, click the second button (or potentially
both mouse buttons at once) to finish adding labels. The third button can be used
to remove the last label added, but only if labels are not inline. Alternatively, the
keyboard can be used to select label locations (enter to end label placement, delete
or backspace act like the third mouse button, and any other key will select a label
location).

rightside_up: if True (default), label rotations will always be plus or minus 90 degrees
from level.

use_clabeltext: if True (default is False), ClabelText class (instead of matplotlib.Text)
is used to create labels. ClabelText recalculates rotation angles of texts during the
drawing time, therefore this can be used if aspect of the axes changes.

clear()
clear the axes

410 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

1
100

50

0

50

100

150

200

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x3cc2e60>, win-
dow=<function window_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’,
scale_by_freq=None, **kwargs)

call signature:

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

cohere() the coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(35.1)

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be
even; a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to
remove the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines

35.1. matplotlib.axes 411

Matplotlib, Release 1.0.0

1
50

0

50

100

150

detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a data
segment as an argument and return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value
is 0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to re-
turn. Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

412 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

100 50 0 50 100 150 200

1

scale_by_freq: boolean Specifies whether the resulting density values should be
scaled by the scaling frequency, which gives density in units of Hz^-1. This al-
lows for integration over the returned frequency values. The default is True for
MATLAB compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

The return value is a tuple (Cxy, f), where f are the frequencies of the coherence vector.

kwargs are applied to the lines.

References:

•Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley &
Sons (1986)

kwargs control the Line2D properties of the coherence plot:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]

Continued on next page

35.1. matplotlib.axes 413

Matplotlib, Release 1.0.0

Table 35.6 – continued from previous page
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

connect(s, func)
Register observers to be notified when certain events occur. Register with callback functions
with the following signatures. The function has the following signature:

414 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

100 50 0 50 100 150 200

1

func(ax) # where ax is the instance making the callback.

The following events can be connected to:

‘xlim_changed’,’ylim_changed’

The connection id is is returned - you can use this with disconnect to disconnect from the axes
event

contains(mouseevent)
Test whether the mouse event occured in the axes.

Returns T/F, {}

contains_point(point)
Returns True if the point (tuple of x,y) is inside the axes (the area defined by the its patch). A
pixel coordinate is required.

contour(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as
noted, function signatures and return values are the same for both versions.

contourf() differs from the MATLAB version in that it does not draw the polygon edges. To
draw edges, add line contours with calls to contour().

35.1. matplotlib.axes 415

Matplotlib, Release 1.0.0

1 2 3
100

50

0

50

100

150

200

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

416 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

0 50 100 150 200
seconds since start

Bill

Jim

race interrupted

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a QuadContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will
be used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and
colors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-

35.1. matplotlib.axes 417

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour levels
if they are not given explicitly via the V argument.

418 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an in-
stance of a matplotlib.units.ConversionInterface.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be

35.1. matplotlib.axes 419

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

repeated as necessary.

If contour is using a monochrome colormap and the contour level is less than 0,
then the linestyle specified in contour.negative_linestyle in matplotlibrc
will be used.

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer
to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Note: contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array,
then that minimum value will be included in the lowest interval.

Examples:

420 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

contourf(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as
noted, function signatures and return values are the same for both versions.

contourf() differs from the MATLAB version in that it does not draw the polygon edges. To
draw edges, add line contours with calls to contour().

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

35.1. matplotlib.axes 421

Matplotlib, Release 1.0.0

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a QuadContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will
be used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

422 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

0 1 2 3 4 5
time

0.06

0.04

0.02

0.00

0.02

0.04

0.06
s1

 a
n
d
 s

2

0 10 20 30 40 50
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

co
h
e
re

n
ce

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and
colors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-
ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.

35.1. matplotlib.axes 423

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour levels
if they are not given explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an in-
stance of a matplotlib.units.ConversionInterface.

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

424 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less than 0,
then the linestyle specified in contour.negative_linestyle in matplotlibrc
will be used.

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer
to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Note: contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

35.1. matplotlib.axes 425

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array,
then that minimum value will be included in the lowest interval.

Examples:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x3cc2e60>, window=<function
window_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
**kwargs)
call signature:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The cross spectral density Pxy by Welch’s average periodogram method. The vectors x and y
are divided into NFFT length segments. Each segment is detrended by function detrend and
windowed by function window. The product of the direct FFTs of x and y are averaged over
each segment to compute Pxy, with a scaling to correct for power loss due to windowing.

Returns the tuple (Pxy, freqs). P is the cross spectrum (complex valued), and 10 log10 |Pxy| is
plotted.

426 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be
even; a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to
remove the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a data
segment as an argument and return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value
is 0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-

35.1. matplotlib.axes 427

Matplotlib, Release 1.0.0

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to re-
turn. Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be
scaled by the scaling frequency, which gives density in units of Hz^-1. This al-
lows for integration over the returned frequency values. The default is True for
MATLAB compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John
Wiley & Sons (1986)

kwargs control the Line2D properties:

428 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
word length anomaly

3

2

1

0

1

2

se
n
te

n
ce

 l
e
n
g
th

 a
n
o
m

a
ly

Nonsense (3 masked regions)

1.8

1.2

0.6

0.0

0.6

1.2

v
e
rb

o
si

ty
 c

o
e
ff

ic
ie

n
t

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string

Continued on next page

35.1. matplotlib.axes 429

Matplotlib, Release 1.0.0

Table 35.7 – continued from previous page
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

disconnect(cid)
disconnect from the Axes event.

drag_pan(button, key, x, y)
Called when the mouse moves during a pan operation.

button is the mouse button number:

•1: LEFT

•2: MIDDLE

•3: RIGHT

key is a “shift” key

x, y are the mouse coordinates in display coords.

Note: Intended to be overridden by new projection types.

draw(artist, renderer, *args, **kwargs)
Draw everything (plot lines, axes, labels)

draw_artist(a)
This method can only be used after an initial draw which caches the renderer. It is used to

430 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
3

2

1

0

1

2

-1.5

-1.0
-0.5

0.0

0.0

0.5

1.0

Listed colors (3 masked regions)

1.5

1.0

0.5

0.0

0.5

1.0

efficiently update Axes data (axis ticks, labels, etc are not updated)

end_pan()
Called when a pan operation completes (when the mouse button is up.)

Note: Intended to be overridden by new projection types.

errorbar(x, y, yerr=None, xerr=None, fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, **kwargs)

call signature:

errorbar(x, y, yerr=None, xerr=None,
fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)

Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not
None. Horizontal errorbars are plotted if xerr is not None.

x, y, xerr, and yerr can all be scalars, which plots a single error bar at x, y.

Optional keyword arguments:

xerr/yerr: [scalar | N, Nx1, or 2xN array-like] If a scalar number, len(N) array-like
object, or an Nx1 array-like object, errorbars are drawn +/- value.

35.1. matplotlib.axes 431

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

If a sequence of shape 2xN, errorbars are drawn at -row1 and +row2

fmt: ‘-‘ The plot format symbol. If fmt is None, only the errorbars are plotted. This is
used for adding errorbars to a bar plot, for example.

ecolor: [None | mpl color] a matplotlib color arg which gives the color the errorbar
lines; if None, use the marker color.

elinewidth: scalar the linewidth of the errorbar lines. If None, use the linewidth.

capsize: scalar the size of the error bar caps in points

barsabove: [True | False] if True, will plot the errorbars above the plot symbols. De-
fault is below.

lolims/uplims/xlolims/xuplims: [False | True] These arguments can be used to indi-
cate that a value gives only upper/lower limits. In that case a caret symbol is used
to indicate this. lims-arguments may be of the same type as xerr and yerr.

All other keyword arguments are passed on to the plot command for the markers, For example,
this code makes big red squares with thick green edges:

x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker=’s’,

mfc=’red’, mec=’green’, ms=20, mew=4)

432 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

where mfc, mec, ms and mew are aliases for the longer property names, markerfacecolor, mark-
eredgecolor, markersize and markeredgewith.

valid kwargs for the marker properties are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance

Continued on next page

35.1. matplotlib.axes 433

Matplotlib, Release 1.0.0

Table 35.8 – continued from previous page
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Returns (plotline, caplines, barlinecols):

plotline: Line2D instance x, y plot markers and/or line

caplines: list of error bar cap Line2D instances

barlinecols: list of LineCollection instances for the horizontal and vertical error
ranges.

Example:

fill(*args, **kwargs)
call signature:

fill(*args, **kwargs)

Plot filled polygons. args is a variable length argument, allowing for multiple x, y pairs with an
optional color format string; see plot() for details on the argument parsing. For example, to
plot a polygon with vertices at x, y in blue.:

434 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

ax.fill(x,y, ’b’)

An arbitrary number of x, y, color groups can be specified:

ax.fill(x1, y1, ’g’, x2, y2, ’r’)

Return value is a list of Patch instances that were added.

The same color strings that plot() supports are supported by the fill format string.

If you would like to fill below a curve, eg. shade a region between 0 and y along x, use
fill_between()

The closed kwarg will close the polygon when True (default).

kwargs control the Polygon properties:

35.1. matplotlib.axes 435

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

436 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

Example:

fill_between(x, y1, y2=0, where=None, interpolate=False, **kwargs)
call signature:

fill_between(x, y1, y2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between y1 and y2 where where==True

x an N length np array of the x data

y1 an N length scalar or np array of the y data

y2 an N length scalar or np array of the y data

where if None, default to fill between everywhere. If not None, it is a a N length numpy boolean
array and the fill will only happen over the regions where where==True

interpolate If True, interpolate between the two lines to find the precise point of intersection.
Otherwise, the start and end points of the filled region will only occur on explicit values in
the x array.

kwargs keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

35.1. matplotlib.axes 437

Matplotlib, Release 1.0.0

3 2 1 0 1 2
word length anomaly

3

2

1

0

1

2

se
n
te

n
ce

 l
e
n
g
th

 a
n
o
m

a
ly

Nonsense (3 masked regions)

1.8

1.2

0.6

0.0

0.6

1.2

v
e
rb

o
si

ty
 c

o
e
ff

ic
ie

n
t

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string

Continued on next page

438 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.9 – continued from previous page
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See Also:

fill_betweenx() for filling between two sets of x-values

fill_betweenx(y, x1, x2=0, where=None, **kwargs)
call signature:

fill_between(y, x1, x2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between x1 and x2 where where==True

y an N length np array of the y data

x1 an N length scalar or np array of the x data

x2 an N length scalar or np array of the x data

where if None, default to fill between everywhere. If not None, it is a a N length numpy boolean
array and the fill will only happen over the regions where where==True

kwargs keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance

Continued on next page

35.1. matplotlib.axes 439

Matplotlib, Release 1.0.0

Table 35.10 – continued from previous page
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See Also:

fill_between() for filling between two sets of y-values

format_coord(x, y)
return a format string formatting the x, y coord

format_xdata(x)
Return x string formatted. This function will use the attribute self.fmt_xdata if it is callable, else
will fall back on the xaxis major formatter

format_ydata(y)
Return y string formatted. This function will use the fmt_ydata attribute if it is callable, else
will fall back on the yaxis major formatter

frame

get_adjustable()

440 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

3 2 1 0 1 2
3

2

1

0

1

2

-1.5

-1.0
-0.5

0.0

0.0

0.5

1.0

Listed colors (3 masked regions)

1.5

1.0

0.5

0.0

0.5

1.0

get_anchor()

get_aspect()

get_autoscale_on()
Get whether autoscaling is applied for both axes on plot commands

get_autoscalex_on()
Get whether autoscaling for the x-axis is applied on plot commands

get_autoscaley_on()
Get whether autoscaling for the y-axis is applied on plot commands

get_axes_locator()
return axes_locator

get_axis_bgcolor()
Return the axis background color

get_axisbelow()
Get whether axis below is true or not

get_child_artists()
Return a list of artists the axes contains. Deprecated since version 0.98.

get_children()
return a list of child artists

35.1. matplotlib.axes 441

Matplotlib, Release 1.0.0

0 1 2 3 4 5
time

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

85

75

65

55

45

C
S
D

 (
d
b
)

get_cursor_props()
return the cursor propertiess as a (linewidth, color) tuple, where linewidth is a float and color is
an RGBA tuple

get_data_ratio()
Returns the aspect ratio of the raw data.

This method is intended to be overridden by new projection types.

get_data_ratio_log()
Returns the aspect ratio of the raw data in log scale. Will be used when both axis scales are in
log.

get_frame()
Return the axes Rectangle frame

get_frame_on()
Get whether the axes rectangle patch is drawn

get_images()
return a list of Axes images contained by the Axes

get_legend()
Return the legend.Legend instance, or None if no legend is defined

get_legend_handles_labels()

442 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Simplest errorbars, 0.2 in x, 0.4 in y

return handles and labels for legend

ax.legend() is equivalent to

h, l = ax.get_legend_handles_labels()
ax.legend(h, l)

get_lines()
Return a list of lines contained by the Axes

get_navigate()
Get whether the axes responds to navigation commands

get_navigate_mode()
Get the navigation toolbar button status: ‘PAN’, ‘ZOOM’, or None

get_position(original=False)
Return the a copy of the axes rectangle as a Bbox

get_rasterization_zorder()
Get zorder value below which artists will be rasterized

get_renderer_cache()

get_shared_x_axes()
Return a copy of the shared axes Grouper object for x axes

35.1. matplotlib.axes 443

Matplotlib, Release 1.0.0

2 0 2 4 6
0.5

0.0

0.5

1.0

1.5
Vert. symmetric

2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
Hor. symmetric

2 0 2 4 6
0.5

0.0

0.5

1.0

1.5
H, V asymmetric

2 0 2 4 6
10-2

10-1

100

101 Mixed sym., log y

Variable errorbars

get_shared_y_axes()
Return a copy of the shared axes Grouper object for y axes

get_tightbbox(renderer)
return the tight bounding box of the axes. The dimension of the Bbox in canvas coordinate.

get_title()
Get the title text string.

get_window_extent(*args, **kwargs)
get the axes bounding box in display space; args and kwargs are empty

get_xaxis()
Return the XAxis instance

get_xaxis_text1_transform(pad_points)
Get the transformation used for drawing x-axis labels, which will add the given amount of
padding (in points) between the axes and the label. The x-direction is in data coordinates and
the y-direction is in axis coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden

444 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

by new kinds of projections that may need to place axis elements in different locations.

get_xaxis_text2_transform(pad_points)
Get the transformation used for drawing the secondary x-axis labels, which will add the given
amount of padding (in points) between the axes and the label. The x-direction is in data coordi-
nates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_xaxis_transform(which=’grid’)
Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in
data coordinates and the y-direction is in axis coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_xbound()
Returns the x-axis numerical bounds where:

35.1. matplotlib.axes 445

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0
b
e
tw

e
e
n
 y

1
 a

n
d
 0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

0.0 0.5 1.0 1.5 2.0
x

1.5
1.0
0.5
0.0
0.5
1.0
1.5

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

lowerBound < upperBound

get_xgridlines()
Get the x grid lines as a list of Line2D instances

get_xlabel()
Get the xlabel text string.

get_xlim()
Get the x-axis range [left, right]

get_xmajorticklabels()
Get the xtick labels as a list of Text instances

get_xminorticklabels()
Get the xtick labels as a list of Text instances

get_xscale()

get_xticklabels(minor=False)
Get the xtick labels as a list of Text instances

get_xticklines()
Get the xtick lines as a list of Line2D instances

446 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0
Now regions with y2>1 are masked

get_xticks(minor=False)
Return the x ticks as a list of locations

get_yaxis()
Return the YAxis instance

get_yaxis_text1_transform(pad_points)
Get the transformation used for drawing y-axis labels, which will add the given amount of
padding (in points) between the axes and the label. The x-direction is in axis coordinates and
the y-direction is in data coordinates. Returns a 3-tuple of the form:

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_yaxis_text2_transform(pad_points)
Get the transformation used for drawing the secondary y-axis labels, which will add the given
amount of padding (in points) between the axes and the label. The x-direction is in axis coordi-
nates and the y-direction is in data coordinates. Returns a 3-tuple of the form:

35.1. matplotlib.axes 447

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

(transform, valign, halign)

where valign and halign are requested alignments for the text.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_yaxis_transform(which=’grid’)
Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in
axis coordinates and the y-direction is in data coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_ybound()
Return y-axis numerical bounds in the form of lowerBound < upperBound

get_ygridlines()
Get the y grid lines as a list of Line2D instances

get_ylabel()
Get the ylabel text string.

get_ylim()
Get the y-axis range [bottom, top]

448 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

get_ymajorticklabels()
Get the xtick labels as a list of Text instances

get_yminorticklabels()
Get the xtick labels as a list of Text instances

get_yscale()

get_yticklabels(minor=False)
Get the xtick labels as a list of Text instances

get_yticklines()
Get the ytick lines as a list of Line2D instances

get_yticks(minor=False)
Return the y ticks as a list of locations

grid(b=None, which=’major’, **kwargs)
call signature:

grid(self, b=None, which=’major’, **kwargs)

Set the axes grids on or off; b is a boolean. (For MATLAB compatibility, b may also be a string,
‘on’ or ‘off’.)

35.1. matplotlib.axes 449

Matplotlib, Release 1.0.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
fill between where

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
Now regions with y2 > 1 are masked

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed
that you want a grid and b is thus set to True.

which can be ‘major’ (default), ‘minor’, or ‘both’ to control whether major tick grids, minor tick
grids, or both are affected.

kawrgs are used to set the grid line properties, eg:

ax.grid(color=’r’, linestyle=’-’, linewidth=2)

Valid Line2D kwargs are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function

Continued on next page

450 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.11 – continued from previous page
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

has_data()
Return True if any artists have been added to axes.

This should not be used to determine whether the dataLim need to be updated, and may not
actually be useful for anything.

hexbin(x, y, C=None, gridsize=100, bins=None, xscale=’linear’, yscale=’linear’, extent=None,
cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecol-
ors=’none’, reduce_C_function=<function mean at 0x2d3a578>, mincnt=None, marginals=False,
**kwargs)

call signature:

hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = ’linear’, yscale = ’linear’,

35.1. matplotlib.axes 451

Matplotlib, Release 1.0.0

cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, edgecolors=’none’
reduce_C_function = np.mean, mincnt=None, marginals=True
**kwargs)

Make a hexagonal binning plot of x versus y, where x, y are 1-D sequences of the same length,
N. If C is None (the default), this is a histogram of the number of occurences of the observations
at (x[i],y[i]).

If C is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated
for each hexagonal bin and then reduced according to reduce_C_function, which defaults to
numpy’s mean function (np.mean). (If C is specified, it must also be a 1-D sequence of the same
length as x and y.)

x, y and/or C may be masked arrays, in which case only unmasked points will be plotted.

Optional keyword arguments:

gridsize: [100 | integer] The number of hexagons in the x-direction, default is 100.
The corresponding number of hexagons in the y-direction is chosen such that the
hexagons are approximately regular. Alternatively, gridsize can be a tuple with two
elements specifying the number of hexagons in the x-direction and the y-direction.

bins: [None | ‘log’ | integer | sequence] If None, no binning is applied; the color of
each hexagon directly corresponds to its count value.

If ‘log’, use a logarithmic scale for the color map. Internally, log10(i + 1) is used
to determine the hexagon color.

If an integer, divide the counts in the specified number of bins, and color the
hexagons accordingly.

If a sequence of values, the values of the lower bound of the bins to be used.

xscale: [‘linear’ | ‘log’] Use a linear or log10 scale on the horizontal axis.

scale: [‘linear’ | ‘log’] Use a linear or log10 scale on the vertical axis.

mincnt: None | a positive integer If not None, only display cells with more than
mincnt number of points in the cell

marginals: True|False if marginals is True, plot the marginal density as colormapped
rectagles along the bottom of the x-axis and left of the y-axis

extent: [None | scalars (left, right, bottom, top)] The limits of the bins. The default
assigns the limits based on gridsize, x, y, xscale and yscale.

Other keyword arguments controlling color mapping and normalization arguments:

cmap: [None | Colormap] a matplotlib.cm.Colormap instance. If None, de-
faults to rc image.cmap.

norm: [None | Normalize] matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1.

452 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

vmin/vmax: scalar vmin and vmax are used in conjunction with norm to normalize
luminance data. If either are None, the min and max of the color array C is used.
Note if you pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: scalar between 0 and 1, or None the alpha value for the patches

linewidths: [None | scalar] If None, defaults to rc lines.linewidth. Note that this is
a tuple, and if you set the linewidths argument you must set it as a sequence of
floats, as required by RegularPolyCollection.

Other keyword arguments controlling the Collection properties:

edgecolors: [None | mpl color | color sequence] If ‘none’, draws the edges in the
same color as the fill color. This is the default, as it avoids unsightly unpainted
pixels between the hexagons.

If None, draws the outlines in the default color.

If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the spec-
ified color.

Here are the standard descriptions of all the Collection kwargs:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]

Continued on next page

35.1. matplotlib.axes 453

Matplotlib, Release 1.0.0

Table 35.12 – continued from previous page
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

The return value is a PolyCollection instance; use get_array() on this PolyCollection
to get the counts in each hexagon.. If marginals is True, horizontal bar and vertical bar (both
PolyCollections) will be attached to the return collection as attributes hbar and vbar

Example:

4 3 2 10 1 2 3 4
20

10

0

10

20

Hexagon binning

0

20

40

60

80

100

120

140

co
u
n
ts

4 3 2 10 1 2 3 4
20

10

0

10

20

With a log color scale

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
1

0
(N

)

hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, hist-
type=’bar’, align=’mid’, orientation=’vertical’, rwidth=None, log=False, color=None, label=None,
**kwargs)

call signature:

454 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype=’bar’, align=’mid’,
orientation=’vertical’, rwidth=None, log=False, **kwargs)

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1,
...], bins, [patches0, patches1,...]) if the input contains multiple data.

Multiple data can be provided via x as a list of datasets of potentially different length ([x0, x1,
...]), or as a 2-D ndarray in which each column is a dataset. Note that the ndarray form is
transposed relative to the list form.

Masked arrays are not supported at present.

Keyword arguments:

bins: Either an integer number of bins or a sequence giving the bins. If bins is an
integer, bins + 1 bin edges will be returned, consistent with numpy.histogram()
for numpy version >= 1.3, and with the new = True argument in earlier versions.
Unequally spaced bins are supported if bins is a sequence.

range: The lower and upper range of the bins. Lower and upper outliers are ignored. If
not provided, range is (x.min(), x.max()). Range has no effect if bins is a sequence.

If bins is a sequence or range is specified, autoscaling is based on the specified bin
range instead of the range of x.

normed: If True, the first element of the return tuple will be the counts normalized
to form a probability density, i.e., n/(len(x)*dbin). In a probability density,
the integral of the histogram should be 1; you can verify that with a trapezoidal
integration of the probability density function:

pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))

weights An array of weights, of the same shape as x. Each value in x only contributes
its associated weight towards the bin count (instead of 1). If normed is True, the
weights are normalized, so that the integral of the density over the range remains
1.

cumulative: If True, then a histogram is computed where each bin gives the counts
in that bin plus all bins for smaller values. The last bin gives the total number of
datapoints. If normed is also True then the histogram is normalized such that the
last bin equals 1. If cumulative evaluates to less than 0 (e.g. -1), the direction of
accumulation is reversed. In this case, if normed is also True, then the histogram
is normalized such that the first bin equals 1.

histtype: [‘bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’] The type of histogram to draw.

• ‘bar’ is a traditional bar-type histogram. If multiple data are given the bars are
aranged side by side.

• ‘barstacked’ is a bar-type histogram where multiple data are stacked on top of
each other.

35.1. matplotlib.axes 455

Matplotlib, Release 1.0.0

• ‘step’ generates a lineplot that is by default unfilled.

• ‘stepfilled’ generates a lineplot that is by default filled.

align: [’left’ | ‘mid’ | ‘right’] Controls how the histogram is plotted.

• ‘left’: bars are centered on the left bin edges.

• ‘mid’: bars are centered between the bin edges.

• ‘right’: bars are centered on the right bin edges.

orientation: [‘horizontal’ | ‘vertical’] If ‘horizontal’, barh() will be used for bar-
type histograms and the bottom kwarg will be the left edges.

rwidth: The relative width of the bars as a fraction of the bin width. If None, automat-
ically compute the width. Ignored if histtype = ‘step’ or ‘stepfilled’.

log: If True, the histogram axis will be set to a log scale. If log is True and x is a 1D
array, empty bins will be filtered out and only the non-empty (n, bins, patches) will
be returned.

color: Color spec or sequence of color specs, one per dataset. Default (None) uses the
standard line color sequence.

label: String, or sequence of strings to match multiple datasets. Bar charts yield multi-
ple patches per dataset, but only the first gets the label, so that the legend command
will work as expected:

ax.hist(10+2*np.random.randn(1000), label=’men’)
ax.hist(12+3*np.random.randn(1000), label=’women’, alpha=0.5)
ax.legend()

kwargs are used to update the properties of the Patch instances returned by hist:

456 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, label=”, **kwargs)
call signature:

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, **kwargs)

Plot horizontal lines at each y from xmin to xmax.

Returns the LineCollection that was added.

Required arguments:

y: a 1-D numpy array or iterable.

xmin and xmax: can be scalars or len(x) numpy arrays. If they are scalars, then the
respective values are constant, else the widths of the lines are determined by xmin
and xmax.

Optional keyword arguments:

colors: a line collections color argument, either a single color or a len(y) list of colors

35.1. matplotlib.axes 457

Matplotlib, Release 1.0.0

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030
P
ro

b
a
b
ili

ty
Histogram of IQ : µ=100, σ=15

linestyles: [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Example:

hold(b=None)
call signature:

hold(b=None)

Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to
boolean value b.

Examples:

•toggle hold: >>> hold()

•turn hold on: >>> hold(True)

•turn hold off >>> hold(False)

When hold is True, subsequent plot commands will be added to the current axes. When hold is
False, the current axes and figure will be cleared on the next plot command

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None,
vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None,
resample=None, url=None, **kwargs)

458 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

0

1

2

3

4

5
Comparison of model with data

call signature:

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=None, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)

Display the image in X to current axes. X may be a float array, a uint8 array or a PIL image. If
X is an array, X can have the following shapes:

•MxN – luminance (grayscale, float array only)

•MxNx3 – RGB (float or uint8 array)

•MxNx4 – RGBA (float or uint8 array)

The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to
1.0; MxN float arrays may be normalised.

An matplotlib.image.AxesImage instance is returned.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance, eg. cm.jet. If
None, default to rc image.cmap value.

cmap is ignored when X has RGB(A) information

35.1. matplotlib.axes 459

Matplotlib, Release 1.0.0

aspect: [None | ‘auto’ | ‘equal’ | scalar] If ‘auto’, changes the image aspect ratio to
match that of the axes

If ‘equal’, and extent is None, changes the axes aspect ratio to match that of the
image. If extent is not None, the axes aspect ratio is changed to match that of the
extent.

If None, default to rc image.aspect value.

interpolation:

Acceptable values are None, ‘nearest’, ‘bilinear’, ‘bicubic’, ‘spline16’,
‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’, ‘quadric’, ‘catrom’,
‘gaussian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’

If interpolation is None, default to rc image.interpolation. See also the
filternorm and filterrad parameters

norm: [None | Normalize] An matplotlib.colors.Normalize instance; if
None, default is normalization(). This scales luminance -> 0-1

norm is only used for an MxN float array.

vmin/vmax: [None | scalar] Used to scale a luminance image to 0-1. If either is
None, the min and max of the luminance values will be used. Note if norm is not
None, the settings for vmin and vmax will be ignored.

alpha: scalar The alpha blending value, between 0 (transparent) and 1 (opaque) or
None

origin: [None | ‘upper’ | ‘lower’] Place the [0,0] index of the array in the upper left
or lower left corner of the axes. If None, default to rc image.origin.

extent: [None | scalars (left, right, bottom, top)] Data limits for the axes. The de-
fault assigns zero-based row, column indices to the x, y centers of the pixels.

shape: [None | scalars (columns, rows)] For raw buffer images

filternorm: A parameter for the antigrain image resize filter. From the antigrain doc-
umentation, if filternorm = 1, the filter normalizes integer values and corrects the
rounding errors. It doesn’t do anything with the source floating point values, it
corrects only integers according to the rule of 1.0 which means that any sum of
pixel weights must be equal to 1.0. So, the filter function must produce a graph of
the proper shape.

filterrad: The filter radius for filters that have a radius parameter, i.e. when interpola-
tion is one of: ‘sinc’, ‘lanczos’ or ‘blackman’

Additional kwargs are Artist properties:

460 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
gid an id string
label any string
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

3 2 1 0 1 2 3
3

2

1

0

1

2

3

35.1. matplotlib.axes 461

Matplotlib, Release 1.0.0

in_axes(mouseevent)
return True if the given mouseevent (in display coords) is in the Axes

invert_xaxis()
Invert the x-axis.

invert_yaxis()
Invert the y-axis.

ishold()
return the HOLD status of the axes

legend(*args, **kwargs)
call signature:

legend(*args, **kwargs)

Place a legend on the current axes at location loc. Labels are a sequence of strings and loc can
be a string or an integer specifying the legend location.

To make a legend with existing lines:

legend()

legend() by itself will try and build a legend using the label property of the
lines/patches/collections. You can set the label of a line by doing:

plot(x, y, label=’my data’)

or:

line.set_label(’my data’).

If label is set to ‘_nolegend_’, the item will not be shown in legend.

To automatically generate the legend from labels:

legend((’label1’, ’label2’, ’label3’))

To make a legend for a list of lines and labels:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’))

To make a legend at a given location, using a location argument:

legend((’label1’, ’label2’, ’label3’), loc=’upper left’)

or:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’), loc=2)

462 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

The location codes are

Location String Location Code
‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword ar-
gument. bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4
floats. For example,

loc = ‘upper right’, bbox_to_anchor = (0.5, 0.5)

will place the legend so that the upper right corner of the legend at the center of the axes.

The legend location can be specified in other coordinate, by using the bbox_transform keyword.

The loc itslef can be a 2-tuple giving x,y of the lower-left corner of the legend in axes coords
(bbox_to_anchor is ignored).

Keyword arguments:

prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties
instance. If prop is a dictionary, a new instance will be created with prop. If None,
use rc settings.

numpoints: integer The number of points in the legend for line

scatterpoints: integer The number of points in the legend for scatter plot

scatteroffsets: list of floats a list of yoffsets for scatter symbols in legend

markerscale: [None | scalar] The relative size of legend markers vs. original. If
None, use rc settings.

frameon: [True | False] if True, draw a frame. Default is True

fancybox: [None | False | True] if True, draw a frame with a round fancybox. If
None, use rc

shadow: [None | False | True] If True, draw a shadow behind legend. If None, use
rc settings.

ncol [integer] number of columns. default is 1

mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally ex-
panded to fill the axes area (or bbox_to_anchor)

35.1. matplotlib.axes 463

Matplotlib, Release 1.0.0

bbox_to_anchor [an instance of BboxBase or a tuple of 2 or 4 floats] the bbox that the
legend will be anchored.

bbox_transform [[an instance of Transform | None]] the transform for the bbox.
transAxes if None.

title [string] the legend title

Padding and spacing between various elements use following keywords parameters. These val-
ues are measure in font-size units. E.g., a fontsize of 10 points and a handlelength=5 implies a
handlelength of 50 points. Values from rcParams will be used if None.

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Example:

Model complexity --->

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length

Data length

Total message length

Also see Legend guide.

locator_params(axis=’both’, tight=None, **kwargs)
Convenience method for controlling tick locators.

464 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Keyword arguments:

axis [’x’ | ‘y’ | ‘both’] Axis on which to operate; default is ‘both’.

tight [True | False | None] Parameter passed to autoscale_view(). Default is None, for no
change.

Remaining keyword arguments are passed to directly to the set_params() method.

Typically one might want to reduce the maximum number of ticks and use tight bounds when
plotting small subplots, for example:

ax.locator_params(tight=True, nbins=4)

Because the locator is involved in autoscaling, autoscale_view() is called automatically after
the parameters are changed.

This presently works only for the MaxNLocator used by default on linear axes, but it may be
generalized.

loglog(*args, **kwargs)
call signature:

loglog(*args, **kwargs)

Make a plot with log scaling on the x and y axis.

loglog() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale() / matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basex/basey: scalar > 1 base of the x/y logarithm

subsx/subsy: [None | sequence] the location of the minor x/y ticks;
None defaults to autosubs, which depend on the number of
decades in the plot; see matplotlib.axes.Axes.set_xscale() /

matplotlib.axes.Axes.set_yscale() for details

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as
invalid, or clipped to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]

Continued on next page

35.1. matplotlib.axes 465

Matplotlib, Release 1.0.0

Table 35.13 – continued from previous page
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

margins(*args, **kw)
Convenience method to set or retrieve autoscaling margins.

signatures:

margins()

returns xmargin, ymargin

466 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

0 5 10 15 20
10-2

10-1

100 semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102 loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105Errorbars go negative

margins(margin)

margins(xmargin, ymargin)

margins(x=xmargin, y=ymargin)

margins(..., tight=False)

All three forms above set the xmargin and ymargin parameters. All keyword parameters are
optional. A single argument specifies both xmargin and ymargin. The tight parameter is passed
to autoscale_view(), which is executed after a margin is changed; the default here is True,
on the assumption that when margins are specified, no additional padding to match tick marks is
usually desired. Setting tight to None will preserve the previous setting.

Specifying any margin changes only the autoscaling; for example, if xmargin is not None, then
xmargin times the X data interval will be added to each end of that interval before it is used in
autoscaling.

matshow(Z, **kwargs)
Plot a matrix or array as an image.

The matrix will be shown the way it would be printed, with the first row at the top. Row and
column numbering is zero-based.

35.1. matplotlib.axes 467

Matplotlib, Release 1.0.0

Argument: Z anything that can be interpreted as a 2-D array

kwargs all are passed to imshow(). matshow() sets defaults for extent, origin, interpolation,
and aspect; use care in overriding the extent and origin kwargs, because they interact. (Also, if
you want to change them, you probably should be using imshow directly in your own version of
matshow.)

Returns: an matplotlib.image.AxesImage instance.

minorticks_off()
Remove minor ticks from the axes.

minorticks_on()
Add autoscaling minor ticks to the axes.

pcolor(*args, **kwargs)
call signatures:

pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)

Create a pseudocolor plot of a 2-D array.

C is the array of color values.

X and Y, if given, specify the (x, y) coordinates of the colored quadrilaterals; the quadrilateral
for C[i,j] has corners at:

(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).

Ideally the dimensions of X and Y should be one greater than those of C; if the dimensions are
the same, then the last row and column of C will be ignored.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds
to y; for details, see the Grid Orientation section below.

If either or both of X and Y are 1-D arrays or column vectors, they will be expanded as needed
into the appropriate 2-D arrays, making a rectangular grid.

X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (X
or Y at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc
settings.

norm: [None | Normalize] An matplotlib.colors.Normalize instance is used
to scale luminance data to 0,1. If None, defaults to normalize().

468 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle;
if ‘flat’, edges are not drawn. Default is ‘flat’, contrary to MATLAB.

This kwarg is deprecated; please use ‘edgecolors’ instead:

• shading=’flat’ – edgecolors=’none’

• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘none’ | color | color sequence] If None, the rc setting is used
by default.

If ‘none’, edges will not be visible.

An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 or None the alpha blending value

Return value is a matplotlib.collection.Collection instance. The grid orientation fol-
lows the MATLAB convention: an array C with shape (nrows, ncolumns) is plotted with the
column number as X and the row number as Y, increasing up; hence it is plotted the way the
array would be printed, except that the Y axis is reversed. That is, C is taken as C*(*y, x).

Similarly for meshgrid():

x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)

is equivalent to:

X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]])

Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]])

so if you have:

C = rand(len(x), len(y))

then you need:

pcolor(X, Y, C.T)

or:

pcolor(C.T)

MATLAB pcolor() always discards the last row and column of C, but matplotlib displays the
last row and column if X and Y are not specified, or if X and Y have one more row and column
than C.

35.1. matplotlib.axes 469

Matplotlib, Release 1.0.0

kwargs can be used to control the PolyCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Note: the default antialiaseds is taken from rcParams[’patch.antialiased’], which defaults to
True. In some cases, particularly if alpha is 1, you may be able to reduce rendering artifacts
(light or dark patch boundaries) by setting it to False. An alternative it to set edgecolors to
‘face’. Unfortunately, there seems to be no single combination of parameters that eliminates
artifacts under all conditions.

pcolorfast(*args, **kwargs)
pseudocolor plot of a 2-D array

470 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Experimental; this is a version of pcolor that does not draw lines, that provides the fastest possi-
ble rendering with the Agg backend, and that can handle any quadrilateral grid.

Call signatures:

pcolor(C, **kwargs)
pcolor(xr, yr, C, **kwargs)
pcolor(x, y, C, **kwargs)
pcolor(X, Y, C, **kwargs)

C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape.
C may be a masked array.

pcolor(C, **kwargs) is equivalent to pcolor([0,nc], [0,nr], C, **kwargs)

xr, yr specify the ranges of x and y corresponding to the rectangular region bounding C. If:

xr = [x0, x1]

and:

yr = [y0,y1]

then x goes from x0 to x1 as the second index of C goes from 0 to nc, etc. (x0, y0) is the
outermost corner of cell (0,0), and (x1, y1) is the outermost corner of cell (nr-1, nc-1). All cells
are rectangles of the same size. This is the fastest version.

x, y are 1D arrays of length nc +1 and nr +1, respectively, giving the x and y boundaries of the
cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate.
(The grid is checked, and if found to be uniform the fast version is used.)

X and Y are 2D arrays with shape (nr +1, nc +1) that specify the (x,y) coordinates of the
corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]),
(X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rect-
angular. This is the most general, but the slowest to render. It may produce faster and more
compact output using ps, pdf, and svg backends, however.

Note that the the column index corresponds to the x-coordinate, and the row index corresponds
to y; for details, see the “Grid Orientation” section below.

Optional keyword arguments:

cmap: [None | Colormap] A cm Colormap instance from cm. If None, use rc set-
tings.

norm: [None | Normalize] An mcolors.Normalize instance is used to scale lumi-
nance data to 0,1. If None, defaults to normalize()

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be None.

alpha: 0 <= scalar <= 1 or None the alpha blending value

35.1. matplotlib.axes 471

Matplotlib, Release 1.0.0

Return value is an image if a regular or rectangular grid is specified, and a QuadMesh collection
in the general quadrilateral case.

pcolormesh(*args, **kwargs)
call signatures:

pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)

C may be a masked array, but X and Y may not. Masked array support is implemented via cmap
and norm; in contrast, pcolor() simply does not draw quadrilaterals with masked colors or
vertices.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc
settings.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to
normalize luminance data. If either are None, the min and max of the color array
C is used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’ | ‘gouraud’] If ‘faceted’, a black grid is drawn around
each rectangle; if ‘flat’, edges are not drawn. Default is ‘flat’, contrary to MAT-
LAB.

This kwarg is deprecated; please use ‘edgecolors’ instead:

• shading=’flat’ – edgecolors=’None’

• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used
by default.

If ‘None’, edges will not be visible.

An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 or None the alpha blending value

Return value is a matplotlib.collection.QuadMesh object.

kwargs can be used to control the matplotlib.collections.QuadMesh properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown

Continued on next page

472 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.15 – continued from previous page
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See Also:

pcolor() For an explanation of the grid orientation and the expansion of 1-D X and/or Y to
2-D arrays.

pick(*args)
call signature:

pick(mouseevent)

each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set

pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.59999999999999998,
shadow=False, labeldistance=1.1000000000000001)
call signature:

35.1. matplotlib.axes 473

Matplotlib, Release 1.0.0

pie(x, explode=None, labels=None,
colors=(’b’, ’g’, ’r’, ’c’, ’m’, ’y’, ’k’, ’w’),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x)
<= 1, then the values of x give the fractional area directly and the array will not be normalized.

Keyword arguments:

explode: [None | len(x) sequence] If not None, is a len(x) array which specifies the
fraction of the radius with which to offset each wedge.

colors: [None | color sequence] A sequence of matplotlib color args through which
the pie chart will cycle.

labels: [None | len(x) sequence of strings] A sequence of strings providing the la-
bels for each wedge

autopct: [None | format string | format function] If not None, is a string or func-
tion used to label the wedges with their numeric value. The label will be placed
inside the wedge. If it is a format string, the label will be fmt%pct. If it is a
function, it will be called.

pctdistance: scalar The ratio between the center of each pie slice and the start of the
text generated by autopct. Ignored if autopct is None; default is 0.6.

labeldistance: scalar The radial distance at which the pie labels are drawn

shadow: [False | True] Draw a shadow beneath the pie.

The pie chart will probably look best if the figure and axes are square. Eg.:

figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])

Return value: If autopct is None, return the tuple (patches, texts):

• patches is a sequence of matplotlib.patches.Wedge instances

• texts is a list of the label matplotlib.text.Text instances.

If autopct is not None, return the tuple (patches, texts, autotexts), where patches and texts
are as above, and autotexts is a list of Text instances for the numeric labels.

plot(*args, **kwargs)
Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple
x, y pairs with an optional format string. For example, each of the following is legal:

plot(x, y) # plot x and y using default line style and color
plot(x, y, ’bo’) # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, ’r+’) # ditto, but with red plusses

474 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.

An arbitrary number of x, y, fmt groups can be specified, as in:

a.plot(x1, y1, ’g^’, x2, y2, ’g-’)

Return value is a list of lines that were added.

The following format string characters are accepted to control the line style or marker:

character description
’-’ solid line style
’--’ dashed line style
’-.’ dash-dot line style
’:’ dotted line style
’.’ point marker
’,’ pixel marker
’o’ circle marker
’v’ triangle_down marker
’^’ triangle_up marker
’<’ triangle_left marker
’>’ triangle_right marker
’1’ tri_down marker
’2’ tri_up marker
’3’ tri_left marker
’4’ tri_right marker
’s’ square marker
’p’ pentagon marker
’*’ star marker
’h’ hexagon1 marker
’H’ hexagon2 marker
’+’ plus marker
’x’ x marker
’D’ diamond marker
’d’ thin_diamond marker
’|’ vline marker
’_’ hline marker

The following color abbreviations are supported:

character color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

In addition, you can specify colors in many weird and wonderful ways, including full names

35.1. matplotlib.axes 475

Matplotlib, Release 1.0.0

(’green’), hex strings (’#008000’), RGB or RGBA tuples ((0,1,0,1)) or grayscale intensi-
ties as a string (’0.8’). Of these, the string specifications can be used in place of a fmt group,
but the tuple forms can be used only as kwargs.

Line styles and colors are combined in a single format string, as in ’bo’ for blue circles.

The kwargs can be used to set line properties (any property that has a set_* method). You can
use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here
is an example:

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)
plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)
axis([0, 4, 0, 10])
legend()

If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.

You do not need to use format strings, which are just abbreviations. All of the line properties
can be controlled by keyword arguments. For example, you can set the color, marker, linestyle,
and markercolor with:

plot(x, y, color=’green’, linestyle=’dashed’, marker=’o’,
markerfacecolor=’blue’, markersize=12). See
:class:‘~matplotlib.lines.Line2D‘ for details.

The kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]

Continued on next page

476 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.16 – continued from previous page
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

kwargs scalex and scaley, if defined, are passed on to autoscale_view() to determine whether
the x and y axes are autoscaled; the default is True.

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)
call signature:

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)

Similar to the plot() command, except the x or y (or both) data is considered to be dates, and
the axis is labeled accordingly.

x and/or y can be a sequence of dates represented as float days since 0001-01-01 UTC.

Keyword arguments:

fmt: string The plot format string.

tz: [None | timezone string] The time zone to use in labeling dates. If None, defaults
to rc value.

xdate: [True | False] If True, the x-axis will be labeled with dates.

ydate: [False | True] If True, the y-axis will be labeled with dates.

35.1. matplotlib.axes 477

Matplotlib, Release 1.0.0

Note if you are using custom date tickers and formatters, it may be necessary to set
the formatters/locators after the call to plot_date() since plot_date() will set the de-
fault tick locator to matplotlib.dates.AutoDateLocator (if the tick locator is not al-
ready set to a matplotlib.dates.DateLocator instance) and the default tick formatter
to matplotlib.dates.AutoDateFormatter (if the tick formatter is not already set to a
matplotlib.dates.DateFormatter instance).

Valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string

Continued on next page

478 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.17 – continued from previous page
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

dates for helper functions

date2num(), num2date() and drange()

for help on creating the required floating point dates.

psd(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x3cc2e60>, window=<function
window_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
**kwargs)
call signature:

psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The power spectral density by Welch’s average periodogram method. The vector x is divided
into NFFT length segments. Each segment is detrended by function detrend and windowed by
function window. noverlap gives the length of the overlap between segments. The |fft(i)|2 of
each segment i are averaged to compute Pxx, with a scaling to correct for power loss due to
windowing. Fs is the sampling frequency.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be
even; a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to
remove the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a data
segment as an argument and return the windowed version of the segment.

35.1. matplotlib.axes 479

Matplotlib, Release 1.0.0

noverlap: integer The number of points of overlap between blocks. The default value
is 0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to re-
turn. Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be
scaled by the scaling frequency, which gives density in units of Hz^-1. This al-
lows for integration over the returned frequency values. The default is True for
MATLAB compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

Returns the tuple (Pxx, freqs).

For plotting, the power is plotted as 10 log10(Pxx) for decibels, though Pxx itself is returned.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John
Wiley & Sons (1986)

kwargs control the Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]

Continued on next page

480 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.18 – continued from previous page
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

quiver(*args, **kw)
Plot a 2-D field of arrows.

call signatures:

quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)

Arguments:

X, Y:

The x and y coordinates of the arrow locations (default is tail of arrow; see
pivot kwarg)

U, V:

give the x and y components of the arrow vectors

35.1. matplotlib.axes 481

Matplotlib, Release 1.0.0

0 2 4 6 8 10
0.15

0.10

0.05

0.00

0.05

0.10

0.15

0 10 20 30 40 50
Frequency

90
80
70
60
50
40
30
20
10

P
o
w

e
r

S
p
e
ct

ra
l
D

e
n
si

ty
 (

d
B

/H
z)

C: an optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be
generated as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X)
and len(Y) match the column and row dimensions of U, then X and Y will be expanded with
numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

units: [’width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’ | ‘xy’]

arrow units; the arrow dimensions except for length are in multiples of this
unit.

• ‘width’ or ‘height’: the width or height of the axes

• ‘dots’ or ‘inches’: pixels or inches, based on the figure dpi

• ‘x’, ‘y’, or ‘xy’: X, Y, or sqrt(X^2+Y^2) data units

The arrows scale differently depending on the units. For ‘x’ or ‘y’, the arrows
get larger as one zooms in; for other units, the arrow size is independent of
the zoom state. For ‘width or ‘height’, the arrow size increases with the width

482 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

and height of the axes, respectively, when the the window is resized; for ‘dots’
or ‘inches’, resizing does not change the arrows.

angles: [’uv’ | ‘xy’ | array] With the default ‘uv’, the arrow aspect ratio is 1, so
that if U*==*V the angle of the arrow on the plot is 45 degrees CCW from
the x-axis. With ‘xy’, the arrow points from (x,y) to (x+u, y+v). Alternatively,
arbitrary angles may be specified as an array of values in degrees, CCW from
the x-axis.

scale: [None | float]

data units per arrow length unit, e.g. m/s per plot width; a smaller scale
parameter makes the arrow longer. If None, a simple autoscaling algorithm
is used, based on the average vector length and the number of vectors. The
arrow length unit is given by the scale_units parameter

scale_units: None, or any of the units options. For example, if scale_units is
‘inches’, scale is 2.0, and (u,v) = (1,0), then the vector will be 0.5 inches long.
If scale_units is ‘width’, then the vector will be half the width of the axes. If
scale_units is ‘x’ then the vector will be 0.5 x-axis units. To plot vectors in
the x-y plane, with u and v having the same units as x and y, use “angles=’xy’,
scale_units=’xy’, scale=1”.

width: shaft width in arrow units; default depends on choice of units, above, and num-
ber of vectors; a typical starting value is about 0.005 times the width of the plot.

headwidth: scalar head width as multiple of shaft width, default is 3

headlength: scalar head length as multiple of shaft width, default is 5

headaxislength: scalar head length at shaft intersection, default is 4.5

minshaft: scalar length below which arrow scales, in units of head length. Do not set
this to less than 1, or small arrows will look terrible! Default is 1

minlength: scalar minimum length as a multiple of shaft width; if an arrow length is
less than this, plot a dot (hexagon) of this diameter instead. Default is 1.

pivot: [‘tail’ | ‘middle’ | ‘tip’] The part of the arrow that is at the grid point; the
arrow rotates about this point, hence the name pivot.

color: [color | color sequence] This is a synonym for the PolyCollection face-
color kwarg. If C has been set, color has no effect.

The defaults give a slightly swept-back arrow; to make the head a triangle, make headax-
islength the same as headlength. To make the arrow more pointed, reduce headwidth or increase
headlength and headaxislength. To make the head smaller relative to the shaft, scale down all
the head parameters. You will probably do best to leave minshaft alone.

linewidths and edgecolors can be used to customize the arrow outlines. Additional
PolyCollection keyword arguments:

35.1. matplotlib.axes 483

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

quiverkey(*args, **kw)
Add a key to a quiver plot.

call signature:

quiverkey(Q, X, Y, U, label, **kw)

Arguments:

Q: The Quiver instance returned by a call to quiver.

484 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

X, Y: The location of the key; additional explanation follows.

U: The length of the key

label: a string with the length and units of the key

Keyword arguments:

coordinates = [‘axes’ | ‘figure’ | ‘data’ | ‘inches’] Coordinate system and units for
X, Y: ‘axes’ and ‘figure’ are normalized coordinate systems with 0,0 in the lower
left and 1,1 in the upper right; ‘data’ are the axes data coordinates (used for the
locations of the vectors in the quiver plot itself); ‘inches’ is position in the figure
in inches, with 0,0 at the lower left corner.

color: overrides face and edge colors from Q.

labelpos = [‘N’ | ‘S’ | ‘E’ | ‘W’] Position the label above, below, to the right, to the
left of the arrow, respectively.

labelsep: Distance in inches between the arrow and the label. Default is 0.1

labelcolor: defaults to default Text color.

fontproperties: A dictionary with keyword arguments accepted by the
FontProperties initializer: family, style, variant, size, weight

Any additional keyword arguments are used to override vector properties taken from Q.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is ‘N’ or ‘S’,
X, Y give the position of the middle of the key arrow. If labelpos is ‘E’, X, Y positions the head,
and if labelpos is ‘W’, X, Y positions the tail; in either of these two cases, X, Y is somewhere in
the middle of the arrow+label key object.

redraw_in_frame()
This method can only be used after an initial draw which caches the renderer. It is used to
efficiently update Axes data (axis ticks, labels, etc are not updated)

relim()
recompute the data limits based on current artists

reset_position()
Make the original position the active position

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None, vmin=None, vmax=None, alpha=None,
linewidths=None, faceted=True, verts=None, **kwargs)

call signatures:

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
verts=None, **kwargs)

Make a scatter plot of x versus y, where x, y are converted to 1-D sequences which must be of
the same length, N.

Keyword arguments:

s: size in points^2. It is a scalar or an array of the same length as x and y.

35.1. matplotlib.axes 485

Matplotlib, Release 1.0.0

c: a color. c can be a single color format string, or a sequence of color specifications of
length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values
to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA,
however.

marker: can be one of:

Value Description
’s’ square
’o’ circle
’^’ triangle up
’>’ triangle right
’v’ triangle down
’<’ triangle left
’d’ diamond
’p’ pentagon
’h’ hexagon
’8’ octagon
’+’ plus
’x’ cross

The marker can also be a tuple (numsides, style, angle), which will create a custom,
regular symbol.

numsides: the number of sides

style: the style of the regular symbol:

Value Description
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (numsides and angle is ignored)

angle: the angle of rotation of the symbol

Finally, marker can be (verts, 0): verts is a sequence of (x, y) vertices for a custom
scatter symbol. Alternatively, use the kwarg combination marker = None, verts =

verts.

Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and
only unmasked points will be plotted.

Other keyword arguments: the color mapping and normalization arguments will be used only if
c is an array of floats.

cmap: [None | Colormap] A matplotlib.colors.Colormap instance or regis-
tered name. If None, defaults to rc image.cmap. cmap is only used if c is an
array of floats.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0, 1. If None, use the default normalize(). norm is only

486 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

used if c is an array of floats.

vmin/vmax: vmin and vmax are used in conjunction with norm to normalize luminance
data. If either are None, the min and max of the color array C is used. Note if you
pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: 0 <= scalar <= 1 or None The alpha value for the patches

linewidths: [None | scalar | sequence] If None, defaults to (lines.linewidth,). Note
that this is a tuple, and if you set the linewidths argument you must set it as a
sequence of floats, as required by RegularPolyCollection.

Optional kwargs control the Collection properties; in particular:

edgecolors: The string ‘none’ to plot faces with no outlines

facecolors: The string ‘none’ to plot unfilled outlines

Here are the standard descriptions of all the Collection kwargs:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown

Continued on next page

35.1. matplotlib.axes 487

Matplotlib, Release 1.0.0

Table 35.20 – continued from previous page
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

A Collection instance is returned.

semilogx(*args, **kwargs)
call signature:

semilogx(*args, **kwargs)

Make a plot with log scaling on the x axis.

semilogx() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale().

Notable keyword arguments:

basex: scalar > 1 base of the x logarithm

subsx: [None | sequence] The location of the minor xticks; None defaults to auto-
subs, which depend on the number of decades in the plot; see set_xscale() for
details.

nonposx: [’mask’ | ‘clip’] non-positive values in x can be masked as invalid, or
clipped to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]

Continued on next page

488 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.21 – continued from previous page
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

loglog() For example code and figure

semilogy(*args, **kwargs)
call signature:

semilogy(*args, **kwargs)

Make a plot with log scaling on the y axis.

semilogy() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basey: scalar > 1 Base of the y logarithm

35.1. matplotlib.axes 489

Matplotlib, Release 1.0.0

subsy: [None | sequence] The location of the minor yticks; None defaults to auto-
subs, which depend on the number of decades in the plot; see set_yscale() for
details.

nonposy: [’mask’ | ‘clip’] non-positive values in y can be masked as invalid, or
clipped to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]

Continued on next page

490 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.22 – continued from previous page
xdata 1D array
ydata 1D array
zorder any number

See Also:

loglog() For example code and figure

set_adjustable(adjustable)
ACCEPTS: [‘box’ | ‘datalim’ | ‘box-forced’]

set_anchor(anchor)
anchor

value description
‘C’ Center
‘SW’ bottom left
‘S’ bottom
‘SE’ bottom right
‘E’ right
‘NE’ top right
‘N’ top
‘NW’ top left
‘W’ left

set_aspect(aspect, adjustable=None, anchor=None)
aspect

value description
‘auto’ automatic; fill position rectangle with data
‘nor-
mal’

same as ‘auto’; deprecated

‘equal’ same scaling from data to plot units for x and y
num a circle will be stretched such that the height is num times the width. aspect=1 is the same as

aspect=’equal’.

adjustable

value description
‘box’ change physical size of axes
‘datalim’ change xlim or ylim
‘box-forced’ same as ‘box’, but axes can be shared

‘box’ does not allow axes sharing, as this can cause unintended side effect. For cases when
sharing axes is fine, use ‘box-forced’.

anchor

35.1. matplotlib.axes 491

Matplotlib, Release 1.0.0

value description
‘C’ centered
‘SW’ lower left corner
‘S’ middle of bottom edge
‘SE’ lower right corner
etc.

set_autoscale_on(b)
Set whether autoscaling is applied on plot commands

accepts: [True | False]

set_autoscalex_on(b)
Set whether autoscaling for the x-axis is applied on plot commands

accepts: [True | False]

set_autoscaley_on(b)
Set whether autoscaling for the y-axis is applied on plot commands

accepts: [True | False]

set_axes_locator(locator)
set axes_locator

ACCEPT [a callable object which takes an axes instance and renderer and] returns a bbox.

set_axis_bgcolor(color)
set the axes background color

ACCEPTS: any matplotlib color - see colors()

set_axis_off()
turn off the axis

set_axis_on()
turn on the axis

set_axisbelow(b)
Set whether the axis ticks and gridlines are above or below most artists

ACCEPTS: [True | False]

set_color_cycle(clist)
Set the color cycle for any future plot commands on this Axes.

clist is a list of mpl color specifiers.

set_cursor_props(*args)
Set the cursor property as:

ax.set_cursor_props(linewidth, color)

or:

492 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

ax.set_cursor_props((linewidth, color))

ACCEPTS: a (float, color) tuple

set_figure(fig)
Set the class:~matplotlib.axes.Axes figure

accepts a class:~matplotlib.figure.Figure instance

set_frame_on(b)
Set whether the axes rectangle patch is drawn

ACCEPTS: [True | False]

set_navigate(b)
Set whether the axes responds to navigation toolbar commands

ACCEPTS: [True | False]

set_navigate_mode(b)
Set the navigation toolbar button status;

Warning: this is not a user-API function.

set_position(pos, which=’both’)
Set the axes position with:

pos = [left, bottom, width, height]

in relative 0,1 coords, or pos can be a Bbox

There are two position variables: one which is ultimately used, but which may be modified by
apply_aspect(), and a second which is the starting point for apply_aspect().

Optional keyword arguments: which

value description
‘active’ to change the first
‘original’ to change the second
‘both’ to change both

set_rasterization_zorder(z)
Set zorder value below which artists will be rasterized

set_title(label, fontdict=None, **kwargs)
call signature:

set_title(label, fontdict=None, **kwargs):

Set the title for the axes.

kwargs are Text properties:

35.1. matplotlib.axes 493

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: str

See Also:

494 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

text() for information on how override and the optional args work

set_xbound(lower=None, upper=None)
Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion
regardless of parameter order. It will not change the _autoscaleXon attribute.

set_xlabel(xlabel, fontdict=None, labelpad=None, **kwargs)
call signature:

set_xlabel(xlabel, fontdict=None, labelpad=None, **kwargs)

Set the label for the xaxis.

labelpad is the spacing in points between the label and the x-axis

Valid kwargs are Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]

Continued on next page

35.1. matplotlib.axes 495

Matplotlib, Release 1.0.0

Table 35.24 – continued from previous page
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: str

See Also:

text() for information on how override and the optional args work

set_xlim(left=None, right=None, emit=True, auto=False, **kw)
call signature:

set_xlim(self, *args, **kwargs):

Set the data limits for the xaxis

Examples:

set_xlim((left, right))
set_xlim(left, right)
set_xlim(left=1) # right unchanged
set_xlim(right=1) # left unchanged

Keyword arguments:

left: scalar the left xlim; xmin, the previous name, may still be used

right: scalar the right xlim; xmax, the previous name, may still be used

emit: [True | False] notify observers of lim change

auto: [True | False | None] turn x autoscaling on (True), off (False; default), or leave
unchanged (None)

Note: the left (formerly xmin) value may be greater than the right (formerly xmax). For example,
suppose x is years before present. Then one might use:

set_ylim(5000, 0)

496 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

so 5000 years ago is on the left of the plot and the present is on the right.

Returns the current xlimits as a length 2 tuple

ACCEPTS: len(2) sequence of floats

set_xmargin(m)
Set padding of X data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling.

accepts: float in range 0 to 1

set_xscale(value, **kwargs)
call signature:

set_xscale(value)

Set the scaling of the x-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]

Different kwargs are accepted, depending on the scale: ‘linear’

‘log’

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be
masked as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to
avoid having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
call signature:

set_xticklabels(labels, fontdict=None, minor=False, **kwargs)

Set the xtick labels with list of strings labels. Return a list of axis text instances.

kwargs set the Text properties. Valid properties are

35.1. matplotlib.axes 497

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of strings

set_xticks(ticks, minor=False)

498 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Set the x ticks with list of ticks

ACCEPTS: sequence of floats

set_ybound(lower=None, upper=None)
Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion
regardless of parameter order. It will not change the _autoscaleYon attribute.

set_ylabel(ylabel, fontdict=None, labelpad=None, **kwargs)
call signature:

set_ylabel(ylabel, fontdict=None, labelpad=None, **kwargs)

Set the label for the yaxis

labelpad is the spacing in points between the label and the y-axis

Valid kwargs are Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]

Continued on next page

35.1. matplotlib.axes 499

Matplotlib, Release 1.0.0

Table 35.26 – continued from previous page
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: str

See Also:

text() for information on how override and the optional args work

set_ylim(bottom=None, top=None, emit=True, auto=False, **kw)
call signature:

set_ylim(self, *args, **kwargs):

Set the data limits for the yaxis

Examples:

set_ylim((bottom, top))
set_ylim(bottom, top)
set_ylim(bottom=1) # top unchanged
set_ylim(top=1) # bottom unchanged

Keyword arguments:

bottom: scalar the bottom ylim; the previous name, ymin, may still be used

top: scalar the top ylim; the previous name, ymax, may still be used

emit: [True | False] notify observers of lim change

auto: [True | False | None] turn y autoscaling on (True), off (False; default), or leave
unchanged (None)

Note: the bottom (formerly ymin) value may be greater than the top (formerly ymax). For
example, suppose y is depth in the ocean. Then one might use:

set_ylim(5000, 0)

500 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

so 5000 m depth is at the bottom of the plot and the surface, 0 m, is at the top.

Returns the current ylimits as a length 2 tuple

ACCEPTS: len(2) sequence of floats

set_ymargin(m)
Set padding of Y data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling.

accepts: float in range 0 to 1

set_yscale(value, **kwargs)
call signature:

set_yscale(value)

Set the scaling of the y-axis: ‘linear’ | ‘log’ | ‘symlog’

ACCEPTS: [’linear’ | ‘log’ | ‘symlog’]

Different kwargs are accepted, depending on the scale: ‘linear’

‘log’

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be
masked as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to
avoid having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be
a sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4,
5, 6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

set_yticklabels(labels, fontdict=None, minor=False, **kwargs)
call signature:

set_yticklabels(labels, fontdict=None, minor=False, **kwargs)

Set the ytick labels with list of strings labels. Return a list of Text instances.

kwargs set Text properties for the labels. Valid properties are

35.1. matplotlib.axes 501

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

ACCEPTS: sequence of strings

set_yticks(ticks, minor=False)

502 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Set the y ticks with list of ticks

ACCEPTS: sequence of floats

Keyword arguments:

minor: [False | True] Sets the minor ticks if True

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x3cc2e60>, win-
dow=<function window_hanning at 0x3cc20c8>, noverlap=128, cmap=None, xextent=None,
pad_to=None, sides=’default’, scale_by_freq=None, **kwargs)

call signature:

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides=’default’,
scale_by_freq=None, **kwargs)

Compute a spectrogram of data in x. Data are split into NFFT length segments and the PSD of
each section is computed. The windowing function window is applied to each segment, and the
amount of overlap of each segment is specified with noverlap.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be
even; a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to
remove the mean or linear trend. Unlike in MATLAB, where the detrend pa-
rameter is a vector, in matplotlib is it a function. The pylab module defines
detrend_none(), detrend_mean(), and detrend_linear(), but you can use
a custom function as well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(),
scipy.signal(), scipy.signal.get_window(), etc. The default is
window_hanning(). If a function is passed as the argument, it must take a data
segment as an argument and return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value
is 0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the min-
imum distance between resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

35.1. matplotlib.axes 503

Matplotlib, Release 1.0.0

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to re-
turn. Default gives the default behavior, which returns one-sided for real data and
both for complex data. ‘onesided’ forces the return of a one-sided PSD, while
‘twosided’ forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be
scaled by the scaling frequency, which gives density in units of Hz^-1. This al-
lows for integration over the returned frequency values. The default is True for
MATLAB compatibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the y extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered
and downsampled to baseband.

cmap: A matplotlib.cm.Colormap instance; if None use default determined by rc

xextent: The image extent along the x-axis. xextent = (xmin,xmax) The default is
(0,max(bins)), where bins is the return value from mlab.specgram()

kwargs:

Additional kwargs are passed on to imshow which makes the specgram image

Return value is (Pxx, freqs, bins, im):

•bins are the time points the spectrogram is calculated over

•freqs is an array of frequencies

•Pxx is a len(times) x len(freqs) array of power

•im is a matplotlib.image.AxesImage instance

Note: If x is real (i.e. non-complex), only the positive spectrum is shown. If x is complex, both
positive and negative parts of the spectrum are shown. This can be overridden using the sides
keyword argument.

Example:

spy(Z, precision=0, marker=None, markersize=None, aspect=’equal’, **kwargs)
call signature:

spy(Z, precision=0, marker=None, markersize=None,
aspect=’equal’, **kwargs)

spy(Z) plots the sparsity pattern of the 2-D array Z.

If precision is 0, any non-zero value will be plotted; else, values of |Z| > precision will be
plotted.

For scipy.sparse.spmatrix instances, there is a special case: if precision is ‘present’, any
value present in the array will be plotted, even if it is identically zero.

The array will be plotted as it would be printed, with the first index (row) increasing down and
the second index (column) increasing to the right.

504 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

0 5 10 15
3

2

1

0

1

2

3

0 5 10 15
0

200

400

600

800

1000

By default aspect is ‘equal’, so that each array element occupies a square space; set the aspect
kwarg to ‘auto’ to allow the plot to fill the plot box, or to any scalar number to specify the aspect
ratio of an array element directly.

Two plotting styles are available: image or marker. Both are available for full arrays, but only
the marker style works for scipy.sparse.spmatrix instances.

If marker and markersize are None, an image will be returned and any remaining kwargs are
passed to imshow(); else, a Line2D object will be returned with the value of marker determining
the marker type, and any remaining kwargs passed to the plot() method.

If marker and markersize are None, useful kwargs include:

•cmap

•alpha

See Also:

imshow() For image options.

For controlling colors, e.g. cyan background and red marks, use:

cmap = mcolors.ListedColormap([’c’,’r’])

35.1. matplotlib.axes 505

Matplotlib, Release 1.0.0

If marker or markersize is not None, useful kwargs include:

•marker

•markersize

•color

Useful values for marker include:

•‘s’ square (default)

•‘o’ circle

•‘.’ point

•‘,’ pixel

See Also:

plot() For plotting options

start_pan(x, y, button)
Called when a pan operation has started.

x, y are the mouse coordinates in display coords. button is the mouse button number:

•1: LEFT

•2: MIDDLE

•3: RIGHT

Note: Intended to be overridden by new projection types.

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)
call signature:

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)

A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and
places a marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt.

Return value is a tuple (markerline, stemlines, baseline).

See Also:

this document for details

examples/pylab_examples/stem_plot.py for a demo

step(x, y, *args, **kwargs)
call signature:

step(x, y, *args, **kwargs)

506 Chapter 35. matplotlib axes

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html

Matplotlib, Release 1.0.0

Make a step plot. Additional keyword args to step() are the same as those for plot().

x and y must be 1-D sequences, and it is assumed, but not checked, that x is uniformly increasing.

Keyword arguments:

where: [‘pre’ | ‘post’ | ‘mid’] If ‘pre’, the interval from x[i] to x[i+1] has level y[i+1]

If ‘post’, that interval has level y[i]

If ‘mid’, the jumps in y occur half-way between the x-values.

table(**kwargs)
call signature:

table(cellText=None, cellColours=None,
cellLoc=’right’, colWidths=None,
rowLabels=None, rowColours=None, rowLoc=’left’,
colLabels=None, colColours=None, colLoc=’center’,
loc=’bottom’, bbox=None):

Add a table to the current axes. Returns a matplotlib.table.Table instance. For finer
grained control over tables, use the Table class and add it to the axes with add_table().

Thanks to John Gill for providing the class and table.

kwargs control the Table properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
fontsize a float in points
gid an id string
label any string
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

text(x, y, s, fontdict=None, withdash=False, **kwargs)
call signature:

35.1. matplotlib.axes 507

Matplotlib, Release 1.0.0

text(x, y, s, fontdict=None, **kwargs)

Add text in string s to axis at location x, y, data coordinates.

Keyword arguments:

fontdict: A dictionary to override the default text properties. If fontdict is None, the
defaults are determined by your rc parameters.

withdash: [False | True] Creates a TextWithDash instance instead of a Text in-
stance.

Individual keyword arguments can be used to override any given parameter:

text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in
axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center
of the axes:

text(0.5, 0.5,’matplotlib’,
horizontalalignment=’center’,
verticalalignment=’center’,
transform = ax.transAxes)

You can put a rectangular box around the text instance (eg. to set a background color) by using
the keyword bbox. bbox is a dictionary of matplotlib.patches.Rectangle properties. For
example:

text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

Valid kwargs are matplotlib.text.Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string

Continued on next page

508 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.28 – continued from previous page
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

tick_params(axis=’both’, **kwargs)
Convenience method for changing the appearance of ticks and tick labels.

Keyword arguments:

axis [’x’ | ‘y’ | ‘both’] Axis on which to operate; default is ‘both’.

reset [True | False] If True, set all parameters to defaults before processing other keyword argu-
ments. Default is False.

which [’major’ | ‘minor’ | ‘both’] Default is ‘major’: apply arguments to major ticks only.

direction [’in’ | ‘out’] Puts ticks inside or outside the axes.

length Tick length in points.

width Tick width in points.

color Tick color; accepts any mpl color spec.

pad Distance in points between tick and label.

labelsize Tick label font size in points or as a string (e.g. ‘large’).

35.1. matplotlib.axes 509

Matplotlib, Release 1.0.0

labelcolor Tick label color; mpl color spec.

colors Changes the tick color and the label color to the same value: mpl color spec.

zorder Tick and label zorder.

bottom, top, left, right Boolean or [’on’ | ‘off’], controls whether to draw the respective ticks.

labelbottom, labeltop, labelleft, labelright Boolean or [’on’ | ‘off’], controls whether to draw
the respective tick labels.

Example:

ax.tick_params(direction=’out’, length=6, width=2, colors=’r’)

This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by
2 points. Tick labels will also be red.

ticklabel_format(**kwargs)
Convenience method for manipulating the ScalarFormatter used by default for linear axes.

Optional keyword arguments:

Key-
word

Description

style [‘sci’ (or ‘scientific’) | ‘plain’] plain turns off scientific notation
scilim-
its

(m, n), pair of integers; if style is ‘sci’, scientific notation will be used for numbers outside the
range 10‘-m‘:sup: to 10‘n‘:sup:. Use (0,0) to include all numbers.

use-
Offset

[True | False | offset]; if True, the offset will be calculated as needed; if False, no offset will be
used; if a numeric offset is specified, it will be used.

axis [‘x’ | ‘y’ | ‘both’]

Only the major ticks are affected. If the method is called when the ScalarFormatter is not the
Formatter being used, an AttributeError will be raised.

tricontour(*args, **kwargs)
tricontour() and tricontourf() draw contour lines and filled contours, respectively, on an
unstructured triangular grid. Except as noted, function signatures and return values are the same
for both versions.

The triangulation can be specified in one of two ways; either:

tricontour(triangulation, ...)

where triangulation is a Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)
tricontour(x, y, mask, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

510 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The remaining arguments may be:

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are
chosen automatically.

tricontour(..., Z, N)

contour N automatically-chosen levels.

tricontour(..., Z, V)

draw contour lines at the values specified in sequence V

tricontourf(..., Z, V)

fill the (len(V)-1) regions between the values in V

tricontour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

C = tricontour(...) returns a TriContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will
be used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and
colors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-
ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

35.1. matplotlib.axes 511

Matplotlib, Release 1.0.0

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour levels
if they are not given explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an in-
stance of a matplotlib.units.ConversionInterface.

tricontour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less than 0,
then the linestyle specified in contour.negative_linestyle in matplotlibrc
will be used.

tricontourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer
to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

512 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Note: tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the
filled region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array,
then that minimum value will be included in the lowest interval.

Examples:

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Contour plot of Delaunay triangulation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tricontourf(*args, **kwargs)
tricontour() and tricontourf() draw contour lines and filled contours, respectively, on an
unstructured triangular grid. Except as noted, function signatures and return values are the same
for both versions.

The triangulation can be specified in one of two ways; either:

tricontour(triangulation, ...)

where triangulation is a Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)

35.1. matplotlib.axes 513

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

Contour plot of user-specified triangulation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

tricontour(x, y, mask, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The remaining arguments may be:

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are
chosen automatically.

tricontour(..., Z, N)

contour N automatically-chosen levels.

tricontour(..., Z, V)

draw contour lines at the values specified in sequence V

514 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

tricontourf(..., Z, V)

fill the (len(V)-1) regions between the values in V

tricontour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

C = tricontour(...) returns a TriContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will
be used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be
plotted in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and
colors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scal-
ing data values to colors. If norm is None and colors is None, the default linear
scaling is used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level
curves to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will cor-
respond to the lower left corner, location (0,0). If ‘image’, the rc value for
image.origin will be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries.
In this case, the position of Z[0,0] is the center of the pixel, not a corner.
If origin is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the
position of Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default
MaxNLocator is used. The locator is used to determine the contour levels
if they are not given explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that

35.1. matplotlib.axes 515

Matplotlib, Release 1.0.0

all data are included. These added ranges are then mapped to the
special colormap values which default to the ends of the colormap
range, but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an in-
stance of a matplotlib.units.ConversionInterface.

tricontour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order
specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

If contour is using a monochrome colormap and the contour level is less than 0,
then the linestyle specified in contour.negative_linestyle in matplotlibrc
will be used.

tricontourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer
to divide the domain into subdomains of roughly nchunk by nchunk points. This
may never actually be advantageous, so this option may be removed. Chunking
introduces artifacts at the chunk boundaries unless antialiased is False.

Note: tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the
filled region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array,
then that minimum value will be included in the lowest interval.

Examples:

tripcolor(*args, **kwargs)
Create a pseudocolor plot of an unstructured triangular grid to the Axes.

The triangulation can be specified in one of two ways; either:

tripcolor(triangulation, ...)

516 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Contour plot of Delaunay triangulation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

where triangulation is a Triangulation object, or

tripcolor(x, y, ...)
tripcolor(x, y, triangles, ...)
tripcolor(x, y, triangles=triangles, ...)
tripcolor(x, y, mask, ...)
tripcolor(x, y, mask=mask, ...)
tripcolor(x, y, triangles, mask, ...)
tripcolor(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The next argument must be C, the array of color values, one per point in the triangulation. The
colors used for each triangle are from the mean C of the triangle’s three points.

The remaining kwargs are the same as for pcolor().

Example:

triplot(*args, **kwargs)
Draw a unstructured triangular grid as lines and/or markers to the Axes.

The triangulation to plot can be specified in one of two ways; either:

35.1. matplotlib.axes 517

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

Contour plot of user-specified triangulation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

triplot(triangulation, ...)

where triangulation is a Triangulation object, or

triplot(x, y, ...)
triplot(x, y, triangles, ...)
triplot(x, y, triangles=triangles, ...)
triplot(x, y, mask, ...)
triplot(x, y, mask=mask, ...)
triplot(x, y, triangles, mask, ...)
triplot(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of
these possibilities.

The remaining args and kwargs are the same as for plot().

Example:

twinx()
call signature:

518 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
tripcolor of Delaunay triangulation

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

ax = twinx()

create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The
y-axis of self will have ticks on left and the returned axes will have ticks on the right

twiny()
call signature:

ax = twiny()

create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The
x-axis of self will have ticks on bottom and the returned axes will have ticks on the top

update_datalim(xys, updatex=True, updatey=True)
Update the data lim bbox with seq of xy tups or equiv. 2-D array

update_datalim_bounds(bounds)
Update the datalim to include the given Bbox bounds

update_datalim_numerix(x, y)
Update the data lim bbox with seq of xy tups

vlines(x, ymin, ymax, colors=’k’, linestyles=’solid’, label=”, **kwargs)
call signature:

35.1. matplotlib.axes 519

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

tripcolor of user-specified triangulation

0.64

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

vlines(x, ymin, ymax, color=’k’, linestyles=’solid’)

Plot vertical lines at each x from ymin to ymax. ymin or ymax can be scalars or len(x) numpy
arrays. If they are scalars, then the respective values are constant, else the heights of the lines
are determined by ymin and ymax.

colors a line collections color args, either a single color or a len(x) list of colors

linestyles

one of [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Returns the matplotlib.collections.LineCollection that was added.

kwargs are LineCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance

Continued on next page

520 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

Table 35.29 – continued from previous page
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
segments unknown
snap unknown
transform Transform instance
url a url string
urls unknown
verts unknown
visible [True | False]
zorder any number

xaxis_date(tz=None)
Sets up x-axis ticks and labels that treat the x data as dates.

tz is the time zone to use in labeling dates. Defaults to rc value.

xaxis_inverted()
Returns True if the x-axis is inverted.

xcorr(x, y, normed=True, detrend=<function detrend_none at 0x3cc2e60>, usevlines=True, maxlags=10,
**kwargs)

call signature:

def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs):

35.1. matplotlib.axes 521

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
triplot of Delaunay triangulation

Plot the cross correlation between x and y. If normed = True, normalize the data by the cross
correlation at 0-th lag. x and y are detrended by the detrend callable (default no normalization).
x and y must be equal length.

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot().

The default linestyle is None and the default marker is ‘o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True:

vlines() rather than plot() is used to draw vertical lines from the origin to the xcorr.
Otherwise the plotstyle is determined by the kwargs, which are Line2D properties.

The return value is a tuple (lags, c, linecol, b) where linecol is the
matplotlib.collections.LineCollection instance and b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None
will return all (2*len(x)-1) lags.

522 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58

La
ti

tu
d
e
 (

d
e
g
re

e
s)

triplot of user-specified triangulation

Example:

xcorr() above, and acorr() below.

Example:

yaxis_date(tz=None)
Sets up y-axis ticks and labels that treat the y data as dates.

tz is the time zone to use in labeling dates. Defaults to rc value.

yaxis_inverted()
Returns True if the y-axis is inverted.

Subplot
alias of AxesSubplot

class SubplotBase(fig, *args, **kwargs)
Base class for subplots, which are Axes instances with additional methods to facilitate generating and
manipulating a set of Axes within a figure.

fig is a matplotlib.figure.Figure instance.

args is the tuple (numRows, numCols, plotNum), where the array of subplots in the figure has dimen-
sions numRows, numCols, and where plotNum is the number of the subplot being created. plotNum
starts at 1 in the upper left corner and increases to the right.

35.1. matplotlib.axes 523

Matplotlib, Release 1.0.0

60 40 20 0 20 40 60
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

60 40 20 0 20 40 60
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

If numRows <= numCols <= plotNum < 10, args can be the decimal integer numRows * 100 +

numCols * 10 + plotNum.

change_geometry(numrows, numcols, num)
change subplot geometry, eg. from 1,1,1 to 2,2,3

get_geometry()
get the subplot geometry, eg 2,2,3

get_subplotspec()
get the SubplotSpec instance associated with the subplot

is_first_col()

is_first_row()

is_last_col()

is_last_row()

label_outer()
set the visible property on ticklabels so xticklabels are visible only if the subplot is in the last
row and yticklabels are visible only if the subplot is in the first column

set_subplotspec(subplotspec)
set the SubplotSpec instance associated with the subplot

524 Chapter 35. matplotlib axes

Matplotlib, Release 1.0.0

update_params()
update the subplot position from fig.subplotpars

set_default_color_cycle(clist)
Change the default cycle of colors that will be used by the plot command. This must be called before
creating the Axes to which it will apply; it will apply to all future axes.

clist is a sequence of mpl color specifiers.

See also: set_color_cycle().

Note: Deprecated 2010/01/03. Set rcParams[’axes.color_cycle’] directly.

subplot_class_factory(axes_class=None)

35.1. matplotlib.axes 525

Matplotlib, Release 1.0.0

526 Chapter 35. matplotlib axes

CHAPTER

THIRTYSIX

MATPLOTLIB AXIS

36.1 matplotlib.axis

Classes for the ticks and x and y axis

class Axis(axes, pickradius=15)
Bases: matplotlib.artist.Artist

Public attributes

•axes.transData - transform data coords to display coords

•axes.transAxes - transform axis coords to display coords

•labelpad - number of points between the axis and its label

Init the axis with the parent Axes instance

axis_date()
Sets up x-axis ticks and labels that treat the x data as dates.

cla()
clear the current axis

convert_units(x)

draw(artist, renderer, *args, **kwargs)
Draw the axis lines, grid lines, tick lines and labels

get_children()

get_data_interval()
return the Interval instance for this axis data limits

get_gridlines()
Return the grid lines as a list of Line2D instance

get_label()
Return the axis label as a Text instance

get_label_text()
Get the text of the label

527

Matplotlib, Release 1.0.0

get_major_formatter()
Get the formatter of the major ticker

get_major_locator()
Get the locator of the major ticker

get_major_ticks(numticks=None)
get the tick instances; grow as necessary

get_majorticklabels()
Return a list of Text instances for the major ticklabels

get_majorticklines()
Return the major tick lines as a list of Line2D instances

get_majorticklocs()
Get the major tick locations in data coordinates as a numpy array

get_minor_formatter()
Get the formatter of the minor ticker

get_minor_locator()
Get the locator of the minor ticker

get_minor_ticks(numticks=None)
get the minor tick instances; grow as necessary

get_minorticklabels()
Return a list of Text instances for the minor ticklabels

get_minorticklines()
Return the minor tick lines as a list of Line2D instances

get_minorticklocs()
Get the minor tick locations in data coordinates as a numpy array

get_offset_text()
Return the axis offsetText as a Text instance

get_pickradius()
Return the depth of the axis used by the picker

get_scale()

get_smart_bounds()
get whether the axis has smart bounds

get_ticklabel_extents(renderer)
Get the extents of the tick labels on either side of the axes.

get_ticklabels(minor=False)
Return a list of Text instances for ticklabels

get_ticklines(minor=False)
Return the tick lines as a list of Line2D instances

528 Chapter 36. matplotlib axis

Matplotlib, Release 1.0.0

get_ticklocs(minor=False)
Get the tick locations in data coordinates as a numpy array

get_transform()

get_units()
return the units for axis

get_view_interval()
return the Interval instance for this axis view limits

grid(b=None, which=’major’, **kwargs)
Set the axis grid on or off; b is a boolean. Use which = ‘major’ | ‘minor’ | ‘both’ to set the grid
for major or minor ticks.

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed you
want the grid on and b will be set to True.

kwargs are used to set the line properties of the grids, eg,

xax.grid(color=’r’, linestyle=’-‘, linewidth=2)

have_units()

iter_ticks()
Iterate through all of the major and minor ticks.

limit_range_for_scale(vmin, vmax)

pan(numsteps)
Pan numsteps (can be positive or negative)

reset_ticks()

set_clip_path(clippath, transform=None)

set_data_interval()
set the axis data limits

set_default_intervals()
set the default limits for the axis data and view interval if they are not mutated

set_label_coords(x, y, transform=None)
Set the coordinates of the label. By default, the x coordinate of the y label is determined by the
tick label bounding boxes, but this can lead to poor alignment of multiple ylabels if there are
multiple axes. Ditto for the y coodinate of the x label.

You can also specify the coordinate system of the label with the transform. If None, the default
coordinate system will be the axes coordinate system (0,0) is (left,bottom), (0.5, 0.5) is middle,
etc

set_label_text(label, fontdict=None, **kwargs)
Sets the text value of the axis label

ACCEPTS: A string value for the label

set_major_formatter(formatter)
Set the formatter of the major ticker

36.1. matplotlib.axis 529

Matplotlib, Release 1.0.0

ACCEPTS: A Formatter instance

set_major_locator(locator)
Set the locator of the major ticker

ACCEPTS: a Locator instance

set_minor_formatter(formatter)
Set the formatter of the minor ticker

ACCEPTS: A Formatter instance

set_minor_locator(locator)
Set the locator of the minor ticker

ACCEPTS: a Locator instance

set_pickradius(pickradius)
Set the depth of the axis used by the picker

ACCEPTS: a distance in points

set_scale(value, **kwargs)

set_smart_bounds(value)
set the axis to have smart bounds

set_tick_params(which=’major’, reset=False, **kw)
Set appearance parameters for ticks and ticklabels.

For documentation of keyword arguments, see matplotlib.axes.Axes.tick_params().

set_ticklabels(ticklabels, *args, **kwargs)
Set the text values of the tick labels. Return a list of Text instances. Use kwarg minor=True
to select minor ticks. All other kwargs are used to update the text object properties. As for
get_ticklabels, label1 (left or bottom) is affected for a given tick only if its label1On attribute is
True, and similarly for label2. The list of returned label text objects consists of all such label1
objects followed by all such label2 objects.

The input ticklabels is assumed to match the set of tick locations, regardless of the state of
label1On and label2On.

ACCEPTS: sequence of strings

set_ticks(ticks, minor=False)
Set the locations of the tick marks from sequence ticks

ACCEPTS: sequence of floats

set_units(u)
set the units for axis

ACCEPTS: a units tag

set_view_interval(vmin, vmax, ignore=False)

530 Chapter 36. matplotlib axis

Matplotlib, Release 1.0.0

update_units(data)
introspect data for units converter and update the axis.converter instance if necessary. Return
True is data is registered for unit conversion

zoom(direction)
Zoom in/out on axis; if direction is >0 zoom in, else zoom out

class Tick(axes, loc, label, size=None, width=None, color=None, tickdir=None, pad=None, label-
size=None, labelcolor=None, zorder=None, gridOn=None, tick1On=True, tick2On=True, la-
bel1On=True, label2On=False, major=True)

Bases: matplotlib.artist.Artist

Abstract base class for the axis ticks, grid lines and labels

1 refers to the bottom of the plot for xticks and the left for yticks 2 refers to the top of the plot for
xticks and the right for yticks

Publicly accessible attributes:

tick1line a Line2D instance

tick2line a Line2D instance

gridline a Line2D instance

label1 a Text instance

label2 a Text instance

gridOn a boolean which determines whether to draw the tickline

tick1On a boolean which determines whether to draw the 1st tickline

tick2On a boolean which determines whether to draw the 2nd tickline

label1On a boolean which determines whether to draw tick label

label2On a boolean which determines whether to draw tick label

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

apply_tickdir(tickdir)
Calculate self._pad and self._tickmarkers

contains(mouseevent)
Test whether the mouse event occured in the Tick marks.

This function always returns false. It is more useful to test if the axis as a whole contains the
mouse rather than the set of tick marks.

draw(artist, renderer, *args, **kwargs)

get_children()

get_loc()
Return the tick location (data coords) as a scalar

36.1. matplotlib.axis 531

Matplotlib, Release 1.0.0

get_pad()
Get the value of the tick label pad in points

get_pad_pixels()

get_view_interval()
return the view Interval instance for the axis this tick is ticking

set_clip_path(clippath, transform=None)
Set the artist’s clip path, which may be:

•a Patch (or subclass) instance

•a Path instance, in which case an optional Transform instance may be provided, which
will be applied to the path before using it for clipping.

•None, to remove the clipping path

For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clip-
ping box to the corresponding rectangle and set the clipping path to None.

ACCEPTS: [(Path, Transform) | Patch | None]

set_label(s)
Set the text of ticklabel

ACCEPTS: str

set_label1(s)
Set the text of ticklabel

ACCEPTS: str

set_label2(s)
Set the text of ticklabel2

ACCEPTS: str

set_pad(val)
Set the tick label pad in points

ACCEPTS: float

set_view_interval(vmin, vmax, ignore=False)

class Ticker()

class XAxis(axes, pickradius=15)
Bases: matplotlib.axis.Axis

Init the axis with the parent Axes instance

contains(mouseevent)
Test whether the mouse event occured in the x axis.

get_data_interval()
return the Interval instance for this axis data limits

532 Chapter 36. matplotlib axis

Matplotlib, Release 1.0.0

get_label_position()
Return the label position (top or bottom)

get_minpos()

get_text_heights(renderer)
Returns the amount of space one should reserve for text above and below the axes. Returns a
tuple (above, below)

get_ticks_position()
Return the ticks position (top, bottom, default or unknown)

get_view_interval()
return the Interval instance for this axis view limits

set_data_interval(vmin, vmax, ignore=False)
set the axis data limits

set_default_intervals()
set the default limits for the axis interval if they are not mutated

set_label_position(position)
Set the label position (top or bottom)

ACCEPTS: [‘top’ | ‘bottom’]

set_ticks_position(position)
Set the ticks position (top, bottom, both, default or none) both sets the ticks to appear on both
positions, but does not change the tick labels. ‘default’ resets the tick positions to the default:
ticks on both positions, labels at bottom. ‘none’ can be used if you don’t want any ticks. ‘none’
and ‘both’ affect only the ticks, not the labels.

ACCEPTS: [‘top’ | ‘bottom’ | ‘both’ | ‘default’ | ‘none’]

set_view_interval(vmin, vmax, ignore=False)
If ignore is False, the order of vmin, vmax does not matter; the original axis orientation will be
preserved.

tick_bottom()
use ticks only on bottom

tick_top()
use ticks only on top

class XTick(axes, loc, label, size=None, width=None, color=None, tickdir=None, pad=None, label-
size=None, labelcolor=None, zorder=None, gridOn=None, tick1On=True, tick2On=True, la-
bel1On=True, label2On=False, major=True)

Bases: matplotlib.axis.Tick

Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

apply_tickdir(tickdir)

36.1. matplotlib.axis 533

Matplotlib, Release 1.0.0

get_data_interval()
return the Interval instance for this axis data limits

get_minpos()

get_view_interval()
return the Interval instance for this axis view limits

set_view_interval(vmin, vmax, ignore=False)

update_position(loc)
Set the location of tick in data coords with scalar loc

class YAxis(axes, pickradius=15)
Bases: matplotlib.axis.Axis

Init the axis with the parent Axes instance

contains(mouseevent)
Test whether the mouse event occurred in the y axis.

Returns True | False

get_data_interval()
return the Interval instance for this axis data limits

get_label_position()
Return the label position (left or right)

get_minpos()

get_text_widths(renderer)

get_ticks_position()
Return the ticks position (left, right, both or unknown)

get_view_interval()
return the Interval instance for this axis view limits

set_data_interval(vmin, vmax, ignore=False)
set the axis data limits

set_default_intervals()
set the default limits for the axis interval if they are not mutated

set_label_position(position)
Set the label position (left or right)

ACCEPTS: [‘left’ | ‘right’]

set_offset_position(position)

set_ticks_position(position)
Set the ticks position (left, right, both, default or none) ‘both’ sets the ticks to appear on both
positions, but does not change the tick labels. ‘default’ resets the tick positions to the default:
ticks on both positions, labels at left. ‘none’ can be used if you don’t want any ticks. ‘none’ and
‘both’ affect only the ticks, not the labels.

534 Chapter 36. matplotlib axis

Matplotlib, Release 1.0.0

ACCEPTS: [‘left’ | ‘right’ | ‘both’ | ‘default’ | ‘none’]

set_view_interval(vmin, vmax, ignore=False)
If ignore is False, the order of vmin, vmax does not matter; the original axis orientation will be
preserved.

tick_left()
use ticks only on left

tick_right()
use ticks only on right

class YTick(axes, loc, label, size=None, width=None, color=None, tickdir=None, pad=None, label-
size=None, labelcolor=None, zorder=None, gridOn=None, tick1On=True, tick2On=True, la-
bel1On=True, label2On=False, major=True)

Bases: matplotlib.axis.Tick

Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

apply_tickdir(tickdir)

get_data_interval()
return the Interval instance for this axis data limits

get_minpos()

get_view_interval()
return the Interval instance for this axis view limits

set_view_interval(vmin, vmax, ignore=False)

update_position(loc)
Set the location of tick in data coords with scalar loc

36.1. matplotlib.axis 535

Matplotlib, Release 1.0.0

536 Chapter 36. matplotlib axis

CHAPTER

THIRTYSEVEN

MATPLOTLIB CBOOK

37.1 matplotlib.cbook

A collection of utility functions and classes. Many (but not all) from the Python Cookbook – hence the name
cbook

class Bunch(**kwds)
Often we want to just collect a bunch of stuff together, naming each item of the bunch; a dictionary’s
OK for that, but a small do- nothing class is even handier, and prettier to use. Whenever you want to
group a few variables:

>>> point = Bunch(datum=2, squared=4, coord=12)
>>> point.datum

By: Alex Martelli From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308

class CallbackRegistry(signals)
Handle registering and disconnecting for a set of signals and callbacks:

signals = ’eat’, ’drink’, ’be merry’

def oneat(x):
print ’eat’, x

def ondrink(x):
print ’drink’, x

callbacks = CallbackRegistry(signals)

ideat = callbacks.connect(’eat’, oneat)
iddrink = callbacks.connect(’drink’, ondrink)

#tmp = callbacks.connect(’drunk’, ondrink) # this will raise a ValueError

callbacks.process(’drink’, 123) # will call oneat
callbacks.process(’eat’, 456) # will call ondrink
callbacks.process(’be merry’, 456) # nothing will be called

537

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308

Matplotlib, Release 1.0.0

callbacks.disconnect(ideat) # disconnect oneat
callbacks.process(’eat’, 456) # nothing will be called

In practice, one should always disconnect all callbacks when they are no longer needed to avoid
dangling references (and thus memory leaks). However, real code in matplotlib rarely does so, and
due to its design, it is rather difficult to place this kind of code. To get around this, and prevent
this class of memory leaks, we instead store weak references to bound methods only, so when the
destination object needs to die, the CallbackRegistry won’t keep it alive. The Python stdlib weakref
module can not create weak references to bound methods directly, so we need to create a proxy object
to handle weak references to bound methods (or regular free functions). This technique was shared
by Peter Parente on his “Mindtrove” blog.

signals is a sequence of valid signals

class BoundMethodProxy(cb)
Bases: object

Our own proxy object which enables weak references to bound and unbound methods and arbi-
trary callables. Pulls information about the function, class, and instance out of a bound method.
Stores a weak reference to the instance to support garbage collection.

@organization: IBM Corporation @copyright: Copyright (c) 2005, 2006 IBM Corporation @li-
cense: The BSD License

Minor bugfixes by Michael Droettboom

connect(s, func)
register func to be called when a signal s is generated func will be called

disconnect(cid)
disconnect the callback registered with callback id cid

process(s, *args, **kwargs)
process signal s. All of the functions registered to receive callbacks on s will be called with
*args and **kwargs

class GetRealpathAndStat()

class Grouper(init=, [])
Bases: object

This class provides a lightweight way to group arbitrary objects together into disjoint sets when a
full-blown graph data structure would be overkill.

Objects can be joined using join(), tested for connectedness using joined(), and all disjoint sets
can be retreived by using the object as an iterator.

The objects being joined must be hashable and weak-referenceable.

For example:

>>> class Foo:
... def __init__(self, s):
... self.s = s

538 Chapter 37. matplotlib cbook

http://mindtrove.info/articles/python-weak-references/

Matplotlib, Release 1.0.0

... def __repr__(self):

... return self.s

...
>>> a, b, c, d, e, f = [Foo(x) for x in ’abcdef’]
>>> g = Grouper()
>>> g.join(a, b)
>>> g.join(b, c)
>>> g.join(d, e)
>>> list(g)
[[d, e], [a, b, c]]
>>> g.joined(a, b)
True
>>> g.joined(a, c)
True
>>> g.joined(a, d)
False

clean()
Clean dead weak references from the dictionary

get_siblings(a)
Returns all of the items joined with a, including itself.

join(a, *args)
Join given arguments into the same set. Accepts one or more arguments.

joined(a, b)
Returns True if a and b are members of the same set.

class Idle(func)
Bases: matplotlib.cbook.Scheduler

Schedule callbacks when scheduler is idle

run()

class MemoryMonitor(nmax=20000)

clear()

plot(i0=0, isub=1, fig=None)

report(segments=4)

xy(i0=0, isub=1)

class Null(*args, **kwargs)
Null objects always and reliably “do nothing.”

class RingBuffer(size_max)
class that implements a not-yet-full buffer

append(x)
append an element at the end of the buffer

37.1. matplotlib.cbook 539

Matplotlib, Release 1.0.0

get()
Return a list of elements from the oldest to the newest.

class Scheduler()
Bases: threading.Thread

Base class for timeout and idle scheduling

stop()

class Sorter()
Sort by attribute or item

Example usage:

sort = Sorter()

list = [(1, 2), (4, 8), (0, 3)]
dict = [{’a’: 3, ’b’: 4}, {’a’: 5, ’b’: 2}, {’a’: 0, ’b’: 0},

{’a’: 9, ’b’: 9}]

sort(list) # default sort
sort(list, 1) # sort by index 1
sort(dict, ’a’) # sort a list of dicts by key ’a’

byAttribute(data, attributename, inplace=1)

byItem(data, itemindex=None, inplace=1)

sort(data, itemindex=None, inplace=1)

class Stack(default=None)
Bases: object

Implement a stack where elements can be pushed on and you can move back and forth. But no pop.
Should mimic home / back / forward in a browser

back()
move the position back and return the current element

bubble(o)
raise o to the top of the stack and return o. o must be in the stack

clear()
empty the stack

empty()

forward()
move the position forward and return the current element

home()
push the first element onto the top of the stack

540 Chapter 37. matplotlib cbook

Matplotlib, Release 1.0.0

push(o)
push object onto stack at current position - all elements occurring later than the current position
are discarded

remove(o)
remove element o from the stack

class Timeout(wait, func)
Bases: matplotlib.cbook.Scheduler

Schedule recurring events with a wait time in seconds

run()

class ViewVCCachedServer(cache_dir, baseurl)
Bases: urllib2.BaseHandler

Urllib2 handler that takes care of caching files. The file cache.pck holds the directory of files that have
been cached.

cache_file(url, data, headers)
Store a received file in the cache directory.

get_sample_data(fname, asfileobj=True)
Check the cachedirectory for a sample_data file. If it does not exist, fetch it with urllib from the
svn repo and store it in the cachedir.

If asfileobj is True, a file object will be returned. Else the path to the file as a string will be
returned.

http_error_304(req, fp, code, msg, hdrs)
Read the file from the cache since the server has no newer version.

http_request(req)
Make the request conditional if we have a cached file.

http_response(req, response)
Update the cache with the returned file.

in_cache_dir(fn)

read_cache()
Read the cache file from the cache directory.

remove_stale_files()
Remove files from the cache directory that are not listed in cache.pck.

write_cache()
Write the cache data structure into the cache directory.

class Xlator()
Bases: dict

All-in-one multiple-string-substitution class

Example usage:

37.1. matplotlib.cbook 541

Matplotlib, Release 1.0.0

text = "Larry Wall is the creator of Perl"
adict = {
"Larry Wall" : "Guido van Rossum",
"creator" : "Benevolent Dictator for Life",
"Perl" : "Python",
}

print multiple_replace(adict, text)

xlat = Xlator(adict)
print xlat.xlat(text)

xlat(text)
Translate text, returns the modified text.

align_iterators(func, *iterables)
This generator takes a bunch of iterables that are ordered by func It sends out ordered tuples:

(func(row), [rows from all iterators matching func(row)])

It is used by matplotlib.mlab.recs_join() to join record arrays

allequal(seq)
Return True if all elements of seq compare equal. If seq is 0 or 1 length, return True

allpairs(x)
return all possible pairs in sequence x

Condensed by Alex Martelli from this thread on c.l.python

alltrue(seq)
Return True if all elements of seq evaluate to True. If seq is empty, return False.

class converter(missing=’Null’, missingval=None)
Base class for handling string -> python type with support for missing values

is_missing(s)

dedent(s)
Remove excess indentation from docstring s.

Discards any leading blank lines, then removes up to n whitespace characters from each line, where n
is the number of leading whitespace characters in the first line. It differs from textwrap.dedent in its
deletion of leading blank lines and its use of the first non-blank line to determine the indentation.

It is also faster in most cases.

delete_masked_points(*args)
Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the
unmasked points remaining.

Arguments can be in any of 5 categories:

1.1-D masked arrays

2.1-D ndarrays

542 Chapter 37. matplotlib cbook

http://groups.google.com/groups?q=all+pairs+group:*python*&hl=en&lr=&ie=UTF-8&selm=mailman.4028.1096403649.5135.python-list%40python.org&rnum=1

Matplotlib, Release 1.0.0

3.ndarrays with more than one dimension

4.other non-string iterables

5.anything else

The first argument must be in one of the first four categories; any argument with a length differing from
that of the first argument (and hence anything in category 5) then will be passed through unchanged.

Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if
masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories
2, 3, and 4 if np.isfinite() does not yield a Boolean array.

All input arguments that are not passed unchanged are returned as ndarrays after removing the points
or rows corresponding to masks in any of the arguments.

A vastly simpler version of this function was originally written as a helper for Axes.scatter().

dict_delall(d, keys)
delete all of the keys from the dict d

distances_along_curve(X)
This function has been moved to matplotlib.mlab – please import it from there

exception_to_str(s=None)

finddir(o, match, case=False)
return all attributes of o which match string in match. if case is True require an exact case match.

flatten(seq, scalarp=<function is_scalar_or_string at 0x30e0ed8>)
this generator flattens nested containers such as

>>> l=((’John’, ’Hunter’), (1,23), [[[[42,(5,23)]]]])

so that

>>> for i in flatten(l): print i,
John Hunter 1 23 42 5 23

By: Composite of Holger Krekel and Luther Blissett From:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294 and Recipe 1.12 in cookbook

get_recursive_filelist(args)
Recurse all the files and dirs in args ignoring symbolic links and return the files as a list of strings

get_sample_data(fname, asfileobj=True)
Check the cachedirectory ~/.matplotlib/sample_data for a sample_data file. If it does not exist, fetch
it with urllib from the mpl svn repo

http://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/sample_data/

and store it in the cachedir.

If asfileobj is True, a file object will be returned. Else the path to the file as a string will be returned

To add a datafile to this directory, you need to check out sample_data from matplotlib svn:

37.1. matplotlib.cbook 543

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294
http://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/sample_data/

Matplotlib, Release 1.0.0

svn co https://matplotlib.svn.sourceforge.net/svnroot/matplotlib/trunk/sample_data

and svn add the data file you want to support. This is primarily intended for use in mpl examples that
need custom data

get_split_ind(seq, N)
seq is a list of words. Return the index into seq such that:

len(’ ’.join(seq[:ind])<=N

is_closed_polygon(X)
This function has been moved to matplotlib.mlab – please import it from there

is_math_text(s)

is_numlike(obj)
return true if obj looks like a number

is_scalar(obj)
return true if obj is not string like and is not iterable

is_scalar_or_string(val)

is_sequence_of_strings(obj)
Returns true if obj is iterable and contains strings

is_string_like(obj)
Return True if obj looks like a string

is_writable_file_like(obj)
return true if obj looks like a file object with a write method

issubclass_safe(x, klass)
return issubclass(x, klass) and return False on a TypeError

isvector(X)
This function has been moved to matplotlib.mlab – please import it from there

iterable(obj)
return true if obj is iterable

less_simple_linear_interpolation(x, y, xi, extrap=False)
This function has been moved to matplotlib.mlab – please import it from there

listFiles(root, patterns=’*’, recurse=1, return_folders=0)
Recursively list files

from Parmar and Martelli in the Python Cookbook

class maxdict(maxsize)
Bases: dict

A dictionary with a maximum size; this doesn’t override all the relevant methods to contrain size, just
setitem, so use with caution

544 Chapter 37. matplotlib cbook

Matplotlib, Release 1.0.0

mkdirs(newdir, mode=511)
make directory newdir recursively, and set mode. Equivalent to

> mkdir -p NEWDIR
> chmod MODE NEWDIR

onetrue(seq)
Return True if one element of seq is True. It seq is empty, return False.

path_length(X)
This function has been moved to matplotlib.mlab – please import it from there

pieces(seq, num=2)
Break up the seq into num tuples

popall(seq)
empty a list

print_cycles(objects, outstream=<open file ’<stdout>’, mode ’w’ at 0x7fede617f150>,
show_progress=False)

objects A list of objects to find cycles in. It is often useful to pass in gc.garbage to find the cycles that
are preventing some objects from being garbage collected.

outstream The stream for output.

show_progress If True, print the number of objects reached as they are found.

quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y)
This function has been moved to matplotlib.mlab – please import it from there

recursive_remove(path)

report_memory(i=0)
return the memory consumed by process

reverse_dict(d)
reverse the dictionary – may lose data if values are not unique!

safe_masked_invalid(x)

safezip(*args)
make sure args are equal len before zipping

class silent_list(type, seq=None)
Bases: list

override repr when returning a list of matplotlib artists to prevent long, meaningless output. This is
meant to be used for a homogeneous list of a give type

simple_linear_interpolation(a, steps)

soundex(name, len=4)
soundex module conforming to Odell-Russell algorithm

strip_math(s)
remove latex formatting from mathtext

37.1. matplotlib.cbook 545

Matplotlib, Release 1.0.0

to_filehandle(fname, flag=’rU’, return_opened=False)
fname can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends
in .gz. flag is a read/write flag for file()

class todate(fmt=’%Y-%m-%d’, missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a date or None

use a time.strptime() format string for conversion

class todatetime(fmt=’%Y-%m-%d’, missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a datetime or None

use a time.strptime() format string for conversion

class tofloat(missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to a float or None

class toint(missing=’Null’, missingval=None)
Bases: matplotlib.cbook.converter

convert to an int or None

class tostr(missing=’Null’, missingval=”)
Bases: matplotlib.cbook.converter

convert to string or None

unicode_safe(s)

unique(x)
Return a list of unique elements of x

unmasked_index_ranges(mask, compressed=True)
Find index ranges where mask is False.

mask will be flattened if it is not already 1-D.

Returns Nx2 numpy.ndarray with each row the start and stop indices for slices of the compressed
numpy.ndarray corresponding to each of N uninterrupted runs of unmasked values. If optional
argument compressed is False, it returns the start and stop indices into the original numpy.ndarray,
not the compressed numpy.ndarray. Returns None if there are no unmasked values.

Example:

y = ma.array(np.arange(5), mask = [0,0,1,0,0])
ii = unmasked_index_ranges(ma.getmaskarray(y))
returns array [[0,2,] [2,4,]]

y.compressed()[ii[1,0]:ii[1,1]]
returns array [3,4,]

546 Chapter 37. matplotlib cbook

Matplotlib, Release 1.0.0

ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False)
returns array [[0, 2], [3, 5]]

y.filled()[ii[1,0]:ii[1,1]]
returns array [3,4,]

Prior to the transforms refactoring, this was used to support masked arrays in Line2D.

vector_lengths(X, P=2.0, axis=None)
This function has been moved to matplotlib.mlab – please import it from there

wrap(prefix, text, cols)
wrap text with prefix at length cols

37.1. matplotlib.cbook 547

Matplotlib, Release 1.0.0

548 Chapter 37. matplotlib cbook

CHAPTER

THIRTYEIGHT

MATPLOTLIB CM

38.1 matplotlib.cm

This module provides a large set of colormaps, functions for registering new colormaps and for getting a
colormap by name, and a mixin class for adding color mapping functionality.

class ScalarMappable(norm=None, cmap=None)
This is a mixin class to support scalar -> RGBA mapping. Handles normalization and colormapping

norm is an instance of colors.Normalize or one of its subclasses, used to map luminance to 0-1.
cmap is a cm colormap instance, for example cm.jet

add_checker(checker)
Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed.

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits
that are None

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the
‘changed’ signal

check_update(checker)
If mappable has changed since the last check, return True; else return False

get_array()
Return the array

get_clim()
return the min, max of the color limits for image scaling

get_cmap()
return the colormap

set_array(A)
Set the image array from numpy array A

549

Matplotlib, Release 1.0.0

set_clim(vmin=None, vmax=None)
set the norm limits for image scaling; if vmin is a length2 sequence, interpret it as (vmin,
vmax) which is used to support setp

ACCEPTS: a length 2 sequence of floats

set_cmap(cmap)
set the colormap for luminance data

ACCEPTS: a colormap or registered colormap name

set_colorbar(im, ax)
set the colorbar image and axes associated with mappable

set_norm(norm)
set the normalization instance

to_rgba(x, alpha=None, bytes=False)
Return a normalized rgba array corresponding to x. If x is already an rgb array, insert alpha; if it
is already rgba, return it unchanged. If bytes is True, return rgba as 4 uint8s instead of 4 floats.

get_cmap(name=None, lut=None)
Get a colormap instance, defaulting to rc values if name is None.

Colormaps added with register_cmap() take precedence over builtin colormaps.

If name is a colors.Colormap instance, it will be returned.

If lut is not None it must be an integer giving the number of entries desired in the lookup table, and
name must be a standard mpl colormap name with a corresponding data dictionary in datad.

register_cmap(name=None, cmap=None, data=None, lut=None)
Add a colormap to the set recognized by get_cmap().

It can be used in two ways:

register_cmap(name=’swirly’, cmap=swirly_cmap)

register_cmap(name=’choppy’, data=choppydata, lut=128)

In the first case, cmap must be a colors.Colormap instance. The name is optional; if absent, the
name will be the name attribute of the cmap.

In the second case, the three arguments are passed to the colors.LinearSegmentedColormap ini-
tializer, and the resulting colormap is registered.

revcmap(data)

550 Chapter 38. matplotlib cm

CHAPTER

THIRTYNINE

MATPLOTLIB COLLECTIONS

collections.Collection

collections.RegularPolyCollection

collections.EllipseCollection

collections.CircleCollection

collections.LineCollection

collections.PolyCollection

collections.PathCollection

collections.PatchCollection

collections.QuadMesh

artist.Artist

cm.ScalarMappable

collections.AsteriskPolygonCollection

collections.StarPolygonCollection

collections.BrokenBarHCollection

39.1 matplotlib.collections

Classes for the efficient drawing of large collections of objects that share most properties, e.g. a large number
of line segments or polygons.

The classes are not meant to be as flexible as their single element counterparts (e.g. you may not be able
to select all line styles) but they are meant to be fast for common use cases (e.g. a large set of solid line
segemnts)

class AsteriskPolygonCollection(numsides, rotation=0, sizes=(1,), **kwargs)
Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular asterisks with numsides points.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2

551

Matplotlib, Release 1.0.0

Valid Collection keyword arguments:

• edgecolors: None

• facecolors: None

• linewidths: None

• antialiaseds: None

• offsets: None

• transOffset: transforms.IdentityTransform()

• norm: None (optional for matplotlib.cm.ScalarMappable)

• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,
transOffset = ax.transData,
)

class BrokenBarHCollection(xranges, yrange, **kwargs)
Bases: matplotlib.collections.PolyCollection

A collection of horizontal bars spanning yrange with a sequence of xranges.

xranges sequence of (xmin, xwidth)

yrange ymin, ywidth

Valid Collection keyword arguments:

• edgecolors: None

• facecolors: None

• linewidths: None

• antialiaseds: None

• offsets: None

552 Chapter 39. matplotlib collections

Matplotlib, Release 1.0.0

• transOffset: transforms.IdentityTransform()

• norm: None (optional for matplotlib.cm.ScalarMappable)

• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

static span_where(x, ymin, ymax, where, **kwargs)
Create a BrokenBarHCollection to plot horizontal bars from over the regions in x where where
is True. The bars range on the y-axis from ymin to ymax

A BrokenBarHCollection is returned. kwargs are passed on to the collection.

class CircleCollection(sizes, **kwargs)
Bases: matplotlib.collections.Collection

A collection of circles, drawn using splines.

sizes Gives the area of the circle in points^2

Valid Collection keyword arguments:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(artist, renderer, *args, **kwargs)

get_sizes()
return sizes of circles

class Collection(edgecolors=None, facecolors=None, linewidths=None, linestyles=’solid’, an-
tialiaseds=None, offsets=None, transOffset=None, norm=None, cmap=None,
pickradius=5.0, urls=None, **kwargs)

Bases: matplotlib.artist.Artist, matplotlib.cm.ScalarMappable

Base class for Collections. Must be subclassed to be usable.

39.1. matplotlib.collections 553

Matplotlib, Release 1.0.0

All properties in a collection must be sequences or scalars; if scalars, they will be converted to se-
quences. The property of the ith element of the collection is:

prop[i % len(props)]

Keyword arguments and default values:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets).

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.

Create a Collection

%(Collection)s

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns True | False, dict(ind=itemlist), where every item in itemlist contains the event.

draw(artist, renderer, *args, **kwargs)

get_dashes()

get_datalim(transData)

get_edgecolor()

get_edgecolors()

get_facecolor()

get_facecolors()

get_linestyle()

get_linestyles()

get_linewidth()

get_linewidths()

554 Chapter 39. matplotlib collections

Matplotlib, Release 1.0.0

get_offsets()
Return the offsets for the collection.

get_paths()

get_pickradius()

get_transforms()

get_urls()

get_window_extent(renderer)

set_alpha(alpha)
Set the alpha tranparencies of the collection. alpha must be a float or None.

ACCEPTS: float or None

set_antialiased(aa)
Set the antialiasing state for rendering.

ACCEPTS: Boolean or sequence of booleans

set_antialiaseds(aa)
alias for set_antialiased

set_color(c)
Set both the edgecolor and the facecolor.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

See Also:

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_dashes(ls)
alias for set_linestyle

set_edgecolor(c)
Set the edgecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the se-
quence.

If c is ‘face’, the edge color will always be the same as the face color. If it is ‘none’, the patch
boundary will not be drawn.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_edgecolors(c)
alias for set_edgecolor

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a matplotlib color arg (all patches have same
color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the se-
quence.

If c is ‘none’, the patch will not be filled.

39.1. matplotlib.collections 555

Matplotlib, Release 1.0.0

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_facecolors(c)
alias for set_facecolor

set_linestyle(ls)
Set the linestyle(s) for the collection.

ACCEPTS: [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]

set_linestyles(ls)
alias for set_linestyle

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

ACCEPTS: float or sequence of floats

set_linewidths(lw)
alias for set_linewidth

set_lw(lw)
alias for set_linewidth

set_offsets(offsets)
Set the offsets for the collection. offsets can be a scalar or a sequence.

ACCEPTS: float or sequence of floats

set_paths()

set_pickradius(pickradius)

set_urls(urls)

update_from(other)
copy properties from other to self

update_scalarmappable()
If the scalar mappable array is not none, update colors from scalar data

class EllipseCollection(widths, heights, angles, units=’points’, **kwargs)
Bases: matplotlib.collections.Collection

A collection of ellipses, drawn using splines.

widths: sequence lengths of first axes (e.g., major axis lengths)

heights: sequence lengths of second axes

angles: sequence angles of first axes, degrees CCW from the X-axis

units: [’points’ | ‘inches’ | ‘dots’ | ‘width’ | ‘height’

‘x’ | ’y’ | ’xy’]

units in which majors and minors are given; ‘width’ and ‘height’ refer to the dimensions of the
axes, while ‘x’ and ‘y’ refer to the offsets data units. ‘xy’ differs from all others in that the angle

556 Chapter 39. matplotlib collections

Matplotlib, Release 1.0.0

as plotted varies with the aspect ratio, and equals the specified angle only when the aspect ratio
is unity. Hence it behaves the same as the Ellipse with axes.transData as its transform.

Additional kwargs inherited from the base Collection:

Valid Collection keyword arguments:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(artist, renderer, *args, **kwargs)

class LineCollection(segments, linewidths=None, colors=None, antialiaseds=None, linestyles=’solid’,
offsets=None, transOffset=None, norm=None, cmap=None, pickradius=5,
**kwargs)

Bases: matplotlib.collections.Collection

All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The
property of the ith line segment is:

prop[i % len(props)]

i.e., the properties cycle if the len of props is less than the number of segments.

segments a sequence of (line0, line1, line2), where:

linen = (x0, y0), (x1, y1), ... (xm, ym)

or the equivalent numpy array with two columns. Each line can be a different length.

colors must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed).

antialiaseds must be a sequence of ones or zeros

linestyles [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] a string or dash tuple. The dash tuple is:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

39.1. matplotlib.collections 557

Matplotlib, Release 1.0.0

If linewidths, colors, or antialiaseds is None, they default to their rcParams setting, in sequence form.

If offsets and transOffset are not None, then offsets are transformed by transOffset and applied after
the segments have been transformed to display coordinates.

If offsets is not None but transOffset is None, then the offsets are added to the segments before any
transformation. In this case, a single offset can be specified as:

offsets=(xo,yo)

and this value will be added cumulatively to each successive segment, so as to produce a set of
successively offset curves.

norm None (optional for matplotlib.cm.ScalarMappable)

cmap None (optional for matplotlib.cm.ScalarMappable)

pickradius is the tolerance for mouse clicks picking a line. The default is 5 pt.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array() has been made), at draw time a call to scalar mappable will be made to set the colors.

color(c)
Set the color(s) of the line collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence

ACCEPTS: matplotlib color arg or sequence of rgba tuples

get_color()

get_colors()

set_color(c)
Set the color(s) of the line collection. c can be a matplotlib color arg (all patches have same
color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the se-
quence.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

set_paths(segments)

set_segments(segments)

set_verts(segments)

class PatchCollection(patches, match_original=False, **kwargs)
Bases: matplotlib.collections.Collection

A generic collection of patches.

This makes it easier to assign a color map to a heterogeneous collection of patches.

This also may improve plotting speed, since PatchCollection will draw faster than a large number of
patches.

patches a sequence of Patch objects. This list may include a heterogeneous assortment of different
patch types.

558 Chapter 39. matplotlib collections

Matplotlib, Release 1.0.0

match_original If True, use the colors and linewidths of the original patches. If False, new colors may
be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths,
norm or cmap.

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

The use of ScalarMappable is optional. If the ScalarMappable matrix _A is not None (ie a call to
set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.

set_paths(patches)

class PathCollection(paths, **kwargs)
Bases: matplotlib.collections.Collection

This is the most basic Collection subclass.

paths is a sequence of matplotlib.path.Path instances.

Valid Collection keyword arguments:

•edgecolors: None

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

set_paths(paths)

class PolyCollection(verts, sizes=None, closed=True, **kwargs)
Bases: matplotlib.collections.Collection

verts is a sequence of (verts0, verts1, ...) where verts_i is a sequence of xy tuples of vertices, or an
equivalent numpy array of shape (nv, 2).

sizes is None (default) or a sequence of floats that scale the corresponding verts_i. The scaling is
applied before the Artist master transform; if the latter is an identity transform, then the overall scaling
is such that if verts_i specify a unit square, then sizes_i is the area of that square in points^2. If
len(sizes) < nv, the additional values will be taken cyclically from the array.

closed, when True, will explicitly close the polygon.

Valid Collection keyword arguments:

•edgecolors: None

39.1. matplotlib.collections 559

Matplotlib, Release 1.0.0

•facecolors: None

•linewidths: None

•antialiaseds: None

•offsets: None

•transOffset: transforms.IdentityTransform()

•norm: None (optional for matplotlib.cm.ScalarMappable)

•cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

draw(artist, renderer, *args, **kwargs)

set_paths(verts, closed=True)
This allows one to delay initialization of the vertices.

set_verts(verts, closed=True)
This allows one to delay initialization of the vertices.

class QuadMesh(meshWidth, meshHeight, coordinates, showedges, antialiased=True, shading=’flat’,
**kwargs)

Bases: matplotlib.collections.Collection

Class for the efficient drawing of a quadrilateral mesh.

A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (meshWidth + 1,
meshHeight + 1). Each vertex in the mesh has a different set of “mesh coordinates” representing its
position in the topology of the mesh. For any values (m, n) such that 0 <= m <= meshWidth and 0 <=

n <= meshHeight, the vertices at mesh coordinates (m, n), (m, n + 1), (m + 1, n + 1), and (m + 1, n)
form one of the quadrilaterals in the mesh. There are thus (meshWidth * meshHeight) quadrilaterals
in the mesh. The mesh need not be regular and the polygons need not be convex.

A quadrilateral mesh is represented by a (2 x ((meshWidth + 1) * (meshHeight + 1))) numpy array
coordinates, where each row is the x and y coordinates of one of the vertices. To define the function
that maps from a data point to its corresponding color, use the set_cmap() method. Each of these
arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates
of the lower left vertex, in the case of the colors).

For example, the first entry in coordinates is the coordinates of the vertex at mesh coordinates (0, 0),
then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on.

shading may be ‘flat’, ‘faceted’ or ‘gouraud’

static convert_mesh_to_paths(meshWidth, meshHeight, coordinates)
Converts a given mesh into a sequence of matplotlib.path.Path objects for easier rendering
by backends that do not directly support quadmeshes.

This function is primarily of use to backend implementers.

560 Chapter 39. matplotlib collections

Matplotlib, Release 1.0.0

convert_mesh_to_triangles(meshWidth, meshHeight, coordinates)
Converts a given mesh into a sequence of triangles, each point with its own color. This is useful
for experiments using draw_qouraud_triangle.

draw(artist, renderer, *args, **kwargs)

get_datalim(transData)

get_paths()

set_paths()

class RegularPolyCollection(numsides, rotation=0, sizes=(1,), **kwargs)
Bases: matplotlib.collections.Collection

Draw a collection of regular polygons with numsides.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2

Valid Collection keyword arguments:

• edgecolors: None

• facecolors: None

• linewidths: None

• antialiaseds: None

• offsets: None

• transOffset: transforms.IdentityTransform()

• norm: None (optional for matplotlib.cm.ScalarMappable)

• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,

39.1. matplotlib.collections 561

Matplotlib, Release 1.0.0

transOffset = ax.transData,
)

draw(artist, renderer, *args, **kwargs)

get_numsides()

get_rotation()

get_sizes()

class StarPolygonCollection(numsides, rotation=0, sizes=(1,), **kwargs)
Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular stars with numsides points.

numsides the number of sides of the polygon

rotation the rotation of the polygon in radians

sizes gives the area of the circle circumscribing the regular polygon in points^2

Valid Collection keyword arguments:

• edgecolors: None

• facecolors: None

• linewidths: None

• antialiaseds: None

• offsets: None

• transOffset: transforms.IdentityTransform()

• norm: None (optional for matplotlib.cm.ScalarMappable)

• cmap: None (optional for matplotlib.cm.ScalarMappable)

offsets and transOffset are used to translate the patch after rendering (default no offsets)

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their
matplotlib.rcParams patch setting, in sequence form.

Example: see examples/dynamic_collection.py for complete example:

offsets = np.random.rand(20,2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
black = (0,0,0,1)

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors = facecolors,
edgecolors = (black,),
linewidths = (1,),
offsets = offsets,

562 Chapter 39. matplotlib collections

Matplotlib, Release 1.0.0

transOffset = ax.transData,
)

39.1. matplotlib.collections 563

Matplotlib, Release 1.0.0

564 Chapter 39. matplotlib collections

CHAPTER

FORTY

MATPLOTLIB COLORBAR

40.1 matplotlib.colorbar

Colorbar toolkit with two classes and a function:

ColorbarBase the base class with full colorbar drawing functionality. It can be used as-is to
make a colorbar for a given colormap; a mappable object (e.g., image) is not needed.

Colorbar the derived class for use with images or contour plots.

make_axes() a function for resizing an axes and adding a second axes suitable for a colorbar

The colorbar() method uses make_axes() and Colorbar; the colorbar() function is a thin wrapper
over colorbar().

class Colorbar(ax, mappable, **kw)
Bases: matplotlib.colorbar.ColorbarBase

This class connects a ColorbarBase to a ScalarMappable such as a AxesImage generated via
imshow().

It is not intended to be instantiated directly; instead, use colorbar() or colorbar() to make your
colorbar.

add_lines(CS)
Add the lines from a non-filled ContourSet to the colorbar.

update_bruteforce(mappable)
Destroy and rebuild the colorbar. This is intended to become obsolete, and will probably be
deprecated and then removed. It is not called when the pyplot.colorbar function or the Fig-
ure.colorbar method are used to create the colorbar.

update_normal(mappable)
update solid, lines, etc. Unlike update_bruteforce, it does not clear the axes. This is meant to be
called when the image or contour plot to which this colorbar belongs is changed.

class ColorbarBase(ax, cmap=None, norm=None, alpha=None, values=None, boundaries=None, orien-
tation=’vertical’, extend=’neither’, spacing=’uniform’, ticks=None, format=None,
drawedges=False, filled=True)

Bases: matplotlib.cm.ScalarMappable

565

Matplotlib, Release 1.0.0

Draw a colorbar in an existing axes.

This is a base class for the Colorbar class, which is the basis for the colorbar() function and the
colorbar() method, which are the usual ways of creating a colorbar.

It is also useful by itself for showing a colormap. If the cmap kwarg is given but boundaries and
values are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and
over-value colors, specify the norm as:

colors.Normalize(clip=False)

To show the colors versus index instead of on the 0-1 scale, use:

norm=colors.NoNorm.

Useful attributes:

ax the Axes instance in which the colorbar is drawn

lines a LineCollection if lines were drawn, otherwise None

dividers a LineCollection if drawedges is True, otherwise None

Useful public methods are set_label() and add_lines().

add_lines(levels, colors, linewidths)
Draw lines on the colorbar.

config_axis()

draw_all()
Calculate any free parameters based on the current cmap and norm, and do all the drawing.

set_alpha(alpha)

set_label(label, **kw)
Label the long axis of the colorbar

set_ticklabels(ticklabels, update_ticks=True)
set tick labels. Tick labels are updated immediately unless update_ticks is False. To manually
update the ticks, call update_ticks method explicitly.

set_ticks(ticks, update_ticks=True)
set tick locations. Tick locations are updated immediately unless update_ticks is False. To
manually update the ticks, call update_ticks method explicitly.

update_ticks()
Force the update of the ticks and ticklabels. This must be called whenever the tick locator and/or
tick formatter changes.

make_axes(parent, **kw)
Resize and reposition a parent axes, and return a child axes suitable for a colorbar:

cax, kw = make_axes(parent, **kw)

566 Chapter 40. matplotlib colorbar

Matplotlib, Release 1.0.0

Keyword arguments may include the following (with defaults):

orientation ‘vertical’ or ‘horizontal’

Property Description
orienta-
tion

vertical or horizontal

fraction 0.15; fraction of original axes to use for colorbar
pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new

image axes
shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

All but the first of these are stripped from the input kw set.

Returns (cax, kw), the child axes and the reduced kw dictionary.

40.1. matplotlib.colorbar 567

Matplotlib, Release 1.0.0

568 Chapter 40. matplotlib colorbar

CHAPTER

FORTYONE

MATPLOTLIB COLORS

41.1 matplotlib.colors

A module for converting numbers or color arguments to RGB or RGBA

RGB and RGBA are sequences of, respectively, 3 or 4 floats in the range 0-1.

This module includes functions and classes for color specification conversions, and for mapping numbers
to colors in a 1-D array of colors called a colormap. Colormapping typically involves two steps: a data
array is first mapped onto the range 0-1 using an instance of Normalize or of a subclass; then this number
in the 0-1 range is mapped to a color using an instance of a subclass of Colormap. Two are provided
here: LinearSegmentedColormap, which is used to generate all the built-in colormap instances, but is
also useful for making custom colormaps, and ListedColormap, which is used for generating a custom
colormap from a list of color specifications.

The module also provides a single instance, colorConverter, of the ColorConverter class providing meth-
ods for converting single color specifications or sequences of them to RGB or RGBA.

Commands which take color arguments can use several formats to specify the colors. For the basic builtin
colors, you can use a single letter

• b : blue

• g : green

• r : red

• c : cyan

• m : magenta

• y : yellow

• k : black

• w : white

Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:

color = ’0.75’

569

Matplotlib, Release 1.0.0

For a greater range of colors, you have two options. You can specify the color using an html hex string, as
in:

color = ’#eeefff’

or you can pass an R , G , B tuple, where each of R , G , B are in the range [0,1].

Finally, legal html names for colors, like ‘red’, ‘burlywood’ and ‘chartreuse’ are supported.

class BoundaryNorm(boundaries, ncolors, clip=False)
Bases: matplotlib.colors.Normalize

Generate a colormap index based on discrete intervals.

Unlike Normalize or LogNorm, BoundaryNorm maps values to integers instead of to the interval 0-1.

Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using in-
tegers seems simpler, and reduces the number of conversions back and forth between integer and
floating point.

boundaries a monotonically increasing sequence

ncolors number of colors in the colormap to be used

If:

b[i] <= v < b[i+1]

then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1.

Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices
by Colormap.__call__() .

inverse(value)

class ColorConverter()
Provides methods for converting color specifications to RGB or RGBA

Caching is used for more efficient conversion upon repeated calls with the same argument.

Ordinarily only the single instance instantiated in this module, colorConverter, is needed.

to_rgb(arg)
Returns an RGB tuple of three floats from 0-1.

arg can be an RGB or RGBA sequence or a string in any of several forms:

1.a letter from the set ‘rgbcmykw’

2.a hex color string, like ‘#00FFFF’

3.a standard name, like ‘aqua’

4.a float, like ‘0.4’, indicating gray on a 0-1 scale

if arg is RGBA, the A will simply be discarded.

570 Chapter 41. matplotlib colors

Matplotlib, Release 1.0.0

to_rgba(arg, alpha=None)
Returns an RGBA tuple of four floats from 0-1.

For acceptable values of arg, see to_rgb(). In addition, if arg is “none” (case-insensitive), then
(0,0,0,0) will be returned. If arg is an RGBA sequence and alpha is not None, alpha will replace
the original A.

to_rgba_array(c, alpha=None)
Returns a numpy array of RGBA tuples.

Accepts a single mpl color spec or a sequence of specs.

Special case to handle “no color”: if c is “none” (case-insensitive), then an empty array will be
returned. Same for an empty list.

class Colormap(name, N=256)
Base class for all scalar to rgb mappings

Important methods:

•set_bad()

•set_under()

•set_over()

Public class attributes: N : number of rgb quantization levels name : name of colormap

is_gray()

set_bad(color=’k’, alpha=None)
Set color to be used for masked values.

set_over(color=’k’, alpha=None)
Set color to be used for high out-of-range values. Requires norm.clip = False

set_under(color=’k’, alpha=None)
Set color to be used for low out-of-range values. Requires norm.clip = False

class LightSource(azdeg=315, altdeg=45, hsv_min_val=0, hsv_max_val=1, hsv_min_sat=1,
hsv_max_sat=0)

Bases: object

Create a light source coming from the specified azimuth and elevation. Angles are in degrees, with
the azimuth measured clockwise from north and elevation up from the zero plane of the surface. The
shade() is used to produce rgb values for a shaded relief image given a data array.

Specify the azimuth (measured clockwise from south) and altitude (measured up from the plane of
the surface) of the light source in degrees.

The color of the resulting image will be darkened by moving the (s,v) values (in hsv colorspace)
toward (hsv_min_sat, hsv_min_val) in the shaded regions, or lightened by sliding (s,v) toward
(hsv_max_sat hsv_max_val) in regions that are illuminated. The default extremes are chose so that
completely shaded points are nearly black (s = 1, v = 0) and completely illuminated points are nearly
white (s = 0, v = 1).

41.1. matplotlib.colors 571

Matplotlib, Release 1.0.0

shade(data, cmap)
Take the input data array, convert to HSV values in the given colormap, then adjust those color
values to given the impression of a shaded relief map with a specified light source. RGBA values
are returned, which can then be used to plot the shaded image with imshow.

shade_rgb(rgb, elevation, fraction=1.0)
Take the input RGB array (ny*nx*3) adjust their color values to given the impression of a
shaded relief map with a specified light source using the elevation (ny*nx). A new RGB ar-
ray ((ny*nx*3)) is returned.

class LinearSegmentedColormap(name, segmentdata, N=256, gamma=1.0)
Bases: matplotlib.colors.Colormap

Colormap objects based on lookup tables using linear segments.

The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain
divided into any number of segments.

Create color map from linear mapping segments

segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of
x, y0, y1 tuples, forming rows in a table.

Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same
over the middle half, and blue over the top half. Then you would use:

cdict = {’red’: [(0.0, 0.0, 0.0),
(0.5, 1.0, 1.0),
(1.0, 1.0, 1.0)],

’green’: [(0.0, 0.0, 0.0),
(0.25, 0.0, 0.0),
(0.75, 1.0, 1.0),
(1.0, 1.0, 1.0)],

’blue’: [(0.0, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 1.0, 1.0)]}

Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, x must
increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the output
value of a given color will be linearly interpolated between y1[i] and y0[i+1]:

row i: x y0 y1
/
/

row i+1: x y0 y1

Hence y0 in the first row and y1 in the last row are never used.

See Also:

572 Chapter 41. matplotlib colors

Matplotlib, Release 1.0.0

LinearSegmentedColormap.from_list() Static method; factory function for generating a
smoothly-varying LinearSegmentedColormap.

makeMappingArray() For information about making a mapping array.

static from_list(name, colors, N=256, gamma=1.0)
Make a linear segmented colormap with name from a sequence of colors which evenly transi-
tions from colors[0] at val=0 to colors[-1] at val=1. N is the number of rgb quantization levels.
Alternatively, a list of (value, color) tuples can be given to divide the range unevenly.

set_gamma(gamma)
Set a new gamma value and regenerate color map.

class ListedColormap(colors, name=’from_list’, N=None)
Bases: matplotlib.colors.Colormap

Colormap object generated from a list of colors.

This may be most useful when indexing directly into a colormap, but it can also be used to generate
special colormaps for ordinary mapping.

Make a colormap from a list of colors.

colors a list of matplotlib color specifications, or an equivalent Nx3 floating point array (N rgb values)

name a string to identify the colormap

N the number of entries in the map. The default is None, in which case there is one colormap entry
for each element in the list of colors. If:

N < len(colors)

the list will be truncated at N. If:

N > len(colors)

the list will be extended by repetition.

class LogNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Normalize a given value to the 0-1 range on a log scale

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

41.1. matplotlib.colors 573

Matplotlib, Release 1.0.0

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
autoscale only None-valued vmin or vmax

inverse(value)

class NoNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Dummy replacement for Normalize, for the case where we want to use indices directly in a
ScalarMappable .

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

inverse(value)

class Normalize(vmin=None, vmax=None, clip=False)
Normalize a given value to the 0-1 range

If vmin or vmax is not given, they are taken from the input’s minimum and maximum value respec-
tively. If clip is True and the given value falls outside the range, the returned value will be 0 or 1,
whichever is closer. Returns 0 if:

vmin==vmax

Works with scalars or arrays, including masked arrays. If clip is True, masked values are set to 1;
otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and
masked colors in the colormap, so it is likely to lead to surprises; therefore the default is clip = False.

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
autoscale only None-valued vmin or vmax

inverse(value)

scaled()
return true if vmin and vmax set

hex2color(s)
Take a hex string s and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725,
0.93725)

574 Chapter 41. matplotlib colors

Matplotlib, Release 1.0.0

hsv_to_rgb(hsv)
convert hsv values in a numpy array to rgb values both input and output arrays have shape (M,N,3)

is_color_like(c)
Return True if c can be converted to RGB

makeMappingArray(N, data, gamma=1.0)
Create an N -element 1-d lookup table

data represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents
how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between
0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as
might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and
y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all
values of x must be in increasing order. Values between the given mapping points are determined by
simple linear interpolation.

Alternatively, data can be a function mapping values between 0 - 1 to 0 - 1.

The function returns an array “result” where result[x*(N-1)] gives the closest value for values of
x between 0 and 1.

no_norm
alias of NoNorm

normalize
alias of Normalize

rgb2hex(rgb)
Given an rgb or rgba sequence of 0-1 floats, return the hex string

rgb_to_hsv(arr)
convert rgb values in a numpy array to hsv values input and output arrays should have shape (M,N,3)

41.1. matplotlib.colors 575

Matplotlib, Release 1.0.0

576 Chapter 41. matplotlib colors

CHAPTER

FORTYTWO

MATPLOTLIB DATES

DateLocator

RRuleLocator

AutoDateLocator

YearLocator

Locator

Formatter

DateFormatter

AutoDateFormatter

IndexDateFormatter

TickHelper

MonthLocator

DayLocator

MinuteLocator

WeekdayLocator

HourLocator

SecondLocator

rrulewrapper

DateConverterConversionInterface

strpdate2num

tzinfo _UTC

42.1 matplotlib.dates

Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python datetime,
the add-on modules pytz and dateutils. datetime objects are converted to floating point numbers which
represent time in days since 0001-01-01 UTC, plus 1. For example, 0001-01-01, 06:00 is 1.25, not 0.25.
The helper functions date2num(), num2date() and drange() are used to facilitate easy conversion to and
from datetime and numeric ranges.

Note: Like Python’s datetime, mpl uses the Gregorian calendar for all conversions between dates and
floating point numbers. This practice is not universal, and calendar differences can cause confusing differ-
ences between what Python and mpl give as the number of days since 0001-01-01 and what other software
and databases yield. For example, the US Naval Observatory uses a calendar that switches from Julian to
Gregorian in October, 1582. Hence, using their calculator, the number of days between 0001-01-01 and
2006-04-01 is 732403, whereas using the Gregorian calendar via the datetime module we find:

In [31]:date(2006,4,1).toordinal() - date(1,1,1).toordinal()
Out[31]:732401

577

http://www.usno.navy.mil/USNO/astronomical-applications/data-services/jul-date

Matplotlib, Release 1.0.0

A wide range of specific and general purpose date tick locators and formatters are provided in this module.
See matplotlib.ticker for general information on tick locators and formatters. These are described
below.

All the matplotlib date converters, tickers and formatters are timezone aware, and the default timezone is
given by the timezone parameter in your matplotlibrc file. If you leave out a tz timezone instance, the
default from your rc file will be assumed. If you want to use a custom time zone, pass a pytz.timezone
instance with the tz keyword argument to num2date(), plot_date(), and any custom date tickers or
locators you create. See pytz for information on pytz and timezone handling.

The dateutil module provides additional code to handle date ticking, making it easy to place ticks on any
kinds of dates. See examples below.

42.1.1 Date tickers

Most of the date tickers can locate single or multiple values. For example:

tick on mondays every week
loc = WeekdayLocator(byweekday=MO, tz=tz)

tick on mondays and saturdays
loc = WeekdayLocator(byweekday=(MO, SA))

In addition, most of the constructors take an interval argument:

tick on mondays every second week
loc = WeekdayLocator(byweekday=MO, interval=2)

The rrule locator allows completely general date ticking:

tick every 5th easter
rule = rrulewrapper(YEARLY, byeaster=1, interval=5)
loc = RRuleLocator(rule)

Here are all the date tickers:

• MinuteLocator: locate minutes

• HourLocator: locate hours

• DayLocator: locate specifed days of the month

• WeekdayLocator: Locate days of the week, eg MO, TU

• MonthLocator: locate months, eg 7 for july

• YearLocator: locate years that are multiples of base

• RRuleLocator: locate using a matplotlib.dates.rrulewrapper. The rrulewrapper is a sim-
ple wrapper around a dateutils.rrule (dateutil) which allow almost arbitrary date tick specifica-
tions. See rrule example.

578 Chapter 42. matplotlib dates

http://pytz.sourceforge.net
http://labix.org/python-dateutil
https://moin.conectiva.com.br/DateUtil

Matplotlib, Release 1.0.0

• AutoDateLocator: On autoscale, this class picks the best MultipleDateLocator to set the view
limits and the tick locations.

42.1.2 Date formatters

Here all all the date formatters:

• AutoDateFormatter: attempts to figure out the best format to use. This is most useful when used
with the AutoDateLocator.

• DateFormatter: use strftime() format strings

• IndexDateFormatter: date plots with implicit x indexing.

date2num(d)
d is either a datetime instance or a sequence of datetimes.

Return value is a floating point number (or sequence of floats) which gives the number of days (frac-
tion part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC, plus one. The addition
of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not
universal practice. For details, see the module docstring.

num2date(x, tz=None)
x is a float value which gives the number of days (fraction part represents hours, minutes, seconds)
since 0001-01-01 00:00:00 UTC plus one. The addition of one here is a historical artifact. Also,
note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module
docstring.

Return value is a datetime instance in timezone tz (default to rcparams TZ value).

If x is a sequence, a sequence of datetime objects will be returned.

drange(dstart, dend, delta)
Return a date range as float Gregorian ordinals. dstart and dend are datetime instances. delta is a
datetime.timedelta instance.

epoch2num(e)
Convert an epoch or sequence of epochs to the new date format, that is days since 0001.

num2epoch(d)
Convert days since 0001 to epoch. d can be a number or sequence.

mx2num(mxdates)
Convert mx datetime instance (or sequence of mx instances) to the new date format.

class DateFormatter(fmt, tz=None)
Bases: matplotlib.ticker.Formatter

Tick location is seconds since the epoch. Use a strftime() format string.

Python only supports datetime strftime() formatting for years greater than 1900. Thanks to
Andrew Dalke, Dalke Scientific Software who contributed the strftime() code below to include
dates earlier than this year.

fmt is an strftime() format string; tz is the tzinfo instance.

42.1. matplotlib.dates 579

Matplotlib, Release 1.0.0

set_tzinfo(tz)

strftime(dt, fmt)

class IndexDateFormatter(t, fmt, tz=None)
Bases: matplotlib.ticker.Formatter

Use with IndexLocator to cycle format strings by index.

t is a sequence of dates (floating point days). fmt is a strftime() format string.

class AutoDateFormatter(locator, tz=None, defaultfmt=’%Y-%m-%d’)
Bases: matplotlib.ticker.Formatter

This class attempts to figure out the best format to use. This is most useful when used with the
AutoDateLocator.

The AutoDateFormatter has a scale dictionary that maps the scale of the tick (the distance in days
between one major tick) and a format string. The default looks like this:

self.scaled = {
365.0 : ’%Y’,
30. : ’%b %Y’,
1.0 : ’%b %d %Y’,
1./24. : ’%H:%M:%D’,
}

The algorithm picks the key in the dictionary that is >= the current scale and uses that format string.
You can customize this dictionary by doing:

formatter = AutoDateFormatter()
formatter.scaled[1/(24.*60.)] = ’%M:%S’ # only show min and sec

Autofmt the date labels. The default format is the one to use if none of the times in scaled match

class DateLocator(tz=None)
Bases: matplotlib.ticker.Locator

tz is a tzinfo instance.

datalim_to_dt()

nonsingular(vmin, vmax)

set_tzinfo(tz)

viewlim_to_dt()

class RRuleLocator(o, tz=None)
Bases: matplotlib.dates.DateLocator

autoscale()
Set the view limits to include the data range.

static get_unit_generic(freq)

580 Chapter 42. matplotlib dates

Matplotlib, Release 1.0.0

class AutoDateLocator(tz=None, minticks=5, maxticks=None, interval_multiples=False)
Bases: matplotlib.dates.DateLocator

On autoscale, this class picks the best MultipleDateLocator to set the view limits and the tick
locations.

minticks is the minimum number of ticks desired, which is used to select the type of ticking (yearly,
monthly, etc.).

maxticks is the maximum number of ticks desired, which controls any interval between ticks (ticking
every other, every 3, etc.). For really fine-grained control, this can be a dictionary mapping individual
rrule frequency constants (YEARLY, MONTHLY, etc.) to their own maximum number of ticks. This
can be used to keep the number of ticks appropriate to the format chosen in class:AutoDateFormatter.
Any frequency not specified in this dictionary is given a default value.

tz is a tzinfo instance.

interval_multiples is a boolean that indicates whether ticks should be chosen to be multiple of the
interval. This will lock ticks to ‘nicer’ locations. For example, this will force the ticks to be at hours
0,6,12,18 when hourly ticking is done at 6 hour intervals.

The AutoDateLocator has an interval dictionary that maps the frequency of the tick (a constant from
dateutil.rrule) and a multiple allowed for that ticking. The default looks like this:

self.intervald = {
YEARLY : [1, 2, 4, 5, 10],
MONTHLY : [1, 2, 3, 4, 6],
DAILY : [1, 2, 3, 7, 14],
HOURLY : [1, 2, 3, 4, 6, 12],
MINUTELY: [1, 5, 10, 15, 30],
SECONDLY: [1, 5, 10, 15, 30]
}

The interval is used to specify multiples that are appropriate for the frequency of ticking. For instance,
every 7 days is sensible for daily ticks, but for minutes/seconds, 15 or 30 make sense. You can
customize this dictionary by doing:

locator = AutoDateLocator()
locator.intervald[HOURLY] = [3] # only show every 3 hours

autoscale()
Try to choose the view limits intelligently.

get_locator(dmin, dmax)
Pick the best locator based on a distance.

refresh()
Refresh internal information based on current limits.

set_axis(axis)

class YearLocator(base=1, month=1, day=1, tz=None)
Bases: matplotlib.dates.DateLocator

42.1. matplotlib.dates 581

Matplotlib, Release 1.0.0

Make ticks on a given day of each year that is a multiple of base.

Examples:

Tick every year on Jan 1st
locator = YearLocator()

Tick every 5 years on July 4th
locator = YearLocator(5, month=7, day=4)

Mark years that are multiple of base on a given month and day (default jan 1).

autoscale()
Set the view limits to include the data range.

class MonthLocator(bymonth=None, bymonthday=1, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each month month, eg 1, 3, 12.

Mark every month in bymonth; bymonth can be an int or sequence. Default is range(1,13), i.e.
every month.

interval is the interval between each iteration. For example, if interval=2, mark every second
occurance.

class WeekdayLocator(byweekday=1, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each weekday.

Mark every weekday in byweekday; byweekday can be a number or sequence.

Elements of byweekday must be one of MO, TU, WE, TH, FR, SA, SU, the constants from
dateutils.rrule.

interval specifies the number of weeks to skip. For example, interval=2 plots every second week.

class DayLocator(bymonthday=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each day of the month. For example, 1, 15, 30.

Mark every day in bymonthday; bymonthday can be an int or sequence.

Default is to tick every day of the month: bymonthday=range(1,32)

class HourLocator(byhour=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each hour.

Mark every hour in byhour; byhour can be an int or sequence. Default is to tick every hour:
byhour=range(24)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

582 Chapter 42. matplotlib dates

Matplotlib, Release 1.0.0

class MinuteLocator(byminute=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each minute.

Mark every minute in byminute; byminute can be an int or sequence. Default is to tick every minute:
byminute=range(60)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class SecondLocator(bysecond=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurances of each second.

Mark every second in bysecond; bysecond can be an int or sequence. Default is to tick every second:
bysecond = range(60)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class rrule(freq, dtstart=None, interval=1, wkst=None, count=None, until=None, bysetpos=None, by-
month=None, bymonthday=None, byyearday=None, byeaster=None, byweekno=None, by-
weekday=None, byhour=None, byminute=None, bysecond=None, cache=False)

Bases: dateutil.rrule.rrulebase

class relativedelta(dt1=None, dt2=None, years=0, months=0, days=0, leapdays=0, weeks=0,
hours=0, minutes=0, seconds=0, microseconds=0, year=None, month=None,
day=None, weekday=None, yearday=None, nlyearday=None, hour=None,
minute=None, second=None, microsecond=None)

The relativedelta type is based on the specification of the excelent work done by M.-A. Lemburg in
his mx.DateTime extension. However, notice that this type does NOT implement the same algorithm
as his work. Do NOT expect it to behave like mx.DateTime’s counterpart.

There’s two different ways to build a relativedelta instance. The first one is passing it two date/datetime
classes:

relativedelta(datetime1, datetime2)

And the other way is to use the following keyword arguments:

year, month, day, hour, minute, second, microsecond: Absolute information.

years, months, weeks, days, hours, minutes, seconds, microseconds: Relative infor-
mation, may be negative.

weekday: One of the weekday instances (MO, TU, etc). These instances may receive a
parameter N, specifying the Nth weekday, which could be positive or negative (like
MO(+1) or MO(-2). Not specifying it is the same as specifying +1. You can also use
an integer, where 0=MO.

leapdays: Will add given days to the date found, if year is a leap year, and the date found
is post 28 of february.

yearday, nlyearday: Set the yearday or the non-leap year day (jump leap days). These
are converted to day/month/leapdays information.

42.1. matplotlib.dates 583

Matplotlib, Release 1.0.0

Here is the behavior of operations with relativedelta:

1.Calculate the absolute year, using the ‘year’ argument, or the original datetime year, if the argu-
ment is not present.

2.Add the relative ‘years’ argument to the absolute year.

3.Do steps 1 and 2 for month/months.

4.Calculate the absolute day, using the ‘day’ argument, or the original datetime day, if the argument
is not present. Then, subtract from the day until it fits in the year and month found after their
operations.

5.Add the relative ‘days’ argument to the absolute day. Notice that the ‘weeks’ argument is mul-
tiplied by 7 and added to ‘days’.

6.Do steps 1 and 2 for hour/hours, minute/minutes, second/seconds, microsecond/microseconds.

7.If the ‘weekday’ argument is present, calculate the weekday, with the given (wday, nth) tuple.
wday is the index of the weekday (0-6, 0=Mon), and nth is the number of weeks to add forward
or backward, depending on its signal. Notice that if the calculated date is already Monday, for
example, using (0, 1) or (0, -1) won’t change the day.

seconds(s)
Return seconds as days.

minutes(m)
Return minutes as days.

hours(h)
Return hours as days.

weeks(w)
Return weeks as days.

584 Chapter 42. matplotlib dates

CHAPTER

FORTYTHREE

MATPLOTLIB FIGURE

43.1 matplotlib.figure

The figure module provides the top-level Artist, the Figure, which contains all the plot elements. The
following classes are defined

SubplotParams control the default spacing of the subplots

Figure top level container for all plot elements

class Figure(figsize=None, dpi=None, facecolor=None, edgecolor=None, linewidth=1.0, frameon=True,
subplotpars=None)

Bases: matplotlib.artist.Artist

The Figure instance supports callbacks through a callbacks attribute which is a
matplotlib.cbook.CallbackRegistry instance. The events you can connect to are
‘dpi_changed’, and the callback will be called with func(fig) where fig is the Figure instance.

The figure patch is drawn by a the attribute

patch a matplotlib.patches.Rectangle instance

suppressComposite for multiple figure images, the figure will make composite images depending on
the renderer option_image_nocomposite function. If suppressComposite is True|False, this will
override the renderer

figsize w,h tuple in inches

dpi dots per inch

facecolor the figure patch facecolor; defaults to rc figure.facecolor

edgecolor the figure patch edge color; defaults to rc figure.edgecolor

linewidth the figure patch edge linewidth; the default linewidth of the frame

frameon if False, suppress drawing the figure frame

subplotpars a SubplotParams instance, defaults to rc

add_axes(*args, **kwargs)
Add an a axes with axes rect [left, bottom, width, height] where all quantities are in fractions of

585

Matplotlib, Release 1.0.0

figure width and height. kwargs are legal Axes kwargs plus projection which sets the projec-
tion type of the axes. (For backward compatibility, polar=True may also be provided, which is
equivalent to projection=’polar’). Valid values for projection are: [’aitoff’, ‘hammer’, ‘lam-
bert’, ‘mollweide’, ‘polar’, ‘rectilinear’]. Some of these projections support additional kwargs,
which may be provided to add_axes():

rect = l,b,w,h
fig.add_axes(rect)
fig.add_axes(rect, frameon=False, axisbg=’g’)
fig.add_axes(rect, polar=True)
fig.add_axes(rect, projection=’polar’)
fig.add_axes(ax) # add an Axes instance

If the figure already has an axes with the same parameters, then it will simply make that axes
current and return it. If you do not want this behavior, eg. you want to force the creation of
a new axes, you must use a unique set of args and kwargs. The axes label attribute has been
exposed for this purpose. Eg., if you want two axes that are otherwise identical to be added to
the figure, make sure you give them unique labels:

fig.add_axes(rect, label=’axes1’)
fig.add_axes(rect, label=’axes2’)

The Axes instance will be returned.

The following kwargs are supported:

Property Description
adjustable [‘box’ | ‘datalim’ | ‘box-forced’]
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axis_off unknown
axis_on unknown
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
cursor_props a (float, color) tuple

Continued on next page

586 Chapter 43. matplotlib figure

Matplotlib, Release 1.0.0

Table 43.1 – continued from previous page
figure unknown
frame_on [True | False]
gid an id string
label any string
lod [True | False]
navigate [True | False]
navigate_mode unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
snap unknown
title str
transform Transform instance
url a url string
visible [True | False]
xbound unknown
xlabel str
xlim len(2) sequence of floats
xmargin unknown
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels sequence of strings
xticks sequence of floats
ybound unknown
ylabel str
ylim len(2) sequence of floats
ymargin unknown
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

add_axobserver(func)
whenever the axes state change, func(self) will be called

add_subplot(*args, **kwargs)
Add a subplot. Examples:

fig.add_subplot(111) fig.add_subplot(1,1,1) # equivalent but more gen-
eral fig.add_subplot(212, axisbg=’r’) # add subplot with red background
fig.add_subplot(111, polar=True) # add a polar subplot fig.add_subplot(sub) #
add Subplot instance sub

kwargs are legal matplotlib.axes.Axes kwargs plus projection, which chooses a projection
type for the axes. (For backward compatibility, polar=True may also be provided, which is
equivalent to projection=’polar’). Valid values for projection are: [’aitoff’, ‘hammer’, ‘lambert’,

43.1. matplotlib.figure 587

Matplotlib, Release 1.0.0

‘mollweide’, ‘polar’, ‘rectilinear’]. Some of these projections support additional kwargs, which
may be provided to add_axes().

The Axes instance will be returned.

If the figure already has a subplot with key (args, kwargs) then it will simply make that subplot
current and return it.

The following kwargs are supported:

Property Description
adjustable [‘box’ | ‘datalim’ | ‘box-forced’]
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axis_off unknown
axis_on unknown
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
cursor_props a (float, color) tuple
figure unknown
frame_on [True | False]
gid an id string
label any string
lod [True | False]
navigate [True | False]
navigate_mode unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
snap unknown
title str
transform Transform instance
url a url string
visible [True | False]

Continued on next page

588 Chapter 43. matplotlib figure

Matplotlib, Release 1.0.0

Table 43.2 – continued from previous page
xbound unknown
xlabel str
xlim len(2) sequence of floats
xmargin unknown
xscale [’linear’ | ‘log’ | ‘symlog’]
xticklabels sequence of strings
xticks sequence of floats
ybound unknown
ylabel str
ylim len(2) sequence of floats
ymargin unknown
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

autofmt_xdate(bottom=0.20000000000000001, rotation=30, ha=’right’)
Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common
use case is a number of subplots with shared xaxes where the x-axis is date data. The ticklabels
are often long, and it helps to rotate them on the bottom subplot and turn them off on other
subplots, as well as turn off xlabels.

bottom the bottom of the subplots for subplots_adjust()

rotation the rotation of the xtick labels

ha the horizontal alignment of the xticklabels

clear()
Clear the figure – synonym for fig.clf

clf(keep_observers=False)
Clear the figure.

Set keep_observers to True if, for example, a gui widget is tracking the axes in the figure.

colorbar(mappable, cax=None, ax=None, **kw)
Create a colorbar for a ScalarMappable instance.

Documentation for the pylab thin wrapper:

Add a colorbar to a plot.

Function signatures for the pyplot interface; all but the first are also method signatures for the
colorbar() method:

colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)

43.1. matplotlib.figure 589

Matplotlib, Release 1.0.0

arguments:

mappable the Image, ContourSet, etc. to which the colorbar applies; this argument
is mandatory for the colorbar() method but optional for the colorbar() func-
tion, which sets the default to the current image.

keyword arguments:

cax None | axes object into which the colorbar will be drawn

ax None | parent axes object from which space for a new colorbar axes will be stolen

Additional keyword arguments are of two kinds:

axes properties:

Property Description
orienta-
tion

vertical or horizontal

fraction 0.15; fraction of original axes to use for colorbar
pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new

image axes
shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

colorbar properties:

Prop-
erty

Description

ex-
tend

[‘neither’ | ‘both’ | ‘min’ | ‘max’] If not ‘neither’, make pointed end(s) for out-of- range
values. These are set for a given colormap using the colormap set_under and set_over methods.

spac-
ing

[‘uniform’ | ‘proportional’] Uniform spacing gives each discrete color the same space;
proportional makes the space proportional to the data interval.

ticks [None | list of ticks | Locator object] If None, ticks are determined automatically from the
input.

for-
mat

[None | format string | Formatter object] If None, the ScalarFormatter is used. If a format
string is given, e.g. ‘%.3f’, that is used. An alternative Formatter object may be given
instead.

drawedges[False | True] If true, draw lines at color boundaries.

The following will probably be useful only in the context of indexed colors
(that is, when the mappable has norm=NoNorm()), or other unusual circum-
stances.

Prop-
erty

Description

bound-
aries

None or a sequence

values None or a sequence which must be of length 1 less than the sequence of boundaries. For each
region delimited by adjacent entries in boundaries, the color mapped to the corresponding
value in values will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

590 Chapter 43. matplotlib figure

Matplotlib, Release 1.0.0

Note that the shrink kwarg provides a simple way to keep a vertical colorbar, for example, from
being taller than the axes of the mappable to which the colorbar is attached; but it is a manual
method requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too
wide) use a smaller value of shrink.

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

returns: Colorbar instance; see also its base class, ColorbarBase. Call the set_label()
method to label the colorbar.

contains(mouseevent)
Test whether the mouse event occurred on the figure.

Returns True,{}

delaxes(a)
remove a from the figure and update the current axes

dpi

draw(artist, renderer, *args, **kwargs)
Render the figure using matplotlib.backend_bases.RendererBase instance renderer

draw_artist(a)
draw matplotlib.artist.Artist instance a only – this is available only after the figure is
drawn

figimage(X, xo=0, yo=0, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, origin=None,
**kwargs)

call signatures:

figimage(X, **kwargs)

adds a non-resampled array X to the figure.

figimage(X, xo, yo)

with pixel offsets xo, yo,

X must be a float array:

•If X is MxN, assume luminance (grayscale)

•If X is MxNx3, assume RGB

•If X is MxNx4, assume RGBA

Optional keyword arguments:

43.1. matplotlib.figure 591

Matplotlib, Release 1.0.0

Key-
word

Description

xo or
yo

An integer, the x and y image offset in pixels

cmap a matplotlib.cm.ColorMap instance, eg cm.jet. If None, default to the rc image.cmap
value

norm a matplotlib.colors.Normalize instance. The default is normalization(). This scales
luminance -> 0-1

vmin|vmaxare used to scale a luminance image to 0-1. If either is None, the min and max of the
luminance values will be used. Note if you pass a norm instance, the settings for vmin and
vmax will be ignored.

alpha the alpha blending value, default is None
origin [‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper left or lower left

corner of the axes. Defaults to the rc image.origin value

figimage complements the axes image (imshow()) which will be resampled to fit the current
axes. If you want a resampled image to fill the entire figure, you can define an Axes with size
[0,1,0,1].

An matplotlib.image.FigureImage instance is returned.

Additional kwargs are Artist kwargs passed on to FigureImage

gca(**kwargs)

592 Chapter 43. matplotlib figure

Matplotlib, Release 1.0.0

Return the current axes, creating one if necessary

The following kwargs are supported

Property Description
adjustable [‘box’ | ‘datalim’ | ‘box-forced’]
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
anchor unknown
animated [True | False]
aspect unknown
autoscale_on unknown
autoscalex_on unknown
autoscaley_on unknown
axes an Axes instance
axes_locator unknown
axis_bgcolor any matplotlib color - see colors()
axis_off unknown
axis_on unknown
axisbelow [True | False]
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color_cycle unknown
contains a callable function
cursor_props a (float, color) tuple
figure unknown
frame_on [True | False]
gid an id string
label any string
lod [True | False]
navigate [True | False]
navigate_mode unknown
picker [None|float|boolean|callable]
position unknown
rasterization_zorder unknown
rasterized [True | False | None]
snap unknown
title str
transform Transform instance
url a url string
visible [True | False]
xbound unknown
xlabel str
xlim len(2) sequence of floats
xmargin unknown
xscale [’linear’ | ‘log’ | ‘symlog’]

Continued on next page

43.1. matplotlib.figure 593

Matplotlib, Release 1.0.0

Table 43.3 – continued from previous page
xticklabels sequence of strings
xticks sequence of floats
ybound unknown
ylabel str
ylim len(2) sequence of floats
ymargin unknown
yscale [’linear’ | ‘log’ | ‘symlog’]
yticklabels sequence of strings
yticks sequence of floats
zorder any number

get_axes()

get_children()
get a list of artists contained in the figure

get_dpi()
Return the dpi as a float

get_edgecolor()
Get the edge color of the Figure rectangle

get_facecolor()
Get the face color of the Figure rectangle

get_figheight()
Return the figheight as a float

get_figwidth()
Return the figwidth as a float

get_frameon()
get the boolean indicating frameon

get_size_inches()

get_tightbbox(renderer)
Return a (tight) bounding box of the figure in inches.

It only accounts axes title, axis labels, and axis ticklabels. Needs improvement.

get_window_extent(*args, **kwargs)
get the figure bounding box in display space; kwargs are void

ginput(n=1, timeout=30, show_clicks=True, mouse_add=1, mouse_pop=3, mouse_stop=2)
call signature:

ginput(self, n=1, timeout=30, show_clicks=True,
mouse_add=1, mouse_pop=3, mouse_stop=2)

594 Chapter 43. matplotlib figure

Matplotlib, Release 1.0.0

Blocking call to interact with the figure.

This will wait for n clicks from the user and return a list of the coordinates of each click.

If timeout is zero or negative, does not timeout.

If n is zero or negative, accumulate clicks until a middle click (or potentially both mouse buttons
at once) terminates the input.

Right clicking cancels last input.

The buttons used for the various actions (adding points, removing points, terminating the in-
puts) can be overriden via the arguments mouse_add, mouse_pop and mouse_stop, that give the
associated mouse button: 1 for left, 2 for middle, 3 for right.

The keyboard can also be used to select points in case your mouse does not have one or more of
the buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the
enter key terminates input and any other key (not already used by the window manager) selects
a point.

hold(b=None)
Set the hold state. If hold is None (default), toggle the hold state. Else set the hold state to
boolean value b.

Eg:

hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off

legend(handles, labels, *args, **kwargs)
Place a legend in the figure. Labels are a sequence of strings, handles is a sequence of Line2D
or Patch instances, and loc can be a string or an integer specifying the legend location

USAGE:

legend((line1, line2, line3),
(’label1’, ’label2’, ’label3’),
’upper right’)

The loc location codes are:

’best’ : 0, (currently not supported for figure legends)
’upper right’ : 1,
’upper left’ : 2,
’lower left’ : 3,
’lower right’ : 4,
’right’ : 5,
’center left’ : 6,
’center right’ : 7,
’lower center’ : 8,
’upper center’ : 9,
’center’ : 10,

43.1. matplotlib.figure 595

Matplotlib, Release 1.0.0

loc can also be an (x,y) tuple in figure coords, which specifies the lower left of the legend box.
figure coords are (0,0) is the left, bottom of the figure and 1,1 is the right, top.

Keyword arguments:

prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties
instance. If prop is a dictionary, a new instance will be created with prop. If None,
use rc settings.

numpoints: integer The number of points in the legend line, default is 4

scatterpoints: integer The number of points in the legend line, default is 4

scatteroffsets: list of floats a list of yoffsets for scatter symbols in legend

markerscale: [None | scalar] The relative size of legend markers vs. original. If
None, use rc settings.

fancybox: [None | False | True] if True, draw a frame with a round fancybox. If
None, use rc

shadow: [None | False | True] If True, draw a shadow behind legend. If None, use
rc settings.

ncol [integer] number of columns. default is 1

mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally ex-
panded to fill the axes area (or bbox_to_anchor)

title [string] the legend title

Padding and spacing between various elements use following keywords parameters. The dimen-
sions of these values are given as a fraction of the fontsize. Values from rcParams will be used
if None.

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Example:

savefig(*args, **kwargs)
call signature:

savefig(fname, dpi=None, facecolor=’w’, edgecolor=’w’,
orientation=’portrait’, papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1):

Save the current figure.

The output formats available depend on the backend being used.

Arguments:

596 Chapter 43. matplotlib figure

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Line 1
Line 2

Line 3
Line 4

fname: A string containing a path to a filename, or a Python file-like object, or possi-
bly some backend-dependent object such as PdfPages.

If format is None and fname is a string, the output format is deduced from the
extension of the filename. If the filename has no extension, the value of the rc
parameter savefig.extension is used. If that value is ‘auto’, the backend deter-
mines the extension.

If fname is not a string, remember to specify format to ensure that the correct
backend is used.

Keyword arguments:

dpi: [None | scalar > 0] The resolution in dots per inch. If None it will default to the
value savefig.dpi in the matplotlibrc file.

facecolor, edgecolor: the colors of the figure rectangle

orientation: [‘landscape’ | ‘portrait’] not supported on all backends; currently only
on postscript output

papertype: One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through ‘a10’, ‘b0’
through ‘b10’. Only supported for postscript output.

format: One of the file extensions supported by the active backend. Most backends
support png, pdf, ps, eps and svg.

43.1. matplotlib.figure 597

Matplotlib, Release 1.0.0

transparent: If True, the axes patches will all be transparent; the figure patch will also
be transparent unless facecolor and/or edgecolor are specified via kwargs. This is
useful, for example, for displaying a plot on top of a colored background on a web
page. The transparency of these patches will be restored to their original values
upon exit of this function.

bbox_inches: Bbox in inches. Only the given portion of the figure is saved. If ‘tight’,
try to figure out the tight bbox of the figure.

pad_inches: Amount of padding around the figure when bbox_inches is ‘tight’.

bbox_extra_artists: A list of extra artists that will be considered when the tight bbox
is calculated.

sca(a)
Set the current axes to be a and return a

set_canvas(canvas)
Set the canvas the contains the figure

ACCEPTS: a FigureCanvas instance

set_dpi(val)
Set the dots-per-inch of the figure

ACCEPTS: float

set_edgecolor(color)
Set the edge color of the Figure rectangle

ACCEPTS: any matplotlib color - see help(colors)

set_facecolor(color)
Set the face color of the Figure rectangle

ACCEPTS: any matplotlib color - see help(colors)

set_figheight(val)
Set the height of the figure in inches

ACCEPTS: float

set_figwidth(val)
Set the width of the figure in inches

ACCEPTS: float

set_frameon(b)
Set whether the figure frame (background) is displayed or invisible

ACCEPTS: boolean

set_size_inches(*args, **kwargs)
set_size_inches(w,h, forward=False)

Set the figure size in inches

Usage:

598 Chapter 43. matplotlib figure

Matplotlib, Release 1.0.0

fig.set_size_inches(w,h) # OR
fig.set_size_inches((w,h))

optional kwarg forward=True will cause the canvas size to be automatically updated; eg you can
resize the figure window from the shell

ACCEPTS: a w,h tuple with w,h in inches

subplots_adjust(*args, **kwargs)

fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None,
hspace=None)

Update the SubplotParams with kwargs (defaulting to rc where None) and update the subplot
locations

suptitle(t, **kwargs)
Add a centered title to the figure.

kwargs are matplotlib.text.Text properties. Using figure coordinates, the defaults are:

•x = 0.5 the x location of text in figure coords

•y = 0.98 the y location of the text in figure coords

•horizontalalignment = ‘center’ the horizontal alignment of the text

•verticalalignment = ‘top’ the vertical alignment of the text

A matplotlib.text.Text instance is returned.

Example:

fig.suptitle(’this is the figure title’, fontsize=12)

text(x, y, s, *args, **kwargs)
Call signature:

figtext(x, y, s, fontdict=None, **kwargs)

Add text to figure at location x, y (relative 0-1 coords). See text() for the meaning of the other
arguments.

kwargs control the Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance

Continued on next page

43.1. matplotlib.figure 599

Matplotlib, Release 1.0.0

Table 43.4 – continued from previous page
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

waitforbuttonpress(timeout=-1)
call signature:

waitforbuttonpress(self, timeout=-1)

Blocking call to interact with the figure.

This will return True is a key was pressed, False if a mouse button was pressed and None if
timeout was reached without either being pressed.

If timeout is negative, does not timeout.

600 Chapter 43. matplotlib figure

Matplotlib, Release 1.0.0

class SubplotParams(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
A class to hold the parameters for a subplot

All dimensions are fraction of the figure width or height. All values default to their rc params

The following attributes are available

left = 0.125 the left side of the subplots of the figure

right = 0.9 the right side of the subplots of the figure

bottom = 0.1 the bottom of the subplots of the figure

top = 0.9 the top of the subplots of the figure

wspace = 0.2 the amount of width reserved for blank space between subplots

hspace = 0.2 the amount of height reserved for white space between subplots

validate make sure the params are in a legal state (left*<*right, etc)

update(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
Update the current values. If any kwarg is None, default to the current value, if set, otherwise to
rc

figaspect(arg)
Create a figure with specified aspect ratio. If arg is a number, use that aspect ratio. If arg is an array,
figaspect will determine the width and height for a figure that would fit array preserving aspect ratio.
The figure width, height in inches are returned. Be sure to create an axes with equal with and height,
eg

Example usage:

make a figure twice as tall as it is wide
w, h = figaspect(2.)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

make a figure with the proper aspect for an array
A = rand(5,3)
w, h = figaspect(A)
fig = Figure(figsize=(w,h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

Thanks to Fernando Perez for this function

43.1. matplotlib.figure 601

Matplotlib, Release 1.0.0

602 Chapter 43. matplotlib figure

CHAPTER

FORTYFOUR

MATPLOTLIB FONT_MANAGER

44.1 matplotlib.font_manager

A module for finding, managing, and using fonts across platforms.

This module provides a single FontManager instance that can be shared across backends and platforms. The
findfont() function returns the best TrueType (TTF) font file in the local or system font path that matches
the specified FontProperties instance. The FontManager also handles Adobe Font Metrics (AFM) font
files for use by the PostScript backend.

The design is based on the W3C Cascading Style Sheet, Level 1 (CSS1) font specification. Future versions
may implement the Level 2 or 2.1 specifications.

Experimental support is included for using fontconfig on Unix variant platforms (Linux, OS X, Solaris). To
enable it, set the constant USE_FONTCONFIG in this file to True. Fontconfig has the advantage that it is the
standard way to look up fonts on X11 platforms, so if a font is installed, it is much more likely to be found.

class FontEntry(fname=”, name=”, style=’normal’, variant=’normal’, weight=’normal’,
stretch=’normal’, size=’medium’)

Bases: object

A class for storing Font properties. It is used when populating the font lookup dictionary.

class FontManager(size=None, weight=’normal’)
On import, the FontManager singleton instance creates a list of TrueType fonts based on the font
properties: name, style, variant, weight, stretch, and size. The findfont() method does a nearest
neighbor search to find the font that most closely matches the specification. If no good enough match
is found, a default font is returned.

findfont(prop, fontext=’ttf’, directory=None, fallback_to_default=True)
Search the font list for the font that most closely matches the FontProperties prop.

findfont() performs a nearest neighbor search. Each font is given a similarity score to the
target font properties. The first font with the highest score is returned. If no matches below a
certain threshold are found, the default font (usually Vera Sans) is returned.

directory, is specified, will only return fonts from the given directory (or subdirectory of that
directory).

603

http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 1.0.0

The result is cached, so subsequent lookups don’t have to perform the O(n) nearest neighbor
search.

If fallback_to_default is True, will fallback to the default font family (usually “Bitstream Vera
Sans” or “Helvetica”) if the first lookup hard-fails.

See the W3C Cascading Style Sheet, Level 1 documentation for a description of the font finding
algorithm.

get_default_size()
Return the default font size.

get_default_weight()
Return the default font weight.

score_family(families, family2)
Returns a match score between the list of font families in families and the font family name
family2.

An exact match anywhere in the list returns 0.0.

A match by generic font name will return 0.1.

No match will return 1.0.

score_size(size1, size2)
Returns a match score between size1 and size2.

If size2 (the size specified in the font file) is ‘scalable’, this function always returns 0.0, since
any font size can be generated.

Otherwise, the result is the absolute distance between size1 and size2, normalized so that the
usual range of font sizes (6pt - 72pt) will lie between 0.0 and 1.0.

score_stretch(stretch1, stretch2)
Returns a match score between stretch1 and stretch2.

The result is the absolute value of the difference between the CSS numeric values of stretch1
and stretch2, normalized between 0.0 and 1.0.

score_style(style1, style2)
Returns a match score between style1 and style2.

An exact match returns 0.0.

A match between ‘italic’ and ‘oblique’ returns 0.1.

No match returns 1.0.

score_variant(variant1, variant2)
Returns a match score between variant1 and variant2.

An exact match returns 0.0, otherwise 1.0.

score_weight(weight1, weight2)
Returns a match score between weight1 and weight2.

604 Chapter 44. matplotlib font_manager

http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 1.0.0

The result is the absolute value of the difference between the CSS numeric values of weight1
and weight2, normalized between 0.0 and 1.0.

set_default_weight(weight)
Set the default font weight. The initial value is ‘normal’.

update_fonts(filenames)
Update the font dictionary with new font files. Currently not implemented.

class FontProperties(family=None, style=None, variant=None, weight=None, stretch=None,
size=None, fname=None, _init=None)

Bases: object

A class for storing and manipulating font properties.

The font properties are those described in the W3C Cascading Style Sheet, Level 1 font specification.
The six properties are:

•family: A list of font names in decreasing order of priority. The items may include a generic
font family name, either ‘serif’, ‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’. In that case,
the actual font to be used will be looked up from the associated rcParam in matplotlibrc.

•style: Either ‘normal’, ‘italic’ or ‘oblique’.

•variant: Either ‘normal’ or ‘small-caps’.

•stretch: A numeric value in the range 0-1000 or one of ‘ultra-condensed’, ‘extra-condensed’,
‘condensed’, ‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’ or
‘ultra-expanded’

•weight: A numeric value in the range 0-1000 or one of ‘ultralight’, ‘light’, ‘normal’, ‘regu-
lar’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’, ‘extra bold’,
‘black’

•size: Either an relative value of ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-
large’ or an absolute font size, e.g. 12

The default font property for TrueType fonts (as specified in the default matplotlibrc file) is:

sans-serif, normal, normal, normal, normal, scalable.

Alternatively, a font may be specified using an absolute path to a .ttf file, by using the fname kwarg.

The preferred usage of font sizes is to use the relative values, e.g. ‘large’, instead of absolute font
sizes, e.g. 12. This approach allows all text sizes to be made larger or smaller based on the font
manager’s default font size.

This class will also accept a fontconfig pattern, if it is the only argument provided. See the documen-
tation on fontconfig patterns. This support does not require fontconfig to be installed. We are merely
borrowing its pattern syntax for use here.

Note that matplotlib’s internal font manager and fontconfig use a different algorithm to lookup fonts,
so the results of the same pattern may be different in matplotlib than in other applications that use
fontconfig.

44.1. matplotlib.font_manager 605

http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.fontconfig.org/
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 1.0.0

copy()
Return a deep copy of self

get_family()
Return a list of font names that comprise the font family.

get_file()
Return the filename of the associated font.

get_fontconfig_pattern()
Get a fontconfig pattern suitable for looking up the font as specified with fontconfig’s fc-match
utility.

See the documentation on fontconfig patterns.

This support does not require fontconfig to be installed or support for it to be enabled. We are
merely borrowing its pattern syntax for use here.

get_name()
Return the name of the font that best matches the font properties.

get_size()
Return the font size.

get_size_in_points()

get_slant()
Return the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

get_stretch()
Return the font stretch or width. Options are: ‘ultra-condensed’, ‘extra-condensed’, ‘con-
densed’, ‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’, ‘ultra-
expanded’.

get_style()
Return the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

get_variant()
Return the font variant. Values are: ‘normal’ or ‘small-caps’.

get_weight()
Set the font weight. Options are: A numeric value in the range 0-1000 or one of ‘light’, ‘normal’,
‘regular’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’, ‘extra
bold’, ‘black’

set_family(family)
Change the font family. May be either an alias (generic name is CSS parlance), such as: ‘serif’,
‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’, or a real font name.

set_file(file)
Set the filename of the fontfile to use. In this case, all other properties will be ignored.

set_fontconfig_pattern(pattern)
Set the properties by parsing a fontconfig pattern.

See the documentation on fontconfig patterns.

606 Chapter 44. matplotlib font_manager

http://www.fontconfig.org/fontconfig-user.html
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 1.0.0

This support does not require fontconfig to be installed or support for it to be enabled. We are
merely borrowing its pattern syntax for use here.

set_name(family)
Change the font family. May be either an alias (generic name is CSS parlance), such as: ‘serif’,
‘sans-serif’, ‘cursive’, ‘fantasy’, or ‘monospace’, or a real font name.

set_size(size)
Set the font size. Either an relative value of ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’,
‘x-large’, ‘xx-large’ or an absolute font size, e.g. 12.

set_slant(style)
Set the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

set_stretch(stretch)
Set the font stretch or width. Options are: ‘ultra-condensed’, ‘extra-condensed’, ‘con-
densed’, ‘semi-condensed’, ‘normal’, ‘semi-expanded’, ‘expanded’, ‘extra-expanded’ or ‘ultra-
expanded’, or a numeric value in the range 0-1000.

set_style(style)
Set the font style. Values are: ‘normal’, ‘italic’ or ‘oblique’.

set_variant(variant)
Set the font variant. Values are: ‘normal’ or ‘small-caps’.

set_weight(weight)
Set the font weight. May be either a numeric value in the range 0-1000 or one of ‘ultralight’,
‘light’, ‘normal’, ‘regular’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’,
‘heavy’, ‘extra bold’, ‘black’

OSXFontDirectory()
Return the system font directories for OS X. This is done by starting at the list of hardcoded paths in
OSXFontDirectories and returning all nested directories within them.

OSXInstalledFonts(directory=None, fontext=’ttf’)
Get list of font files on OS X - ignores font suffix by default.

afmFontProperty(fontpath, font)
A function for populating a FontKey instance by extracting information from the AFM font file.

font is a class:AFM instance.

createFontList(fontfiles, fontext=’ttf’)
A function to create a font lookup list. The default is to create a list of TrueType fonts. An AFM font
list can optionally be created.

findSystemFonts(fontpaths=None, fontext=’ttf’)
Search for fonts in the specified font paths. If no paths are given, will use a standard set of system
paths, as well as the list of fonts tracked by fontconfig if fontconfig is installed and available. A list of
TrueType fonts are returned by default with AFM fonts as an option.

findfont(prop, **kw)

get_fontconfig_fonts(fontext=’ttf’)
Grab a list of all the fonts that are being tracked by fontconfig by making a system call to fc-list.

44.1. matplotlib.font_manager 607

Matplotlib, Release 1.0.0

This is an easy way to grab all of the fonts the user wants to be made available to applications, without
needing knowing where all of them reside.

get_fontext_synonyms(fontext)
Return a list of file extensions extensions that are synonyms for the given file extension fileext.

is_opentype_cff_font(filename)
Returns True if the given font is a Postscript Compact Font Format Font embedded in an OpenType
wrapper. Used by the PostScript and PDF backends that can not subset these fonts.

pickle_dump(data, filename)
Equivalent to pickle.dump(data, open(filename, ‘w’)) but closes the file to prevent filehandle leakage.

pickle_load(filename)
Equivalent to pickle.load(open(filename, ‘r’)) but closes the file to prevent filehandle leakage.

ttfFontProperty(font)
A function for populating the FontKey by extracting information from the TrueType font file.

font is a FT2Font instance.

ttfdict_to_fnames(d)
flatten a ttfdict to all the filenames it contains

weight_as_number(weight)
Return the weight property as a numeric value. String values are converted to their corresponding
numeric value.

win32FontDirectory()
Return the user-specified font directory for Win32. This is looked up from the registry key:

\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Fonts

If the key is not found, $WINDIR/Fonts will be returned.

win32InstalledFonts(directory=None, fontext=’ttf’)
Search for fonts in the specified font directory, or use the system directories if none given. A list of
TrueType font filenames are returned by default, or AFM fonts if fontext == ‘afm’.

x11FontDirectory()
Return the system font directories for X11. This is done by starting at the list of hardcoded paths in
X11FontDirectories and returning all nested directories within them.

44.2 matplotlib.fontconfig_pattern

A module for parsing and generating fontconfig patterns.

See the fontconfig pattern specification for more information.

class FontconfigPatternParser()
A simple pyparsing-based parser for fontconfig-style patterns.

See the fontconfig pattern specification for more information.

608 Chapter 44. matplotlib font_manager

http://www.fontconfig.org/fontconfig-user.html
http://www.fontconfig.org/fontconfig-user.html

Matplotlib, Release 1.0.0

parse(pattern)
Parse the given fontconfig pattern and return a dictionary of key/value pairs useful for initializing
a font_manager.FontProperties object.

family_escape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replacement repl.

family_unescape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replacement repl.

generate_fontconfig_pattern(d)
Given a dictionary of key/value pairs, generates a fontconfig pattern string.

value_escape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replacement repl.

value_unescape()
sub(repl, string[, count = 0]) –> newstring Return the string obtained by replacing the leftmost non-
overlapping occurrences of pattern in string by the replacement repl.

44.2. matplotlib.fontconfig_pattern 609

Matplotlib, Release 1.0.0

610 Chapter 44. matplotlib font_manager

CHAPTER

FORTYFIVE

MATPLOTLIB GRIDSPEC

45.1 matplotlib.gridspec

gridspec is a module which specifies the location of the subplot in the figure.

GridSpec specifies the geometry of the grid that a subplot will be placed. The number of
rows and number of columns of the grid need to be set. Optionally, the subplot layout
parameters (e.g., left, right, etc.) can be tuned.

SubplotSpec specifies the location of the subplot in the given GridSpec.

class GridSpec(nrows, ncols, left=None, bottom=None, right=None, top=None, wspace=None,
hspace=None, width_ratios=None, height_ratios=None)

Bases: matplotlib.gridspec.GridSpecBase

A class that specifies the geometry of the grid that a subplot will be placed. The location of grid is
determined by similar way as the SubplotParams.

The number of rows and number of columns of the grid need to be set. Optionally, the subplot layout
parameters (e.g., left, right, etc.) can be tuned.

get_subplot_params(fig=None)
return a dictionary of subplot layout parameters. The default parameters are from rcParams
unless a figure attribute is set.

update(**kwargs)
Update the current values. If any kwarg is None, default to the current value, if set, otherwise to
rc.

class GridSpecBase(nrows, ncols, height_ratios=None, width_ratios=None)
Bases: object

A base class of GridSpec that specifies the geometry of the grid that a subplot will be placed.

The number of rows and number of columns of the grid need to be set. Optionally, the ratio of heights
and widths of ros and columns can be specified.

get_geometry()
get the geometry of the grid, eg 2,3

611

Matplotlib, Release 1.0.0

get_grid_positions(fig)
return lists of bottom and top position of rows, left and right positions of columns.

get_height_ratios()

get_subplot_params(fig=None)

get_width_ratios()

new_subplotspec(loc, rowspan=1, colspan=1)
create and return a SuplotSpec instance.

set_height_ratios(height_ratios)

set_width_ratios(width_ratios)

class GridSpecFromSubplotSpec(nrows, ncols, subplot_spec, wspace=None, hspace=None,
height_ratios=None, width_ratios=None)

Bases: matplotlib.gridspec.GridSpecBase

GridSpec whose subplot layout parameters are inherited from the location specified by a given Sub-
plotSpec.

The number of rows and number of columns of the grid need to be set. An instance of SubplotSpec is
also needed to be set from which the layout parameters will be inheirted. The wspace and hspace of
the layout can be optionally specified or the default values (from the figure or rcParams) will be used.

get_subplot_params(fig=None)
return a dictionary of subplot layout parameters.

class SubplotSpec(gridspec, num1, num2=None)
Bases: object

specifies the location of the subplot in the given GridSpec.

The subplot will occupy the num1-th cell of the given gridspec. If num2 is provided, the subplot will
span between num1-th cell and num2-th cell.

The index stars from 0.

get_geometry()
get the subplot geometry, eg 2,2,3. Unlike SuplorParams, index is 0-based

get_gridspec()

get_position(fig, return_all=False)
update the subplot position from fig.subplotpars

612 Chapter 45. matplotlib gridspec

613

Matplotlib, Release 1.0.0

CHAPTER

FORTYSIX

MATPLOTLIB MATHTEXT

Hlist

VCentered

SubSuperCluster

AutoHeightChar

AutoWidthChar

HCentered

List Vlist

Fill

Glue

Filll

NegFil

NegFill

NegFilll

SsGlue

Fil

MathtextBackendPdf

MathtextBackend

MathtextBackendPs

MathtextBackendAggRender

MathtextBackendSvg

MathtextBackendBbox

MathtextBackendPath

MathtextBackendCairo

Char

Accent

Node

Box

Kern

Rule

Vbox

Hbox

Parser

StixFonts StixSansFontsUnicodeFonts

MathTextParser

Hrule

Vrule

MathtextBackendBitmapRender

GlueSpec

StandardPsFonts

Fonts

TruetypeFonts

MathTextWarning

Ship

BakomaFonts

46.1 matplotlib.mathtext614 Chapter 46. matplotlib mathtext

Matplotlib, Release 1.0.0

mathtext is a module for parsing a subset of the TeX math syntax and drawing them to a matplotlib
backend.

For a tutorial of its usage see Writing mathematical expressions. This document is primarily concerned with
implementation details.

The module uses pyparsing to parse the TeX expression.

The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is
experimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for
those fonts.

If you find TeX expressions that don’t parse or render properly, please email mdroe@stsci.edu, but please
check KNOWN ISSUES below first.

class Accent(c, state)
Bases: matplotlib.mathtext.Char

The font metrics need to be dealt with differently for accents, since they are already offset correctly
from the baseline in TrueType fonts.

grow()

render(x, y)
Render the character to the canvas.

shrink()

class AutoHeightChar(c, height, depth, state, always=False)
Bases: matplotlib.mathtext.Hlist

AutoHeightChar will create a character as close to the given height and depth as possible. When
using a font with multiple height versions of some characters (such as the BaKoMa fonts), the correct
glyph will be selected, otherwise this will always just return a scaled version of the glyph.

class AutoWidthChar(c, width, state, always=False, char_class=<class ’matplotlib.mathtext.Char’>)
Bases: matplotlib.mathtext.Hlist

AutoWidthChar will create a character as close to the given width as possible. When using a font
with multiple width versions of some characters (such as the BaKoMa fonts), the correct glyph will
be selected, otherwise this will always just return a scaled version of the glyph.

class BakomaFonts(*args, **kwargs)
Bases: matplotlib.mathtext.TruetypeFonts

Use the Bakoma TrueType fonts for rendering.

Symbols are strewn about a number of font files, each of which has its own proprietary 8-bit encoding.

get_sized_alternatives_for_symbol(fontname, sym)

class Box(width, height, depth)
Bases: matplotlib.mathtext.Node

Represents any node with a physical location.

grow()

46.1. matplotlib.mathtext 615

http://pyparsing.wikispaces.com/
mailto:mdroe@stsci.edu

Matplotlib, Release 1.0.0

render(x1, y1, x2, y2)

shrink()

class Char(c, state)
Bases: matplotlib.mathtext.Node

Represents a single character. Unlike TeX, the font information and metrics are stored with each
Char to make it easier to lookup the font metrics when needed. Note that TeX boxes have a width,
height, and depth, unlike Type1 and Truetype which use a full bounding box and an advance in the
x-direction. The metrics must be converted to the TeX way, and the advance (if different from width)
must be converted into a Kern node when the Char is added to its parent Hlist.

get_kerning(next)
Return the amount of kerning between this and the given character. Called when characters are
strung together into Hlist to create Kern nodes.

grow()

is_slanted()

render(x, y)
Render the character to the canvas

shrink()

Error(msg)
Helper class to raise parser errors.

FT2Font()
FT2Font

FT2Image()
FT2Image

class Fil()
Bases: matplotlib.mathtext.Glue

class Fill()
Bases: matplotlib.mathtext.Glue

class Filll()
Bases: matplotlib.mathtext.Glue

class Fonts(default_font_prop, mathtext_backend)
Bases: object

An abstract base class for a system of fonts to use for mathtext.

The class must be able to take symbol keys and font file names and return the character metrics. It
also delegates to a backend class to do the actual drawing.

default_font_prop: A FontProperties object to use for the default non-math font, or the base font
for Unicode (generic) font rendering.

mathtext_backend: A subclass of MathTextBackend used to delegate the actual rendering.

616 Chapter 46. matplotlib mathtext

Matplotlib, Release 1.0.0

destroy()
Fix any cyclical references before the object is about to be destroyed.

get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi)
Get the kerning distance for font between sym1 and sym2.

fontX: one of the TeX font names:

tt, it, rm, cal, sf, bf or default/regular (non-math)

fontclassX: TODO

symX: a symbol in raw TeX form. e.g. ‘1’, ‘x’ or ‘sigma’

fontsizeX: the fontsize in points

dpi: the current dots-per-inch

get_metrics(font, font_class, sym, fontsize, dpi)
font: one of the TeX font names:

tt, it, rm, cal, sf, bf or default/regular (non-math)

font_class: TODO

sym: a symbol in raw TeX form. e.g. ‘1’, ‘x’ or ‘sigma’

fontsize: font size in points

dpi: current dots-per-inch

Returns an object with the following attributes:

•advance: The advance distance (in points) of the glyph.

•height: The height of the glyph in points.

•width: The width of the glyph in points.

•xmin, xmax, ymin, ymax - the ink rectangle of the glyph

•iceberg - the distance from the baseline to the top of the glyph. This corresponds to TeX’s
definition of “height”.

get_results(box)
Get the data needed by the backend to render the math expression. The return value is backend-
specific.

get_sized_alternatives_for_symbol(fontname, sym)
Override if your font provides multiple sizes of the same symbol. Should return a list of symbols
matching sym in various sizes. The expression renderer will select the most appropriate size for
a given situation from this list.

get_underline_thickness(font, fontsize, dpi)
Get the line thickness that matches the given font. Used as a base unit for drawing lines such as
in a fraction or radical.

46.1. matplotlib.mathtext 617

Matplotlib, Release 1.0.0

get_used_characters()
Get the set of characters that were used in the math expression. Used by backends that need to
subset fonts so they know which glyphs to include.

get_xheight(font, fontsize, dpi)
Get the xheight for the given font and fontsize.

render_glyph(ox, oy, facename, font_class, sym, fontsize, dpi)
Draw a glyph at

•ox, oy: position

•facename: One of the TeX face names

•font_class:

•sym: TeX symbol name or single character

•fontsize: fontsize in points

•dpi: The dpi to draw at.

render_rect_filled(x1, y1, x2, y2)
Draw a filled rectangle from (x1, y1) to (x2, y2).

set_canvas_size(w, h, d)
Set the size of the buffer used to render the math expression. Only really necessary for the bitmap
backends.

class Glue(glue_type, copy=False)
Bases: matplotlib.mathtext.Node

Most of the information in this object is stored in the underlying GlueSpec class, which is shared be-
tween multiple glue objects. (This is a memory optimization which probably doesn’t matter anymore,
but it’s easier to stick to what TeX does.)

grow()

shrink()

class GlueSpec(width=0.0, stretch=0.0, stretch_order=0, shrink=0.0, shrink_order=0)
Bases: object

See Glue.

copy()

class factory(glue_type)

class HCentered(elements)
Bases: matplotlib.mathtext.Hlist

A convenience class to create an Hlist whose contents are centered within its enclosing box.

class Hbox(width)
Bases: matplotlib.mathtext.Box

A box with only width (zero height and depth).

618 Chapter 46. matplotlib mathtext

Matplotlib, Release 1.0.0

class Hlist(elements, w=0.0, m=’additional’, do_kern=True)
Bases: matplotlib.mathtext.List

A horizontal list of boxes.

hpack(w=0.0, m=’additional’)
The main duty of hpack() is to compute the dimensions of the resulting boxes, and to adjust
the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of
the material inside the new box; but some items may stick out if negative glue is used, if the box
is overfull, or if a \vbox includes other boxes that have been shifted left.

•w: specifies a width

•m: is either ‘exactly’ or ‘additional’.

Thus, hpack(w, ’exactly’) produces a box whose width is exactly w, while hpack(w,
’additional’) yields a box whose width is the natural width plus w. The default values
produce a box with the natural width.

kern()
Insert Kern nodes between Char nodes to set kerning. The Char nodes themselves determine
the amount of kerning they need (in get_kerning()), and this function just creates the linked
list in the correct way.

class Hrule(state, thickness=None)
Bases: matplotlib.mathtext.Rule

Convenience class to create a horizontal rule.

class Kern(width)
Bases: matplotlib.mathtext.Node

A Kern node has a width field to specify a (normally negative) amount of spacing. This spacing
correction appears in horizontal lists between letters like A and V when the font designer said that it
looks better to move them closer together or further apart. A kern node can also appear in a vertical
list, when its width denotes additional spacing in the vertical direction.

grow()

shrink()

class List(elements)
Bases: matplotlib.mathtext.Box

A list of nodes (either horizontal or vertical).

grow()

shrink()

class MathTextParser(output)
Bases: object

Create a MathTextParser for the given backend output.

get_depth(texstr, dpi=120, fontsize=14)
Returns the offset of the baseline from the bottom of the image in pixels.

46.1. matplotlib.mathtext 619

Matplotlib, Release 1.0.0

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’

dpi The dots-per-inch to render the text

fontsize The font size in points

parse(s, dpi=72, prop=None)
Parse the given math expression s at the given dpi. If prop is provided, it is a FontProperties
object specifying the “default” font to use in the math expression, used for all non-math text.

The results are cached, so multiple calls to parse() with the same expression should be fast.

to_mask(texstr, dpi=120, fontsize=14)

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’

dpi The dots-per-inch to render the text

fontsize The font size in points

Returns a tuple (array, depth)

•array is an NxM uint8 alpha ubyte mask array of rasterized tex.

•depth is the offset of the baseline from the bottom of the image in pixels.

to_png(filename, texstr, color=’black’, dpi=120, fontsize=14)
Writes a tex expression to a PNG file.

Returns the offset of the baseline from the bottom of the image in pixels.

filename A writable filename or fileobject

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’

color A valid matplotlib color argument

dpi The dots-per-inch to render the text

fontsize The font size in points

Returns the offset of the baseline from the bottom of the image in pixels.

to_rgba(texstr, color=’black’, dpi=120, fontsize=14)

texstr A valid mathtext string, eg r’IQ: $sigma_i=15$’

color Any matplotlib color argument

dpi The dots-per-inch to render the text

fontsize The font size in points

Returns a tuple (array, depth)

•array is an NxM uint8 alpha ubyte mask array of rasterized tex.

•depth is the offset of the baseline from the bottom of the image in pixels.

exception MathTextWarning
Bases: exceptions.Warning

620 Chapter 46. matplotlib mathtext

Matplotlib, Release 1.0.0

class MathtextBackend()
Bases: object

The base class for the mathtext backend-specific code. The purpose of MathtextBackend subclasses
is to interface between mathtext and a specific matplotlib graphics backend.

Subclasses need to override the following:

•render_glyph()

•render_filled_rect()

•get_results()

And optionally, if you need to use a Freetype hinting style:

•get_hinting_type()

get_hinting_type()
Get the Freetype hinting type to use with this particular backend.

get_results(box)
Return a backend-specific tuple to return to the backend after all processing is done.

render_filled_rect(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

set_canvas_size(w, h, d)
Dimension the drawing canvas

MathtextBackendAgg()

class MathtextBackendAggRender()
Bases: matplotlib.mathtext.MathtextBackend

Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by
the Agg backend.

get_hinting_type()

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

set_canvas_size(w, h, d)

class MathtextBackendBbox(real_backend)
Bases: matplotlib.mathtext.MathtextBackend

A backend whose only purpose is to get a precise bounding box. Only required for the Agg backend.

get_hinting_type()

get_results(box)

46.1. matplotlib.mathtext 621

Matplotlib, Release 1.0.0

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

MathtextBackendBitmap()
A backend to generate standalone mathtext images. No additional matplotlib backend is required.

class MathtextBackendBitmapRender()
Bases: matplotlib.mathtext.MathtextBackendAggRender

get_results(box)

class MathtextBackendCairo()
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the Cairo backend.

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class MathtextBackendPath()
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the Cairo backend.

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class MathtextBackendPdf()
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the PDF backend.

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class MathtextBackendPs()
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the PostScript backend.

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class MathtextBackendSvg()
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the SVG backend.

622 Chapter 46. matplotlib mathtext

Matplotlib, Release 1.0.0

get_results(box)

render_glyph(ox, oy, info)

render_rect_filled(x1, y1, x2, y2)

class NegFil()
Bases: matplotlib.mathtext.Glue

class NegFill()
Bases: matplotlib.mathtext.Glue

class NegFilll()
Bases: matplotlib.mathtext.Glue

class Node()
Bases: object

A node in the TeX box model

get_kerning(next)

grow()
Grows one level larger. There is no limit to how big something can get.

render(x, y)

shrink()
Shrinks one level smaller. There are only three levels of sizes, after which things will no longer
get smaller.

class Parser()
Bases: object

This is the pyparsing-based parser for math expressions. It actually parses full strings containing math
expressions, in that raw text may also appear outside of pairs of $.

The grammar is based directly on that in TeX, though it cuts a few corners.

class State(font_output, font, font_class, fontsize, dpi)
Bases: object

Stores the state of the parser.

States are pushed and popped from a stack as necessary, and the “current” state is always at the
top of the stack.

copy()

font

accent(s, loc, toks)

auto_sized_delimiter(s, loc, toks)

binom(s, loc, toks)

char_over_chars(s, loc, toks)

46.1. matplotlib.mathtext 623

Matplotlib, Release 1.0.0

clear()
Clear any state before parsing.

customspace(s, loc, toks)

end_group(s, loc, toks)

finish(s, loc, toks)

font(s, loc, toks)

frac(s, loc, toks)

function(s, loc, toks)

genfrac(s, loc, toks)

get_state()
Get the current State of the parser.

group(s, loc, toks)

is_dropsub(nucleus)

is_overunder(nucleus)

is_slanted(nucleus)

math(s, loc, toks)

non_math(s, loc, toks)

parse(s, fonts_object, fontsize, dpi)
Parse expression s using the given fonts_object for output, at the given fontsize and dpi.

Returns the parse tree of Node instances.

pop_state()
Pop a State off of the stack.

push_state()
Push a new State onto the stack which is just a copy of the current state.

space(s, loc, toks)

sqrt(s, loc, toks)

stackrel(s, loc, toks)

start_group(s, loc, toks)

subsuperscript(s, loc, toks)

symbol(s, loc, toks)

class Rule(width, height, depth, state)
Bases: matplotlib.mathtext.Box

A Rule node stands for a solid black rectangle; it has width, depth, and height fields just as in an
Hlist. However, if any of these dimensions is inf, the actual value will be determined by running the

624 Chapter 46. matplotlib mathtext

Matplotlib, Release 1.0.0

rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The
width is never running in an Hlist; the height and depth are never running in a Vlist.

render(x, y, w, h)

class Ship()
Bases: object

Once the boxes have been set up, this sends them to output. Since boxes can be inside of boxes
inside of boxes, the main work of Ship is done by two mutually recursive routines, hlist_out()
and vlist_out(), which traverse the Hlist nodes and Vlist nodes inside of horizontal and vertical
boxes. The global variables used in TeX to store state as it processes have become member variables
here.

static clamp(value)

hlist_out(box)

vlist_out(box)

class SsGlue()
Bases: matplotlib.mathtext.Glue

class StandardPsFonts(default_font_prop)
Bases: matplotlib.mathtext.Fonts

Use the standard postscript fonts for rendering to backend_ps

Unlike the other font classes, BakomaFont and UnicodeFont, this one requires the Ps backend.

get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi)

get_underline_thickness(font, fontsize, dpi)

get_xheight(font, fontsize, dpi)

class StixFonts(*args, **kwargs)
Bases: matplotlib.mathtext.UnicodeFonts

A font handling class for the STIX fonts.

In addition to what UnicodeFonts provides, this class:

•supports “virtual fonts” which are complete alpha numeric character sets with different font
styles at special Unicode code points, such as “Blackboard”.

•handles sized alternative characters for the STIXSizeX fonts.

get_sized_alternatives_for_symbol(fontname, sym)

class StixSansFonts(*args, **kwargs)
Bases: matplotlib.mathtext.StixFonts

A font handling class for the STIX fonts (that uses sans-serif characters by default).

class SubSuperCluster()
Bases: matplotlib.mathtext.Hlist

46.1. matplotlib.mathtext 625

Matplotlib, Release 1.0.0

SubSuperCluster is a sort of hack to get around that fact that this code do a two-pass parse like TeX.
This lets us store enough information in the hlist itself, namely the nucleus, sub- and super-script, such
that if another script follows that needs to be attached, it can be reconfigured on the fly.

class TruetypeFonts(default_font_prop, mathtext_backend)
Bases: matplotlib.mathtext.Fonts

A generic base class for all font setups that use Truetype fonts (through FT2Font).

class CachedFont(font)

destroy()

get_kern(font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi)

get_underline_thickness(font, fontsize, dpi)

get_xheight(font, fontsize, dpi)

class UnicodeFonts(*args, **kwargs)
Bases: matplotlib.mathtext.TruetypeFonts

An abstract base class for handling Unicode fonts.

While some reasonably complete Unicode fonts (such as DejaVu) may work in some situations, the
only Unicode font I’m aware of with a complete set of math symbols is STIX.

This class will “fallback” on the Bakoma fonts when a required symbol can not be found in the font.

get_sized_alternatives_for_symbol(fontname, sym)

class VCentered(elements)
Bases: matplotlib.mathtext.Hlist

A convenience class to create a Vlist whose contents are centered within its enclosing box.

class Vbox(height, depth)
Bases: matplotlib.mathtext.Box

A box with only height (zero width).

class Vlist(elements, h=0.0, m=’additional’)
Bases: matplotlib.mathtext.List

A vertical list of boxes.

vpack(h=0.0, m=’additional’, l=inf)
The main duty of vpack() is to compute the dimensions of the resulting boxes, and to adjust
the glue if one of those dimensions is pre-specified.

•h: specifies a height

•m: is either ‘exactly’ or ‘additional’.

•l: a maximum height

Thus, vpack(h, ’exactly’) produces a box whose height is exactly h, while vpack(h,
’additional’) yields a box whose height is the natural height plus h. The default values
produce a box with the natural width.

626 Chapter 46. matplotlib mathtext

Matplotlib, Release 1.0.0

class Vrule(state)
Bases: matplotlib.mathtext.Rule

Convenience class to create a vertical rule.

get_unicode_index(symbol)
get_unicode_index(symbol) -> integer

Return the integer index (from the Unicode table) of symbol. symbol can be a single unicode character,
a TeX command (i.e. r’pi’), or a Type1 symbol name (i.e. ‘phi’).

unichr_safe(index)
Return the Unicode character corresponding to the index, or the replacement character if this is a
narrow build of Python and the requested character is outside the BMP.

46.1. matplotlib.mathtext 627

Matplotlib, Release 1.0.0

628 Chapter 46. matplotlib mathtext

CHAPTER

FORTYSEVEN

MATPLOTLIB MLAB

47.1 matplotlib.mlab

Numerical python functions written for compatability with MATLAB commands with the same names.

47.1.1 MATLAB compatible functions

cohere() Coherence (normalized cross spectral density)

csd() Cross spectral density uing Welch’s average periodogram

detrend() Remove the mean or best fit line from an array

find()

Return the indices where some condition is true; numpy.nonzero is similar but more general.

griddata()

interpolate irregularly distributed data to a regular grid.

prctile() find the percentiles of a sequence

prepca() Principal Component Analysis

psd() Power spectral density uing Welch’s average periodogram

rk4() A 4th order runge kutta integrator for 1D or ND systems

specgram() Spectrogram (power spectral density over segments of time)

47.1.2 Miscellaneous functions

Functions that don’t exist in MATLAB, but are useful anyway:

cohere_pairs() Coherence over all pairs. This is not a MATLAB function, but we compute coherence a
lot in my lab, and we compute it for a lot of pairs. This function is optimized to do this efficiently by
caching the direct FFTs.

629

Matplotlib, Release 1.0.0

rk4() A 4th order Runge-Kutta ODE integrator in case you ever find yourself stranded without scipy (and
the far superior scipy.integrate tools)

contiguous_regions() return the indices of the regions spanned by some logical mask

cross_from_below() return the indices where a 1D array crosses a threshold from below

cross_from_above() return the indices where a 1D array crosses a threshold from above

47.1.3 record array helper functions

A collection of helper methods for numpyrecord arrays

See misc Examples

rec2txt() pretty print a record array

rec2csv() store record array in CSV file

csv2rec() import record array from CSV file with type inspection

rec_append_fields() adds field(s)/array(s) to record array

rec_drop_fields() drop fields from record array

rec_join() join two record arrays on sequence of fields

recs_join() a simple join of multiple recarrays using a single column as a key

rec_groupby() summarize data by groups (similar to SQL GROUP BY)

rec_summarize() helper code to filter rec array fields into new fields

For the rec viewer functions(e rec2csv), there are a bunch of Format objects you can pass into the functions
that will do things like color negative values red, set percent formatting and scaling, etc.

Example usage:

r = csv2rec(’somefile.csv’, checkrows=0)

formatd = dict(
weight = FormatFloat(2),
change = FormatPercent(2),
cost = FormatThousands(2),
)

rec2excel(r, ’test.xls’, formatd=formatd)
rec2csv(r, ’test.csv’, formatd=formatd)
scroll = rec2gtk(r, formatd=formatd)

win = gtk.Window()
win.set_size_request(600,800)
win.add(scroll)
win.show_all()
gtk.main()

630 Chapter 47. matplotlib mlab

Matplotlib, Release 1.0.0

47.1.4 Deprecated functions

The following are deprecated; please import directly from numpy (with care–function signatures may differ):

load() load ASCII file - use numpy.loadtxt

save() save ASCII file - use numpy.savetxt

class FIFOBuffer(nmax)
A FIFO queue to hold incoming x, y data in a rotating buffer using numpy arrays under the hood. It is
assumed that you will call asarrays much less frequently than you add data to the queue – otherwise
another data structure will be faster.

This can be used to support plots where data is added from a real time feed and the plot object wants
to grab data from the buffer and plot it to screen less freqeuently than the incoming.

If you set the dataLim attr to BBox (eg matplotlib.Axes.dataLim), the dataLim will be updated
as new data come in.

TODO: add a grow method that will extend nmax

Note: mlab seems like the wrong place for this class.

Buffer up to nmax points.

add(x, y)
Add scalar x and y to the queue.

asarrays()
Return x and y as arrays; their length will be the len of data added or nmax.

last()
Get the last x, y or None. None if no data set.

register(func, N)
Call func every time N events are passed; func signature is func(fifo).

update_datalim_to_current()
Update the datalim in the current data in the fifo.

class FormatBool()
Bases: matplotlib.mlab.FormatObj

fromstr(s)

toval(x)

class FormatDate(fmt)
Bases: matplotlib.mlab.FormatObj

fromstr(x)

toval(x)

class FormatDatetime(fmt=’%Y-%m-%d %H:%M:%S’)
Bases: matplotlib.mlab.FormatDate

fromstr(x)

47.1. matplotlib.mlab 631

Matplotlib, Release 1.0.0

class FormatFloat(precision=4, scale=1.0)
Bases: matplotlib.mlab.FormatFormatStr

fromstr(s)

toval(x)

class FormatFormatStr(fmt)
Bases: matplotlib.mlab.FormatObj

tostr(x)

class FormatInt()
Bases: matplotlib.mlab.FormatObj

fromstr(s)

tostr(x)

toval(x)

class FormatMillions(precision=4)
Bases: matplotlib.mlab.FormatFloat

class FormatObj()

fromstr(s)

tostr(x)

toval(x)

class FormatPercent(precision=4)
Bases: matplotlib.mlab.FormatFloat

class FormatString()
Bases: matplotlib.mlab.FormatObj

tostr(x)

class FormatThousands(precision=4)
Bases: matplotlib.mlab.FormatFloat

class PCA(a)
compute the SVD of a and store data for PCA. Use project to project the data onto a reduced set of
dimensions

Inputs:

a: a numobservations x numdims array

Attrs:

a a centered unit sigma version of input a

numrows, numcols: the dimensions of a

mu : a numdims array of means of a

632 Chapter 47. matplotlib mlab

Matplotlib, Release 1.0.0

sigma : a numdims array of atandard deviation of a

fracs : the proportion of variance of each of the principal components

Wt : the weight vector for projecting a numdims point or array into PCA space

Y : a projected into PCA space

The factor loadings are in the Wt factor, ie the factor loadings for the 1st principal component are
given by Wt[0]

center(x)
center the data using the mean and sigma from training set a

project(x, minfrac=0.0)
project x onto the principle axes, dropping any axes where fraction of variance<minfrac

amap(fn, *args)
amap(function, sequence[, sequence, ...]) -> array.

Works like map(), but it returns an array. This is just a convenient shorthand for
numpy.array(map(...)).

base_repr(number, base=2, padding=0)
Return the representation of a number in any given base.

binary_repr(number, max_length=1025)
Return the binary representation of the input number as a string.

This is more efficient than using base_repr() with base 2.

Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is
the largest integer power of 2 which can be converted to a Python float.

bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0)
Bivariate Gaussian distribution for equal shape X, Y.

See bivariate normal at mathworld.

center_matrix(M, dim=0)
Return the matrix M with each row having zero mean and unit std.

If dim = 1 operate on columns instead of rows. (dim is opposite to the numpy axis kwarg.)

cohere(x, y, NFFT=256, Fs=2, detrend=<function detrend_none at 0x3cc2e60>, window=<function win-
dow_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None)

The coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(47.1)

x, y Array or sequence containing the data

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

47.1. matplotlib.mlab 633

http://mathworld.wolfram.com/BivariateNormalDistribution.html

Matplotlib, Release 1.0.0

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

The return value is the tuple (Cxy, f), where f are the frequencies of the coherence vector. For cohere,
scaling the individual densities by the sampling frequency has no effect, since the factors cancel out.

See Also:

psd() and csd() For information about the methods used to compute Pxy, Pxx and Pyy.

cohere_pairs(X, ij, NFFT=256, Fs=2, detrend=<function detrend_none at 0x3cc2e60>, win-
dow=<function window_hanning at 0x3cc20c8>, noverlap=0, preferSpeedOverMem-
ory=True, progressCallback=<function donothing_callback at 0x3cc5cf8>, return-
Pxx=False)

Call signature:

Cxy, Phase, freqs = cohere_pairs(X, ij, ...)

Compute the coherence and phase for all pairs ij, in X.

634 Chapter 47. matplotlib mlab

Matplotlib, Release 1.0.0

X is a numSamples * numCols array

ij is a list of tuples. Each tuple is a pair of indexes into the columns of X for which you want to
compute coherence. For example, if X has 64 columns, and you want to compute all nonredundant
pairs, define ij as:

ij = []
for i in range(64):

for j in range(i+1,64):
ij.append((i,j))

preferSpeedOverMemory is an optional bool. Defaults to true. If False, limits the caching by only
making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even
when preferSpeedOverMemory is False, cohere_pairs() will still give significant performace gains
over calling cohere() for each pair, and will use subtantially less memory than if preferSpeedOver-
Memory is True. In my tests with a 43000,64 array over all nonredundant pairs, preferSpeedOverMem-
ory = True delivered a 33% performance boost on a 1.7GHZ Athlon with 512MB RAM compared
with preferSpeedOverMemory = False. But both solutions were more than 10x faster than naively
crunching all possible pairs through cohere().

Returns:

(Cxy, Phase, freqs)

where:

•Cxy: dictionary of (i, j) tuples -> coherence vector for that pair. I.e., Cxy[(i,j) =
cohere(X[:,i], X[:,j]). Number of dictionary keys is len(ij).

•Phase: dictionary of phases of the cross spectral density at each frequency for each pair. Keys
are (i, j).

•freqs: vector of frequencies, equal in length to either the coherence or phase vectors for any
(i, j) key.

Eg., to make a coherence Bode plot:

subplot(211)
plot(freqs, Cxy[(12,19)])
subplot(212)
plot(freqs, Phase[(12,19)])

For a large number of pairs, cohere_pairs() can be much more efficient than just calling cohere()
for each pair, because it caches most of the intensive computations. If N is the number of pairs, this
function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N2). However,
because of the caching, it is also more memory intensive, making 2 additional complex arrays with
approximately the same number of elements as X.

See test/cohere_pairs_test.py in the src tree for an example script that shows that this
cohere_pairs() and cohere() give the same results for a given pair.

See Also:

47.1. matplotlib.mlab 635

Matplotlib, Release 1.0.0

psd() For information about the methods used to compute Pxy, Pxx and Pyy.

contiguous_regions(mask)
return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions

TODO: this is a pure python implementation which probably has a much faster numpy impl

cross_from_above(x, threshold)
return the indices into x where x crosses some threshold from below, eg the i’s where:

x[i-1]>threshold and x[i]<=threshold

See Also:

cross_from_below() and contiguous_regions()

cross_from_below(x, threshold)
return the indices into x where x crosses some threshold from below, eg the i’s where:

x[i-1]<threshold and x[i]>=threshold

Example code:

import matplotlib.pyplot as plt

t = np.arange(0.0, 2.0, 0.1)
s = np.sin(2*np.pi*t)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t, s, ’-o’)
ax.axhline(0.5)
ax.axhline(-0.5)

ind = cross_from_below(s, 0.5)
ax.vlines(t[ind], -1, 1)

ind = cross_from_above(s, -0.5)
ax.vlines(t[ind], -1, 1)

plt.show()

See Also:

cross_from_above() and contiguous_regions()

csd(x, y, NFFT=256, Fs=2, detrend=<function detrend_none at 0x3cc2e60>, window=<function win-
dow_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None)
The cross power spectral density by Welch’s average periodogram method. The vectors x and y are
divided into NFFT length blocks. Each block is detrended by the function detrend and windowed by
the function window. noverlap gives the length of the overlap between blocks. The product of the
direct FFTs of x and y are averaged over each segment to compute Pxy, with a scaling to correct for
power loss due to windowing.

636 Chapter 47. matplotlib mlab

Matplotlib, Release 1.0.0

If len(x) < NFFT or len(y) < NFFT, they will be zero padded to NFFT.

x, y Array or sequence containing the data

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

Returns the tuple (Pxy, freqs).

Refs: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley & Sons
(1986)

csv2rec(fname, comments=’#’, skiprows=0, checkrows=0, delimiter=’, ’, converterd=None,
names=None, missing=”, missingd=None, use_mrecords=False)

Load data from comma/space/tab delimited file in fname into a numpy record array and return the
record array.

47.1. matplotlib.mlab 637

Matplotlib, Release 1.0.0

If names is None, a header row is required to automatically assign the recarray names. The headers
will be lower cased, spaces will be converted to underscores, and illegal attribute name characters
removed. If names is not None, it is a sequence of names to use for the column names. In this case, it
is assumed there is no header row.

•fname: can be a filename or a file handle. Support for gzipped files is automatic, if the filename
ends in ‘.gz’

•comments: the character used to indicate the start of a comment in the file

•skiprows: is the number of rows from the top to skip

•checkrows: is the number of rows to check to validate the column data type. When set to zero
all rows are validated.

•converterd: if not None, is a dictionary mapping column number or munged column name to a
converter function.

•names: if not None, is a list of header names. In this case, no header will be read from the file

•missingd is a dictionary mapping munged column names to field values which signify that the
field does not contain actual data and should be masked, e.g. ‘0000-00-00’ or ‘unused’

•missing: a string whose value signals a missing field regardless of the column it appears in

•use_mrecords: if True, return an mrecords.fromrecords record array if any of the data are missing

If no rows are found, None is returned – see examples/loadrec.py

csvformat_factory(format)

demean(x, axis=0)
Return x minus its mean along the specified axis

detrend(x, key=None)

detrend_linear(y)
Return y minus best fit line; ‘linear’ detrending

detrend_mean(x)
Return x minus the mean(x)

detrend_none(x)
Return x: no detrending

dist(x, y)
Return the distance between two points.

dist_point_to_segment(p, s0, s1)
Get the distance of a point to a segment.

p, s0, s1 are xy sequences

This algorithm from http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment

distances_along_curve(X)
Computes the distance between a set of successive points in N dimensions.

638 Chapter 47. matplotlib mlab

http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment

Matplotlib, Release 1.0.0

Where X is an M x N array or matrix. The distances between successive rows is computed. Distance
is the standard Euclidean distance.

donothing_callback(*args)

entropy(y, bins)
Return the entropy of the data in y. ∑

pi log2(pi) (47.2)

where pi is the probability of observing y in the ith bin of bins. bins can be a number of bins or a range
of bins; see numpy.histogram().

Compare S with analytic calculation for a Gaussian:

x = mu + sigma * randn(200000)
Sanalytic = 0.5 * (1.0 + log(2*pi*sigma**2.0))

exp_safe(x)
Compute exponentials which safely underflow to zero.

Slow, but convenient to use. Note that numpy provides proper floating point exception handling with
access to the underlying hardware.

fftsurr(x, detrend=<function detrend_none at 0x3cc2e60>, window=<function window_none at
0x3cc2140>)

Compute an FFT phase randomized surrogate of x.

find(condition)
Return the indices where ravel(condition) is true

frange(xini, xfin=None, delta=None, **kw)
frange([start,] stop[, step, keywords]) -> array of floats

Return a numpy ndarray containing a progression of floats. Similar to numpy.arange(), but defaults
to a closed interval.

frange(x0, x1) returns [x0, x0+1, x0+2, ..., x1]; start defaults to 0, and the endpoint is
included. This behavior is different from that of range() and numpy.arange(). This is deliberate,
since frange() will probably be more useful for generating lists of points for function evaluation,
and endpoints are often desired in this use. The usual behavior of range() can be obtained by setting
the keyword closed = 0, in this case, frange() basically becomes :func:numpy.arange‘.

When step is given, it specifies the increment (or decrement). All arguments can be floating point
numbers.

frange(x0,x1,d) returns [x0,x0+d,x0+2d,...,xfin] where xfin <= x1.

frange() can also be called with the keyword npts. This sets the number of points the list should
contain (and overrides the value step might have been given). numpy.arange() doesn’t offer this
option.

Examples:

47.1. matplotlib.mlab 639

Matplotlib, Release 1.0.0

>>> frange(3)
array([0., 1., 2., 3.])
>>> frange(3,closed=0)
array([0., 1., 2.])
>>> frange(1,6,2)
array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries
>>> frange(1,6.5,npts=5)
array([1. , 2.375, 3.75 , 5.125, 6.5])

get_formatd(r, formatd=None)
build a formatd guaranteed to have a key for every dtype name

get_sparse_matrix(M, N, frac=0.10000000000000001)
Return a M x N sparse matrix with frac elements randomly filled.

get_xyz_where(Z, Cond)
Z and Cond are M x N matrices. Z are data and Cond is a boolean matrix where some condition is
satisfied. Return value is (x, y, z) where x and y are the indices into Z and z are the values of Z at those
indices. x, y, and z are 1D arrays.

griddata(x, y, z, xi, yi, interp=’nn’)
zi = griddata(x,y,z,xi,yi) fits a surface of the form z = f*(*x, y) to the data in the (usually)
nonuniformly spaced vectors (x, y, z). griddata() interpolates this surface at the points specified
by (xi, yi) to produce zi. xi and yi must describe a regular grid, can be either 1D or 2D, but must be
monotonically increasing.

A masked array is returned if any grid points are outside convex hull defined by input data (no extrap-
olation is done).

If interp keyword is set to ‘nn‘ (default), uses natural neighbor interpolation based on Delaunay trian-
gulation. By default, this algorithm is provided by the matplotlib.delaunay package, written by
Robert Kern. The triangulation algorithm in this package is known to fail on some nearly pathological
cases. For this reason, a separate toolkit (mpl_tookits.natgrid) has been created that provides a
more robust algorithm fof triangulation and interpolation. This toolkit is based on the NCAR nat-
grid library, which contains code that is not redistributable under a BSD-compatible license. When
installed, this function will use the mpl_toolkits.natgrid algorithm, otherwise it will use the
built-in matplotlib.delaunay package.

If the interp keyword is set to ‘linear‘, then linear interpolation is used instead of natural neigh-
bor. In this case, the output grid is assumed to be regular with a constant grid spacing in both the
x and y directions. For regular grids with nonconstant grid spacing, you must use natural neigh-
bor interpolation. Linear interpolation is only valid if matplotlib.delaunay package is used -
mpl_tookits.natgrid only provides natural neighbor interpolation.

The natgrid matplotlib toolkit can be downloaded from http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

identity(n, rank=2, dtype=’l’, typecode=None)
Returns the identity matrix of shape (n, n, ..., n) (rank r).

For ranks higher than 2, this object is simply a multi-index Kronecker delta:

640 Chapter 47. matplotlib mlab

http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792

Matplotlib, Release 1.0.0

/ 1 if i0=i1=...=iR,
id[i0,i1,...,iR] = -|

\ 0 otherwise.

Optionally a dtype (or typecode) may be given (it defaults to ‘l’).

Since rank defaults to 2, this function behaves in the default case (when only n is given) like
numpy.identity(n) – but surprisingly, it is much faster.

inside_poly(points, verts)
points is a sequence of x, y points. verts is a sequence of x, y vertices of a polygon.

Return value is a sequence of indices into points for the points that are inside the polygon.

is_closed_polygon(X)
Tests whether first and last object in a sequence are the same. These are presumably coordinates on a
polygonal curve, in which case this function tests if that curve is closed.

ispower2(n)
Returns the log base 2 of n if n is a power of 2, zero otherwise.

Note the potential ambiguity if n == 1: 2**0 == 1, interpret accordingly.

isvector(X)
Like the MATLAB function with the same name, returns True if the supplied numpy array or matrix
X looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all
must have length 1, except for one of them).

If you just want to see if the array has 1 axis, use X.ndim == 1.

l1norm(a)
Return the l1 norm of a, flattened out.

Implemented as a separate function (not a call to norm() for speed).

l2norm(a)
Return the l2 norm of a, flattened out.

Implemented as a separate function (not a call to norm() for speed).

less_simple_linear_interpolation(x, y, xi, extrap=False)
This function provides simple (but somewhat less so than
cbook.simple_linear_interpolation()) linear interpolation.
simple_linear_interpolation() will give a list of point between a start and an end, while this
does true linear interpolation at an arbitrary set of points.

This is very inefficient linear interpolation meant to be used only for a small number of points in
relatively non-intensive use cases. For real linear interpolation, use scipy.

levypdf(x, gamma, alpha)
Returm the levy pdf evaluated at x for params gamma, alpha

liaupunov(x, fprime)
x is a very long trajectory from a map, and fprime returns the derivative of x.

This function will be removed from matplotlib.

47.1. matplotlib.mlab 641

Matplotlib, Release 1.0.0

Returns : .. math:

\lambda = \frac{1}{n}\sum \ln|f^’(x_i)|

See Also:

Lyapunov Exponent Sec 10.5 Strogatz (1994) “Nonlinear Dynamics and Chaos”. Wikipedia article
on Lyapunov Exponent.

Note: What the function here calculates may not be what you really want; caveat emptor.

It also seems that this function’s name is badly misspelled.

load(fname, comments=’#’, delimiter=None, converters=None, skiprows=0, usecols=None, un-
pack=False, dtype=<type ’numpy.float64’>)
Load ASCII data from fname into an array and return the array.

Deprecated: use numpy.loadtxt.

The data must be regular, same number of values in every row

fname can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends
in ‘.gz’.

matfile data is not supported; for that, use scipy.io.mio module.

Example usage:

X = load(’test.dat’) # data in two columns
t = X[:,0]
y = X[:,1]

Alternatively, you can do the same with “unpack”; see below:

X = load(’test.dat’) # a matrix of data
x = load(’test.dat’) # a single column of data

•comments: the character used to indicate the start of a comment in the file

•delimiter is a string-like character used to seperate values in the file. If delimiter is unspecified
or None, any whitespace string is a separator.

•converters, if not None, is a dictionary mapping column number to a function that will convert
that column to a float (or the optional dtype if specified). Eg, if column 0 is a date string:

converters = {0:datestr2num}

•skiprows is the number of rows from the top to skip.

•usecols, if not None, is a sequence of integer column indexes to extract where 0 is the first
column, eg usecols=[1,4,5] to extract just the 2nd, 5th and 6th columns

•unpack, if True, will transpose the matrix allowing you to unpack into named arguments on the
left hand side:

642 Chapter 47. matplotlib mlab

http://en.wikipedia.org/wiki/Lyapunov_exponent
http://en.wikipedia.org/wiki/Lyapunov_exponent

Matplotlib, Release 1.0.0

t,y = load(’test.dat’, unpack=True) # for two column data
x,y,z = load(’somefile.dat’, usecols=[3,5,7], unpack=True)

•dtype: the array will have this dtype. default: numpy.float_

See Also:

See examples/pylab_examples/load_converter.py in the source tree Exercises many of
these options.

log2(x, ln2=0.69314718055994529)
Return the log(x) in base 2.

This is a _slow_ function but which is guaranteed to return the correct integer value if the input is an
integer exact power of 2.

logspace(xmin, xmax, N)

longest_contiguous_ones(x)
Return the indices of the longest stretch of contiguous ones in x, assuming x is a vector of zeros and
ones. If there are two equally long stretches, pick the first.

longest_ones(x)
alias for longest_contiguous_ones

movavg(x, n)
Compute the len(n) moving average of x.

norm_flat(a, p=2)
norm(a,p=2) -> l-p norm of a.flat

Return the l-p norm of a, considered as a flat array. This is NOT a true matrix norm, since arrays of
arbitrary rank are always flattened.

p can be a number or the string ‘Infinity’ to get the L-infinity norm.

normpdf(x, *args)
Return the normal pdf evaluated at x; args provides mu, sigma

path_length(X)
Computes the distance travelled along a polygonal curve in N dimensions.

Where X is an M x N array or matrix. Returns an array of length M consisting of the distance along
the curve at each point (i.e., the rows of X).

poly_below(xmin, xs, ys)
Given a sequence of xs and ys, return the vertices of a polygon that has a horizontal base at xmin and
an upper bound at the ys. xmin is a scalar.

Intended for use with matplotlib.axes.Axes.fill(), eg:

xv, yv = poly_below(0, x, y)
ax.fill(xv, yv)

47.1. matplotlib.mlab 643

Matplotlib, Release 1.0.0

poly_between(x, ylower, yupper)
Given a sequence of x, ylower and yupper, return the polygon that fills the regions between them.
ylower or yupper can be scalar or iterable. If they are iterable, they must be equal in length to x.

Return value is x, y arrays for use with matplotlib.axes.Axes.fill().

prctile(x, p=(0.0, 25.0, 50.0, 75.0, 100.0))
Return the percentiles of x. p can either be a sequence of percentile values or a scalar. If p is a
sequence, the ith element of the return sequence is the p*(i)-th percentile of *x. If p is a scalar, the
largest value of x less than or equal to the p percentage point in the sequence is returned.

prctile_rank(x, p)
Return the rank for each element in x, return the rank 0..len(p). Eg if p = (25, 50, 75), the return
value will be a len(x) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th
percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is
above the 75th percentile cutoff.

p is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data
you want ranked.

prepca(P, frac=0)
WARNING: this function is deprecated – please see class PCA instead

Compute the principal components of P. P is a (numVars, numObs) array. frac is the minimum fraction
of variance that a component must contain to be included.

Return value is a tuple of the form (Pcomponents, Trans, fracVar) where:

•Pcomponents : a (numVars, numObs) array

•Trans [the weights matrix, ie, Pcomponents = Trans *] P

•fracVar [the fraction of the variance accounted for by each] component returned

A similar function of the same name was in the MATLAB R13 Neural Network Toolbox but is not
found in later versions; its successor seems to be called “processpcs”.

psd(x, NFFT=256, Fs=2, detrend=<function detrend_none at 0x3cc2e60>, window=<function win-
dow_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None)
The power spectral density by Welch’s average periodogram method. The vector x is divided into
NFFT length blocks. Each block is detrended by the function detrend and windowed by the function
window. noverlap gives the length of the overlap between blocks. The absolute(fft(block))**2 of each
segment are averaged to compute Pxx, with a scaling to correct for power loss due to windowing.

If len(x) < NFFT, it will be zero padded to NFFT.

x Array or sequence containing the data

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

644 Chapter 47. matplotlib mlab

Matplotlib, Release 1.0.0

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

Returns the tuple (Pxx, freqs).

Refs:

Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley &
Sons (1986)

quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y)
Converts a quadratic Bezier curve to a cubic approximation.

The inputs are the x and y coordinates of the three control points of a quadratic curve, and the output
is a tuple of x and y coordinates of the four control points of the cubic curve.

rec2csv(r, fname, delimiter=’, ’, formatd=None, missing=”, missingd=None, withheader=True)
Save the data from numpy recarray r into a comma-/space-/tab-delimited file. The record array dtype
names will be used for column headers.

fname: can be a filename or a file handle. Support for gzipped files is automatic, if the filename
ends in ‘.gz’

withheader: if withheader is False, do not write the attribute names in the first row

47.1. matplotlib.mlab 645

Matplotlib, Release 1.0.0

for formatd type FormatFloat, we override the precision to store full precision floats in the CSV file

See Also:

csv2rec() For information about missing and missingd, which can be used to fill in masked values
into your CSV file.

rec2txt(r, header=None, padding=3, precision=3, fields=None)
Returns a textual representation of a record array.

r: numpy recarray

header: list of column headers

padding: space between each column

precision: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to
a list of integers to apply precision individually. Precision for non-floats is simply ignored.

fields : if not None, a list of field names to print. fields can be a list of strings like [’field1’, ‘field2’]
or a single comma separated string like ‘field1,field2’

Example:

precision=[0,2,3]

Output:

ID Price Return
ABC 12.54 0.234
XYZ 6.32 -0.076

rec_append_fields(rec, names, arrs, dtypes=None)
Return a new record array with field names populated with data from arrays in arrs. If appending a
single field, then names, arrs and dtypes do not have to be lists. They can just be the values themselves.

rec_drop_fields(rec, names)
Return a new numpy record array with fields in names dropped.

rec_groupby(r, groupby, stats)
r is a numpy record array

groupby is a sequence of record array attribute names that together form the grouping key. eg (‘date’,
‘productcode’)

stats is a sequence of (attr, func, outname) tuples which will call x = func(attr) and assign x to
the record array output with attribute outname. For example:

stats = ((’sales’, len, ’numsales’), (’sales’, np.mean, ’avgsale’))

Return record array has dtype names for each attribute name in the the groupby argument, with the
associated group values, and for each outname name in the stats argument, with the associated stat
summary output.

646 Chapter 47. matplotlib mlab

Matplotlib, Release 1.0.0

rec_join(key, r1, r2, jointype=’inner’, defaults=None, r1postfix=’1’, r2postfix=’2’)
Join record arrays r1 and r2 on key; key is a tuple of field names – if key is a string it is assumed to be
a single attribute name. If r1 and r2 have equal values on all the keys in the key tuple, then their fields
will be merged into a new record array containing the intersection of the fields of r1 and r2.

r1 (also r2) must not have any duplicate keys.

The jointype keyword can be ‘inner’, ‘outer’, ‘leftouter’. To do a rightouter join just reverse r1 and
r2.

The defaults keyword is a dictionary filled with {column_name:default_value} pairs.

The keywords r1postfix and r2postfix are postfixed to column names (other than keys) that are both in
r1 and r2.

rec_keep_fields(rec, names)
Return a new numpy record array with only fields listed in names

rec_summarize(r, summaryfuncs)
r is a numpy record array

summaryfuncs is a list of (attr, func, outname) tuples which will apply func to the the array r*[attr]
and assign the output to a new attribute name *outname. The returned record array is identical to r,
with extra arrays for each element in summaryfuncs.

recs_join(key, name, recs, jointype=’outer’, missing=0.0, postfixes=None)
Join a sequence of record arrays on single column key.

This function only joins a single column of the multiple record arrays

key is the column name that acts as a key

name is the name of the column that we want to join

recs is a list of record arrays to join

jointype is a string ‘inner’ or ‘outer’

missing is what any missing field is replaced by

postfixes if not None, a len recs sequence of postfixes

returns a record array with columns [rowkey, name0, name1, ... namen-1]. or if postfixes [PF0, PF1,
..., PFN-1] are supplied,

[rowkey, namePF0, namePF1, ... namePFN-1].

Example:

r = recs_join("date", "close", recs=[r0, r1], missing=0.)

rk4(derivs, y0, t)
Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementa-
tion which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use
scipy.integrate().

y0 initial state vector

47.1. matplotlib.mlab 647

Matplotlib, Release 1.0.0

t sample times

derivs returns the derivative of the system and has the signature dy = derivs(yi, ti)

Example 1

2D system

def derivs6(x,t):
d1 = x[0] + 2*x[1]
d2 = -3*x[0] + 4*x[1]
return (d1, d2)

dt = 0.0005
t = arange(0.0, 2.0, dt)
y0 = (1,2)
yout = rk4(derivs6, y0, t)

Example 2:

1D system
alpha = 2
def derivs(x,t):

return -alpha*x + exp(-t)

y0 = 1
yout = rk4(derivs, y0, t)

If you have access to scipy, you should probably be using the scipy.integrate tools rather than this
function.

rms_flat(a)
Return the root mean square of all the elements of a, flattened out.

safe_isinf(x)
numpy.isinf() for arbitrary types

safe_isnan(x)
numpy.isnan() for arbitrary types

save(fname, X, fmt=’%.18e’, delimiter=’ ’)
Save the data in X to file fname using fmt string to convert the data to strings.

Deprecated. Use numpy.savetxt.

fname can be a filename or a file handle. If the filename ends in ‘.gz’, the file is automatically saved
in compressed gzip format. The load() function understands gzipped files transparently.

Example usage:

save(’test.out’, X) # X is an array
save(’test1.out’, (x,y,z)) # x,y,z equal sized 1D arrays
save(’test2.out’, x) # x is 1D
save(’test3.out’, x, fmt=’%1.4e’) # use exponential notation

648 Chapter 47. matplotlib mlab

Matplotlib, Release 1.0.0

delimiter is used to separate the fields, eg. delimiter ‘,’ for comma-separated values.

segments_intersect(s1, s2)
Return True if s1 and s2 intersect. s1 and s2 are defined as:

s1: (x1, y1), (x2, y2)
s2: (x3, y3), (x4, y4)

slopes(x, y)
slopes() calculates the slope y‘(x)

The slope is estimated using the slope obtained from that of a parabola through any three consecutive
points.

This method should be superior to that described in the appendix of A CONSISTENTLY WELL
BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July
1980) in at least one aspect:

Circles for interpolation demand a known aspect ratio between x- and y-values. For many
functions, however, the abscissa are given in different dimensions, so an aspect ratio is
completely arbitrary.

The parabola method gives very similar results to the circle method for most regular cases but behaves
much better in special cases.

Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Nor-
bert.Nemec at physik.uni-regensburg.de

(inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March
2006 halldor at vedur.is)

specgram(x, NFFT=256, Fs=2, detrend=<function detrend_none at 0x3cc2e60>, window=<function
window_hanning at 0x3cc20c8>, noverlap=128, pad_to=None, sides=’default’,
scale_by_freq=None)

Compute a spectrogram of data in x. Data are split into NFFT length segements and the PSD of each
section is computed. The windowing function window is applied to each segment, and the amount of
overlap of each segment is specified with noverlap.

If x is real (i.e. non-complex) only the spectrum of the positive frequencie is returned. If x is complex
then the complete spectrum is returned.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

47.1. matplotlib.mlab 649

Matplotlib, Release 1.0.0

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

Returns a tuple (Pxx, freqs, t):

•Pxx: 2-D array, columns are the periodograms of successive segments

•freqs: 1-D array of frequencies corresponding to the rows in Pxx

•t: 1-D array of times corresponding to midpoints of segments.

See Also:

psd() psd() differs in the default overlap; in returning the mean of the segment periodograms; and
in not returning times.

stineman_interp(xi, x, y, yp=None)
Given data vectors x and y, the slope vector yp and a new abscissa vector xi, the function
stineman_interp() uses Stineman interpolation to calculate a vector yi corresponding to xi.

Here’s an example that generates a coarse sine curve, then interpolates over a finer abscissa:

x = linspace(0,2*pi,20); y = sin(x); yp = cos(x)
xi = linspace(0,2*pi,40);
yi = stineman_interp(xi,x,y,yp);
plot(x,y,’o’,xi,yi)

650 Chapter 47. matplotlib mlab

Matplotlib, Release 1.0.0

The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED
METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980
issue of Creative Computing with a note from the editor stating that while they were:

not an academic journal but once in a while something serious and original comes in adding
that this was “apparently a real solution” to a well known problem.

For yp = None, the routine automatically determines the slopes using the slopes() routine.

x is assumed to be sorted in increasing order.

For values xi[j] < x[0] or xi[j] > x[-1], the routine tries an extrapolation. The relevance of
the data obtained from this, of course, is questionable...

Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor
at vedur.is

Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics,
University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de

vector_lengths(X, P=2.0, axis=None)
Finds the length of a set of vectors in n dimensions. This is like the numpy.norm() function for
vectors, but has the ability to work over a particular axis of the supplied array or matrix.

Computes (sum((x_i)^P))^(1/P) for each {x_i} being the elements of X along the given axis. If
axis is None, compute over all elements of X.

window_hanning(x)
return x times the hanning window of len(x)

window_none(x)
No window function; simply return x

47.1. matplotlib.mlab 651

Matplotlib, Release 1.0.0

652 Chapter 47. matplotlib mlab

CHAPTER

FORTYEIGHT

MATPLOTLIB PATH

48.1 matplotlib.path

Contains a class for managing paths (polylines).

class Path(vertices, codes=None, _interpolation_steps=1)
Bases: object

Path represents a series of possibly disconnected, possibly closed, line and curve segments.

The underlying storage is made up of two parallel numpy arrays:

• vertices: an Nx2 float array of vertices

• codes: an N-length uint8 array of vertex types

These two arrays always have the same length in the first dimension. For example, to represent a
cubic curve, you must provide three vertices as well as three codes CURVE3.

The code types are:

•STOP [1 vertex (ignored)] A marker for the end of the entire path (currently not required and
ignored)

•MOVETO [1 vertex] Pick up the pen and move to the given vertex.

•LINETO [1 vertex] Draw a line from the current position to the given vertex.

•CURVE3 [1 control point, 1 endpoint] Draw a quadratic Bezier curve from the current position,
with the given control point, to the given end point.

•CURVE4 [2 control points, 1 endpoint] Draw a cubic Bezier curve from the current position, with
the given control points, to the given end point.

•CLOSEPOLY [1 vertex (ignored)] Draw a line segment to the start point of the current polyline.

Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use
iter_segments() to get the vertex/code pairs. This is important, since many Path objects, as an op-
timization, do not store a codes at all, but have a default one provided for them by iter_segments().

Note also that the vertices and codes arrays should be treated as immutable – there are a number of
optimizations and assumptions made up front in the constructor that will not change when the data
changes.

653

Matplotlib, Release 1.0.0

Create a new path with the given vertices and codes.

vertices is an Nx2 numpy float array, masked array or Python sequence.

codes is an N-length numpy array or Python sequence of type matplotlib.path.Path.code_type.

These two arrays must have the same length in the first dimension.

If codes is None, vertices will be treated as a series of line segments.

If vertices contains masked values, they will be converted to NaNs which are then handled correctly
by the Agg PathIterator and other consumers of path data, such as iter_segments().

interpolation_steps is used as a hint to certain projections, such as Polar, that this path should be
linearly interpolated immediately before drawing. This attribute is primarily an implementation detail
and is not intended for public use.

class arc(theta1, theta2, n=None, is_wedge=False)
(staticmethod) Returns an arc on the unit circle from angle theta1 to angle theta2 (in degrees).

If n is provided, it is the number of spline segments to make. If n is not provided, the number of
spline segments is determined based on the delta between theta1 and theta2.

Masionobe, L. 2003. Drawing an elliptical arc using polylines, quadratic or cubic
Bezier curves.

code_type
alias of uint8

contains_path(path, transform=None)
Returns True if this path completely contains the given path.

If transform is not None, the path will be transformed before performing the test.

contains_point(point, transform=None)
Returns True if the path contains the given point.

If transform is not None, the path will be transformed before performing the test.

get_extents(transform=None)
Returns the extents (xmin, ymin, xmax, ymax) of the path.

Unlike computing the extents on the vertices alone, this algorithm will take into account the
curves and deal with control points appropriately.

class hatch(hatchpattern, density=6)
Given a hatch specifier, hatchpattern, generates a Path that can be used in a repeated hatching
pattern. density is the number of lines per unit square.

interpolated(steps)
Returns a new path resampled to length N x steps. Does not currently handle interpolating
curves.

intersects_bbox(bbox, filled=True)
Returns True if this path intersects a given Bbox.

filled, when True, treats the path as if it was filled. That is, if one path completely encloses the
other, intersects_path() will return True.

654 Chapter 48. matplotlib path

http://www.spaceroots.org/documents/ellipse/index.html
http://www.spaceroots.org/documents/ellipse/index.html

Matplotlib, Release 1.0.0

intersects_path(other, filled=True)
Returns True if this path intersects another given path.

filled, when True, treats the paths as if they were filled. That is, if one path completely encloses
the other, intersects_path() will return True.

iter_segments(transform=None, remove_nans=True, clip=None, snap=False, stroke_width=1.0, sim-
plify=None, curves=True)

Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple (vertices,
code), where vertices is a sequence of 1 - 3 coordinate pairs, and code is one of the Path codes.

Additionally, this method can provide a number of standard cleanups and conversions to the
path.

transform: if not None, the given affine transformation will be applied to the path.

remove_nans: if True, will remove all NaNs from the path and insert MOVETO commands
to skip over them.

clip: if not None, must be a four-tuple (x1, y1, x2, y2) defining a rectangle in which to clip
the path.

snap: if None, auto-snap to pixels, to reduce fuzziness of rectilinear lines. If True, force
snapping, and if False, don’t snap.

stroke_width: the width of the stroke being drawn. Needed as a hint for the snapping algo-
rithm.

simplify: if True, perform simplification, to remove vertices that do not affect the appearance
of the path. If False, perform no simplification. If None, use the should_simplify member
variable.

curves: If True, curve segments will be returned as curve segments. If False, all curves will
be converted to line segments.

class make_compound_path(*args)
(staticmethod) Make a compound path from a list of Path objects. Only polygons (not curves)
are supported.

class make_compound_path_from_polys(XY)
(static method) Make a compound path object to draw a number of polygons with equal numbers
of sides XY is a (numpolys x numsides x 2) numpy array of vertices. Return object is a Path

to_polygons(transform=None, width=0, height=0)
Convert this path to a list of polygons. Each polygon is an Nx2 array of vertices. In other words,
each polygon has no MOVETO instructions or curves. This is useful for displaying in backends
that do not support compound paths or Bezier curves, such as GDK.

If width and height are both non-zero then the lines will be simplified so that vertices outside of
(0, 0), (width, height) will be clipped.

transformed(transform)
Return a transformed copy of the path.

See Also:

48.1. matplotlib.path 655

Matplotlib, Release 1.0.0

2 1 0 1 2
0

10

20

30

40

50

matplotlib.transforms.TransformedPath A specialized path class that will cache the
transformed result and automatically update when the transform changes.

class unit_circle()
(staticmethod) Returns a Path of the unit circle. The circle is approximated using cubic Bezier
curves. This uses 8 splines around the circle using the approach presented here:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

class unit_circle_righthalf()
(staticmethod) Returns a Path of the right half of a unit circle. The circle is approximated using
cubic Bezier curves. This uses 4 splines around the circle using the approach presented here:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic
Splines.

class unit_rectangle()
(staticmethod) Returns a Path of the unit rectangle from (0, 0) to (1, 1).

class unit_regular_asterisk(numVertices)
(staticmethod) Returns a Path for a unit regular asterisk with the given numVertices and radius
of 1.0, centered at (0, 0).

class unit_regular_polygon(numVertices)

656 Chapter 48. matplotlib path

http://www.tinaja.com/glib/ellipse4.pdf
http://www.tinaja.com/glib/ellipse4.pdf
http://www.tinaja.com/glib/ellipse4.pdf
http://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 1.0.0

(staticmethod) Returns a Path for a unit regular polygon with the given numVertices and radius
of 1.0, centered at (0, 0).

class unit_regular_star(numVertices, innerCircle=0.5)
(staticmethod) Returns a Path for a unit regular star with the given numVertices and radius of
1.0, centered at (0, 0).

class wedge(theta1, theta2, n=None)
(staticmethod) Returns a wedge of the unit circle from angle theta1 to angle theta2 (in degrees).

If n is provided, it is the number of spline segments to make. If n is not provided, the number of
spline segments is determined based on the delta between theta1 and theta2.

cleanup_path()
cleanup_path(path, trans, remove_nans, clip, snap, simplify, curves)

convert_path_to_polygons()
convert_path_to_polygons(path, trans, width, height)

get_path_collection_extents(*args)
Given a sequence of Path objects, returns the bounding box that encapsulates all of them.

get_path_extents()
get_path_extents(path, trans)

path_in_path()
path_in_path(a, atrans, b, btrans)

path_intersects_path()
path_intersects_path(p1, p2)

point_in_path()
point_in_path(x, y, path, trans)

point_in_path_collection()
point_in_path_collection(x, y, r, trans, paths, transforms, offsets, offsetTrans, filled)

48.1. matplotlib.path 657

Matplotlib, Release 1.0.0

658 Chapter 48. matplotlib path

CHAPTER

FORTYNINE

MATPLOTLIB PYPLOT

49.1 matplotlib.pyplot

Provides a MATLAB-like plotting framework.

pylab combines pyplot with numpy into a single namespace. This is convenient for interactive work, but
for programming it is recommended that the namespaces be kept separate, e.g.:

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 5, 0.1);
y = np.sin(x)
plt.plot(x, y)

acorr(x, hold=None, **kwargs)
call signature:

acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True,
maxlags=10, **kwargs)

Plot the autocorrelation of x. If normed = True, normalize the data by the autocorrelation at 0-th lag.
x is detrended by the detrend callable (default no normalization).

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot()

The default linestyle is None and the default marker is ’o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True, vlines() rather than plot() is used to draw vertical lines from the origin to the
acorr. Otherwise, the plot style is determined by the kwargs, which are Line2D properties.

659

Matplotlib, Release 1.0.0

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all 2imeslen(x) − 1 lags.

The return value is a tuple (lags, c, linecol, b) where

•linecol is the LineCollection

•b is the x-axis.

See Also:

plot() or vlines()

For documentation on valid kwargs.

Example:

xcorr() above, and acorr() below.

Example:

60 40 20 0 20 40 60
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

60 40 20 0 20 40 60
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Additional kwargs: hold = [True|False] overrides default hold state

annotate(*args, **kwargs)
call signature:

660 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

annotate(s, xy, xytext=None, xycoords=’data’,
textcoords=’data’, arrowprops=None, **kwargs)

Keyword arguments:

Annotate the x, y point xy with text s at x, y location xytext. (If xytext = None, defaults to xy, and if
textcoords = None, defaults to xycoords).

arrowprops, if not None, is a dictionary of line properties (see matplotlib.lines.Line2D) for the
arrow that connects annotation to the point.

If the dictionary has a key arrowstyle, a FancyArrowPatch instance is created with the given dictionary
and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys for YAArow are

Key Description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
head-
width

the width of the base of the arrow head in points

shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point
being annotated. If d is the distance between the text and annotated point, shrink will shorten
the arrow so the tip and base are shink percent of the distance d away from the endpoints. ie,
shrink=0.05 is 5%

? any key for matplotlib.patches.polygon

Valid keys for FancyArrowPatch are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

xycoords and textcoords are strings that indicate the coordinates of xy and xytext.

49.1. matplotlib.pyplot 661

Matplotlib, Release 1.0.0

Prop-
erty

Description

‘figure
points’

points from the lower left corner of the figure

‘figure
pixels’

pixels from the lower left corner of the figure

‘figure
fraction’

0,0 is lower left of figure and 1,1 is upper, right

‘axes
points’

points from lower left corner of axes

‘axes
pixels’

pixels from lower left corner of axes

‘axes
fraction’

0,1 is lower left of axes and 1,1 is upper right

‘data’ use the coordinate system of the object being annotated (default)
‘offset
points’

Specify an offset (in points) from the xy value

‘polar’ you can specify theta, r for the annotation, even in cartesian plots. Note that if you are using
a polar axes, you do not need to specify polar for the coordinate system since that is the
native “data” coordinate system.

If a ‘points’ or ‘pixels’ option is specified, values will be added to the bottom-left and if negative,
values will be subtracted from the top-right. Eg:

10 points to the right of the left border of the axes and
5 points below the top border
xy=(10,-5), xycoords=’axes points’

You may use an instance of Transform or Artist. See Annotating Axes for more details.

The annotation_clip attribute contols the visibility of the annotation when it goes outside the axes
area. If True, the annotation will only be drawn when the xy is inside the axes. If False, the annotation
will always be drawn regardless of its position. The default is None, which behave as True only if
xycoords is”data”.

Additional kwargs are Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function

Continued on next page

662 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.1 – continued from previous page
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

arrow(x, y, dx, dy, hold=None, **kwargs)
call signature:

arrow(x, y, dx, dy, **kwargs)

Draws arrow on specified axis from (x, y) to (x + dx, y + dy).

Optional kwargs control the arrow properties:

49.1. matplotlib.pyplot 663

Matplotlib, Release 1.0.0

1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

arrowstyle

arc3

arc

arc

angle

angle3

angle

angle

angle

1 0 1 2 3 4 5
5

4

3

2

1

0

1

2

3

−>

fancy simple

wedge

wedge

wedge

664 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

Exception occurred rendering plot.

Additional kwargs: hold = [True|False] overrides default hold state

autogen_docstring(base)
Autogenerated wrappers will get their docstring from a base function with an addendum.

autoscale(enable=True, axis=’both’, tight=None)
Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if
autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes.

enable: [True | False | None] True (default) turns autoscaling on, False turns it off. None leaves the
autoscaling state unchanged.

axis: [’x’ | ‘y’ | ‘both’] which axis to operate on; default is ‘both’

tight: [True | False | None] If True, set view limits to data limits; if False, let the locator and margins
expand the view limits; if None, use tight scaling if the only artist is an image, otherwise treat
tight as False. The tight setting is retained for future autoscaling until it is explicitly changed.

49.1. matplotlib.pyplot 665

Matplotlib, Release 1.0.0

Returns None.

autumn()
set the default colormap to autumn and apply to current image if any. See help(colormaps) for more
information

axes(*args, **kwargs)
Add an axes at position rect specified by:

•axes() by itself creates a default full subplot(111) window axis.

•axes(rect, axisbg=’w’) where rect = [left, bottom, width, height] in normalized (0, 1)
units. axisbg is the background color for the axis, default white.

•axes(h) where h is an axes instance makes h the current axis. An Axes instance is returned.

kwarg Accepts Desctiption
axisbg color the axes background color
frameon [True|False] display the frame?
sharex otherax current axes shares xaxis attribute with otherax
sharey otherax current axes shares yaxis attribute with otherax
polar [True|False] use a polar axes?

Examples:

•examples/pylab_examples/axes_demo.py places custom axes.

•examples/pylab_examples/shared_axis_demo.py uses sharex and sharey.

axhline(y=0, xmin=0, xmax=1, hold=None, **kwargs)
call signature:

axhline(y=0, xmin=0, xmax=1, **kwargs)

Axis Horizontal Line

Draw a horizontal line at y from xmin to xmax. With the default values of xmin = 0 and xmax = 1,
this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if you
change them, eg. with the set_xlim() command. That is, the horizontal extent is in axes coords:
0=left, 0.5=middle, 1.0=right but the y location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to control
the line properties. Eg.,

•draw a thick red hline at y = 0 that spans the xrange

>>> axhline(linewidth=4, color=’r’)

•draw a default hline at y = 1 that spans the xrange

>>> axhline(y=1)

•draw a default hline at y = .5 that spans the the middle half of the xrange

666 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Valid kwargs are Line2D properties, with the exception of ‘transform’:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

49.1. matplotlib.pyplot 667

Matplotlib, Release 1.0.0

See Also:

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

axhspan(ymin, ymax, xmin=0, xmax=1, hold=None, **kwargs)
call signature:

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)

Axis Horizontal Span.

y coords are in data units and x coords are in axes (relative 0-1) units.

Draw a horizontal span (rectangle) from ymin to ymax. With the default values of xmin = 0 and
xmax = 1, this always spans the xrange, regardless of the xlim settings, even if you change them, eg.
with the set_xlim() command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle,
1.0=right but the y location is in data coordinates.

Return value is a matplotlib.patches.Polygon instance.

Examples:

•draw a gray rectangle from y = 0.25-0.75 that spans the horizontal extent of the axes

>>> axhspan(0.25, 0.75, facecolor=’0.5’, alpha=0.5)

Valid kwargs are Polygon properties:

668 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

Additional kwargs: hold = [True|False] overrides default hold state

axis(*v, **kwargs)
Set/Get the axis properties:

>>> axis()

returns the current axes limits [xmin, xmax, ymin, ymax].

>>> axis(v)

sets the min and max of the x and y axes, with v = [xmin, xmax, ymin, ymax].

>>> axis(’off’)

turns off the axis lines and labels.

49.1. matplotlib.pyplot 669

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

>>> axis(’equal’)

changes limits of x or y axis so that equal increments of x and y have the same length; a circle is
circular.

>>> axis(’scaled’)

achieves the same result by changing the dimensions of the plot box instead of the axis data limits.

>>> axis(’tight’)

changes x and y axis limits such that all data is shown. If all data is already shown, it will move it
to the center of the figure without modifying (xmax - xmin) or (ymax - ymin). Note this is slightly
different than in MATLAB.

>>> axis(’image’)

is ‘scaled’ with the axis limits equal to the data limits.

>>> axis(’auto’)

and

670 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

>>> axis(’normal’)

are deprecated. They restore default behavior; axis limits are automatically scaled to make the data fit
comfortably within the plot box.

if len(*v)==0, you can pass in xmin, xmax, ymin, ymax as kwargs selectively to alter just those limits
without changing the others.

The xmin, xmax, ymin, ymax tuple is returned

See Also:

xlim(), ylim() For setting the x- and y-limits individually.

axvline(x=0, ymin=0, ymax=1, hold=None, **kwargs)
call signature:

axvline(x=0, ymin=0, ymax=1, **kwargs)

Axis Vertical Line

Draw a vertical line at x from ymin to ymax. With the default values of ymin = 0 and ymax = 1, this
line will always span the vertical extent of the axes, regardless of the ylim settings, even if you change
them, eg. with the set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom,
0.5=middle, 1.0=top but the x location is in data coordinates.

Return value is the Line2D instance. kwargs are the same as kwargs to plot, and can be used to control
the line properties. Eg.,

•draw a thick red vline at x = 0 that spans the yrange

>>> axvline(linewidth=4, color=’r’)

•draw a default vline at x = 1 that spans the yrange

>>> axvline(x=1)

•draw a default vline at x = .5 that spans the the middle half of the yrange

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Valid kwargs are Line2D properties, with the exception of ‘transform’:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance

Continued on next page

49.1. matplotlib.pyplot 671

Matplotlib, Release 1.0.0

Table 49.3 – continued from previous page
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

axvspan(xmin, xmax, ymin=0, ymax=1, hold=None, **kwargs)
call signature:

672 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)

Axis Vertical Span.

x coords are in data units and y coords are in axes (relative 0-1) units.

Draw a vertical span (rectangle) from xmin to xmax. With the default values of ymin = 0 and ymax =

1, this always spans the yrange, regardless of the ylim settings, even if you change them, eg. with the
set_ylim() command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top
but the y location is in data coordinates.

Return value is the matplotlib.patches.Polygon instance.

Examples:

•draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the axes

>>> axvspan(1.25, 1.55, facecolor=’g’, alpha=0.5)

Valid kwargs are Polygon properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

49.1. matplotlib.pyplot 673

Matplotlib, Release 1.0.0

See Also:

axhspan() for example plot and source code

Additional kwargs: hold = [True|False] overrides default hold state

bar(left, height, width=0.80000000000000004, bottom=None, hold=None, **kwargs)
call signature:

bar(left, height, width=0.8, bottom=0, **kwargs)

Make a bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

left, height, width, and bottom can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

Argument Description
left the x coordinates of the left sides of the bars
height the heights of the bars

Optional keyword arguments:

Key-
word

Description

width the widths of the bars
bottom the y coordinates of the bottom edges of the bars
color the colors of the bars
edge-
color

the colors of the bar edges

linewidth width of bar edges; None means use default linewidth; 0 means don’t draw edges.
xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
er-
ror_kw

dictionary of kwargs to be passed to errorbar method. ecolor and capsize may be specified
here rather than as independent kwargs.

align ‘edge’ (default) | ‘center’
orien-
tation

‘vertical’ | ‘horizontal’

log [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale

For vertical bars, align = ‘edge’ aligns bars by their left edges in left, while align = ‘center’ interprets
these values as the x coordinates of the bar centers. For horizontal bars, align = ‘edge’ aligns bars by
their bottom edges in bottom, while align = ‘center’ interprets these values as the y coordinates of the
bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or sequences
of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts,

674 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

or candlestick plots. Detail: xerr and yerr are passed directly to errorbar(), so they can also have
shape 2xN for independent specification of lower and upper errors.

Other optional kwargs:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example: A stacked bar chart.

Additional kwargs: hold = [True|False] overrides default hold state

barbs(*args, **kw)
Plot a 2-D field of barbs.

call signatures:

barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)

Arguments:

49.1. matplotlib.pyplot 675

Matplotlib, Release 1.0.0

G1 G2 G3 G4 G5
0

10

20

30

40

50

60

70

80

S
co

re
s

Scores by group and gender

Men
Women

X, Y: The x and y coordinates of the barb locations (default is head of barb; see pivot
kwarg)

U, V: give the x and y components of the barb shaft

C: an optional array used to map colors to the barbs

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated
as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match the
column and row dimensions of U, then X and Y will be expanded with numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

length: Length of the barb in points; the other parts of the barb are scaled against this.
Default is 9

pivot: [‘tip’ | ‘middle’] The part of the arrow that is at the grid point; the arrow rotates
about this point, hence the name pivot. Default is ‘tip’

barbcolor: [color | color sequence] Specifies the color all parts of the barb except any
flags. This parameter is analagous to the edgecolor parameter for polygons, which
can be used instead. However this parameter will override facecolor.

flagcolor: [color | color sequence] Specifies the color of any flags on the barb. This
parameter is analagous to the facecolor parameter for polygons, which can be used

676 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

instead. However this parameter will override facecolor. If this is not set (and C has
not either) then flagcolor will be set to match barbcolor so that the barb has a uniform
color. If C has been set, flagcolor has no effect.

sizes: A dictionary of coefficients specifying the ratio of a given feature to the length of
the barb. Only those values one wishes to override need to be included. These features
include:

• ‘spacing’ - space between features (flags, full/half barbs)

• ‘height’ - height (distance from shaft to top) of a flag or full barb

• ‘width’ - width of a flag, twice the width of a full barb

• ‘emptybarb’ - radius of the circle used for low magnitudes

fill_empty: A flag on whether the empty barbs (circles) that are drawn should be filled with
the flag color. If they are not filled, they will be drawn such that no color is applied to
the center. Default is False

rounding: A flag to indicate whether the vector magnitude should be rounded when allo-
cating barb components. If True, the magnitude is rounded to the nearest multiple of
the half-barb increment. If False, the magnitude is simply truncated to the next lowest
multiple. Default is True

barb_increments: A dictionary of increments specifying values to associate with different
parts of the barb. Only those values one wishes to override need to be included.

• ‘half’ - half barbs (Default is 5)

• ‘full’ - full barbs (Default is 10)

• ‘flag’ - flags (default is 50)

flip_barb: Either a single boolean flag or an array of booleans. Single boolean indicates
whether the lines and flags should point opposite to normal for all barbs. An array
(which should be the same size as the other data arrays) indicates whether to flip for
each individual barb. Normal behavior is for the barbs and lines to point right (comes
from wind barbs having these features point towards low pressure in the Northern
Hemisphere.) Default is False

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observa-
tions, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows,
which give vector magnitude by the length of the arrow, the barbs give more quantitative information
about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude,
as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or “flag”). After those come full lines (barbs). The
smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude

49.1. matplotlib.pyplot 677

Matplotlib, Release 1.0.0

is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the
end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude
for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5.

linewidths and edgecolors can be used to customize the barb. Additional PolyCollection keyword
arguments:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Example:

Additional kwargs: hold = [True|False] overrides default hold state

678 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

6 4 2 0 2 4 6
6

4

2

0

2

4

6

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

barh(bottom, width, height=0.80000000000000004, left=None, hold=None, **kwargs)
call signature:

barh(bottom, width, height=0.8, left=0, **kwargs)

Make a horizontal bar plot with rectangles bounded by:

left, left + width, bottom, bottom + height (left, right, bottom and top edges)

bottom, width, height, and left can be either scalars or sequences

Return value is a list of matplotlib.patches.Rectangle instances.

Required arguments:

Argument Description
bottom the vertical positions of the bottom edges of the bars
width the lengths of the bars

Optional keyword arguments:

49.1. matplotlib.pyplot 679

Matplotlib, Release 1.0.0

4 3 2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Keyword Description
height the heights (thicknesses) of the bars
left the x coordinates of the left edges of the bars
color the colors of the bars
edgecolor the colors of the bar edges
linewidth width of bar edges; None means use default linewidth; 0 means don’t draw edges.
xerr if not None, will be used to generate errorbars on the bar chart
yerr if not None, will be used to generate errorbars on the bar chart
ecolor specifies the color of any errorbar
capsize (default 3) determines the length in points of the error bar caps
align ‘edge’ (default) | ‘center’
log [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale

Setting align = ‘edge’ aligns bars by their bottom edges in bottom, while align = ‘center’ interprets
these values as the y coordinates of the bar centers.

The optional arguments color, edgecolor, linewidth, xerr, and yerr can be either scalars or sequences
of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts,
or candlestick plots.

other optional kwargs:

680 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

bone()
set the default colormap to bone and apply to current image if any. See help(colormaps) for more
information

box(on=None)
Turn the axes box on or off according to on. on may be a boolean or a string, ‘on’ or ‘off’.

If on is None, toggle state.

boxplot(x, notch=0, sym=’b+’, vert=1, whis=1.5, positions=None, widths=None, patch_artist=False,
bootstrap=None, hold=None)

call signature:

boxplot(x, notch=0, sym=’+’, vert=1, whis=1.5,
positions=None, widths=None, patch_artist=False)

Make a box and whisker plot for each column of x or each vector in sequence x. The box extends
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend
from the box to show the range of the data. Flier points are those past the end of the whiskers.

49.1. matplotlib.pyplot 681

Matplotlib, Release 1.0.0

x is an array or a sequence of vectors.

•notch = 0 (default) produces a rectangular box plot.

•notch = 1 will produce a notched box plot

sym (default ‘b+’) is the default symbol for flier points. Enter an empty string (‘’) if you don’t want
to show fliers.

•vert = 1 (default) makes the boxes vertical.

•vert = 0 makes horizontal boxes. This seems goofy, but that’s how MATLAB did it.

whis (default 1.5) defines the length of the whiskers as a function of the inner quartile range. They
extend to the most extreme data point within (whis*(75%-25%)) data range.

bootstrap (default None) specifies whether to bootstrap the confidence intervals around the median
for notched boxplots. If bootstrap==None, no bootstrapping is performed, and notches are calculated
using a Gaussian-based asymptotic approximation (see McGill, R., Tukey, J.W., and Larsen, W.A.,
1978, and Kendall and Stuart, 1967). Otherwise, bootstrap specifies the number of times to boot-
strap the median to determine it’s 95% confidence intervals. Values between 1000 and 10000 are
recommended.

positions (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are auto-
matically set to match the positions.

widths is either a scalar or a vector and sets the width of each box. The default is 0.5, or
0.15*(distance between extreme positions) if that is smaller.

•patch_artist = False (default) produces boxes with the Line2D artist

•patch_artist = True produces boxes with the Patch artist

Returns a dictionary mapping each component of the boxplot to a list of the
matplotlib.lines.Line2D instances created.

Example:

Additional kwargs: hold = [True|False] overrides default hold state

broken_barh(xranges, yrange, hold=None, **kwargs)
call signature:

broken_barh(self, xranges, yrange, **kwargs)

A collection of horizontal bars spanning yrange with a sequence of xranges.

Required arguments:

Argument Description
xranges sequence of (xmin, xwidth)
yrange sequence of (ymin, ywidth)

kwargs are matplotlib.collections.BrokenBarHCollection properties:

Property Description
Continued on next page

682 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.5 – continued from previous page
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

these can either be a single argument, ie:

facecolors = ’black’

or a sequence of arguments for the various bars, ie:

facecolors = (’black’, ’red’, ’green’)

Example:

49.1. matplotlib.pyplot 683

Matplotlib, Release 1.0.0

1
100

50

0

50

100

150

200

Additional kwargs: hold = [True|False] overrides default hold state

cla()
Clear the current axes

clabel(CS, *args, **kwargs)
call signature:

clabel(cs, **kwargs)

adds labels to line contours in cs, where cs is a ContourSet object returned by contour.

clabel(cs, v, **kwargs)

only labels contours listed in v.

Optional keyword arguments:

fontsize: See http://matplotlib.sf.net/fonts.html

colors:

• if None, the color of each label matches the color of the corresponding contour

• if one string color, e.g. colors = ‘r’ or colors = ‘red’, all labels will be plotted in
this color

684 Chapter 49. matplotlib pyplot

http://matplotlib.sf.net/fonts.html

Matplotlib, Release 1.0.0

1
100

50

0

50

100

150

200

• if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be
plotted in different colors in the order specified

inline: controls whether the underlying contour is removed or not. Default is True.

inline_spacing: space in pixels to leave on each side of label when placing inline. Defaults
to 5. This spacing will be exact for labels at locations where the contour is straight,
less so for labels on curved contours.

fmt: a format string for the label. Default is ‘%1.3f’ Alternatively, this can be a dictio-
nary matching contour levels with arbitrary strings to use for each contour level (i.e.,
fmt[level]=string)

manual: if True, contour labels will be placed manually using mouse clicks. Click the
first button near a contour to add a label, click the second button (or potentially both
mouse buttons at once) to finish adding labels. The third button can be used to remove
the last label added, but only if labels are not inline. Alternatively, the keyboard can
be used to select label locations (enter to end label placement, delete or backspace act
like the third mouse button, and any other key will select a label location).

rightside_up: if True (default), label rotations will always be plus or minus 90 degrees
from level.

use_clabeltext: if True (default is False), ClabelText class (instead of matplotlib.Text) is
used to create labels. ClabelText recalculates rotation angles of texts during the draw-

49.1. matplotlib.pyplot 685

Matplotlib, Release 1.0.0

1
100

50

0

50

100

150

200

ing time, therefore this can be used if aspect of the axes changes.

Additional kwargs: hold = [True|False] overrides default hold state

clf()
Clear the current figure

clim(vmin=None, vmax=None)
Set the color limits of the current image

To apply clim to all axes images do:

clim(0, 0.5)

If either vmin or vmax is None, the image min/max respectively will be used for color scaling.

If you want to set the clim of multiple images, use, for example:

for im in gca().get_images():
im.set_clim(0, 0.05)

close(*args)
Close a figure window

close() by itself closes the current figure

686 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

1
50

0

50

100

150

close(num) closes figure number num

close(h) where h is a Figure instance, closes that figure

close(’all’) closes all the figure windows

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x3cc2e60>, win-
dow=<function window_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’,
scale_by_freq=None, hold=None, **kwargs)

call signature:

cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none,
window = mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

cohere() the coherence between x and y. Coherence is the normalized cross spectral density:

Cxy =
|Pxy|

2

PxxPyy
(49.1)

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

49.1. matplotlib.pyplot 687

Matplotlib, Release 1.0.0

100 50 0 50 100 150 200

1

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is

688 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

100 50 0 50 100 150 200

1

None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

The return value is a tuple (Cxy, f), where f are the frequencies of the coherence vector.

kwargs are applied to the lines.

References:

•Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley & Sons
(1986)

kwargs control the Line2D properties of the coherence plot:

49.1. matplotlib.pyplot 689

Matplotlib, Release 1.0.0

1 2 3
100

50

0

50

100

150

200

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string

Continued on next page

690 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.6 – continued from previous page
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

Additional kwargs: hold = [True|False] overrides default hold state

colorbar(mappable=None, cax=None, ax=None, **kw)
Add a colorbar to a plot.

Function signatures for the pyplot interface; all but the first are also method signatures for the
colorbar() method:

colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)

arguments:

mappable the Image, ContourSet, etc. to which the colorbar applies; this argument is
mandatory for the colorbar() method but optional for the colorbar() function,
which sets the default to the current image.

keyword arguments:

cax None | axes object into which the colorbar will be drawn

49.1. matplotlib.pyplot 691

Matplotlib, Release 1.0.0

0 50 100 150 200
seconds since start

Bill

Jim

race interrupted

ax None | parent axes object from which space for a new colorbar axes will be stolen

Additional keyword arguments are of two kinds:

axes properties:

Property Description
orienta-
tion

vertical or horizontal

fraction 0.15; fraction of original axes to use for colorbar
pad 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new

image axes
shrink 1.0; fraction by which to shrink the colorbar
aspect 20; ratio of long to short dimensions

colorbar properties:

692 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

Prop-
erty

Description

ex-
tend

[‘neither’ | ‘both’ | ‘min’ | ‘max’] If not ‘neither’, make pointed end(s) for out-of- range
values. These are set for a given colormap using the colormap set_under and set_over methods.

spac-
ing

[‘uniform’ | ‘proportional’] Uniform spacing gives each discrete color the same space;
proportional makes the space proportional to the data interval.

ticks [None | list of ticks | Locator object] If None, ticks are determined automatically from the
input.

for-
mat

[None | format string | Formatter object] If None, the ScalarFormatter is used. If a format
string is given, e.g. ‘%.3f’, that is used. An alternative Formatter object may be given
instead.

drawedges[False | True] If true, draw lines at color boundaries.

The following will probably be useful only in the context of indexed colors (that
is, when the mappable has norm=NoNorm()), or other unusual circumstances.

Prop-
erty

Description

bound-
aries

None or a sequence

values None or a sequence which must be of length 1 less than the sequence of boundaries. For each
region delimited by adjacent entries in boundaries, the color mapped to the corresponding
value in values will be used.

49.1. matplotlib.pyplot 693

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

If mappable is a ContourSet, its extend kwarg is included automatically.

Note that the shrink kwarg provides a simple way to keep a vertical colorbar, for example, from being
taller than the axes of the mappable to which the colorbar is attached; but it is a manual method
requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too wide) use a
smaller value of shrink.

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

returns: Colorbar instance; see also its base class, ColorbarBase. Call the set_label() method
to label the colorbar.

colormaps()
matplotlib provides the following colormaps.

•autumn

•bone

•cool

•copper

•flag

•gray

694 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

•hot

•hsv

•jet

•pink

•prism

•spring

•summer

•winter

•spectral

You can set the colormap for an image, pcolor, scatter, etc, either as a keyword argument:

imshow(X, cmap=cm.hot)

or post-hoc using the corresponding pylab interface function:

imshow(X)
hot()
jet()

49.1. matplotlib.pyplot 695

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

In interactive mode, this will update the colormap allowing you to see which one works best for your
data.

colors()
This is a do-nothing function to provide you with help on how matplotlib handles colors.

Commands which take color arguments can use several formats to specify the colors. For the basic
builtin colors, you can use a single letter

Alias Color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

For a greater range of colors, you have two options. You can specify the color using an html hex
string, as in:

color = ’#eeefff’

696 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

or you can pass an R,G,B tuple, where each of R,G,B are in the range [0,1].

You can also use any legal html name for a color, for example:

color = ’red’,
color = ’burlywood’
color = ’chartreuse’

The example below creates a subplot with a dark slate gray background

subplot(111, axisbg=(0.1843, 0.3098, 0.3098))

Here is an example that creates a pale turqoise title:

title(’Is this the best color?’, color=’#afeeee’)

connect(s, func)
Connect event with string s to func. The signature of func is:

def func(event)

where event is a matplotlib.backend_bases.Event. The following events are recognized

•‘button_press_event’

49.1. matplotlib.pyplot 697

Matplotlib, Release 1.0.0

0 1 2 3 4 5
time

0.06

0.04

0.02

0.00

0.02

0.04

0.06
s1

 a
n
d
 s

2

0 10 20 30 40 50
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

co
h
e
re

n
ce

•‘button_release_event’

•‘draw_event’

•‘key_press_event’

•‘key_release_event’

•‘motion_notify_event’

•‘pick_event’

•‘resize_event’

•‘scroll_event’

•‘figure_enter_event’,

•‘figure_leave_event’,

•‘axes_enter_event’,

•‘axes_leave_event’

•‘close_event’

For the location events (button and key press/release), if the mouse is over the axes, the variable
event.inaxes will be set to the Axes the event occurs is over, and additionally, the variables

698 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

event.xdata and event.ydata will be defined. This is the mouse location in data coords. See
KeyEvent and MouseEvent for more info.

Return value is a connection id that can be used with mpl_disconnect().

Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = canvas.mpl_connect(’button_press_event’, on_press)

contour(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

contourf() differs from the MATLAB version in that it does not draw the polygon edges. To draw
edges, add line contours with calls to contour().

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a QuadContourSet object.

49.1. matplotlib.pyplot 699

Matplotlib, Release 1.0.0

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be
used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and col-
ors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling
data values to colors. If norm is None and colors is None, the default linear scaling is
used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level curves
to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In
this case, the position of Z[0,0] is the center of the pixel, not a corner. If origin
is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of
Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the spe-
cial colormap values which default to the ends of the colormap range,
but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

contour-only keyword arguments:

700 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles to
be used. If this iterable is shorter than the number of contour levels it will be repeated
as necessary.

If contour is using a monochrome colormap and the contour level is less than 0, then
the linestyle specified in contour.negative_linestyle in matplotlibrc will be
used.

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

Note: contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array, then
that minimum value will be included in the lowest interval.

Examples:

Additional kwargs: hold = [True|False] overrides default hold state

contourf(*args, **kwargs)
contour() and contourf() draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

contourf() differs from the MATLAB version in that it does not draw the polygon edges. To draw
edges, add line contours with calls to contour().

call signatures:

contour(Z)

make a contour plot of an array Z. The level values are chosen automatically.

contour(X,Y,Z)

X, Y specify the (x, y) coordinates of the surface

49.1. matplotlib.pyplot 701

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

contour(Z,N)
contour(X,Y,Z,N)

contour N automatically-chosen levels.

contour(Z,V)
contour(X,Y,Z,V)

draw contour lines at the values specified in sequence V

contourf(..., V)

fill the (len(V)-1) regions between the values in V

contour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

X, Y, and Z must be arrays with the same dimensions.

Z may be a masked array, but filled contouring may not handle internal masked regions correctly.

C = contour(...) returns a QuadContourSet object.

702 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be
used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and col-
ors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling
data values to colors. If norm is None and colors is None, the default linear scaling is
used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level curves
to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.

This keyword is not active if X and Y are specified in the call to contour.

49.1. matplotlib.pyplot 703

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In
this case, the position of Z[0,0] is the center of the pixel, not a corner. If origin
is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of
Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the spe-
cial colormap values which default to the ends of the colormap range,
but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

704 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

contour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles to
be used. If this iterable is shorter than the number of contour levels it will be repeated
as necessary.

If contour is using a monochrome colormap and the contour level is less than 0, then
the linestyle specified in contour.negative_linestyle in matplotlibrc will be
used.

contourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly nchunk by nchunk points. This may

49.1. matplotlib.pyplot 705

Matplotlib, Release 1.0.0

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

Note: contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array, then
that minimum value will be included in the lowest interval.

Examples:

Additional kwargs: hold = [True|False] overrides default hold state

cool()
set the default colormap to cool and apply to current image if any. See help(colormaps) for more
information

copper()
set the default colormap to copper and apply to current image if any. See help(colormaps) for more
information

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x3cc2e60>, window=<function
window_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
hold=None, **kwargs)

706 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
word length anomaly

3

2

1

0

1

2

se
n
te

n
ce

 l
e
n
g
th

 a
n
o
m

a
ly

Nonsense (3 masked regions)

1.8

1.2

0.6

0.0

0.6

1.2

v
e
rb

o
si

ty
 c

o
e
ff

ic
ie

n
t

call signature:

csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The cross spectral density Pxy by Welch’s average periodogram method. The vectors x and y are
divided into NFFT length segments. Each segment is detrended by function detrend and windowed
by function window. The product of the direct FFTs of x and y are averaged over each segment to
compute Pxy, with a scaling to correct for power loss due to windowing.

Returns the tuple (Pxy, freqs). P is the cross spectrum (complex valued), and 10 log10 |Pxy| is plotted.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),

49.1. matplotlib.pyplot 707

Matplotlib, Release 1.0.0

3 2 1 0 1 2
3

2

1

0

1

2

-1.5

-1.0
-0.5

0.0

0.0

0.5

1.0

Listed colors (3 masked regions)

1.5

1.0

0.5

0.0

0.5

1.0

detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

708 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.500 1.000

1.500

Simplest default with labels

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley
& Sons (1986)

kwargs control the Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]

Continued on next page

49.1. matplotlib.pyplot 709

Matplotlib, Release 1.0.0

Table 49.7 – continued from previous page
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

Additional kwargs: hold = [True|False] overrides default hold state

delaxes(*args)
delaxes(ax): remove ax from the current figure. If ax doesn’t exist, an error will be raised.

delaxes(): delete the current axes

disconnect(cid)
disconnect callback id cid

710 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours dashed

Example usage:

cid = canvas.mpl_connect(’button_press_event’, on_press)
#...later
canvas.mpl_disconnect(cid)

draw()
redraw the current figure

errorbar(x, y, yerr=None, xerr=None, fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, hold=None,
**kwargs)

call signature:

errorbar(x, y, yerr=None, xerr=None,
fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)

Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not None.
Horizontal errorbars are plotted if xerr is not None.

x, y, xerr, and yerr can all be scalars, which plots a single error bar at x, y.

Optional keyword arguments:

49.1. matplotlib.pyplot 711

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Single color - negative contours solid

xerr/yerr: [scalar | N, Nx1, or 2xN array-like] If a scalar number, len(N) array-like ob-
ject, or an Nx1 array-like object, errorbars are drawn +/- value.

If a sequence of shape 2xN, errorbars are drawn at -row1 and +row2

fmt: ‘-‘ The plot format symbol. If fmt is None, only the errorbars are plotted. This is used
for adding errorbars to a bar plot, for example.

ecolor: [None | mpl color] a matplotlib color arg which gives the color the errorbar
lines; if None, use the marker color.

elinewidth: scalar the linewidth of the errorbar lines. If None, use the linewidth.

capsize: scalar the size of the error bar caps in points

barsabove: [True | False] if True, will plot the errorbars above the plot symbols. Default
is below.

lolims/uplims/xlolims/xuplims: [False | True] These arguments can be used to indicate
that a value gives only upper/lower limits. In that case a caret symbol is used to
indicate this. lims-arguments may be of the same type as xerr and yerr.

All other keyword arguments are passed on to the plot command for the markers, For example, this
code makes big red squares with thick green edges:

712 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.000

0.500

1.000

1.500

Crazy lines

x,y,yerr = rand(3,10)
errorbar(x, y, yerr, marker=’s’,

mfc=’red’, mec=’green’, ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, markerfacecolor, markeredge-
color, markersize and markeredgewith.

valid kwargs for the marker properties are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]

Continued on next page

49.1. matplotlib.pyplot 713

Matplotlib, Release 1.0.0

Table 49.8 – continued from previous page
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Returns (plotline, caplines, barlinecols):

plotline: Line2D instance x, y plot markers and/or line

caplines: list of error bar cap Line2D instances

barlinecols: list of LineCollection instances for the horizontal and vertical error
ranges.

Example:

Additional kwargs: hold = [True|False] overrides default hold state

figimage(*args, **kwargs)
call signatures:

714 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2 3
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.0

-0.6

-0
.2

0.2 0.6

1.0

1.4

Lines with colorbar

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.2 0.8 0.40.0 0.4 0.8 1.2 1.6

figimage(X, **kwargs)

adds a non-resampled array X to the figure.

figimage(X, xo, yo)

with pixel offsets xo, yo,

X must be a float array:

•If X is MxN, assume luminance (grayscale)

•If X is MxNx3, assume RGB

•If X is MxNx4, assume RGBA

Optional keyword arguments:

49.1. matplotlib.pyplot 715

Matplotlib, Release 1.0.0

3 2 1 0 1 2
word length anomaly

3

2

1

0

1

2

se
n
te

n
ce

 l
e
n
g
th

 a
n
o
m

a
ly

Nonsense (3 masked regions)

1.8

1.2

0.6

0.0

0.6

1.2

v
e
rb

o
si

ty
 c

o
e
ff

ic
ie

n
t

Key-
word

Description

xo or
yo

An integer, the x and y image offset in pixels

cmap a matplotlib.cm.ColorMap instance, eg cm.jet. If None, default to the rc image.cmap
value

norm a matplotlib.colors.Normalize instance. The default is normalization(). This scales
luminance -> 0-1

vmin|vmaxare used to scale a luminance image to 0-1. If either is None, the min and max of the
luminance values will be used. Note if you pass a norm instance, the settings for vmin and
vmax will be ignored.

alpha the alpha blending value, default is None
origin [‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper left or lower left

corner of the axes. Defaults to the rc image.origin value

figimage complements the axes image (imshow()) which will be resampled to fit the current axes. If
you want a resampled image to fill the entire figure, you can define an Axes with size [0,1,0,1].

An matplotlib.image.FigureImage instance is returned.

Additional kwargs are Artist kwargs passed on to :class:‘~matplotlib.image.FigureImage‘Addition
kwargs: hold = [True|False] overrides default hold state

figlegend(handles, labels, loc, **kwargs)

716 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

3 2 1 0 1 2
3

2

1

0

1

2

-1.5

-1.0
-0.5

0.0

0.0

0.5

1.0

Listed colors (3 masked regions)

1.5

1.0

0.5

0.0

0.5

1.0

Place a legend in the figure.

labels a sequence of strings

handles a sequence of Line2D or Patch instances

loc can be a string or an integer specifying the legend location

A matplotlib.legend.Legend instance is returned.

Example:

figlegend((line1, line2, line3),
(’label1’, ’label2’, ’label3’),
’upper right’)

See Also:

legend()

figtext(*args, **kwargs)
Call signature:

figtext(x, y, s, fontdict=None, **kwargs)

49.1. matplotlib.pyplot 717

Matplotlib, Release 1.0.0

0 1 2 3 4 5
time

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

s1
 a

n
d
 s

2

0 10 20 30 40 50
Frequency

85

75

65

55

45

C
S
D

 (
d
b
)

Add text to figure at location x, y (relative 0-1 coords). See text() for the meaning of the other
arguments.

kwargs control the Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]

Continued on next page

718 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.9 – continued from previous page
label any string
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, Figure-
Class=<class ’matplotlib.figure.Figure’>, **kwargs)

call signature:

figure(num=None, figsize=(8, 6), dpi=80, facecolor=’w’, edgecolor=’k’)

Create a new figure and return a matplotlib.figure.Figure instance. If num = None, the figure
number will be incremented and a new figure will be created. The returned figure objects have a
number attribute holding this number.

If num is an integer, and figure(num) already exists, make it active and return a reference to it. If
figure(num) does not exist it will be created. Numbering starts at 1, MATLAB style:

figure(1)

If you are creating many figures, make sure you explicitly call “close” on the figures you are not using,
because this will enable pylab to properly clean up the memory.

Optional keyword arguments:

49.1. matplotlib.pyplot 719

Matplotlib, Release 1.0.0

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Simplest errorbars, 0.2 in x, 0.4 in y

Keyword Description
figsize width x height in inches; defaults to rc figure.figsize
dpi resolution; defaults to rc figure.dpi
facecolor the background color; defaults to rc figure.facecolor
edgecolor the border color; defaults to rc figure.edgecolor

rcParams defines the default values, which can be modified in the matplotlibrc file

FigureClass is a Figure or derived class that will be passed on to new_figure_manager() in the
backends which allows you to hook custom Figure classes into the pylab interface. Additional kwargs
will be passed on to your figure init function.

fill(*args, **kwargs)
call signature:

fill(*args, **kwargs)

Plot filled polygons. args is a variable length argument, allowing for multiple x, y pairs with an
optional color format string; see plot() for details on the argument parsing. For example, to plot a
polygon with vertices at x, y in blue.:

ax.fill(x,y, ’b’)

An arbitrary number of x, y, color groups can be specified:

720 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

2 0 2 4 6
0.5

0.0

0.5

1.0

1.5
Vert. symmetric

2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
Hor. symmetric

2 0 2 4 6
0.5

0.0

0.5

1.0

1.5
H, V asymmetric

2 0 2 4 6
10-2

10-1

100

101 Mixed sym., log y

Variable errorbars

ax.fill(x1, y1, ’g’, x2, y2, ’r’)

Return value is a list of Patch instances that were added.

The same color strings that plot() supports are supported by the fill format string.

If you would like to fill below a curve, eg. shade a region between 0 and y along x, use
fill_between()

The closed kwarg will close the polygon when True (default).

kwargs control the Polygon properties:

49.1. matplotlib.pyplot 721

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

722 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Example:

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Additional kwargs: hold = [True|False] overrides default hold state

fill_between(x, y1, y2=0, where=None, interpolate=False, hold=None, **kwargs)
call signature:

fill_between(x, y1, y2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between y1 and y2 where where==True

x an N length np array of the x data

y1 an N length scalar or np array of the y data

y2 an N length scalar or np array of the y data

where if None, default to fill between everywhere. If not None, it is a a N length numpy boolean
array and the fill will only happen over the regions where where==True

interpolate If True, interpolate between the two lines to find the precise point of intersection. Oth-
erwise, the start and end points of the filled region will only occur on explicit values in the x
array.

kwargs keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

49.1. matplotlib.pyplot 723

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See Also:

fill_betweenx() for filling between two sets of x-values

Additional kwargs: hold = [True|False] overrides default hold state

fill_betweenx(y, x1, x2=0, where=None, hold=None, **kwargs)
call signature:

724 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0
b
e
tw

e
e
n
 y

1
 a

n
d
 0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

0.0 0.5 1.0 1.5 2.0
x

1.5
1.0
0.5
0.0
0.5
1.0
1.5

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

fill_between(y, x1, x2=0, where=None, **kwargs)

Create a PolyCollection filling the regions between x1 and x2 where where==True

y an N length np array of the y data

x1 an N length scalar or np array of the x data

x2 an N length scalar or np array of the x data

where if None, default to fill between everywhere. If not None, it is a a N length numpy boolean
array and the fill will only happen over the regions where where==True

kwargs keyword args passed on to the PolyCollection

kwargs control the Polygon properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance

Continued on next page

49.1. matplotlib.pyplot 725

Matplotlib, Release 1.0.0

Table 49.11 – continued from previous page
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See Also:

fill_between() for filling between two sets of y-values

Additional kwargs: hold = [True|False] overrides default hold state

findobj(o=None, match=None)

pyplot signature: findobj(o=gcf(), match=None)

Recursively find all :class:matplotlib.artist.Artist instances contained in self.

match can be

•None: return all objects contained in artist (including artist)

•function with signature boolean = match(artist) used to filter matches

•class instance: eg Line2D. Only return artists of class type

726 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
fill between where

0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0
Now regions with y2>1 are masked

flag()
set the default colormap to flag and apply to current image if any. See help(colormaps) for more
information

gca(**kwargs)
Return the current axis instance. This can be used to control axis properties either using set or the
Axes methods, for example, setting the xaxis range:

plot(t,s)
set(gca(), ’xlim’, [0,10])

or:

plot(t,s)
a = gca()
a.set_xlim([0,10])

gcf()
Return a reference to the current figure.

gci()
Get the current ScalarMappable instance (image or patch collection), or None if no images or patch
collections have been defined. The commands imshow() and figimage() create Image instances,

49.1. matplotlib.pyplot 727

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

and the commands pcolor() and scatter() create Collection instances. The current image is an
attribute of the current axes, or the nearest earlier axes in the current figure that contains an image.

get_current_fig_manager()

get_fignums()
Return a list of existing figure numbers.

get_plot_commands()

ginput(*args, **kwargs)
call signature:

ginput(self, n=1, timeout=30, show_clicks=True,
mouse_add=1, mouse_pop=3, mouse_stop=2)

Blocking call to interact with the figure.

This will wait for n clicks from the user and return a list of the coordinates of each click.

If timeout is zero or negative, does not timeout.

If n is zero or negative, accumulate clicks until a middle click (or potentially both mouse buttons at
once) terminates the input.

Right clicking cancels last input.

728 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

0.5

1.0

1.5

2.0

b
e
tw

e
e
n
 y

1
 a

n
d
 y

2

The buttons used for the various actions (adding points, removing points, terminating the inputs)
can be overriden via the arguments mouse_add, mouse_pop and mouse_stop, that give the associated
mouse button: 1 for left, 2 for middle, 3 for right.

The keyboard can also be used to select points in case your mouse does not have one or more of the
buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the enter key
terminates input and any other key (not already used by the window manager) selects a point.

gray()
set the default colormap to gray and apply to current image if any. See help(colormaps) for more
information

grid(b=None, which=’major’, **kwargs)
call signature:

grid(self, b=None, which=’major’, **kwargs)

Set the axes grids on or off; b is a boolean. (For MATLAB compatibility, b may also be a string, ‘on’
or ‘off’.)

If b is None and len(kwargs)==0, toggle the grid state. If kwargs are supplied, it is assumed that
you want a grid and b is thus set to True.

which can be ‘major’ (default), ‘minor’, or ‘both’ to control whether major tick grids, minor tick grids,
or both are affected.

49.1. matplotlib.pyplot 729

Matplotlib, Release 1.0.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
fill between where

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0
Now regions with y2 > 1 are masked

kawrgs are used to set the grid line properties, eg:

ax.grid(color=’r’, linestyle=’-’, linewidth=2)

Valid Line2D kwargs are

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]

Continued on next page

730 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.12 – continued from previous page
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

hexbin(x, y, C=None, gridsize=100, bins=None, xscale=’linear’, yscale=’linear’, extent=None,
cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecol-
ors=’none’, reduce_C_function=<function mean at 0x2d3a578>, mincnt=None, marginals=False,
hold=None, **kwargs)

call signature:

hexbin(x, y, C = None, gridsize = 100, bins = None,
xscale = ’linear’, yscale = ’linear’,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, edgecolors=’none’
reduce_C_function = np.mean, mincnt=None, marginals=True
**kwargs)

Make a hexagonal binning plot of x versus y, where x, y are 1-D sequences of the same length, N. If C
is None (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]).

If C is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each
hexagonal bin and then reduced according to reduce_C_function, which defaults to numpy’s mean
function (np.mean). (If C is specified, it must also be a 1-D sequence of the same length as x and y.)

49.1. matplotlib.pyplot 731

Matplotlib, Release 1.0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Model complexity --->

0

5

10

15

20

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length
Data length
Total message length

x, y and/or C may be masked arrays, in which case only unmasked points will be plotted.

Optional keyword arguments:

gridsize: [100 | integer] The number of hexagons in the x-direction, default is 100. The
corresponding number of hexagons in the y-direction is chosen such that the hexagons
are approximately regular. Alternatively, gridsize can be a tuple with two elements
specifying the number of hexagons in the x-direction and the y-direction.

bins: [None | ‘log’ | integer | sequence] If None, no binning is applied; the color of each
hexagon directly corresponds to its count value.

If ‘log’, use a logarithmic scale for the color map. Internally, log10(i + 1) is used to
determine the hexagon color.

If an integer, divide the counts in the specified number of bins, and color the hexagons
accordingly.

If a sequence of values, the values of the lower bound of the bins to be used.

xscale: [‘linear’ | ‘log’] Use a linear or log10 scale on the horizontal axis.

scale: [‘linear’ | ‘log’] Use a linear or log10 scale on the vertical axis.

mincnt: None | a positive integer If not None, only display cells with more than mincnt
number of points in the cell

732 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

marginals: True|False if marginals is True, plot the marginal density as colormapped rec-
tagles along the bottom of the x-axis and left of the y-axis

extent: [None | scalars (left, right, bottom, top)] The limits of the bins. The default as-
signs the limits based on gridsize, x, y, xscale and yscale.

Other keyword arguments controlling color mapping and normalization arguments:

cmap: [None | Colormap] a matplotlib.cm.Colormap instance. If None, defaults to
rc image.cmap.

norm: [None | Normalize] matplotlib.colors.Normalize instance is used to scale
luminance data to 0,1.

vmin/vmax: scalar vmin and vmax are used in conjunction with norm to normalize lumi-
nance data. If either are None, the min and max of the color array C is used. Note if
you pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: scalar between 0 and 1, or None the alpha value for the patches

linewidths: [None | scalar] If None, defaults to rc lines.linewidth. Note that this is a
tuple, and if you set the linewidths argument you must set it as a sequence of floats, as
required by RegularPolyCollection.

Other keyword arguments controlling the Collection properties:

edgecolors: [None | mpl color | color sequence] If ‘none’, draws the edges in the same
color as the fill color. This is the default, as it avoids unsightly unpainted pixels
between the hexagons.

If None, draws the outlines in the default color.

If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified
color.

Here are the standard descriptions of all the Collection kwargs:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples

Continued on next page

49.1. matplotlib.pyplot 733

Matplotlib, Release 1.0.0

Table 49.13 – continued from previous page
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

The return value is a PolyCollection instance; use get_array() on this PolyCollection to get
the counts in each hexagon.. If marginals is True, horizontal bar and vertical bar (both PolyCollec-
tions) will be attached to the return collection as attributes hbar and vbar

Example:

Additional kwargs: hold = [True|False] overrides default hold state

hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, hist-
type=’bar’, align=’mid’, orientation=’vertical’, rwidth=None, log=False, color=None, label=None,
hold=None, **kwargs)
call signature:

hist(x, bins=10, range=None, normed=False, cumulative=False,
bottom=None, histtype=’bar’, align=’mid’,
orientation=’vertical’, rwidth=None, log=False, **kwargs)

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, ...],
bins, [patches0, patches1,...]) if the input contains multiple data.

Multiple data can be provided via x as a list of datasets of potentially different length ([x0, x1, ...]), or
as a 2-D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative
to the list form.

Masked arrays are not supported at present.

Keyword arguments:

734 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

4 3 2 10 1 2 3 4
20

10

0

10

20

Hexagon binning

0

20

40

60

80

100

120

140

co
u
n
ts

4 3 2 10 1 2 3 4
20

10

0

10

20

With a log color scale

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
1
0

(N
)

bins: Either an integer number of bins or a sequence giving the bins. If bins is an integer,
bins + 1 bin edges will be returned, consistent with numpy.histogram() for numpy
version >= 1.3, and with the new = True argument in earlier versions. Unequally
spaced bins are supported if bins is a sequence.

range: The lower and upper range of the bins. Lower and upper outliers are ignored. If
not provided, range is (x.min(), x.max()). Range has no effect if bins is a sequence.

If bins is a sequence or range is specified, autoscaling is based on the specified bin
range instead of the range of x.

normed: If True, the first element of the return tuple will be the counts normalized to form
a probability density, i.e., n/(len(x)*dbin). In a probability density, the integral
of the histogram should be 1; you can verify that with a trapezoidal integration of the
probability density function:

pdf, bins, patches = ax.hist(...)
print np.sum(pdf * np.diff(bins))

weights An array of weights, of the same shape as x. Each value in x only contributes its
associated weight towards the bin count (instead of 1). If normed is True, the weights
are normalized, so that the integral of the density over the range remains 1.

cumulative: If True, then a histogram is computed where each bin gives the counts in that

49.1. matplotlib.pyplot 735

Matplotlib, Release 1.0.0

bin plus all bins for smaller values. The last bin gives the total number of datapoints.
If normed is also True then the histogram is normalized such that the last bin equals
1. If cumulative evaluates to less than 0 (e.g. -1), the direction of accumulation is
reversed. In this case, if normed is also True, then the histogram is normalized such
that the first bin equals 1.

histtype: [‘bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’] The type of histogram to draw.

• ‘bar’ is a traditional bar-type histogram. If multiple data are given the bars are
aranged side by side.

• ‘barstacked’ is a bar-type histogram where multiple data are stacked on top of
each other.

• ‘step’ generates a lineplot that is by default unfilled.

• ‘stepfilled’ generates a lineplot that is by default filled.

align: [’left’ | ‘mid’ | ‘right’] Controls how the histogram is plotted.

• ‘left’: bars are centered on the left bin edges.

• ‘mid’: bars are centered between the bin edges.

• ‘right’: bars are centered on the right bin edges.

orientation: [‘horizontal’ | ‘vertical’] If ‘horizontal’, barh() will be used for bar-type
histograms and the bottom kwarg will be the left edges.

rwidth: The relative width of the bars as a fraction of the bin width. If None, automatically
compute the width. Ignored if histtype = ‘step’ or ‘stepfilled’.

log: If True, the histogram axis will be set to a log scale. If log is True and x is a 1D
array, empty bins will be filtered out and only the non-empty (n, bins, patches) will be
returned.

color: Color spec or sequence of color specs, one per dataset. Default (None) uses the
standard line color sequence.

label: String, or sequence of strings to match multiple datasets. Bar charts yield multiple
patches per dataset, but only the first gets the label, so that the legend command will
work as expected:

ax.hist(10+2*np.random.randn(1000), label=’men’)
ax.hist(12+3*np.random.randn(1000), label=’women’, alpha=0.5)
ax.legend()

kwargs are used to update the properties of the Patch instances returned by hist:

736 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

Additional kwargs: hold = [True|False] overrides default hold state

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, label=”, hold=None, **kwargs)
call signature:

hlines(y, xmin, xmax, colors=’k’, linestyles=’solid’, **kwargs)

Plot horizontal lines at each y from xmin to xmax.

Returns the LineCollection that was added.

Required arguments:

y: a 1-D numpy array or iterable.

xmin and xmax: can be scalars or len(x) numpy arrays. If they are scalars, then the
respective values are constant, else the widths of the lines are determined by xmin and
xmax.

Optional keyword arguments:

49.1. matplotlib.pyplot 737

Matplotlib, Release 1.0.0

40 60 80 100 120 140 160
Smarts

0.000

0.005

0.010

0.015

0.020

0.025

0.030
P
ro

b
a
b
ili

ty
Histogram of IQ : µ=100, σ=15

colors: a line collections color argument, either a single color or a len(y) list of colors

linestyles: [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Example:

Additional kwargs: hold = [True|False] overrides default hold state

hold(b=None)
Set the hold state. If b is None (default), toggle the hold state, else set the hold state to boolean value
b:

hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off

When hold is True, subsequent plot commands will be added to the current axes. When hold is False,
the current axes and figure will be cleared on the next plot command.

hot()
set the default colormap to hot and apply to current image if any. See help(colormaps) for more
information

hsv()
set the default colormap to hsv and apply to current image if any. See help(colormaps) for more
information

738 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

0

1

2

3

4

5
Comparison of model with data

imread(*args, **kwargs)
Return image file in fname as numpy.array. fname may be a string path or a Python file-like object.

If format is provided, will try to read file of that type, otherwise the format is deduced from the
filename. If nothing can be deduced, PNG is tried.

Return value is a numpy.array. For grayscale images, the return array is MxN. For RGB images, the
return value is MxNx3. For RGBA images the return value is MxNx4.

matplotlib can only read PNGs natively, but if PIL is installed, it will use it to load the image and
return an array (if possible) which can be used with imshow().

imsave(*args, **kwargs)
Saves a 2D numpy.array as an image with one pixel per element. The output formats available
depend on the backend being used.

Arguments:

fname: A string containing a path to a filename, or a Python file-like object. If format is None
and fname is a string, the output format is deduced from the extension of the filename.

arr: A 2D array.

Keyword arguments:

vmin/vmax: [None | scalar] vmin and vmax set the color scaling for the image by fixing the
values that map to the colormap color limits. If either vmin or vmax is None, that limit is

49.1. matplotlib.pyplot 739

http://www.pythonware.com/products/pil/

Matplotlib, Release 1.0.0

determined from the arr min/max value.

cmap: cmap is a colors.Colormap instance, eg cm.jet. If None, default to the rc image.cmap
value.

format: One of the file extensions supported by the active backend. Most backends support png,
pdf, ps, eps and svg.

origin [‘upper’ | ‘lower’] Indicates where the [0,0] index of the array is in the upper left or
lower left corner of the axes. Defaults to the rc image.origin value.

dpi The DPI to store in the metadata of the file. This does not affect the resolution of the output
image.

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None,
vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None,
resample=None, url=None, hold=None, **kwargs)

call signature:

imshow(X, cmap=None, norm=None, aspect=None, interpolation=None,
alpha=None, vmin=None, vmax=None, origin=None, extent=None,
**kwargs)

Display the image in X to current axes. X may be a float array, a uint8 array or a PIL image. If X is an
array, X can have the following shapes:

•MxN – luminance (grayscale, float array only)

•MxNx3 – RGB (float or uint8 array)

•MxNx4 – RGBA (float or uint8 array)

The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0;
MxN float arrays may be normalised.

An matplotlib.image.AxesImage instance is returned.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance, eg. cm.jet. If None,
default to rc image.cmap value.

cmap is ignored when X has RGB(A) information

aspect: [None | ‘auto’ | ‘equal’ | scalar] If ‘auto’, changes the image aspect ratio to
match that of the axes

If ‘equal’, and extent is None, changes the axes aspect ratio to match that of the image.
If extent is not None, the axes aspect ratio is changed to match that of the extent.

If None, default to rc image.aspect value.

interpolation:

Acceptable values are None, ‘nearest’, ‘bilinear’, ‘bicubic’, ‘spline16’,
‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’, ‘quadric’, ‘catrom’, ‘gaus-
sian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’

740 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

If interpolation is None, default to rc image.interpolation. See also the fil-
ternorm and filterrad parameters

norm: [None | Normalize] An matplotlib.colors.Normalize instance; if None,
default is normalization(). This scales luminance -> 0-1

norm is only used for an MxN float array.

vmin/vmax: [None | scalar] Used to scale a luminance image to 0-1. If either is None,
the min and max of the luminance values will be used. Note if norm is not None, the
settings for vmin and vmax will be ignored.

alpha: scalar The alpha blending value, between 0 (transparent) and 1 (opaque) or None

origin: [None | ‘upper’ | ‘lower’] Place the [0,0] index of the array in the upper left or
lower left corner of the axes. If None, default to rc image.origin.

extent: [None | scalars (left, right, bottom, top)] Data limits for the axes. The default
assigns zero-based row, column indices to the x, y centers of the pixels.

shape: [None | scalars (columns, rows)] For raw buffer images

filternorm: A parameter for the antigrain image resize filter. From the antigrain documen-
tation, if filternorm = 1, the filter normalizes integer values and corrects the rounding
errors. It doesn’t do anything with the source floating point values, it corrects only
integers according to the rule of 1.0 which means that any sum of pixel weights must
be equal to 1.0. So, the filter function must produce a graph of the proper shape.

filterrad: The filter radius for filters that have a radius parameter, i.e. when interpolation
is one of: ‘sinc’, ‘lanczos’ or ‘blackman’

Additional kwargs are Artist properties:

49.1. matplotlib.pyplot 741

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
gid an id string
label any string
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

Example:

3 2 1 0 1 2 3
3

2

1

0

1

2

3

742 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Additional kwargs: hold = [True|False] overrides default hold state

ioff()
Turn interactive mode off.

ion()
Turn interactive mode on.

ishold()
Return the hold status of the current axes

isinteractive()
Return the interactive status

jet()
set the default colormap to jet and apply to current image if any. See help(colormaps) for more
information

legend(*args, **kwargs)
call signature:

legend(*args, **kwargs)

Place a legend on the current axes at location loc. Labels are a sequence of strings and loc can be a
string or an integer specifying the legend location.

To make a legend with existing lines:

legend()

legend() by itself will try and build a legend using the label property of the lines/patches/collections.
You can set the label of a line by doing:

plot(x, y, label=’my data’)

or:

line.set_label(’my data’).

If label is set to ‘_nolegend_’, the item will not be shown in legend.

To automatically generate the legend from labels:

legend((’label1’, ’label2’, ’label3’))

To make a legend for a list of lines and labels:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’))

To make a legend at a given location, using a location argument:

49.1. matplotlib.pyplot 743

Matplotlib, Release 1.0.0

legend((’label1’, ’label2’, ’label3’), loc=’upper left’)

or:

legend((line1, line2, line3), (’label1’, ’label2’, ’label3’), loc=2)

The location codes are

Location String Location Code
‘best’ 0
‘upper right’ 1
‘upper left’ 2
‘lower left’ 3
‘lower right’ 4
‘right’ 5
‘center left’ 6
‘center right’ 7
‘lower center’ 8
‘upper center’ 9
‘center’ 10

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argument.
bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. For
example,

loc = ‘upper right’, bbox_to_anchor = (0.5, 0.5)

will place the legend so that the upper right corner of the legend at the center of the axes.

The legend location can be specified in other coordinate, by using the bbox_transform keyword.

The loc itslef can be a 2-tuple giving x,y of the lower-left corner of the legend in axes coords
(bbox_to_anchor is ignored).

Keyword arguments:

prop: [None | FontProperties | dict] A matplotlib.font_manager.FontProperties
instance. If prop is a dictionary, a new instance will be created with prop. If None,
use rc settings.

numpoints: integer The number of points in the legend for line

scatterpoints: integer The number of points in the legend for scatter plot

scatteroffsets: list of floats a list of yoffsets for scatter symbols in legend

markerscale: [None | scalar] The relative size of legend markers vs. original. If None,
use rc settings.

frameon: [True | False] if True, draw a frame. Default is True

fancybox: [None | False | True] if True, draw a frame with a round fancybox. If None,
use rc

744 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

shadow: [None | False | True] If True, draw a shadow behind legend. If None, use rc
settings.

ncol [integer] number of columns. default is 1

mode [[“expand” | None]] if mode is “expand”, the legend will be horizontally expanded
to fill the axes area (or bbox_to_anchor)

bbox_to_anchor [an instance of BboxBase or a tuple of 2 or 4 floats] the bbox that the
legend will be anchored.

bbox_transform [[an instance of Transform | None]] the transform for the bbox.
transAxes if None.

title [string] the legend title

Padding and spacing between various elements use following keywords parameters. These values are
measure in font-size units. E.g., a fontsize of 10 points and a handlelength=5 implies a handlelength
of 50 points. Values from rcParams will be used if None.

Keyword Description
borderpad the fractional whitespace inside the legend border
labelspacing the vertical space between the legend entries
handlelength the length of the legend handles
handletextpad the pad between the legend handle and text
borderaxespad the pad between the axes and legend border
columnspacing the spacing between columns

Example:

Also see Legend guide.

locator_params(axis=’both’, tight=None, **kwargs)
Convenience method for controlling tick locators.

Keyword arguments:

axis [’x’ | ‘y’ | ‘both’] Axis on which to operate; default is ‘both’.

tight [True | False | None] Parameter passed to autoscale_view(). Default is None, for no change.

Remaining keyword arguments are passed to directly to the set_params() method.

Typically one might want to reduce the maximum number of ticks and use tight bounds when plotting
small subplots, for example:

ax.locator_params(tight=True, nbins=4)

Because the locator is involved in autoscaling, autoscale_view() is called automatically after the
parameters are changed.

This presently works only for the MaxNLocator used by default on linear axes, but it may be gener-
alized.

loglog(*args, **kwargs)
call signature:

49.1. matplotlib.pyplot 745

Matplotlib, Release 1.0.0

Model complexity --->

M
e
ss

a
g
e
 l
e
n
g
th

 -
--

>

Minimum Message Length

Model length

Data length

Total message length

loglog(*args, **kwargs)

Make a plot with log scaling on the x and y axis.

loglog() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale() / matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basex/basey: scalar > 1 base of the x/y logarithm

subsx/subsy: [None | sequence] the location of the minor x/y ticks;
None defaults to autosubs, which depend on the number of
decades in the plot; see matplotlib.axes.Axes.set_xscale() /

matplotlib.axes.Axes.set_yscale() for details

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked as in-
valid, or clipped to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)

Continued on next page

746 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.14 – continued from previous page
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

Additional kwargs: hold = [True|False] overrides default hold state

margins(*args, **kw)
Convenience method to set or retrieve autoscaling margins.

49.1. matplotlib.pyplot 747

Matplotlib, Release 1.0.0

0 5 10 15 20
10-2

10-1

100 semilogy

10-2 10-1 100 101 102
1.0

0.5

0.0

0.5

1.0
semilogx

2-72-62-52-42-32-22-1202122232425100

101

102 loglog base 4 on x

10-1 100 101 102 10310-1
100
101
102
103
104
105Errorbars go negative

signatures:

margins()

returns xmargin, ymargin

margins(margin)

margins(xmargin, ymargin)

margins(x=xmargin, y=ymargin)

margins(..., tight=False)

All three forms above set the xmargin and ymargin parameters. All keyword parameters are op-
tional. A single argument specifies both xmargin and ymargin. The tight parameter is passed to
autoscale_view(), which is executed after a margin is changed; the default here is True, on the
assumption that when margins are specified, no additional padding to match tick marks is usually
desired. Setting tight to None will preserve the previous setting.

Specifying any margin changes only the autoscaling; for example, if xmargin is not None, then xmar-
gin times the X data interval will be added to each end of that interval before it is used in autoscaling.

748 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

matshow(A, fignum=None, **kw)
Display an array as a matrix in a new figure window.

The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed
horizontally. The aspect ratio of the figure window is that of the array, unless this would make an
excessively short or narrow figure.

Tick labels for the xaxis are placed on top.

With the exception of fignum, keyword arguments are passed to imshow().

fignum: [None | integer | False] By default, matshow() creates a new figure window with auto-
matic numbering. If fignum is given as an integer, the created figure will use this figure number.
Because of how matshow() tries to set the figure aspect ratio to be the one of the array, if you
provide the number of an already existing figure, strange things may happen.

If fignum is False or 0, a new figure window will NOT be created.

minorticks_off()
Remove minor ticks from the current plot.

minorticks_on()
Display minor ticks on the current plot.

Displaying minor ticks reduces performance; turn them off using minorticks_off() if drawing speed is
a problem.

over(func, *args, **kwargs)
over calls:

func(*args, **kwargs)

with hold(True) and then restores the hold state.

pcolor(*args, **kwargs)
call signatures:

pcolor(C, **kwargs)
pcolor(X, Y, C, **kwargs)

Create a pseudocolor plot of a 2-D array.

C is the array of color values.

X and Y, if given, specify the (x, y) coordinates of the colored quadrilaterals; the quadrilateral for
C[i,j] has corners at:

(X[i, j], Y[i, j]),
(X[i, j+1], Y[i, j+1]),
(X[i+1, j], Y[i+1, j]),
(X[i+1, j+1], Y[i+1, j+1]).

Ideally the dimensions of X and Y should be one greater than those of C; if the dimensions are the
same, then the last row and column of C will be ignored.

49.1. matplotlib.pyplot 749

Matplotlib, Release 1.0.0

Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y;
for details, see the Grid Orientation section below.

If either or both of X and Y are 1-D arrays or column vectors, they will be expanded as needed into
the appropriate 2-D arrays, making a rectangular grid.

X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (X or Y at
[i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc set-
tings.

norm: [None | Normalize] An matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-
malize luminance data. If either are None, the min and max of the color array C is
used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’] If ‘faceted’, a black grid is drawn around each rectangle; if
‘flat’, edges are not drawn. Default is ‘flat’, contrary to MATLAB.

This kwarg is deprecated; please use ‘edgecolors’ instead:

• shading=’flat’ – edgecolors=’none’

• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘none’ | color | color sequence] If None, the rc setting is used by
default.

If ‘none’, edges will not be visible.

An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 or None the alpha blending value

Return value is a matplotlib.collection.Collection instance.

The grid orientation follows the MATLAB convention: an array C with shape (nrows, ncolumns) is
plotted with the column number as X and the row number as Y, increasing up; hence it is plotted the
way the array would be printed, except that the Y axis is reversed. That is, C is taken as C*(*y, x).

Similarly for meshgrid():

x = np.arange(5)
y = np.arange(3)
X, Y = meshgrid(x,y)

is equivalent to:

X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]])

Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]])

so if you have:

750 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

C = rand(len(x), len(y))

then you need:

pcolor(X, Y, C.T)

or:

pcolor(C.T)

MATLAB pcolor() always discards the last row and column of C, but matplotlib displays the last
row and column if X and Y are not specified, or if X and Y have one more row and column than C.

kwargs can be used to control the PolyCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string

Continued on next page

49.1. matplotlib.pyplot 751

Matplotlib, Release 1.0.0

Table 49.15 – continued from previous page
urls unknown
visible [True | False]
zorder any number

Note: the default antialiaseds is taken from rcParams[’patch.antialiased’], which defaults to True. In
some cases, particularly if alpha is 1, you may be able to reduce rendering artifacts (light or dark
patch boundaries) by setting it to False. An alternative it to set edgecolors to ‘face’. Unfortunately,
there seems to be no single combination of parameters that eliminates artifacts under all conditions.

Additional kwargs: hold = [True|False] overrides default hold state

pcolormesh(*args, **kwargs)
call signatures:

pcolormesh(C)
pcolormesh(X, Y, C)
pcolormesh(C, **kwargs)

C may be a masked array, but X and Y may not. Masked array support is implemented via cmap and
norm; in contrast, pcolor() simply does not draw quadrilaterals with masked colors or vertices.

Keyword arguments:

cmap: [None | Colormap] A matplotlib.cm.Colormap instance. If None, use rc set-
tings.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0,1. If None, defaults to normalize().

vmin/vmax: [None | scalar] vmin and vmax are used in conjunction with norm to nor-
malize luminance data. If either are None, the min and max of the color array C is
used. If you pass a norm instance, vmin and vmax will be ignored.

shading: [‘flat’ | ‘faceted’ | ‘gouraud’] If ‘faceted’, a black grid is drawn around each
rectangle; if ‘flat’, edges are not drawn. Default is ‘flat’, contrary to MATLAB.

This kwarg is deprecated; please use ‘edgecolors’ instead:

• shading=’flat’ – edgecolors=’None’

• shading=’faceted – edgecolors=’k’

edgecolors: [None | ‘None’ | color | color sequence] If None, the rc setting is used by
default.

If ‘None’, edges will not be visible.

An mpl color or sequence of colors will set the edge color

alpha: 0 <= scalar <= 1 or None the alpha blending value

752 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Return value is a matplotlib.collection.QuadMesh object.

kwargs can be used to control the matplotlib.collections.QuadMesh properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

See Also:

pcolor() For an explanation of the grid orientation and the expansion of 1-D X and/or Y to 2-D
arrays.

Additional kwargs: hold = [True|False] overrides default hold state

49.1. matplotlib.pyplot 753

Matplotlib, Release 1.0.0

pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.59999999999999998,
shadow=False, labeldistance=1.1000000000000001, hold=None)
call signature:

pie(x, explode=None, labels=None,
colors=(’b’, ’g’, ’r’, ’c’, ’m’, ’y’, ’k’, ’w’),
autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False)

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1,
then the values of x give the fractional area directly and the array will not be normalized.

Keyword arguments:

explode: [None | len(x) sequence] If not None, is a len(x) array which specifies the frac-
tion of the radius with which to offset each wedge.

colors: [None | color sequence] A sequence of matplotlib color args through which the
pie chart will cycle.

labels: [None | len(x) sequence of strings] A sequence of strings providing the labels
for each wedge

autopct: [None | format string | format function] If not None, is a string or function
used to label the wedges with their numeric value. The label will be placed inside the
wedge. If it is a format string, the label will be fmt%pct. If it is a function, it will be
called.

pctdistance: scalar The ratio between the center of each pie slice and the start of the text
generated by autopct. Ignored if autopct is None; default is 0.6.

labeldistance: scalar The radial distance at which the pie labels are drawn

shadow: [False | True] Draw a shadow beneath the pie.

The pie chart will probably look best if the figure and axes are square. Eg.:

figure(figsize=(8,8))
ax = axes([0.1, 0.1, 0.8, 0.8])

Return value: If autopct is None, return the tuple (patches, texts):

• patches is a sequence of matplotlib.patches.Wedge instances

• texts is a list of the label matplotlib.text.Text instances.

If autopct is not None, return the tuple (patches, texts, autotexts), where patches and texts are as
above, and autotexts is a list of Text instances for the numeric labels.

Additional kwargs: hold = [True|False] overrides default hold state

pink()
set the default colormap to pink and apply to current image if any. See help(colormaps) for more
information

754 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

plot(*args, **kwargs)
Plot lines and/or markers to the Axes. args is a variable length argument, allowing for multiple x, y
pairs with an optional format string. For example, each of the following is legal:

plot(x, y) # plot x and y using default line style and color
plot(x, y, ’bo’) # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, ’r+’) # ditto, but with red plusses

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.

An arbitrary number of x, y, fmt groups can be specified, as in:

a.plot(x1, y1, ’g^’, x2, y2, ’g-’)

Return value is a list of lines that were added.

The following format string characters are accepted to control the line style or marker:

character description
’-’ solid line style
’--’ dashed line style
’-.’ dash-dot line style
’:’ dotted line style
’.’ point marker
’,’ pixel marker
’o’ circle marker
’v’ triangle_down marker
’^’ triangle_up marker
’<’ triangle_left marker
’>’ triangle_right marker
’1’ tri_down marker
’2’ tri_up marker
’3’ tri_left marker
’4’ tri_right marker
’s’ square marker
’p’ pentagon marker
’*’ star marker
’h’ hexagon1 marker
’H’ hexagon2 marker
’+’ plus marker
’x’ x marker
’D’ diamond marker
’d’ thin_diamond marker
’|’ vline marker
’_’ hline marker

The following color abbreviations are supported:

49.1. matplotlib.pyplot 755

Matplotlib, Release 1.0.0

character color
‘b’ blue
‘g’ green
‘r’ red
‘c’ cyan
‘m’ magenta
‘y’ yellow
‘k’ black
‘w’ white

In addition, you can specify colors in many weird and wonderful ways, including full names
(’green’), hex strings (’#008000’), RGB or RGBA tuples ((0,1,0,1)) or grayscale intensities
as a string (’0.8’). Of these, the string specifications can be used in place of a fmt group, but the
tuple forms can be used only as kwargs.

Line styles and colors are combined in a single format string, as in ’bo’ for blue circles.

The kwargs can be used to set line properties (any property that has a set_* method). You can use
this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an
example:

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)
plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)
axis([0, 4, 0, 10])
legend()

If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.

You do not need to use format strings, which are just abbreviations. All of the line properties can
be controlled by keyword arguments. For example, you can set the color, marker, linestyle, and
markercolor with:

plot(x, y, color=’green’, linestyle=’dashed’, marker=’o’,
markerfacecolor=’blue’, markersize=12). See
:class:‘~matplotlib.lines.Line2D‘ for details.

The kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]

Continued on next page

756 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.17 – continued from previous page
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

kwargs scalex and scaley, if defined, are passed on to autoscale_view() to determine whether the
x and y axes are autoscaled; the default is True.

Additional kwargs: hold = [True|False] overrides default hold state

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, hold=None, **kwargs)
call signature:

plot_date(x, y, fmt=’bo’, tz=None, xdate=True, ydate=False, **kwargs)

49.1. matplotlib.pyplot 757

Matplotlib, Release 1.0.0

Similar to the plot() command, except the x or y (or both) data is considered to be dates, and the
axis is labeled accordingly.

x and/or y can be a sequence of dates represented as float days since 0001-01-01 UTC.

Keyword arguments:

fmt: string The plot format string.

tz: [None | timezone string] The time zone to use in labeling dates. If None, defaults to
rc value.

xdate: [True | False] If True, the x-axis will be labeled with dates.

ydate: [False | True] If True, the y-axis will be labeled with dates.

Note if you are using custom date tickers and formatters, it may be necessary to set
the formatters/locators after the call to plot_date() since plot_date() will set the de-
fault tick locator to matplotlib.dates.AutoDateLocator (if the tick locator is not al-
ready set to a matplotlib.dates.DateLocator instance) and the default tick formatter
to matplotlib.dates.AutoDateFormatter (if the tick formatter is not already set to a
matplotlib.dates.DateFormatter instance).

Valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points

Continued on next page

758 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.18 – continued from previous page
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

dates for helper functions

date2num(), num2date() and drange()

for help on creating the required floating point dates.

Additional kwargs: hold = [True|False] overrides default hold state

plotfile(fname, cols=(0,), plotfuncs=None, comments=’#’, skiprows=0, checkrows=5, delimiter=’, ’,
names=None, subplots=True, newfig=True, **kwargs)

Plot the data in fname

cols is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an
int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will
make column headers lower case, replace spaces with underscores, and remove all illegal characters;
so ’Adj Close*’ will have name ’adj_close’.

•If len(cols) == 1, only that column will be plotted on the y axis.

•If len(cols) > 1, the first element will be an identifier for data for the x axis and the remaining
elements will be the column indexes for multiple subplots if subplots is True (the default), or for
lines in a single subplot if subplots is False.

plotfuncs, if not None, is a dictionary mapping identifier to an Axes plotting function as a string.
Default is ‘plot’, other choices are ‘semilogy’, ‘fill’, ‘bar’, etc. You must use the same type of identifier
in the cols vector as you use in the plotfuncs dictionary, eg., integer column numbers in both or column
names in both. If subplots is False, then including any function such as ‘semilogy’ that changes the
axis scaling will set the scaling for all columns.

49.1. matplotlib.pyplot 759

Matplotlib, Release 1.0.0

comments, skiprows, checkrows, delimiter, and names are all passed on to
matplotlib.pylab.csv2rec() to load the data into a record array.

If newfig is True, the plot always will be made in a new figure; if False, it will be made in the current
figure if one exists, else in a new figure.

kwargs are passed on to plotting functions.

Example usage:

plot the 2nd and 4th column against the 1st in two subplots
plotfile(fname, (0,1,3))

plot using column names; specify an alternate plot type for volume
plotfile(fname, (’date’, ’volume’, ’adj_close’),

plotfuncs={’volume’: ’semilogy’})

Note: plotfile is intended as a convenience for quickly plotting data from flat files; it is not intended
as an alternative interface to general plotting with pyplot or matplotlib.

plotting()
Plotting commands

Command Description
axes Create a new axes
axis Set or return the current axis limits
bar make a bar chart
boxplot make a box and whiskers chart
cla clear current axes
clabel label a contour plot
clf clear a figure window
close close a figure window
colorbar add a colorbar to the current figure
cohere make a plot of coherence
contour make a contour plot
contourf make a filled contour plot
csd make a plot of cross spectral density
draw force a redraw of the current figure
errorbar make an errorbar graph
figlegend add a legend to the figure
figimage add an image to the figure, w/o resampling
figtext add text in figure coords
figure create or change active figure
fill make filled polygons
fill_between make filled polygons between two sets of y-values
fill_betweenx make filled polygons between two sets of x-values
gca return the current axes
gcf return the current figure
gci get the current image, or None

Continued on next page

760 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.19 – continued from previous page
getp get a graphics property
hist make a histogram
hold set the hold state on current axes
legend add a legend to the axes
loglog a log log plot
imread load image file into array
imsave save array as an image file
imshow plot image data
matshow display a matrix in a new figure preserving aspect
pcolor make a pseudocolor plot
plot make a line plot
plotfile plot data from a flat file
psd make a plot of power spectral density
quiver make a direction field (arrows) plot
rc control the default params
savefig save the current figure
scatter make a scatter plot
setp set a graphics property
semilogx log x axis
semilogy log y axis
show show the figures
specgram a spectrogram plot
stem make a stem plot
subplot make a subplot (numrows, numcols, axesnum)
table add a table to the axes
text add some text at location x,y to the current axes
title add a title to the current axes
xlabel add an xlabel to the current axes
ylabel add a ylabel to the current axes

The following commands will set the default colormap accordingly:

•autumn

•bone

•cool

•copper

•flag

•gray

•hot

•hsv

•jet

•pink

49.1. matplotlib.pyplot 761

Matplotlib, Release 1.0.0

•prism

•spring

•summer

•winter

•spectral

polar(*args, **kwargs)
call signature:

polar(theta, r, **kwargs)

Make a polar plot. Multiple theta, r arguments are supported, with format strings, as in plot().

An optional kwarg resolution sets the number of vertices to interpolate between each pair of points.
The default is 1, which disables interpolation.

prism()
set the default colormap to prism and apply to current image if any. See help(colormaps) for more
information

psd(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x3cc2e60>, window=<function
window_hanning at 0x3cc20c8>, noverlap=0, pad_to=None, sides=’default’, scale_by_freq=None,
hold=None, **kwargs)
call signature:

psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides=’default’, scale_by_freq=None, **kwargs)

The power spectral density by Welch’s average periodogram method. The vector x is divided into
NFFT length segments. Each segment is detrended by function detrend and windowed by function
window. noverlap gives the length of the overlap between segments. The |fft(i)|2 of each segment i
are averaged to compute Pxx, with a scaling to correct for power loss due to windowing. Fs is the
sampling frequency.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),

762 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns the tuple (Pxx, freqs).

For plotting, the power is plotted as 10 log10(Pxx) for decibels, though Pxx itself is returned.

References: Bendat & Piersol – Random Data: Analysis and Measurement Procedures, John Wiley
& Sons (1986)

kwargs control the Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]

Continued on next page

49.1. matplotlib.pyplot 763

Matplotlib, Release 1.0.0

Table 49.20 – continued from previous page
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

Example:

Additional kwargs: hold = [True|False] overrides default hold state

quiver(*args, **kw)
Plot a 2-D field of arrows.

call signatures:

quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)

Arguments:

X, Y:

764 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

0 2 4 6 8 10
0.15

0.10

0.05

0.00

0.05

0.10

0.15

0 10 20 30 40 50
Frequency

90
80
70
60
50
40
30
20
10

P
o
w

e
r

S
p
e
ct

ra
l
D

e
n
si

ty
 (

d
B

/H
z)

The x and y coordinates of the arrow locations (default is tail of arrow; see pivot
kwarg)

U, V:

give the x and y components of the arrow vectors

C: an optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If X and Y are absent, they will be generated
as a uniform grid. If U and V are 2-D arrays but X and Y are 1-D, and if len(X) and len(Y) match the
column and row dimensions of U, then X and Y will be expanded with numpy.meshgrid().

U, V, C may be masked arrays, but masked X, Y are not supported at present.

Keyword arguments:

units: [’width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’ | ‘xy’]

arrow units; the arrow dimensions except for length are in multiples of this
unit.

• ‘width’ or ‘height’: the width or height of the axes

• ‘dots’ or ‘inches’: pixels or inches, based on the figure dpi

• ‘x’, ‘y’, or ‘xy’: X, Y, or sqrt(X^2+Y^2) data units

49.1. matplotlib.pyplot 765

Matplotlib, Release 1.0.0

The arrows scale differently depending on the units. For ‘x’ or ‘y’, the arrows
get larger as one zooms in; for other units, the arrow size is independent of
the zoom state. For ‘width or ‘height’, the arrow size increases with the width
and height of the axes, respectively, when the the window is resized; for ‘dots’
or ‘inches’, resizing does not change the arrows.

angles: [’uv’ | ‘xy’ | array] With the default ‘uv’, the arrow aspect ratio is 1, so that
if U*==*V the angle of the arrow on the plot is 45 degrees CCW from the x-axis.
With ‘xy’, the arrow points from (x,y) to (x+u, y+v). Alternatively, arbitrary
angles may be specified as an array of values in degrees, CCW from the x-axis.

scale: [None | float]

data units per arrow length unit, e.g. m/s per plot width; a smaller scale
parameter makes the arrow longer. If None, a simple autoscaling algorithm
is used, based on the average vector length and the number of vectors. The
arrow length unit is given by the scale_units parameter

scale_units: None, or any of the units options. For example, if scale_units is
‘inches’, scale is 2.0, and (u,v) = (1,0), then the vector will be 0.5 inches long.
If scale_units is ‘width’, then the vector will be half the width of the axes. If
scale_units is ‘x’ then the vector will be 0.5 x-axis units. To plot vectors in the
x-y plane, with u and v having the same units as x and y, use “angles=’xy’,
scale_units=’xy’, scale=1”.

width: shaft width in arrow units; default depends on choice of units, above, and number
of vectors; a typical starting value is about 0.005 times the width of the plot.

headwidth: scalar head width as multiple of shaft width, default is 3

headlength: scalar head length as multiple of shaft width, default is 5

headaxislength: scalar head length at shaft intersection, default is 4.5

minshaft: scalar length below which arrow scales, in units of head length. Do not set this
to less than 1, or small arrows will look terrible! Default is 1

minlength: scalar minimum length as a multiple of shaft width; if an arrow length is less
than this, plot a dot (hexagon) of this diameter instead. Default is 1.

pivot: [‘tail’ | ‘middle’ | ‘tip’] The part of the arrow that is at the grid point; the arrow
rotates about this point, hence the name pivot.

color: [color | color sequence] This is a synonym for the PolyCollection facecolor
kwarg. If C has been set, color has no effect.

The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the
same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and
headaxislength. To make the head smaller relative to the shaft, scale down all the head parameters.
You will probably do best to leave minshaft alone.

linewidths and edgecolors can be used to customize the arrow outlines. Additional PolyCollection
keyword arguments:

766 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

quiverkey(*args, **kw)
Add a key to a quiver plot.

call signature:

quiverkey(Q, X, Y, U, label, **kw)

Arguments:

49.1. matplotlib.pyplot 767

Matplotlib, Release 1.0.0

Q: The Quiver instance returned by a call to quiver.

X, Y: The location of the key; additional explanation follows.

U: The length of the key

label: a string with the length and units of the key

Keyword arguments:

coordinates = [‘axes’ | ‘figure’ | ‘data’ | ‘inches’] Coordinate system and units for X,
Y: ‘axes’ and ‘figure’ are normalized coordinate systems with 0,0 in the lower left
and 1,1 in the upper right; ‘data’ are the axes data coordinates (used for the locations
of the vectors in the quiver plot itself); ‘inches’ is position in the figure in inches, with
0,0 at the lower left corner.

color: overrides face and edge colors from Q.

labelpos = [‘N’ | ‘S’ | ‘E’ | ‘W’] Position the label above, below, to the right, to the left
of the arrow, respectively.

labelsep: Distance in inches between the arrow and the label. Default is 0.1

labelcolor: defaults to default Text color.

fontproperties: A dictionary with keyword arguments accepted by the FontProperties
initializer: family, style, variant, size, weight

Any additional keyword arguments are used to override vector properties taken from Q.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is ‘N’ or ‘S’, X,
Y give the position of the middle of the key arrow. If labelpos is ‘E’, X, Y positions the head, and if
labelpos is ‘W’, X, Y positions the tail; in either of these two cases, X, Y is somewhere in the middle
of the arrow+label key object.

Additional kwargs: hold = [True|False] overrides default hold state

rc(*args, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg. for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple of
group names, eg. (xtick, ytick). kwargs is a dictionary attribute name/value pairs, eg:

rc(’lines’, linewidth=2, color=’r’)

sets the current rc params and is equivalent to:

rcParams[’lines.linewidth’] = 2
rcParams[’lines.color’] = ’r’

The following aliases are available to save typing for interactive users:

768 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Alias Property
‘lw’ ‘linewidth’
‘ls’ ‘linestyle’
‘c’ ‘color’
‘fc’ ‘facecolor’
‘ec’ ‘edgecolor’
‘mew’ ‘markeredgewidth’
‘aa’ ‘antialiased’

Thus you could abbreviate the above rc command as:

rc(’lines’, lw=2, c=’r’)

Note you can use python’s kwargs dictionary facility to store dictionaries of default parameters. Eg,
you can customize the font rc as follows:

font = {’family’ : ’monospace’,
’weight’ : ’bold’,
’size’ : ’larger’}

rc(’font’, **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use rcdefaults() to restore the
default rc params after changes.

rcdefaults()
Restore the default rc params - the ones that were created at matplotlib load time.

rgrids(*args, **kwargs)
Set/Get the radial locations of the gridlines and ticklabels on a polar plot.

call signatures:

lines, labels = rgrids()
lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs)

When called with no arguments, rgrid() simply returns the tuple (lines, labels), where lines is an
array of radial gridlines (Line2D instances) and labels is an array of tick labels (Text instances).
When called with arguments, the labels will appear at the specified radial distances and angles.

labels, if not None, is a len(radii) list of strings of the labels to use at each angle.

If labels is None, the rformatter will be used

Examples:

set the locations of the radial gridlines and labels
lines, labels = rgrids((0.25, 0.5, 1.0))

set the locations and labels of the radial gridlines and labels
lines, labels = rgrids((0.25, 0.5, 1.0), (’Tom’, ’Dick’, ’Harry’)

49.1. matplotlib.pyplot 769

Matplotlib, Release 1.0.0

savefig(*args, **kwargs)
call signature:

savefig(fname, dpi=None, facecolor=’w’, edgecolor=’w’,
orientation=’portrait’, papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1):

Save the current figure.

The output formats available depend on the backend being used.

Arguments:

fname: A string containing a path to a filename, or a Python file-like object, or possibly
some backend-dependent object such as PdfPages.

If format is None and fname is a string, the output format is deduced from the exten-
sion of the filename. If the filename has no extension, the value of the rc parameter
savefig.extension is used. If that value is ‘auto’, the backend determines the ex-
tension.

If fname is not a string, remember to specify format to ensure that the correct backend
is used.

Keyword arguments:

dpi: [None | scalar > 0] The resolution in dots per inch. If None it will default to the
value savefig.dpi in the matplotlibrc file.

facecolor, edgecolor: the colors of the figure rectangle

orientation: [‘landscape’ | ‘portrait’] not supported on all backends; currently only on
postscript output

papertype: One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through ‘a10’, ‘b0’ through
‘b10’. Only supported for postscript output.

format: One of the file extensions supported by the active backend. Most backends support
png, pdf, ps, eps and svg.

transparent: If True, the axes patches will all be transparent; the figure patch will also be
transparent unless facecolor and/or edgecolor are specified via kwargs. This is useful,
for example, for displaying a plot on top of a colored background on a web page. The
transparency of these patches will be restored to their original values upon exit of this
function.

bbox_inches: Bbox in inches. Only the given portion of the figure is saved. If ‘tight’, try
to figure out the tight bbox of the figure.

pad_inches: Amount of padding around the figure when bbox_inches is ‘tight’.

bbox_extra_artists: A list of extra artists that will be considered when the tight bbox is
calculated.

sca(ax)
Set the current Axes instance to ax. The current Figure is updated to the parent of ax.

770 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None, vmin=None, vmax=None, alpha=None,
linewidths=None, faceted=True, verts=None, hold=None, **kwargs)

call signatures:

scatter(x, y, s=20, c=’b’, marker=’o’, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
verts=None, **kwargs)

Make a scatter plot of x versus y, where x, y are converted to 1-D sequences which must be of the
same length, N.

Keyword arguments:

s: size in points^2. It is a scalar or an array of the same length as x and y.

c: a color. c can be a single color format string, or a sequence of color specifications of
length N, or a sequence of N numbers to be mapped to colors using the cmap and
norm specified via kwargs (see below). Note that c should not be a single numeric
RGB or RGBA sequence because that is indistinguishable from an array of values to
be colormapped. c can be a 2-D array in which the rows are RGB or RGBA, however.

marker: can be one of:

Value Description
’s’ square
’o’ circle
’^’ triangle up
’>’ triangle right
’v’ triangle down
’<’ triangle left
’d’ diamond
’p’ pentagon
’h’ hexagon
’8’ octagon
’+’ plus
’x’ cross

The marker can also be a tuple (numsides, style, angle), which will create a custom,
regular symbol.

numsides: the number of sides

style: the style of the regular symbol:

Value Description
0 a regular polygon
1 a star-like symbol
2 an asterisk
3 a circle (numsides and angle is ignored)

angle: the angle of rotation of the symbol

Finally, marker can be (verts, 0): verts is a sequence of (x, y) vertices for a custom
scatter symbol. Alternatively, use the kwarg combination marker = None, verts =

49.1. matplotlib.pyplot 771

Matplotlib, Release 1.0.0

verts.

Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and only
unmasked points will be plotted.

Other keyword arguments: the color mapping and normalization arguments will be used only if c is
an array of floats.

cmap: [None | Colormap] A matplotlib.colors.Colormap instance or registered
name. If None, defaults to rc image.cmap. cmap is only used if c is an array of
floats.

norm: [None | Normalize] A matplotlib.colors.Normalize instance is used to
scale luminance data to 0, 1. If None, use the default normalize(). norm is only
used if c is an array of floats.

vmin/vmax: vmin and vmax are used in conjunction with norm to normalize luminance
data. If either are None, the min and max of the color array C is used. Note if you
pass a norm instance, your settings for vmin and vmax will be ignored.

alpha: 0 <= scalar <= 1 or None The alpha value for the patches

linewidths: [None | scalar | sequence] If None, defaults to (lines.linewidth,). Note that
this is a tuple, and if you set the linewidths argument you must set it as a sequence of
floats, as required by RegularPolyCollection.

Optional kwargs control the Collection properties; in particular:

edgecolors: The string ‘none’ to plot faces with no outlines

facecolors: The string ‘none’ to plot unfilled outlines

Here are the standard descriptions of all the Collection kwargs:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance

Continued on next page

772 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.22 – continued from previous page
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
urls unknown
visible [True | False]
zorder any number

A Collection instance is returned.

Additional kwargs: hold = [True|False] overrides default hold state

sci(im)
Set the current image (target of colormap commands like jet(), hot() or clim()). The current
image is an attribute of the current axes.

semilogx(*args, **kwargs)
call signature:

semilogx(*args, **kwargs)

Make a plot with log scaling on the x axis.

semilogx() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_xscale().

Notable keyword arguments:

basex: scalar > 1 base of the x logarithm

subsx: [None | sequence] The location of the minor xticks; None defaults to autosubs,
which depend on the number of decades in the plot; see set_xscale() for details.

nonposx: [’mask’ | ‘clip’] non-positive values in x can be masked as invalid, or clipped
to a very small positive number

The remaining valid kwargs are Line2D properties:

49.1. matplotlib.pyplot 773

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

774 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

loglog() For example code and figure

Additional kwargs: hold = [True|False] overrides default hold state

semilogy(*args, **kwargs)
call signature:

semilogy(*args, **kwargs)

Make a plot with log scaling on the y axis.

semilogy() supports all the keyword arguments of plot() and
matplotlib.axes.Axes.set_yscale().

Notable keyword arguments:

basey: scalar > 1 Base of the y logarithm

subsy: [None | sequence] The location of the minor yticks; None defaults to autosubs,
which depend on the number of decades in the plot; see set_yscale() for details.

nonposy: [’mask’ | ‘clip’] non-positive values in y can be masked as invalid, or clipped
to a very small positive number

The remaining valid kwargs are Line2D properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
antialiased or aa [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color or c any matplotlib color
contains a callable function
dash_capstyle [’butt’ | ‘round’ | ‘projecting’]
dash_joinstyle [’miter’ | ‘round’ | ‘bevel’]
dashes sequence of on/off ink in points
data 2D array (rows are x, y) or two 1D arrays
drawstyle [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’]
figure a matplotlib.figure.Figure instance
fillstyle [’full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’]
gid an id string
label any string
linestyle or ls [’-’ | ’--’ | ’-.’ | ’:’ | ’None’ | ’ ’ | ”] and any drawstyle in combination with a linestyle, e.g. ’steps--’.
linewidth or lw float value in points
lod [True | False]
marker [’+’ | ’*’ | ’,’ | ’.’ | ’1’ | ’2’ | ’3’ | ’4’ | ’<’ | ’>’ | ’D’ | ’H’ | ’^’ | ’_’ | ’d’ | ’h’ | ’o’ | ’p’ | ’s’ | ’v’ | ’x’ | ’|’ | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | CARETUP | CARETDOWN | CARETLEFT | CARETRIGHT | ’None’ | ’ ’ | ” | ‘$...$’]

Continued on next page

49.1. matplotlib.pyplot 775

Matplotlib, Release 1.0.0

Table 49.24 – continued from previous page
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
markevery None | integer | (startind, stride)
picker float distance in points or callable pick function fn(artist, event)
pickradius float distance in points
rasterized [True | False | None]
snap unknown
solid_capstyle [’butt’ | ‘round’ | ‘projecting’]
solid_joinstyle [’miter’ | ‘round’ | ‘bevel’]
transform a matplotlib.transforms.Transform instance
url a url string
visible [True | False]
xdata 1D array
ydata 1D array
zorder any number

See Also:

loglog() For example code and figure

Additional kwargs: hold = [True|False] overrides default hold state

set_cmap(cmap)
set the default colormap to cmap and apply to current image if any. See help(colormaps) for more
information.

cmap must be a colors.Colormap instance, or the name of a registered colormap.

See register_cmap() and get_cmap().

setp(*args, **kwargs)
matplotlib supports the use of setp() (“set property”) and getp() to set and get object properties,
as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed,
you can do:

>>> line, = plot([1,2,3])
>>> setp(line, linestyle=’--’)

If you want to know the valid types of arguments, you can provide the name of the property you want
to set without a value:

>>> setp(line, ’linestyle’)
linestyle: [’-’ | ’--’ | ’-.’ | ’:’ | ’steps’ | ’None’]

776 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

If you want to see all the properties that can be set, and their possible values, you can do:

>>> setp(line)
... long output listing omitted

setp() operates on a single instance or a list of instances. If you are in query mode introspecting the
possible values, only the first instance in the sequence is used. When actually setting values, all the
instances will be set. E.g., suppose you have a list of two lines, the following will make both lines
thicker and red:

>>> x = arange(0,1.0,0.01)
>>> y1 = sin(2*pi*x)
>>> y2 = sin(4*pi*x)
>>> lines = plot(x, y1, x, y2)
>>> setp(lines, linewidth=2, color=’r’)

setp() works with the MATLAB style string/value pairs or with python kwargs. For example, the
following are equivalent:

>>> setp(lines, ’linewidth’, 2, ’color’, r’) # MATLAB style

>>> setp(lines, linewidth=2, color=’r’) # python style

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none at 0x3cc2e60>, win-
dow=<function window_hanning at 0x3cc20c8>, noverlap=128, cmap=None, xextent=None,
pad_to=None, sides=’default’, scale_by_freq=None, hold=None, **kwargs)

call signature:

specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=128,
cmap=None, xextent=None, pad_to=None, sides=’default’,
scale_by_freq=None, **kwargs)

Compute a spectrogram of data in x. Data are split into NFFT length segments and the PSD of each
section is computed. The windowing function window is applied to each segment, and the amount of
overlap of each segment is specified with noverlap.

Keyword arguments:

NFFT: integer The number of data points used in each block for the FFT. Must be even;
a power 2 is most efficient. The default value is 256.

Fs: scalar The sampling frequency (samples per time unit). It is used to calculate the
Fourier frequencies, freqs, in cycles per time unit. The default value is 2.

detrend: callable The function applied to each segment before fft-ing, designed to re-
move the mean or linear trend. Unlike in MATLAB, where the detrend parameter is
a vector, in matplotlib is it a function. The pylab module defines detrend_none(),
detrend_mean(), and detrend_linear(), but you can use a custom function as
well.

49.1. matplotlib.pyplot 777

Matplotlib, Release 1.0.0

window: callable or ndarray A function or a vector of length NFFT.
To create window vectors see window_hanning(), window_none(),
numpy.blackman(), numpy.hamming(), numpy.bartlett(), scipy.signal(),
scipy.signal.get_window(), etc. The default is window_hanning(). If a
function is passed as the argument, it must take a data segment as an argument and
return the windowed version of the segment.

noverlap: integer The number of points of overlap between blocks. The default value is
0 (no overlap).

pad_to: integer The number of points to which the data segment is padded when per-
forming the FFT. This can be different from NFFT, which specifies the number of
data points used. While not increasing the actual resolution of the psd (the minimum
distance between resolvable peaks), this can give more points in the plot, allowing for
more detail. This corresponds to the n parameter in the call to fft(). The default is
None, which sets pad_to equal to NFFT

sides: [‘default’ | ‘onesided’ | ‘twosided’] Specifies which sides of the PSD to return.
Default gives the default behavior, which returns one-sided for real data and both
for complex data. ‘onesided’ forces the return of a one-sided PSD, while ‘twosided’
forces two-sided.

scale_by_freq: boolean Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1. This allows for inte-
gration over the returned frequency values. The default is True for MATLAB compat-
ibility.

Fc: integer The center frequency of x (defaults to 0), which offsets the y extents of the
plot to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

cmap: A matplotlib.cm.Colormap instance; if None use default determined by rc

xextent: The image extent along the x-axis. xextent = (xmin,xmax) The default is
(0,max(bins)), where bins is the return value from mlab.specgram()

kwargs:

Additional kwargs are passed on to imshow which makes the specgram image

Return value is (Pxx, freqs, bins, im):

•bins are the time points the spectrogram is calculated over

•freqs is an array of frequencies

•Pxx is a len(times) x len(freqs) array of power

•im is a matplotlib.image.AxesImage instance

Note: If x is real (i.e. non-complex), only the positive spectrum is shown. If x is complex, both
positive and negative parts of the spectrum are shown. This can be overridden using the sides keyword
argument.

Example:

778 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

0 5 10 15
3

2

1

0

1

2

3

0 5 10 15
0

200

400

600

800

1000

Additional kwargs: hold = [True|False] overrides default hold state

spectral()
set the default colormap to spectral and apply to current image if any. See help(colormaps) for more
information

spring()
set the default colormap to spring and apply to current image if any. See help(colormaps) for more
information

spy(Z, precision=0, marker=None, markersize=None, aspect=’equal’, hold=None, **kwargs)
call signature:

spy(Z, precision=0, marker=None, markersize=None,
aspect=’equal’, **kwargs)

spy(Z) plots the sparsity pattern of the 2-D array Z.

If precision is 0, any non-zero value will be plotted; else, values of |Z| > precision will be plotted.

For scipy.sparse.spmatrix instances, there is a special case: if precision is ‘present’, any value
present in the array will be plotted, even if it is identically zero.

The array will be plotted as it would be printed, with the first index (row) increasing down and the
second index (column) increasing to the right.

49.1. matplotlib.pyplot 779

Matplotlib, Release 1.0.0

By default aspect is ‘equal’, so that each array element occupies a square space; set the aspect kwarg
to ‘auto’ to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an
array element directly.

Two plotting styles are available: image or marker. Both are available for full arrays, but only the
marker style works for scipy.sparse.spmatrix instances.

If marker and markersize are None, an image will be returned and any remaining kwargs are passed
to imshow(); else, a Line2D object will be returned with the value of marker determining the marker
type, and any remaining kwargs passed to the plot() method.

If marker and markersize are None, useful kwargs include:

•cmap

•alpha

See Also:

imshow() For image options.

For controlling colors, e.g. cyan background and red marks, use:

cmap = mcolors.ListedColormap([’c’,’r’])

If marker or markersize is not None, useful kwargs include:

•marker

•markersize

•color

Useful values for marker include:

•‘s’ square (default)

•‘o’ circle

•‘.’ point

•‘,’ pixel

See Also:

plot() For plotting options

Additional kwargs: hold = [True|False] overrides default hold state

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’, hold=None)
call signature:

stem(x, y, linefmt=’b-’, markerfmt=’bo’, basefmt=’r-’)

780 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and places a
marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt.

Return value is a tuple (markerline, stemlines, baseline).

See Also:

this document for details

examples/pylab_examples/stem_plot.py for a demo

Additional kwargs: hold = [True|False] overrides default hold state

step(x, y, *args, **kwargs)
call signature:

step(x, y, *args, **kwargs)

Make a step plot. Additional keyword args to step() are the same as those for plot().

x and y must be 1-D sequences, and it is assumed, but not checked, that x is uniformly increasing.

Keyword arguments:

where: [‘pre’ | ‘post’ | ‘mid’] If ‘pre’, the interval from x[i] to x[i+1] has level y[i+1]

If ‘post’, that interval has level y[i]

If ‘mid’, the jumps in y occur half-way between the x-values.

Additional kwargs: hold = [True|False] overrides default hold state

subplot(*args, **kwargs)
Create a subplot command, creating axes with:

subplot(numRows, numCols, plotNum)

where plotNum = 1 is the first plot number and increasing plotNums fill rows first. max(plotNum) ==

numRows * numCols

You can leave out the commas if numRows <= numCols <= plotNum < 10, as in:

subplot(211) # 2 rows, 1 column, first (upper) plot

subplot(111) is the default axis.

New subplots that overlap old will delete the old axes. If you do not want this behavior, use
matplotlib.figure.Figure.add_subplot() or the axes() command. Eg.:

from pylab import *
plot([1,2,3]) # implicitly creates subplot(111)
subplot(211) # overlaps, subplot(111) is killed
plot(rand(12), rand(12))
subplot(212, axisbg=’y’) # creates 2nd subplot with yellow background

49.1. matplotlib.pyplot 781

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html

Matplotlib, Release 1.0.0

Keyword arguments:

axisbg: The background color of the subplot, which can be any valid color specifier. See
matplotlib.colors for more information.

polar: A boolean flag indicating whether the subplot plot should be a polar projection.
Defaults to False.

projection: A string giving the name of a custom projection to be used for
the subplot. This projection must have been previously registered. See
matplotlib.projections.register_projection()

See Also:

axes() For additional information on axes() and subplot() keyword arguments.

examples/pylab_examples/polar_scatter.py For an example

Example:

0 1 2 3 4 5
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

D
a
m

p
e
d
 o

sc
ill

a
ti

o
n

A tale of 2 subplots

0.0 0.5 1.0 1.5 2.0
time (s)

1.0

0.5

0.0

0.5

1.0

U
n
d
a
m

p
e
d

subplot2grid(shape, loc, rowspan=1, colspan=1, **kwargs)
It creates a subplot in a grid of shape, at location of loc, spanning rowspan, colspan cells in each
direction. The index for loc is 0-based.

782 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

subplot2grid(shape, loc, rowspan=1, colspan=1)

is identical to

gridspec=GridSpec(shape[0], shape[2])
subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan)
subplot(subplotspec)

subplot_tool(targetfig=None)
Launch a subplot tool window for targetfig (default gcf).

A matplotlib.widgets.SubplotTool instance is returned.

subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, **fig_kw)
Create a figure with a set of subplots already made.

This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing
figure object, in a single call.

Keyword arguments:

nrows [int] Number of rows of the subplot grid. Defaults to 1.

ncols [int] Number of columns of the subplot grid. Defaults to 1.

sharex [bool] If True, the X axis will be shared amongst all subplots.

sharex [bool] If True, the Y axis will be shared amongst all subplots.

squeeze : bool

If True, extra dimensions are squeezed out from the returned axis object:

• if only one subplot is constructed (nrows=ncols=1), the resulting

single Axis object is returned as a scalar. - for Nx1 or 1xN subplots, the returned
object is a 1-d numpy object array of Axis objects are returned as numpy 1-d arrays. -
for NxM subplots with N>1 and M>1 are returned as a 2d array.

If False, no squeezing at all is done: the returned axis object is always a 2-d array contaning
Axis instances, even if it ends up being 1x1.

subplot_kw [dict] Dict with keywords passed to the add_subplot() call used to create each subplots.

fig_kw [dict] Dict with keywords passed to the figure() call. Note that all keywords not recognized
above will be automatically included here.

Returns:

fig, ax [tuple]

• fig is the Matplotlib Figure object

• ax can be either a single axis object or an array of axis objects if

49.1. matplotlib.pyplot 783

Matplotlib, Release 1.0.0

more than one supblot was created. The dimensions of the resulting array can be controlled with
the squeeze keyword, see above.

Examples:

x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2)

Just a figure and one subplot f, ax = plt.subplots() ax.plot(x, y) ax.set_title(‘Simple plot’)

Two subplots, unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y) ax1.set_title(‘Sharing Y axis’) ax2.scatter(x, y)

Four polar axes plt.subplots(2, 2, subplot_kw=dict(polar=True))

subplots_adjust(*args, **kwargs)
call signature:

subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

Tune the subplot layout via the matplotlib.figure.SubplotParams mechanism. The parameter
meanings (and suggested defaults) are:

left = 0.125 # the left side of the subplots of the figure
right = 0.9 # the right side of the subplots of the figure
bottom = 0.1 # the bottom of the subplots of the figure
top = 0.9 # the top of the subplots of the figure
wspace = 0.2 # the amount of width reserved for blank space between subplots
hspace = 0.2 # the amount of height reserved for white space between subplots

The actual defaults are controlled by the rc file

summer()
set the default colormap to summer and apply to current image if any. See help(colormaps) for more
information

suptitle(*args, **kwargs)
Add a centered title to the figure.

kwargs are matplotlib.text.Text properties. Using figure coordinates, the defaults are:

•x = 0.5 the x location of text in figure coords

•y = 0.98 the y location of the text in figure coords

•horizontalalignment = ‘center’ the horizontal alignment of the text

•verticalalignment = ‘top’ the vertical alignment of the text

A matplotlib.text.Text instance is returned.

Example:

fig.suptitle(’this is the figure title’, fontsize=12)

784 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

switch_backend(newbackend)
Switch the default backend to newbackend. This feature is experimental, and is only expected to
work switching to an image backend. Eg, if you have a bunch of PostScript scripts that you want to
run from an interactive ipython session, you may want to switch to the PS backend before running
them to avoid having a bunch of GUI windows popup. If you try to interactively switch from one GUI
backend to another, you will explode.

Calling this command will close all open windows.

table(**kwargs)
call signature:

table(cellText=None, cellColours=None,
cellLoc=’right’, colWidths=None,
rowLabels=None, rowColours=None, rowLoc=’left’,
colLabels=None, colColours=None, colLoc=’center’,
loc=’bottom’, bbox=None):

Add a table to the current axes. Returns a matplotlib.table.Table instance. For finer grained
control over tables, use the Table class and add it to the axes with add_table().

Thanks to John Gill for providing the class and table.

kwargs control the Table properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
contains a callable function
figure a matplotlib.figure.Figure instance
fontsize a float in points
gid an id string
label any string
lod [True | False]
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

text(x, y, s, fontdict=None, withdash=False, **kwargs)
call signature:

49.1. matplotlib.pyplot 785

Matplotlib, Release 1.0.0

text(x, y, s, fontdict=None, **kwargs)

Add text in string s to axis at location x, y, data coordinates.

Keyword arguments:

fontdict: A dictionary to override the default text properties. If fontdict is None, the de-
faults are determined by your rc parameters.

withdash: [False | True] Creates a TextWithDash instance instead of a Text instance.

Individual keyword arguments can be used to override any given parameter:

text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in axis
coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center of the
axes:

text(0.5, 0.5,’matplotlib’,
horizontalalignment=’center’,
verticalalignment=’center’,
transform = ax.transAxes)

You can put a rectangular box around the text instance (eg. to set a background color) by using the
keyword bbox. bbox is a dictionary of matplotlib.patches.Rectangle properties. For example:

text(x, y, s, bbox=dict(facecolor=’red’, alpha=0.5))

Valid kwargs are matplotlib.text.Text properties:

Property Description
agg_filter unknown
alpha float (0.0 transparent through 1.0 opaque)
animated [True | False]
axes an Axes instance
backgroundcolor any matplotlib color
bbox rectangle prop dict
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color any matplotlib color
contains a callable function
family or fontfamily or fontname or name [FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’]
figure a matplotlib.figure.Figure instance
fontproperties or font_properties a matplotlib.font_manager.FontProperties instance
gid an id string
horizontalalignment or ha [‘center’ | ‘right’ | ‘left’]
label any string

Continued on next page

786 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

Table 49.25 – continued from previous page
linespacing float (multiple of font size)
lod [True | False]
multialignment [’left’ | ‘right’ | ‘center’]
path_effects unknown
picker [None|float|boolean|callable]
position (x,y)
rasterized [True | False | None]
rotation [angle in degrees | ‘vertical’ | ‘horizontal’]
rotation_mode unknown
size or fontsize [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’]
snap unknown
stretch or fontstretch [a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’]
style or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
text string or anything printable with ‘%s’ conversion.
transform Transform instance
url a url string
variant or fontvariant [‘normal’ | ‘small-caps’]
verticalalignment or va or ma [‘center’ | ‘top’ | ‘bottom’ | ‘baseline’]
visible [True | False]
weight or fontweight [a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’]
x float
y float
zorder any number

thetagrids(*args, **kwargs)
Set/Get the theta locations of the gridlines and ticklabels.

If no arguments are passed, return a tuple (lines, labels) where lines is an array of radial gridlines
(Line2D instances) and labels is an array of tick labels (Text instances):

lines, labels = thetagrids()

Otherwise the syntax is:

lines, labels = thetagrids(angles, labels=None, fmt=’%d’, frac = 1.1)

set the angles at which to place the theta grids (these gridlines are equal along the theta dimension).

angles is in degrees.

labels, if not None, is a len(angles) list of strings of the labels to use at each angle.

If labels is None, the labels will be fmt%angle.

frac is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is
outside the axes and 0.95 is inside the axes.

Return value is a list of tuples (lines, labels):

49.1. matplotlib.pyplot 787

Matplotlib, Release 1.0.0

•lines are Line2D instances

•labels are Text instances.

Note that on input, the labels argument is a list of strings, and on output it is a list of Text instances.

Examples:

set the locations of the radial gridlines and labels
lines, labels = thetagrids(range(45,360,90))

set the locations and labels of the radial gridlines and labels
lines, labels = thetagrids(range(45,360,90), (’NE’, ’NW’, ’SW’,’SE’))

tick_params(axis=’both’, **kwargs)
Convenience method for changing the appearance of ticks and tick labels.

Keyword arguments:

axis [’x’ | ‘y’ | ‘both’] Axis on which to operate; default is ‘both’.

reset [True | False] If True, set all parameters to defaults before processing other keyword arguments.
Default is False.

which [’major’ | ‘minor’ | ‘both’] Default is ‘major’: apply arguments to major ticks only.

direction [’in’ | ‘out’] Puts ticks inside or outside the axes.

length Tick length in points.

width Tick width in points.

color Tick color; accepts any mpl color spec.

pad Distance in points between tick and label.

labelsize Tick label font size in points or as a string (e.g. ‘large’).

labelcolor Tick label color; mpl color spec.

colors Changes the tick color and the label color to the same value: mpl color spec.

zorder Tick and label zorder.

bottom, top, left, right Boolean or [’on’ | ‘off’], controls whether to draw the respective ticks.

labelbottom, labeltop, labelleft, labelright Boolean or [’on’ | ‘off’], controls whether to draw the re-
spective tick labels.

Example:

ax.tick_params(direction=’out’, length=6, width=2, colors=’r’)

This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2
points. Tick labels will also be red.

788 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

ticklabel_format(**kwargs)
Convenience method for manipulating the ScalarFormatter used by default for linear axes.

Optional keyword arguments:

Key-
word

Description

style [‘sci’ (or ‘scientific’) | ‘plain’] plain turns off scientific notation
scilim-
its

(m, n), pair of integers; if style is ‘sci’, scientific notation will be used for numbers outside the
range 10‘-m‘:sup: to 10‘n‘:sup:. Use (0,0) to include all numbers.

use-
Offset

[True | False | offset]; if True, the offset will be calculated as needed; if False, no offset will be
used; if a numeric offset is specified, it will be used.

axis [‘x’ | ‘y’ | ‘both’]

Only the major ticks are affected. If the method is called when the ScalarFormatter is not the
Formatter being used, an AttributeError will be raised.

title(s, *args, **kwargs)
Set the title of the current axis to s.

Default font override is:

override = {’fontsize’: ’medium’,
’verticalalignment’: ’baseline’,
’horizontalalignment’: ’center’}

See Also:

text() for information on how override and the optional args work.

tricontour(*args, **kwargs)
tricontour() and tricontourf() draw contour lines and filled contours, respectively, on an un-
structured triangular grid. Except as noted, function signatures and return values are the same for both
versions.

The triangulation can be specified in one of two ways; either:

tricontour(triangulation, ...)

where triangulation is a Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)
tricontour(x, y, mask, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

49.1. matplotlib.pyplot 789

Matplotlib, Release 1.0.0

The remaining arguments may be:

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are
chosen automatically.

tricontour(..., Z, N)

contour N automatically-chosen levels.

tricontour(..., Z, V)

draw contour lines at the values specified in sequence V

tricontourf(..., Z, V)

fill the (len(V)-1) regions between the values in V

tricontour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

C = tricontour(...) returns a TriContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be
used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and col-
ors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling
data values to colors. If norm is None and colors is None, the default linear scaling is
used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level curves
to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

790 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In
this case, the position of Z[0,0] is the center of the pixel, not a corner. If origin
is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of
Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that
all data are included. These added ranges are then mapped to the spe-
cial colormap values which default to the ends of the colormap range,
but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

tricontour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles to
be used. If this iterable is shorter than the number of contour levels it will be repeated
as necessary.

If contour is using a monochrome colormap and the contour level is less than 0, then
the linestyle specified in contour.negative_linestyle in matplotlibrc will be
used.

tricontourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

Note: tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

49.1. matplotlib.pyplot 791

Matplotlib, Release 1.0.0

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array, then
that minimum value will be included in the lowest interval.

Examples:

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Contour plot of Delaunay triangulation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Additional kwargs: hold = [True|False] overrides default hold state

tricontourf(*args, **kwargs)
tricontour() and tricontourf() draw contour lines and filled contours, respectively, on an un-
structured triangular grid. Except as noted, function signatures and return values are the same for both
versions.

The triangulation can be specified in one of two ways; either:

tricontour(triangulation, ...)

where triangulation is a Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)

792 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

Contour plot of user-specified triangulation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

tricontour(x, y, mask, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The remaining arguments may be:

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are
chosen automatically.

tricontour(..., Z, N)

contour N automatically-chosen levels.

tricontour(..., Z, V)

draw contour lines at the values specified in sequence V

49.1. matplotlib.pyplot 793

Matplotlib, Release 1.0.0

tricontourf(..., Z, V)

fill the (len(V)-1) regions between the values in V

tricontour(Z, **kwargs)

Use keyword args to control colors, linewidth, origin, cmap ... see below for more details.

C = tricontour(...) returns a TriContourSet object.

Optional keyword arguments:

colors: [None | string | (mpl_colors)] If None, the colormap specified by cmap will be
used.

If a string, like ‘r’ or ‘red’, all levels will be plotted in this color.

If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted
in different colors in the order specified.

alpha: float The alpha blending value

cmap: [None | Colormap] A cm Colormap instance or None. If cmap is None and col-
ors is None, a default Colormap is used.

norm: [None | Normalize] A matplotlib.colors.Normalize instance for scaling
data values to colors. If norm is None and colors is None, the default linear scaling is
used.

levels [level0, level1, ..., leveln] A list of floating point numbers indicating the level curves
to draw; eg to draw just the zero contour pass levels=[0]

origin: [None | ‘upper’ | ‘lower’ | ‘image’] If None, the first value of Z will correspond
to the lower left corner, location (0,0). If ‘image’, the rc value for image.origin will
be used.

This keyword is not active if X and Y are specified in the call to contour.

extent: [None | (x0,x1,y0,y1)]

If origin is not None, then extent is interpreted as in
matplotlib.pyplot.imshow(): it gives the outer pixel boundaries. In
this case, the position of Z[0,0] is the center of the pixel, not a corner. If origin
is None, then (x0, y0) is the position of Z[0,0], and (x1, y1) is the position of
Z[-1,-1].

This keyword is not active if X and Y are specified in the call to contour.

locator: [None | ticker.Locator subclass] If locator is None, the default MaxNLocator
is used. The locator is used to determine the contour levels if they are not given
explicitly via the V argument.

extend: [‘neither’ | ‘both’ | ‘min’ | ‘max’] Unless this is ‘neither’, contour lev-
els are automatically added to one or both ends of the range so that

794 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

all data are included. These added ranges are then mapped to the spe-
cial colormap values which default to the ends of the colormap range,
but can be set via matplotlib.colors.Colormap.set_under() and
matplotlib.colors.Colormap.set_over() methods.

xunits, yunits: [None | registered units] Override axis units by specifying an instance
of a matplotlib.units.ConversionInterface.

tricontour-only keyword arguments:

linewidths: [None | number | tuple of numbers] If linewidths is None, the default
width in lines.linewidth in matplotlibrc is used.

If a number, all levels will be plotted with this linewidth.

If a tuple, different levels will be plotted with different linewidths in the order specified

linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’] If linestyles is None, the
‘solid’ is used.

linestyles can also be an iterable of the above strings specifying a set of linestyles to
be used. If this iterable is shorter than the number of contour levels it will be repeated
as necessary.

If contour is using a monochrome colormap and the contour level is less than 0, then
the linestyle specified in contour.negative_linestyle in matplotlibrc will be
used.

tricontourf-only keyword arguments:

antialiased: [True | False] enable antialiasing

nchunk: [0 | integer] If 0, no subdivision of the domain. Specify a positive integer to
divide the domain into subdomains of roughly nchunk by nchunk points. This may
never actually be advantageous, so this option may be removed. Chunking introduces
artifacts at the chunk boundaries unless antialiased is False.

Note: tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < z <= z2

There is one exception: if the lowest boundary coincides with the minimum value of the z array, then
that minimum value will be included in the lowest interval.

Examples:

Additional kwargs: hold = [True|False] overrides default hold state

tripcolor(*args, **kwargs)
Create a pseudocolor plot of an unstructured triangular grid to the Axes.

The triangulation can be specified in one of two ways; either:

49.1. matplotlib.pyplot 795

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Contour plot of Delaunay triangulation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tripcolor(triangulation, ...)

where triangulation is a Triangulation object, or

tripcolor(x, y, ...)
tripcolor(x, y, triangles, ...)
tripcolor(x, y, triangles=triangles, ...)
tripcolor(x, y, mask, ...)
tripcolor(x, y, mask=mask, ...)
tripcolor(x, y, triangles, mask, ...)
tripcolor(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The next argument must be C, the array of color values, one per point in the triangulation. The colors
used for each triangle are from the mean C of the triangle’s three points.

The remaining kwargs are the same as for pcolor().

Example:

Additional kwargs: hold = [True|False] overrides default hold state

796 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

Contour plot of user-specified triangulation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

triplot(*args, **kwargs)
Draw a unstructured triangular grid as lines and/or markers to the Axes.

The triangulation to plot can be specified in one of two ways; either:

triplot(triangulation, ...)

where triangulation is a Triangulation object, or

triplot(x, y, ...)
triplot(x, y, triangles, ...)
triplot(x, y, triangles=triangles, ...)
triplot(x, y, mask, ...)
triplot(x, y, mask=mask, ...)
triplot(x, y, triangles, mask, ...)
triplot(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The remaining args and kwargs are the same as for plot().

Example:

49.1. matplotlib.pyplot 797

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
tripcolor of Delaunay triangulation

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Additional kwargs: hold = [True|False] overrides default hold state

twinx(ax=None)
Make a second axes overlay ax (or the current axes if ax is None) sharing the xaxis. The ticks for ax2
will be placed on the right, and the ax2 instance is returned.

See Also:

examples/api_examples/two_scales.py For an example

twiny(ax=None)
Make a second axes overlay ax (or the current axes if ax is None) sharing the yaxis. The ticks for ax2
will be placed on the top, and the ax2 instance is returned.

vlines(x, ymin, ymax, colors=’k’, linestyles=’solid’, label=”, hold=None, **kwargs)
call signature:

vlines(x, ymin, ymax, color=’k’, linestyles=’solid’)

Plot vertical lines at each x from ymin to ymax. ymin or ymax can be scalars or len(x) numpy arrays.
If they are scalars, then the respective values are constant, else the heights of the lines are determined
by ymin and ymax.

colors a line collections color args, either a single color or a len(x) list of colors

798 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58
La

ti
tu

d
e
 (

d
e
g
re

e
s)

tripcolor of user-specified triangulation

0.64

0.68

0.72

0.76

0.80

0.84

0.88

0.92

0.96

linestyles

one of [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

Returns the matplotlib.collections.LineCollection that was added.

kwargs are LineCollection properties:

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or antialiaseds Boolean or sequence of booleans
array unknown
axes an Axes instance
clim a length 2 sequence of floats
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
cmap a colormap or registered colormap name
color matplotlib color arg or sequence of rgba tuples
colorbar unknown
contains a callable function

Continued on next page

49.1. matplotlib.pyplot 799

Matplotlib, Release 1.0.0

Table 49.26 – continued from previous page
edgecolor or edgecolors matplotlib color arg or sequence of rgba tuples
facecolor or facecolors matplotlib color arg or sequence of rgba tuples
figure a matplotlib.figure.Figure instance
gid an id string
label any string
linestyle or linestyles or dashes [’solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq)]
linewidth or lw or linewidths float or sequence of floats
lod [True | False]
norm unknown
offsets float or sequence of floats
paths unknown
picker [None|float|boolean|callable]
pickradius unknown
rasterized [True | False | None]
segments unknown
snap unknown
transform Transform instance
url a url string
urls unknown
verts unknown
visible [True | False]
zorder any number

Additional kwargs: hold = [True|False] overrides default hold state

waitforbuttonpress(*args, **kwargs)
call signature:

waitforbuttonpress(self, timeout=-1)

Blocking call to interact with the figure.

This will return True is a key was pressed, False if a mouse button was pressed and None if timeout
was reached without either being pressed.

If timeout is negative, does not timeout.

winter()
set the default colormap to winter and apply to current image if any. See help(colormaps) for more
information

xcorr(x, y, normed=True, detrend=<function detrend_none at 0x3cc2e60>, usevlines=True, maxlags=10,
hold=None, **kwargs)

call signature:

def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs):

800 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
triplot of Delaunay triangulation

Plot the cross correlation between x and y. If normed = True, normalize the data by the cross correla-
tion at 0-th lag. x and y are detrended by the detrend callable (default no normalization). x and y must
be equal length.

Data are plotted as plot(lags, c, **kwargs)

Return value is a tuple (lags, c, line) where:

•lags are a length 2*maxlags+1 lag vector

•c is the 2*maxlags+1 auto correlation vector

•line is a Line2D instance returned by plot().

The default linestyle is None and the default marker is ‘o’, though these can be overridden with
keyword args. The cross correlation is performed with numpy.correlate() with mode = 2.

If usevlines is True:

vlines() rather than plot() is used to draw vertical lines from the origin to the xcorr.
Otherwise the plotstyle is determined by the kwargs, which are Line2D properties.

The return value is a tuple (lags, c, linecol, b) where linecol is the
matplotlib.collections.LineCollection instance and b is the x-axis.

maxlags is a positive integer detailing the number of lags to show. The default value of None will
return all (2*len(x)-1) lags.

49.1. matplotlib.pyplot 801

Matplotlib, Release 1.0.0

7 6 5 4 3 2 1 0 1 2
Longitude (degrees)

50

52

54

56

58

La
ti

tu
d
e
 (

d
e
g
re

e
s)

triplot of user-specified triangulation

Example:

xcorr() above, and acorr() below.

Example:

Additional kwargs: hold = [True|False] overrides default hold state

xlabel(s, *args, **kwargs)
Set the x axis label of the current axis to s

Default override is:

override = {
’fontsize’ : ’small’,
’verticalalignment’ : ’top’,
’horizontalalignment’ : ’center’
}

See Also:

text() For information on how override and the optional args work

xlim(*args, **kwargs)
Set/Get the xlimits of the current axes:

802 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

60 40 20 0 20 40 60
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

60 40 20 0 20 40 60
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

xmin, xmax = xlim() # return the current xlim
xlim((xmin, xmax)) # set the xlim to xmin, xmax
xlim(xmin, xmax) # set the xlim to xmin, xmax

If you do not specify args, you can pass the xmin and xmax as kwargs, eg.:

xlim(xmax=3) # adjust the max leaving min unchanged
xlim(xmin=1) # adjust the min leaving max unchanged

The new axis limits are returned as a length 2 tuple.

xscale(*args, **kwargs)
call signature:

xscale(scale, **kwargs)

Set the scaling for the x-axis: ‘linear’ | ‘log’ | ‘symlog’

Different keywords may be accepted, depending on the scale:

‘linear’

‘log’

49.1. matplotlib.pyplot 803

Matplotlib, Release 1.0.0

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked
as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be a
sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid
having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be a
sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

xticks(*args, **kwargs)
Set/Get the xlimits of the current ticklocs and labels:

return locs, labels where locs is an array of tick locations and
labels is an array of tick labels.
locs, labels = xticks()

set the locations of the xticks
xticks(arange(6))

set the locations and labels of the xticks
xticks(arange(5), (’Tom’, ’Dick’, ’Harry’, ’Sally’, ’Sue’))

The keyword args, if any, are Text properties. For example, to rotate long labels:

xticks(arange(12), calendar.month_name[1:13], rotation=17)

ylabel(s, *args, **kwargs)
Set the y axis label of the current axis to s.

Defaults override is:

override = {
’fontsize’ : ’small’,
’verticalalignment’ : ’center’,
’horizontalalignment’ : ’right’,
’rotation’=’vertical’ : }

See Also:

804 Chapter 49. matplotlib pyplot

Matplotlib, Release 1.0.0

text() For information on how override and the optional args work.

ylim(*args, **kwargs)
Set/Get the ylimits of the current axes:

ymin, ymax = ylim() # return the current ylim
ylim((ymin, ymax)) # set the ylim to ymin, ymax
ylim(ymin, ymax) # set the ylim to ymin, ymax

If you do not specify args, you can pass the ymin and ymax as kwargs, eg.:

ylim(ymax=3) # adjust the max leaving min unchanged
ylim(ymin=1) # adjust the min leaving max unchanged

The new axis limits are returned as a length 2 tuple.

yscale(*args, **kwargs)
call signature:

yscale(scale, **kwargs)

Set the scaling for the y-axis: ‘linear’ | ‘log’ | ‘symlog’

Different keywords may be accepted, depending on the scale:

‘linear’

‘log’

basex/basey: The base of the logarithm

nonposx/nonposy: [’mask’ | ‘clip’] non-positive values in x or y can be masked
as invalid, or clipped to a very small positive number

subsx/subsy: Where to place the subticks between each major tick. Should be a
sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

‘symlog’

basex/basey: The base of the logarithm

linthreshx/linthreshy: The range (-x, x) within which the plot is linear (to avoid
having the plot go to infinity around zero).

subsx/subsy: Where to place the subticks between each major tick. Should be a
sequence of integers. For example, in a log10 scale: [0, 1, 2, 3, 4, 5,
6, 7, 8, 9]

will place 10 logarithmically spaced minor ticks between each major tick.

yticks(*args, **kwargs)
Set/Get the ylimits of the current ticklocs and labels:

49.1. matplotlib.pyplot 805

Matplotlib, Release 1.0.0

return locs, labels where locs is an array of tick locations and
labels is an array of tick labels.
locs, labels = yticks()

set the locations of the yticks
yticks(arange(6))

set the locations and labels of the yticks
yticks(arange(5), (’Tom’, ’Dick’, ’Harry’, ’Sally’, ’Sue’))

The keyword args, if any, are Text properties. For example, to rotate long labels:

yticks(arange(12), calendar.month_name[1:13], rotation=45)

806 Chapter 49. matplotlib pyplot

CHAPTER

FIFTY

MATPLOTLIB NXUTILS

50.1 matplotlib.nxutils

general purpose numerical utilities, eg for computational geometry, that are not available in numpy

807

http://numpy.scipy.org

Matplotlib, Release 1.0.0

808 Chapter 50. matplotlib nxutils

CHAPTER

FIFTYONE

MATPLOTLIB SPINE

51.1 matplotlib.spine

class Spine(axes, spine_type, path, **kwargs)
Bases: matplotlib.patches.Patch

an axis spine – the line noting the data area boundaries

Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They
can be placed at arbitrary positions. See function:~matplotlib.spines.Spine.set_position for more in-
formation.

The default position is (’outward’,0).

Spines are subclasses of class:~matplotlib.patches.Patch, and inherit much of their behavior.

Spines draw a line or a circle, depending if function:~matplotlib.spines.Spine.set_patch_line or func-
tion:~matplotlib.spines.Spine.set_patch_circle has been called. Line-like is the default.

•axes : the Axes instance containing the spine

•spine_type : a string specifying the spine type

•path : the path instance used to draw the spine

Valid kwargs are:

809

Matplotlib, Release 1.0.0

Property Description
agg_filter unknown
alpha float or None
animated [True | False]
antialiased or aa [True | False] or None for default
axes an Axes instance
clip_box a matplotlib.transforms.Bbox instance
clip_on [True | False]
clip_path [(Path, Transform) | Patch | None]
color matplotlib color spec
contains a callable function
edgecolor or ec mpl color spec, or None for default, or ‘none’ for no color
facecolor or fc mpl color spec, or None for default, or ‘none’ for no color
figure a matplotlib.figure.Figure instance
fill [True | False]
gid an id string
hatch [‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’]
label any string
linestyle or ls [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]
linewidth or lw float or None for default
lod [True | False]
path_effects unknown
picker [None|float|boolean|callable]
rasterized [True | False | None]
snap unknown
transform Transform instance
url a url string
visible [True | False]
zorder any number

class circular_spine(axes, center, radius, **kwargs)
(staticmethod) Returns a circular Spine.

cla()
Clear the current spine

draw(artist, renderer, *args, **kwargs)

get_bounds()
Get the bounds of the spine.

get_patch_transform()

get_path()

get_position()
get the spine position

get_smart_bounds()
get whether the spine has smart bounds

get_spine_transform()

810 Chapter 51. matplotlib spine

Matplotlib, Release 1.0.0

get the spine transform

is_frame_like()
return True if directly on axes frame

This is useful for determining if a spine is the edge of an old style MPL plot. If so, this function
will return True.

class linear_spine(axes, spine_type, **kwargs)
(staticmethod) Returns a linear Spine.

register_axis(axis)
register an axis

An axis should be registered with its corresponding spine from the Axes instance. This allows
the spine to clear any axis properties when needed.

set_bounds(low, high)
Set the bounds of the spine.

set_color(c)
Set the edgecolor.

ACCEPTS: matplotlib color arg or sequence of rgba tuples

See Also:

set_facecolor(), set_edgecolor() For setting the edge or face color individually.

set_patch_circle(center, radius)
set the spine to be circular

set_patch_line()
set the spine to be linear

set_position(position)
set the position of the spine

Spine position is specified by a 2 tuple of (position type, amount). The position types are:

•‘outward’ : place the spine out from the data area by the specified number of points. (Neg-
ative values specify placing the spine inward.)

•‘axes’ : place the spine at the specified Axes coordinate (from 0.0-1.0).

•‘data’ : place the spine at the specified data coordinate.

Additionally, shorthand notations define a special positions:

•‘center’ -> (‘axes’,0.5)

•‘zero’ -> (‘data’, 0.0)

set_smart_bounds(value)
set the spine and associated axis to have smart bounds

51.1. matplotlib.spine 811

Matplotlib, Release 1.0.0

812 Chapter 51. matplotlib spine

CHAPTER

FIFTYTWO

MATPLOTLIB TICKER

52.1 matplotlib.ticker

52.1.1 Tick locating and formatting

This module contains classes to support completely configurable tick locating and formatting. Although the
locators know nothing about major or minor ticks, they are used by the Axis class to support major and
minor tick locating and formatting. Generic tick locators and formatters are provided, as well as domain
specific custom ones..

Tick locating

The Locator class is the base class for all tick locators. The locators handle autoscaling of the view limits
based on the data limits, and the choosing of tick locations. A useful semi-automatic tick locator is Multi-
pleLocator. You initialize this with a base, eg 10, and it picks axis limits and ticks that are multiples of your
base.

The Locator subclasses defined here are

NullLocator No ticks

FixedLocator Tick locations are fixed

IndexLocator locator for index plots (eg. where x = range(len(y)))

LinearLocator evenly spaced ticks from min to max

LogLocator logarithmically ticks from min to max

MultipleLocator

ticks and range are a multiple of base; either integer or float

OldAutoLocator choose a MultipleLocator and dyamically reassign it for intelligent ticking during navi-
gation

MaxNLocator finds up to a max number of ticks at nice locations

AutoLocator MaxNLocator with simple defaults. This is the default tick locator for most plotting.

813

Matplotlib, Release 1.0.0

There are a number of locators specialized for date locations - see the dates module

You can define your own locator by deriving from Locator. You must override the __call__ method, which
returns a sequence of locations, and you will probably want to override the autoscale method to set the view
limits from the data limits.

If you want to override the default locator, use one of the above or a custom locator and pass it to the x or y
axis instance. The relevant methods are:

ax.xaxis.set_major_locator(xmajorLocator)
ax.xaxis.set_minor_locator(xminorLocator)
ax.yaxis.set_major_locator(ymajorLocator)
ax.yaxis.set_minor_locator(yminorLocator)

The default minor locator is the NullLocator, eg no minor ticks on by default.

Tick formatting

Tick formatting is controlled by classes derived from Formatter. The formatter operates on a single tick
value and returns a string to the axis.

NullFormatter no labels on the ticks

IndexFormatter set the strings from a list of labels

FixedFormatter set the strings manually for the labels

FuncFormatter user defined function sets the labels

FormatStrFormatter use a sprintf format string

ScalarFormatter default formatter for scalars; autopick the fmt string

LogFormatter formatter for log axes

You can derive your own formatter from the Formatter base class by simply overriding the __call__
method. The formatter class has access to the axis view and data limits.

To control the major and minor tick label formats, use one of the following methods:

ax.xaxis.set_major_formatter(xmajorFormatter)
ax.xaxis.set_minor_formatter(xminorFormatter)
ax.yaxis.set_major_formatter(ymajorFormatter)
ax.yaxis.set_minor_formatter(yminorFormatter)

See pylab_examples example code: major_minor_demo1.py for an example of setting major an minor ticks.
See the matplotlib.dates module for more information and examples of using date locators and format-
ters.

class TickHelper()

class DummyAxis()

814 Chapter 52. matplotlib ticker

Matplotlib, Release 1.0.0

get_data_interval()

get_view_interval()

set_data_interval(vmin, vmax)

set_view_interval(vmin, vmax)

create_dummy_axis()

set_axis(axis)

set_bounds(vmin, vmax)

set_data_interval(vmin, vmax)

set_view_interval(vmin, vmax)

class Formatter()
Bases: matplotlib.ticker.TickHelper

Convert the tick location to a string

fix_minus(s)
some classes may want to replace a hyphen for minus with the proper unicode symbol as de-
scribed here. The default is to do nothing

Note, if you use this method, eg in :meth‘format_data‘ or call, you probably don’t want to use it
for format_data_short() since the toolbar uses this for interative coord reporting and I doubt
we can expect GUIs across platforms will handle the unicode correctly. So for now the classes
that override fix_minus() should have an explicit format_data_short() method

format_data(value)

format_data_short(value)
return a short string version

get_offset()

set_locs(locs)

class FixedFormatter(seq)
Bases: matplotlib.ticker.Formatter

Return fixed strings for tick labels

seq is a sequence of strings. For positions i < len(seq) return seq[i] regardless of x. Otherwise
return ‘’

get_offset()

set_offset_string(ofs)

class NullFormatter()
Bases: matplotlib.ticker.Formatter

Always return the empty string

52.1. matplotlib.ticker 815

http://sourceforge.net/tracker/index.php?func=detail&aid=1962574&group_id=80706&atid=560720

Matplotlib, Release 1.0.0

class FuncFormatter(func)
Bases: matplotlib.ticker.Formatter

User defined function for formatting

class FormatStrFormatter(fmt)
Bases: matplotlib.ticker.Formatter

Use a format string to format the tick

class ScalarFormatter(useOffset=True, useMathText=False)
Bases: matplotlib.ticker.Formatter

Tick location is a plain old number. If useOffset==True and the data range is much smaller than the
data average, then an offset will be determined such that the tick labels are meaningful. Scientific
notation is used for data < 10^-n or data >= 10^m, where n and m are the power limits set using
set_powerlimits((n,m)). The defaults for these are controlled by the axes.formatter.limits rc parameter.

fix_minus(s)
use a unicode minus rather than hyphen

format_data(value)
return a formatted string representation of a number

format_data_short(value)
return a short formatted string representation of a number

get_offset()
Return scientific notation, plus offset

get_useOffset()

pprint_val(x)

set_locs(locs)
set the locations of the ticks

set_powerlimits(lims)
Sets size thresholds for scientific notation.

e.g. formatter.set_powerlimits((-3, 4)) sets the pre-2007 default in which scientific
notation is used for numbers less than 1e-3 or greater than 1e4. See also set_scientific().

set_scientific(b)
True or False to turn scientific notation on or off see also set_powerlimits()

set_useOffset(val)

useOffset

class LogFormatter(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.Formatter

Format values for log axis;

if attribute decadeOnly is True, only the decades will be labelled.

816 Chapter 52. matplotlib ticker

Matplotlib, Release 1.0.0

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

base(base)
change the base for labeling - warning: should always match the base used for LogLocator

format_data(value)

format_data_short(value)
return a short formatted string representation of a number

is_decade(x)

label_minor(labelOnlyBase)
switch on/off minor ticks labeling

nearest_long(x)

pprint_val(x, d)

class LogFormatterExponent(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.LogFormatter

Format values for log axis; using exponent = log_base(value)

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

class LogFormatterMathtext(base=10.0, labelOnlyBase=True)
Bases: matplotlib.ticker.LogFormatter

Format values for log axis; using exponent = log_base(value)

base is used to locate the decade tick, which will be the only one to be labeled if labelOnlyBase is
False

class Locator()
Bases: matplotlib.ticker.TickHelper

Determine the tick locations;

Note, you should not use the same locator between different Axis because the locator stores references
to the Axis data and view limits

autoscale()
autoscale the view limits

pan(numsteps)
Pan numticks (can be positive or negative)

raise_if_exceeds(locs)
raise a RuntimeError if Locator attempts to create more than MAXTICKS locs

refresh()
refresh internal information based on current lim

view_limits(vmin, vmax)
select a scale for the range from vmin to vmax

52.1. matplotlib.ticker 817

Matplotlib, Release 1.0.0

Normally This will be overridden.

zoom(direction)
Zoom in/out on axis; if direction is >0 zoom in, else zoom out

class IndexLocator(base, offset)
Bases: matplotlib.ticker.Locator

Place a tick on every multiple of some base number of points plotted, eg on every 5th point. It is
assumed that you are doing index plotting; ie the axis is 0, len(data). This is mainly useful for x ticks.

place ticks on the i-th data points where (i-offset)%base==0

class FixedLocator(locs, nbins=None)
Bases: matplotlib.ticker.Locator

Tick locations are fixed. If nbins is not None, the array of possible positions will be subsampled to
keep the number of ticks <= nbins +1. The subsampling will be done so as to include the smallest
absolute value; for example, if zero is included in the array of possibilities, then it is guaranteed to be
one of the chosen ticks.

class NullLocator()
Bases: matplotlib.ticker.Locator

No ticks

class LinearLocator(numticks=None, presets=None)
Bases: matplotlib.ticker.Locator

Determine the tick locations

The first time this function is called it will try to set the number of ticks to make a nice tick partitioning.
Thereafter the number of ticks will be fixed so that interactive navigation will be nice

Use presets to set locs based on lom. A dict mapping vmin, vmax->locs

view_limits(vmin, vmax)
Try to choose the view limits intelligently

class LogLocator(base=10.0, subs=, [1.0], numdecs=4)
Bases: matplotlib.ticker.Locator

Determine the tick locations for log axes

place ticks on the location= base**i*subs[j]

base(base)
set the base of the log scaling (major tick every base**i, i interger)

subs(subs)
set the minor ticks the log scaling every base**i*subs[j]

view_limits(vmin, vmax)
Try to choose the view limits intelligently

class AutoLocator()
Bases: matplotlib.ticker.MaxNLocator

818 Chapter 52. matplotlib ticker

Matplotlib, Release 1.0.0

class MultipleLocator(base=1.0)
Bases: matplotlib.ticker.Locator

Set a tick on every integer that is multiple of base in the view interval

view_limits(dmin, dmax)
Set the view limits to the nearest multiples of base that contain the data

class MaxNLocator(*args, **kwargs)
Bases: matplotlib.ticker.Locator

Select no more than N intervals at nice locations.

Keyword args:

nbins Maximum number of intervals; one less than max number of ticks.

steps Sequence of nice numbers starting with 1 and ending with 10; e.g., [1, 2, 4, 5, 10]

integer If True, ticks will take only integer values.

symmetric If True, autoscaling will result in a range symmetric about zero.

prune [’lower’ | ‘upper’ | ‘both’ | None] Remove edge ticks – useful for stacked or ganged plots where
the upper tick of one axes overlaps with the lower tick of the axes above it. If prune==’lower’,
the smallest tick will be removed. If prune==’upper’, the largest tick will be removed. If
prune==’both’, the largest and smallest ticks will be removed. If prune==None, no ticks will
be removed.

bin_boundaries(vmin, vmax)

set_params(**kwargs)

view_limits(dmin, dmax)

52.1. matplotlib.ticker 819

Matplotlib, Release 1.0.0

820 Chapter 52. matplotlib ticker

CHAPTER

FIFTYTHREE

MATPLOTLIB UNITS

53.1 matplotlib.units

The classes here provide support for using custom classes with matplotlib, eg those that do not expose the
array interface but know how to converter themselves to arrays. It also supoprts classes with units and
units conversion. Use cases include converters for custom objects, eg a list of datetime objects, as well
as for objects that are unit aware. We don’t assume any particular units implementation, rather a units
implementation must provide a ConversionInterface, and the register with the Registry converter dictionary.
For example, here is a complete implementation which support plotting with native datetime objects

import matplotlib.units as units import matplotlib.dates as dates import matplotlib.ticker as
ticker import datetime

class DateConverter(units.ConversionInterface):

@staticmethod def convert(value, unit, axis):

‘convert value to a scalar or array’ return dates.date2num(value)

@staticmethod def axisinfo(unit, axis):

‘return major and minor tick locators and formatters’ if unit!=’date’:
return None majloc = dates.AutoDateLocator() majfmt =

dates.AutoDateFormatter(majloc) return AxisInfo(majloc=majloc,

majfmt=majfmt, label=’date’)

@staticmethod def default_units(x, axis):

‘return the default unit for x or None’ return ‘date’

finally we register our object type with a converter units.registry[datetime.date] = DateCon-
verter()

class AxisInfo(majloc=None, minloc=None, majfmt=None, minfmt=None, label=None, de-
fault_limits=None)

information to support default axis labeling and tick labeling, and default limits

majloc and minloc: TickLocators for the major and minor ticks majfmt and minfmt: TickFormatters
for the major and minor ticks label: the default axis label default_limits: the default min, max of the
axis if no data is present If any of the above are None, the axis will simply use the default

821

Matplotlib, Release 1.0.0

class ConversionInterface()
The minimal interface for a converter to take custom instances (or sequences) and convert them to
values mpl can use

static axisinfo(unit, axis)
return an units.AxisInfo instance for axis with the specified units

static convert(obj, unit, axis)
convert obj using unit for the specified axis. If obj is a sequence, return the converted sequence.
The ouput must be a sequence of scalars that can be used by the numpy array layer

static default_units(x, axis)
return the default unit for x or None for the given axis

static is_numlike(x)
The matplotlib datalim, autoscaling, locators etc work with scalars which are the units converted
to floats given the current unit. The converter may be passed these floats, or arrays of them, even
when units are set. Derived conversion interfaces may opt to pass plain-ol unitless numbers
through the conversion interface and this is a helper function for them.

class Registry()
Bases: dict

register types with conversion interface

get_converter(x)
get the converter interface instance for x, or None

822 Chapter 53. matplotlib units

CHAPTER

FIFTYFOUR

MATPLOTLIB BACKENDS

54.1 matplotlib.backend_bases

Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as
a matplotlib backend

RendererBase An abstract base class to handle drawing/rendering operations.

FigureCanvasBase The abstraction layer that separates the matplotlib.figure.Figure from the back-
end specific details like a user interface drawing area

GraphicsContextBase An abstract base class that provides color, line styles, etc...

Event The base class for all of the matplotlib event handling. Derived classes suh as KeyEvent and
MouseEvent store the meta data like keys and buttons pressed, x and y locations in pixel and Axes
coordinates.

ShowBase The base class for the Show class of each interactive backend; the ‘show’ callable is then set to
Show.__call__, inherited from ShowBase.

class CloseEvent(name, canvas, guiEvent=None)
Bases: matplotlib.backend_bases.Event

An event triggered by a figure being closed

In addition to the Event attributes, the following event attributes are defined:

class Cursors()

class DrawEvent(name, canvas, renderer)
Bases: matplotlib.backend_bases.Event

An event triggered by a draw operation on the canvas

In addition to the Event attributes, the following event attributes are defined:

renderer the RendererBase instance for the draw event

class Event(name, canvas, guiEvent=None)
A matplotlib event. Attach additional attributes as defined in FigureCanvasBase.mpl_connect().
The following attributes are defined and shown with their default values

name the event name

823

Matplotlib, Release 1.0.0

canvas the FigureCanvas instance generating the event

guiEvent the GUI event that triggered the matplotlib event

class FigureCanvasBase(figure)
The canvas the figure renders into.

Public attributes

figure A matplotlib.figure.Figure instance

blit(bbox=None)
blit the canvas in bbox (default entire canvas)

button_press_event(x, y, button, guiEvent=None)
Backend derived classes should call this function on any mouse button press. x,y are the canvas
coords: 0,0 is lower, left. button and key are as defined in MouseEvent.

This method will be call all functions connected to the ‘button_press_event’ with a MouseEvent
instance.

button_release_event(x, y, button, guiEvent=None)
Backend derived classes should call this function on any mouse button release.

x the canvas coordinates where 0=left

y the canvas coordinates where 0=bottom

guiEvent the native UI event that generated the mpl event

This method will be call all functions connected to the ‘button_release_event’ with a
MouseEvent instance.

close_event(guiEvent=None)
This method will be called by all functions connected to the ‘close_event’ with a CloseEvent

draw(*args, **kwargs)
Render the Figure

draw_cursor(event)
Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if
possible

draw_event(renderer)
This method will be call all functions connected to the ‘draw_event’ with a DrawEvent

draw_idle(*args, **kwargs)
draw() only if idle; defaults to draw but backends can overrride

enter_notify_event(guiEvent=None)
Backend derived classes should call this function when entering canvas

guiEvent the native UI event that generated the mpl event

flush_events()
Flush the GUI events for the figure. Implemented only for backends with GUIs.

get_default_filetype()

824 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

get_supported_filetypes()

get_supported_filetypes_grouped()

get_width_height()
return the figure width and height in points or pixels (depending on the backend), truncated to
integers

grab_mouse(ax)
Set the child axes which are currently grabbing the mouse events. Usually called by the widgets
themselves. It is an error to call this if the mouse is already grabbed by another axes.

idle_event(guiEvent=None)
call when GUI is idle

key_press_event(key, guiEvent=None)
This method will be call all functions connected to the ‘key_press_event’ with a KeyEvent

key_release_event(key, guiEvent=None)
This method will be call all functions connected to the ‘key_release_event’ with a KeyEvent

leave_notify_event(guiEvent=None)
Backend derived classes should call this function when leaving canvas

guiEvent the native UI event that generated the mpl event

motion_notify_event(x, y, guiEvent=None)
Backend derived classes should call this function on any motion-notify-event.

x the canvas coordinates where 0=left

y the canvas coordinates where 0=bottom

guiEvent the native UI event that generated the mpl event

This method will be call all functions connected to the ‘motion_notify_event’ with a
MouseEvent instance.

mpl_connect(s, func)
Connect event with string s to func. The signature of func is:

def func(event)

where event is a matplotlib.backend_bases.Event. The following events are recognized

•‘button_press_event’

•‘button_release_event’

•‘draw_event’

•‘key_press_event’

•‘key_release_event’

•‘motion_notify_event’

•‘pick_event’

54.1. matplotlib.backend_bases 825

Matplotlib, Release 1.0.0

•‘resize_event’

•‘scroll_event’

•‘figure_enter_event’,

•‘figure_leave_event’,

•‘axes_enter_event’,

•‘axes_leave_event’

•‘close_event’

For the location events (button and key press/release), if the mouse is over the axes, the variable
event.inaxes will be set to the Axes the event occurs is over, and additionally, the variables
event.xdata and event.ydata will be defined. This is the mouse location in data coords. See
KeyEvent and MouseEvent for more info.

Return value is a connection id that can be used with mpl_disconnect().

Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = canvas.mpl_connect(’button_press_event’, on_press)

mpl_disconnect(cid)
disconnect callback id cid

Example usage:

cid = canvas.mpl_connect(’button_press_event’, on_press)
#...later
canvas.mpl_disconnect(cid)

new_timer(*args, **kwargs)
Creates a new backend-specific subclass of backend_bases.Timer. This is useful for getting
periodic events through the backend’s native event loop. Implemented only for backends with
GUIs.

optional arguments:

interval Timer interval in milliseconds

callbacks Sequence of (func, args, kwargs) where func(args, **kwargs) will be executed by the
timer every *interval.

onHilite(ev)
Mouse event processor which highlights the artists under the cursor. Connect this to the ‘mo-
tion_notify_event’ using:

canvas.mpl_connect(’motion_notify_event’,canvas.onHilite)

826 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

onRemove(ev)
Mouse event processor which removes the top artist under the cursor. Connect this to the
‘mouse_press_event’ using:

canvas.mpl_connect(’mouse_press_event’,canvas.onRemove)

pick(mouseevent)

pick_event(mouseevent, artist, **kwargs)
This method will be called by artists who are picked and will fire off PickEvent callbacks
registered listeners

print_bmp(*args, **kwargs)

print_emf(*args, **kwargs)

print_eps(*args, **kwargs)

print_figure(filename, dpi=None, facecolor=’w’, edgecolor=’w’, orientation=’portrait’, format=None,
**kwargs)

Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because
some of the GUIs have a gray figure face color background and you’ll probably want to override
this on hardcopy.

Arguments are:

filename can also be a file object on image backends

orientation only currently applies to PostScript printing.

dpi the dots per inch to save the figure in; if None, use savefig.dpi

facecolor the facecolor of the figure

edgecolor the edgecolor of the figure

orientation landscape’ | ‘portrait’ (not supported on all backends)

format when set, forcibly set the file format to save to

bbox_inches Bbox in inches. Only the given portion of the figure is saved. If ‘tight’, try to
figure out the tight bbox of the figure.

pad_inches Amount of padding around the figure when bbox_inches is ‘tight’.

bbox_extra_artists A list of extra artists that will be considered when the tight bbox is calcu-
lated.

print_pdf(*args, **kwargs)

print_png(*args, **kwargs)

print_ps(*args, **kwargs)

print_raw(*args, **kwargs)

print_rgb(*args, **kwargs)

print_svg(*args, **kwargs)

54.1. matplotlib.backend_bases 827

Matplotlib, Release 1.0.0

print_svgz(*args, **kwargs)

release_mouse(ax)
Release the mouse grab held by the axes, ax. Usually called by the widgets. It is ok to call this
even if you ax doesn’t have the mouse grab currently.

resize(w, h)
set the canvas size in pixels

resize_event()
This method will be call all functions connected to the ‘resize_event’ with a ResizeEvent

scroll_event(x, y, step, guiEvent=None)
Backend derived classes should call this function on any scroll wheel event. x,y are the canvas
coords: 0,0 is lower, left. button and key are as defined in MouseEvent.

This method will be call all functions connected to the ‘scroll_event’ with a MouseEvent in-
stance.

set_window_title(title)
Set the title text of the window containing the figure. Note that this has no effect if there is no
window (eg, a PS backend).

start_event_loop(timeout)
Start an event loop. This is used to start a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main
GUI event loop, which is always running and has nothing to do with this.

This is implemented only for backends with GUIs.

start_event_loop_default(timeout=0)
Start an event loop. This is used to start a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main
GUI event loop, which is always running and has nothing to do with this.

This function provides default event loop functionality based on time.sleep that is meant to be
used until event loop functions for each of the GUI backends can be written. As such, it throws
a deprecated warning.

Call signature:

start_event_loop_default(self,timeout=0)

This call blocks until a callback function triggers stop_event_loop() or timeout is reached. If
timeout is <=0, never timeout.

stop_event_loop()
Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events.

This is implemented only for backends with GUIs.

stop_event_loop_default()
Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such
as ginput and waitforbuttonpress, can wait for events.

828 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

Call signature:

stop_event_loop_default(self)

switch_backends(FigureCanvasClass)
instantiate an instance of FigureCanvasClass

This is used for backend switching, eg, to instantiate a FigureCanvasPS from a FigureCanvas-
GTK. Note, deep copying is not done, so any changes to one of the instances (eg, setting figure
size or line props), will be reflected in the other

class FigureManagerBase(canvas, num)
Helper class for pyplot mode, wraps everything up into a neat bundle

Public attibutes:

canvas A FigureCanvasBase instance

num The figure nuamber

destroy()

full_screen_toggle()

key_press(event)

resize(w, h)
For gui backends: resize window in pixels

set_window_title(title)
Set the title text of the window containing the figure. Note that this has no effect if there is no
window (eg, a PS backend).

show_popup(msg)
Display message in a popup – GUI only

class GraphicsContextBase()
An abstract base class that provides color, line styles, etc...

copy_properties(gc)
Copy properties from gc to self

get_alpha()
Return the alpha value used for blending - not supported on all backends

get_antialiased()
Return true if the object should try to do antialiased rendering

get_capstyle()
Return the capstyle as a string in (‘butt’, ‘round’, ‘projecting’)

get_clip_path()
Return the clip path in the form (path, transform), where path is a Path instance, and transform
is an affine transform to apply to the path before clipping.

get_clip_rectangle()
Return the clip rectangle as a Bbox instance

54.1. matplotlib.backend_bases 829

Matplotlib, Release 1.0.0

get_dashes()
Return the dash information as an offset dashlist tuple.

The dash list is a even size list that gives the ink on, ink off in pixels.

See p107 of to PostScript BLUEBOOK for more info.

Default value is None

get_hatch()
Gets the current hatch style

get_hatch_path(density=6.0)
Returns a Path for the current hatch.

get_joinstyle()
Return the line join style as one of (‘miter’, ‘round’, ‘bevel’)

get_linestyle(style)
Return the linestyle: one of (‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’).

get_linewidth()
Return the line width in points as a scalar

get_rgb()
returns a tuple of three floats from 0-1. color can be a MATLAB format string, a html hex color
string, or a rgb tuple

get_snap()
returns the snap setting which may be:

•True: snap vertices to the nearest pixel center

•False: leave vertices as-is

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

get_url()
returns a url if one is set, None otherwise

restore()
Restore the graphics context from the stack - needed only for backends that save graphics con-
texts on a stack

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends

set_antialiased(b)
True if object should be drawn with antialiased rendering

set_capstyle(cs)
Set the capstyle as a string in (‘butt’, ‘round’, ‘projecting’)

set_clip_path(path)
Set the clip path and transformation. Path should be a TransformedPath instance.

830 Chapter 54. matplotlib backends

http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

Matplotlib, Release 1.0.0

set_clip_rectangle(rectangle)
Set the clip rectangle with sequence (left, bottom, width, height)

set_dashes(dash_offset, dash_list)
Set the dash style for the gc.

dash_offset is the offset (usually 0).

dash_list specifies the on-off sequence as points. (None, None) specifies a solid line

set_foreground(fg, isRGB=False)
Set the foreground color. fg can be a MATLAB format string, a html hex color string, an rgb
unit tuple, or a float between 0 and 1. In the latter case, grayscale is used.

The GraphicsContextBase converts colors to rgb internally. If you know the color is rgb
already, you can set isRGB=True to avoid the performace hit of the conversion

set_graylevel(frac)
Set the foreground color to be a gray level with frac

set_hatch(hatch)
Sets the hatch style for filling

set_joinstyle(js)
Set the join style to be one of (‘miter’, ‘round’, ‘bevel’)

set_linestyle(style)
Set the linestyle to be one of (‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’).

set_linewidth(w)
Set the linewidth in points

set_snap(snap)
Sets the snap setting which may be:

•True: snap vertices to the nearest pixel center

•False: leave vertices as-is

•None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

set_url(url)
Sets the url for links in compatible backends

class IdleEvent(name, canvas, guiEvent=None)
Bases: matplotlib.backend_bases.Event

An event triggered by the GUI backend when it is idle – useful for passive animation

class KeyEvent(name, canvas, key, x=0, y=0, guiEvent=None)
Bases: matplotlib.backend_bases.LocationEvent

A key event (key press, key release).

Attach additional attributes as defined in FigureCanvasBase.mpl_connect().

In addition to the Event and LocationEvent attributes, the following attributes are defined:

54.1. matplotlib.backend_bases 831

Matplotlib, Release 1.0.0

key the key pressed: None, chr(range(255), shift, win, or control

This interface may change slightly when better support for modifier keys is included.

Example usage:

def on_key(event):
print ’you pressed’, event.key, event.xdata, event.ydata

cid = fig.canvas.mpl_connect(’key_press_event’, on_key)

class LocationEvent(name, canvas, x, y, guiEvent=None)
Bases: matplotlib.backend_bases.Event

An event that has a screen location

The following additional attributes are defined and shown with their default values.

In addition to the Event attributes, the following event attributes are defined:

x x position - pixels from left of canvas

y y position - pixels from bottom of canvas

inaxes the Axes instance if mouse is over axes

xdata x coord of mouse in data coords

ydata y coord of mouse in data coords

x, y in figure coords, 0,0 = bottom, left

class MouseEvent(name, canvas, x, y, button=None, key=None, step=0, guiEvent=None)
Bases: matplotlib.backend_bases.LocationEvent

A mouse event (‘button_press_event’, ‘button_release_event’, ‘scroll_event’, ‘motion_notify_event’).

In addition to the Event and LocationEvent attributes, the following attributes are defined:

button button pressed None, 1, 2, 3, ‘up’, ‘down’ (up and down are used for scroll events)

key the key pressed: None, chr(range(255), ‘shift’, ‘win’, or ‘control’

step number of scroll steps (positive for ‘up’, negative for ‘down’)

Example usage:

def on_press(event):
print ’you pressed’, event.button, event.xdata, event.ydata

cid = fig.canvas.mpl_connect(’button_press_event’, on_press)

x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, ‘up’, ‘down’

class NavigationToolbar2(canvas)
Base class for the navigation cursor, version 2

832 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

backends must implement a canvas that handles connections for ‘button_press_event’ and ‘but-
ton_release_event’. See FigureCanvasBase.mpl_connect() for more information

They must also define

save_figure() save the current figure

set_cursor() if you want the pointer icon to change

_init_toolbar() create your toolbar widget

draw_rubberband() (optional) draw the zoom to rect “rubberband” rectangle

press() (optional) whenever a mouse button is pressed, you’ll be notified with the event

release() (optional) whenever a mouse button is released, you’ll be notified with the
event

dynamic_update() (optional) dynamically update the window while navigating

set_message() (optional) display message

set_history_buttons() (optional) you can change the history back / forward buttons
to indicate disabled / enabled state.

That’s it, we’ll do the rest!

back(*args)
move back up the view lim stack

drag_pan(event)
the drag callback in pan/zoom mode

drag_zoom(event)
the drag callback in zoom mode

draw()
redraw the canvases, update the locators

draw_rubberband(event, x0, y0, x1, y1)
draw a rectangle rubberband to indicate zoom limits

dynamic_update()

forward(*args)
move forward in the view lim stack

home(*args)
restore the original view

mouse_move(event)

pan(*args)
Activate the pan/zoom tool. pan with left button, zoom with right

press(event)
this will be called whenver a mouse button is pressed

54.1. matplotlib.backend_bases 833

Matplotlib, Release 1.0.0

press_pan(event)
the press mouse button in pan/zoom mode callback

press_zoom(event)
the press mouse button in zoom to rect mode callback

push_current()
push the current view limits and position onto the stack

release(event)
this will be called whenever mouse button is released

release_pan(event)
the release mouse button callback in pan/zoom mode

release_zoom(event)
the release mouse button callback in zoom to rect mode

save_figure(*args)
save the current figure

set_cursor(cursor)
Set the current cursor to one of the Cursors enums values

set_history_buttons()
enable or disable back/forward button

set_message(s)
display a message on toolbar or in status bar

update()
reset the axes stack

zoom(*args)
activate zoom to rect mode

class PickEvent(name, canvas, mouseevent, artist, guiEvent=None, **kwargs)
Bases: matplotlib.backend_bases.Event

a pick event, fired when the user picks a location on the canvas sufficiently close to an artist.

Attrs: all the Event attributes plus

mouseevent the MouseEvent that generated the pick

artist the Artist picked

other extra class dependent attrs – eg a Line2D pick may define different extra attributes than a
PatchCollection pick event

Example usage:

line, = ax.plot(rand(100), ’o’, picker=5) # 5 points tolerance

def on_pick(event):
thisline = event.artist
xdata, ydata = thisline.get_data()

834 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

ind = event.ind
print ’on pick line:’, zip(xdata[ind], ydata[ind])

cid = fig.canvas.mpl_connect(’pick_event’, on_pick)

class RendererBase()
An abstract base class to handle drawing/rendering operations.

The following methods must be implemented in the backend:

•draw_path()

•draw_image()

•draw_text()

•get_text_width_height_descent()

The following methods should be implemented in the backend for optimization reasons:

•draw_markers()

•draw_path_collection()

•draw_quad_mesh()

close_group(s)
Close a grouping element with label s Is only currently used by backend_svg

draw_gouraud_triangle(gc, points, colors, transform)
Draw a Gouraud-shaded triangle.

points is a 3x2 array of (x, y) points for the triangle.

colors is a 3x4 array of RGBA colors for each point of the triangle.

transform is an affine transform to apply to the points.

draw_gouraud_triangles(gc, triangles_array, colors_array, transform)
Draws a series of Gouraud triangles.

points is a Nx3x2 array of (x, y) points for the trianglex.

colors is a Nx3x4 array of RGBA colors for each point of the triangles.

transform is an affine transform to apply to the points.

draw_image(gc, x, y, im)
Draw the image instance into the current axes;

gc a GraphicsContext containing clipping information

x is the distance in pixels from the left hand side of the canvas.

y the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is
lower, y is the distance from bottom

im the matplotlib._image.Image instance

54.1. matplotlib.backend_bases 835

Matplotlib, Release 1.0.0

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draws a marker at each of the vertices in path. This includes all vertices, including control points
on curves. To avoid that behavior, those vertices should be removed before calling this function.

gc the GraphicsContextBase instance

marker_trans is an affine transform applied to the marker.

trans is an affine transform applied to the path.

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

draw_path(gc, path, transform, rgbFace=None)
Draws a Path instance using the given affine transform.

draw_path_collection(gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors,
edgecolors, linewidths, linestyles, antialiaseds, urls)

Draws a collection of paths selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths.
The offsets in offsets are first transformed by offsetTrans before being applied.

This provides a fallback implementation of draw_path_collection() that makes multiple
calls to draw_path(). Some backends may want to override this in order to render each
set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to help with (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_quad_mesh(gc, master_transform, meshWidth, meshHeight, coordinates, offsets, offsetTrans, face-
colors, antialiased, showedges)

This provides a fallback implementation of draw_quad_mesh() that generates paths and then
calls draw_path_collection().

draw_tex(gc, x, y, s, prop, angle, ismath=’TeX!’)

draw_text(gc, x, y, s, prop, angle, ismath=False)
Draw the text instance

gc the GraphicsContextBase instance

x the x location of the text in display coords

y the y location of the text in display coords

s a matplotlib.text.Text instance

prop a matplotlib.font_manager.FontProperties instance

angle the rotation angle in degrees

backend implementers note

When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

836 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be blotted along with your text.

flipy()
Return true if y small numbers are top for renderer Is used for drawing text (matplotlib.text)
and images (matplotlib.image) only

get_canvas_width_height()
return the canvas width and height in display coords

get_image_magnification()
Get the factor by which to magnify images passed to draw_image(). Allows a backend to have
images at a different resolution to other artists.

get_texmanager()
return the matplotlib.texmanager.TexManager instance

get_text_width_height_descent(s, prop, ismath)
get the width and height, and the offset from the bottom to the baseline (descent), in display
coords of the string s with FontProperties prop

new_gc()
Return an instance of a GraphicsContextBase

open_group(s, gid=None)
Open a grouping element with label s. If gid is given, use gid as the id of the group. Is only
currently used by backend_svg.

option_image_nocomposite()
override this method for renderers that do not necessarily want to rescale and composite raster
images. (like SVG)

option_scale_image()
override this method for renderers that support arbitrary scaling of image (most of the vector
backend).

points_to_pixels(points)
Convert points to display units

points a float or a numpy array of float

return points converted to pixels

You need to override this function (unless your backend doesn’t have a dpi, eg, postscript or
svg). Some imaging systems assume some value for pixels per inch:

points to pixels = points * pixels_per_inch/72.0 * dpi/72.0

start_filter()
Used in AggRenderer. Switch to a temporary renderer for image filtering effects.

start_rasterizing()
Used in MixedModeRenderer. Switch to the raster renderer.

54.1. matplotlib.backend_bases 837

Matplotlib, Release 1.0.0

stop_filter(filter_func)
Used in AggRenderer. Switch back to the original renderer. The contents of the temporary
renderer is processed with the filter_func and is drawn on the original renderer as an image.

stop_rasterizing()
Used in MixedModeRenderer. Switch back to the vector renderer and draw the contents of the
raster renderer as an image on the vector renderer.

strip_math(s)

class ResizeEvent(name, canvas)
Bases: matplotlib.backend_bases.Event

An event triggered by a canvas resize

In addition to the Event attributes, the following event attributes are defined:

width width of the canvas in pixels

height height of the canvas in pixels

class ShowBase()
Bases: object

Simple base class to generate a show() callable in backends.

Subclass must override mainloop() method.

mainloop()

class TimerBase(interval=None, callbacks=None)
Bases: object

A base class for providing timer events, useful for things animations. Backends need to implement
a few specific methods in order to use their own timing mechanisms so that the timer events are
integrated into their event loops.

Mandatory functions that must be implemented: * _timer_start: Contains backend-specific code for
starting the timer * _timer_stop: Contains backend-specific code for stopping the timer

Optional overrides: * _timer_set_single_shot: Code for setting the timer to single shot

operating mode, if supported by the timer object. If not, the Timer class itself will store
the flag and the _on_timer method should be overridden to support such behavior.

•_timer_set_interval: Code for setting the interval on the timer, if there is a method for do-
ing so on the timer object.

•_on_timer: This is the internal function that any timer object should call, which will han-
dle the task of running all callbacks that have been set.

Attributes: * interval: The time between timer events in milliseconds. Default

is 1000 ms.

•single_shot: Boolean flag indicating whether this timer should operate as single shot (run
once and then stop). Defaults to False.

838 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

•callbacks: Stores list of (func, args) tuples that will be called upon timer events. This list
can be manipulated directly, or the functions add_callback and remove_callback can be
used.

add_callback(func, *args, **kwargs)
Register func to be called by timer when the event fires. Any additional arguments provided will
be passed to func.

interval

remove_callback(func, *args, **kwargs)
Remove func from list of callbacks. args and kwargs are optional and used to distinguish be-
tween copies of the same function registered to be called with different arguments.

single_shot

start(interval=None)
Start the timer object. interval is optional and will be used to reset the timer interval first if
provided.

stop()
Stop the timer.

register_backend(format, backend_class)

54.2 matplotlib.backends.backend_gtkagg

TODO We’ll add this later, importing the gtk backends requires an active X-session, which is not compatible
with cron jobs.

54.3 matplotlib.backends.backend_qt4agg

Render to qt from agg

class FigureCanvasQTAgg(figure)
Bases: matplotlib.backends.backend_qt4.FigureCanvasQT,
matplotlib.backends.backend_agg.FigureCanvasAgg

The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc...

Public attribute

figure - A Figure instance

blit(bbox=None)
Blit the region in bbox

draw()
Draw the figure when xwindows is ready for the update

drawRectangle(rect)

54.2. matplotlib.backends.backend_gtkagg 839

Matplotlib, Release 1.0.0

paintEvent(e)
Draw to the Agg backend and then copy the image to the qt.drawable. In Qt, all drawing should
be done inside of here when a widget is shown onscreen.

print_figure(*args, **kwargs)

class FigureManagerQTAgg(canvas, num)
Bases: matplotlib.backends.backend_qt4.FigureManagerQT

class NavigationToolbar2QTAgg(canvas, parent, coordinates=True)
Bases: matplotlib.backends.backend_qt4.NavigationToolbar2QT

coordinates: should we show the coordinates on the right?

new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

54.4 matplotlib.backends.backend_wxagg

class FigureCanvasWxAgg(parent, id, figure)
Bases: matplotlib.backends.backend_agg.FigureCanvasAgg,
matplotlib.backends.backend_wx.FigureCanvasWx

The FigureCanvas contains the figure and does event handling.

In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated
by a FigureManagerWx. The parent window probably implements a wxSizer to control the displayed
control size - but we give a hint as to our preferred minimum size.

Initialise a FigureWx instance.

•Initialise the FigureCanvasBase and wxPanel parents.

•Set event handlers for: EVT_SIZE (Resize event) EVT_PAINT (Paint event)

blit(bbox=None)
Transfer the region of the agg buffer defined by bbox to the display. If bbox is None, the entire
buffer is transferred.

draw(drawDC=None)
Render the figure using agg.

print_figure(filename, *args, **kwargs)

class FigureFrameWxAgg(num, fig)
Bases: matplotlib.backends.backend_wx.FigureFrameWx

get_canvas(fig)

class NavigationToolbar2WxAgg(canvas)
Bases: matplotlib.backends.backend_wx.NavigationToolbar2Wx

get_canvas(frame, fig)

840 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

54.5 matplotlib.backends.backend_pdf

A PDF matplotlib backend (not yet complete) Author: Jouni K Seppänen <jks@iki.fi>

FT2Font()
FT2Font

class FigureCanvasPdf(figure)
Bases: matplotlib.backend_bases.FigureCanvasBase

The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc...

Public attribute

figure - A Figure instance

class Name(name)
Bases: object

PDF name object.

class Operator(op)
Bases: object

PDF operator object.

class PdfFile(filename)
Bases: object

PDF file object.

alphaState(alpha)
Return name of an ExtGState that sets alpha to the given value

embedTTF(filename, characters)
Embed the TTF font from the named file into the document.

fontName(fontprop)
Select a font based on fontprop and return a name suitable for Op.selectfont. If fontprop is a
string, it will be interpreted as the filename (or dvi name) of the font.

imageObject(image)
Return name of an image XObject representing the given image.

markerObject(path, trans, fillp, lw)
Return name of a marker XObject representing the given path.

reserveObject(name=”)
Reserve an ID for an indirect object. The name is used for debugging in case we forget to print
out the object with writeObject.

54.5. matplotlib.backends.backend_pdf 841

mailto:jks@iki.fi

Matplotlib, Release 1.0.0

writeInfoDict()
Write out the info dictionary, checking it for good form

writeTrailer()
Write out the PDF trailer.

writeXref()
Write out the xref table.

class PdfPages(filename)
Bases: object

A multi-page PDF file.

Use like this:

Initialize:
pp = PdfPages(’foo.pdf’)

As many times as you like, create a figure fig, then either:
fig.savefig(pp, format=’pdf’) # note the format argument!
or:
pp.savefig(fig)

Once you are done, remember to close the object:
pp.close()

(In reality PdfPages is a thin wrapper around PdfFile, in order to avoid confusion when using savefig
and forgetting the format argument.)

Create a new PdfPages object that will be written to the file named filename. The file is opened at
once and any older file with the same name is overwritten.

close()
Finalize this object, making the underlying file a complete PDF file.

infodict()
Return a modifiable information dictionary object (see PDF reference section 10.2.1 ‘Document
Information Dictionary’).

savefig(figure=None, **kwargs)
Save the Figure instance figure to this file as a new page. If figure is a number, the figure
instance is looked up by number, and if figure is None, the active figure is saved. Any other
keyword arguments are passed to Figure.savefig.

class Reference(id)
Bases: object

PDF reference object. Use PdfFile.reserveObject() to create References.

class Stream(id, len, file, extra=None)
Bases: object

PDF stream object.

842 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

This has no pdfRepr method. Instead, call begin(), then output the contents of the stream by calling
write(), and finally call end().

id: object id of stream; len: an unused Reference object for the length of the stream, or None (to use
a memory buffer); file: a PdfFile; extra: a dictionary of extra key-value pairs to include in the stream
header

end()
Finalize stream.

write(data)
Write some data on the stream.

fill(strings, linelen=75)
Make one string from sequence of strings, with whitespace in between. The whitespace is chosen to
form lines of at most linelen characters, if possible.

new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance

pdfRepr(obj)
Map Python objects to PDF syntax.

54.6 matplotlib.dviread

An experimental module for reading dvi files output by TeX. Several limitations make this not (currently)
useful as a general-purpose dvi preprocessor, but it is currently used by the pdf backend for processing
usetex text.

Interface:

dvi = Dvi(filename, 72)
iterate over pages (but only one page is supported for now):
for page in dvi:

w, h, d = page.width, page.height, page.descent
for x,y,font,glyph,width in page.text:

fontname = font.texname
pointsize = font.size
...

for x,y,height,width in page.boxes:
...

class Dvi(filename, dpi)
Bases: object

A dvi (“device-independent”) file, as produced by TeX. The current implementation only reads the
first page and does not even attempt to verify the postamble.

Initialize the object. This takes the filename as input and opens the file; actually reading the file
happens when iterating through the pages of the file.

close()
Close the underlying file if it is open.

54.6. matplotlib.dviread 843

Matplotlib, Release 1.0.0

class DviFont(scale, tfm, texname, vf)
Bases: object

Object that holds a font’s texname and size, supports comparison, and knows the widths of glyphs in
the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are not
used for comparison.

The size is in Adobe points (converted from TeX points).

texname
Name of the font as used internally by TeX and friends. This is usually very different from any
external font names, and dviread.PsfontsMap can be used to find the external name of the
font.

size
Size of the font in Adobe points, converted from the slightly smaller TeX points.

widths
Widths of glyphs in glyph-space units, typically 1/1000ths of the point size.

size

texname

widths

class Encoding(filename)
Bases: object

Parses a *.enc file referenced from a psfonts.map style file. The format this class understands is a very
limited subset of PostScript.

Usage (subject to change):

for name in Encoding(filename):
whatever(name)

encoding

class PsfontsMap(filename)
Bases: object

A psfonts.map formatted file, mapping TeX fonts to PS fonts. Usage:

>>> map = PsfontsMap(find_tex_file(’pdftex.map’))
>>> entry = map[’ptmbo8r’]
>>> entry.texname
’ptmbo8r’
>>> entry.psname
’Times-Bold’
>>> entry.encoding
’/usr/local/texlive/2008/texmf-dist/fonts/enc/dvips/base/8r.enc’
>>> entry.effects
{’slant’: 0.16700000000000001}
>>> entry.filename

844 Chapter 54. matplotlib backends

Matplotlib, Release 1.0.0

For historical reasons, TeX knows many Type-1 fonts by different names than the outside world.
(For one thing, the names have to fit in eight characters.) Also, TeX’s native fonts are not Type-1
but Metafont, which is nontrivial to convert to PostScript except as a bitmap. While high-quality
conversions to Type-1 format exist and are shipped with modern TeX distributions, we need to know
which Type-1 fonts are the counterparts of which native fonts. For these reasons a mapping is needed
from internal font names to font file names.

A texmf tree typically includes mapping files called e.g. psfonts.map, pdftex.map, dvipdfm.map.
psfonts.map is used by dvips, pdftex.map by pdfTeX, and dvipdfm.map by dvipdfm. psfonts.map
might avoid embedding the 35 PostScript fonts (i.e., have no filename for them, as in the Times-Bold
example above), while the pdf-related files perhaps only avoid the “Base 14” pdf fonts. But the user
may have configured these files differently.

class Tfm(filename)
Bases: object

A TeX Font Metric file. This implementation covers only the bare minimum needed by the Dvi class.

checksum
Used for verifying against the dvi file.

design_size
Design size of the font (in what units?)

width
Width of each character, needs to be scaled by the factor specified in the dvi file. This is a dict
because indexing may not start from 0.

height
Height of each character.

depth
Depth of each character.

checksum

depth

design_size

height

width

class Vf(filename)
Bases: matplotlib.dviread.Dvi

A virtual font (*.vf file) containing subroutines for dvi files.

Usage:

vf = Vf(filename)
glyph = vf[code]
glyph.text, glyph.boxes, glyph.width

54.6. matplotlib.dviread 845

Matplotlib, Release 1.0.0

find_tex_file(filename, format=None)
Call kpsewhich to find a file in the texmf tree. If format is not None, it is used as the value for the
--format option.

Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a
popular distribution on Windows) doesn’t use kpathsea, so what do we do? (TODO)

See Also:

Kpathsea documentation The library that kpsewhich is part of.

54.7 matplotlib.type1font

This module contains a class representing a Type 1 font.

This version reads pfa and pfb files and splits them for embedding in pdf files. It also supports SlantFont
and ExtendFont transformations, similarly to pdfTeX and friends. There is no support yet for subsetting.

Usage:

>>> font = Type1Font(filename)
>>> clear_part, encrypted_part, finale = font.parts
>>> slanted_font = font.transform({’slant’: 0.167})
>>> extended_font = font.transform({’extend’: 1.2})

Sources:

• Adobe Technical Note #5040, Supporting Downloadable PostScript Language Fonts.

• Adobe Type 1 Font Format, Adobe Systems Incorporated, third printing, v1.1, 1993. ISBN 0-201-
57044-0.

class Type1Font(input)
Bases: object

A class representing a Type-1 font, for use by backends.

parts
A 3-tuple of the cleartext part, the encrypted part, and the finale of zeros.

prop
A dictionary of font properties.

Initialize a Type-1 font. input can be either the file name of a pfb file or a 3-tuple of already-decoded
Type-1 font parts.

parts

prop

transform(effects)
Transform the font by slanting or extending. effects should be a dict where effects[’slant’]
is the tangent of the angle that the font is to be slanted to the right (so negative values slant to the

846 Chapter 54. matplotlib backends

http://www.tug.org/kpathsea/

Matplotlib, Release 1.0.0

left) and effects[’extend’] is the multiplier by which the font is to be extended (so values
less than 1.0 condense). Returns a new Type1Font object.

54.7. matplotlib.type1font 847

Matplotlib, Release 1.0.0

848 Chapter 54. matplotlib backends

Part V

Glossary

849

Matplotlib, Release 1.0.0

AGG The Anti-Grain Geometry (Agg) rendering engine, capable of rendering high-quality images

Cairo The Cairo graphics engine

dateutil The dateutil library provides extensions to the standard datetime module

EPS Encapsulated Postscript (EPS)

FLTK FLTK (pronounced “fulltick”) is a cross-platform C++ GUI toolkit for UNIX/Linux (X11), Mi-
crosoft Windows, and MacOS X

freetype freetype is a font rasterization library used by matplotlib which supports TrueType, Type 1, and
OpenType fonts.

GDK The Gimp Drawing Kit for GTK+

GTK The GIMP Toolkit (GTK) graphical user interface library

JPG The Joint Photographic Experts Group (JPEG) compression method and file format for photographic
images

numpy numpy is the standard numerical array library for python, the successor to Numeric and numarray.
numpy provides fast operations for homogeneous data sets and common mathematical operations like
correlations, standard deviation, fourier transforms, and convolutions.

PDF Adobe’s Portable Document Format (PDF)

PNG Portable Network Graphics (PNG), a raster graphics format that employs lossless data compression
which is more suitable for line art than the lossy jpg format. Unlike the gif format, png is not encum-
bered by requirements for a patent license.

PS Postscript (PS) is a vector graphics ASCII text language widely used in printers and publishing.
Postscript was developerd by adobe systems and is starting to show its age: for example is does
not have an alpha channel. PDF was designed in part as a next-generation document format to replace
postscript

pyfltk pyfltk provides python wrappers for the FLTK widgets library for use with FLTKAgg

pygtk pygtk provides python wrappers for the GTK widgets library for use with the GTK or GTKAgg
backend. Widely used on linux, and is often packages as ‘python-gtk2’

pyqt pyqt provides python wrappers for the Qt widgets library and is requied by the matplotlib QtAgg
and Qt4Agg backends. Widely used on linux and windows; many linux distributions package this as
‘python-qt3’ or ‘python-qt4’.

python python is an object oriented interpreted language widely used for scripting, application develop-
ment, web application servers, scientific computing and more.

pytz pytz provides the Olson tz database in Python. it allows accurate and cross platform timezone calcu-
lations and solves the issue of ambiguous times at the end of daylight savings

Qt Qt is a cross-platform application framework for desktop and embedded development.

Qt4 Qt4 is the most recent version of Qt cross-platform application framework for desktop and embedded
development.

851

http://antigrain.com
http://cairographics.org
http://labix.org/python-dateutil
http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://www.fltk.org/
http://www.freetype.org/
http://www.gtk.org/
http://en.wikipedia.org/wiki/Jpeg
http://numpy.scipy.org
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/PostScript
http://pyfltk.sourceforge.net/
http://www.pygtk.org/
http://wiki.python.org/moin/PyQt
http://python.org
http://pytz.sourceforge.net/
http://trolltech.com/products/qt/
http://trolltech.com/products/qt/

Matplotlib, Release 1.0.0

raster graphics Raster graphics, or bitmaps, represent an image as an array of pixels which is resolution
dependent. Raster graphics are generally most practical for photo-realistic images, but do not scale
easily without loss of quality.

SVG The Scalable Vector Graphics format (SVG). An XML based vector graphics format supported by
many web browsers.

TIFF Tagged Image File Format (TIFF) is a file format for storing images, including photographs and line
art.

Tk Tk is a graphical user interface for Tcl and many other dynamic languages. It can produce rich, native
applications that run unchanged across Windows, Mac OS X, Linux and more.

vector graphics vector graphics use geometrical primitives based upon mathematical equations to repre-
sent images in computer graphics. Primitives can include points, lines, curves, and shapes or poly-
gons. Vector graphics are scalable, which means that they can be resized without suffering from
issues related to inherent resolution like are seen in raster graphics. Vector graphics are generally
most practical for typesetting and graphic design applications.

wxpython wxpython provides python wrappers for the wxWidgets library for use with the WX and WXAgg
backends. Widely used on linux, OS-X and windows, it is often packaged by linux distributions as
‘python-wxgtk’

wxWidgets WX is cross-platform GUI and tools library for GTK, MS Windows, and MacOS. It uses
native widgets for each operating system, so applications will have the look-and-feel that users on
that operating system expect.

852

http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Svg
http://en.wikipedia.org/wiki/Tagged_Image_File_Format
http://www.tcl.tk/
http://en.wikipedia.org/wiki/Vector_graphics
http://www.wxpython.org/
http://www.wxwidgets.org/

MODULE INDEX

M
matplotlib, 309
matplotlib.afm, 313
matplotlib.artist, 317
matplotlib.axes, 385
matplotlib.axis, 527
matplotlib.backend_bases, 823
matplotlib.backends.backend_pdf, 841
matplotlib.backends.backend_qt4agg, 839
matplotlib.backends.backend_wxagg, 840
matplotlib.cbook, 537
matplotlib.cm, 549
matplotlib.collections, 551
matplotlib.colorbar, 565
matplotlib.colors, 569
matplotlib.dates, 577
matplotlib.dviread, 843
matplotlib.figure, 585
matplotlib.font_manager, 603
matplotlib.fontconfig_pattern, 608
matplotlib.gridspec, 611
matplotlib.legend, 326
matplotlib.lines, 329
matplotlib.mathtext, 614
matplotlib.mlab, 629
matplotlib.nxutils, 807
matplotlib.patches, 337
matplotlib.path, 653
matplotlib.projections, 264
matplotlib.projections.polar, 265
matplotlib.pyplot, 659
matplotlib.scale, 262
matplotlib.spines, 809
matplotlib.text, 373
matplotlib.ticker, 813
matplotlib.transforms, 241

matplotlib.type1font, 846
matplotlib.units, 821

853

Matplotlib, Release 1.0.0

854 Module Index

INDEX

A
Accent (class in matplotlib.mathtext), 615
accent() (matplotlib.mathtext.Parser method), 623
acorr() (in module matplotlib.pyplot), 659
acorr() (matplotlib.axes.Axes method), 385
add() (matplotlib.mlab.FIFOBuffer method), 631
add_artist() (matplotlib.axes.Axes method), 386
add_axes() (matplotlib.figure.Figure method), 585
add_axobserver() (matplotlib.figure.Figure method),

587
add_callback() (matplotlib.artist.Artist method), 317
add_callback() (mat-

plotlib.backend_bases.TimerBase method),
839

add_checker() (matplotlib.cm.ScalarMappable
method), 549

add_collection() (matplotlib.axes.Axes method), 386
add_line() (matplotlib.axes.Axes method), 386
add_lines() (matplotlib.colorbar.Colorbar method),

565
add_lines() (matplotlib.colorbar.ColorbarBase

method), 566
add_patch() (matplotlib.axes.Axes method), 387
add_subplot() (matplotlib.figure.Figure method),

587
add_table() (matplotlib.axes.Axes method), 387
Affine2D (class in matplotlib.transforms), 252
Affine2DBase (class in matplotlib.transforms), 251
AffineBase (class in matplotlib.transforms), 251
AFM (class in matplotlib.afm), 313
afmFontProperty() (in module mat-

plotlib.font_manager), 607
AGG, 851
aliased_name() (matplotlib.artist.ArtistInspector

method), 323
aliased_name_rest() (mat-

plotlib.artist.ArtistInspector method),

323
align_iterators() (in module matplotlib.cbook), 542
allequal() (in module matplotlib.cbook), 542
allow_rasterization() (in module matplotlib.artist),

324
allpairs() (in module matplotlib.cbook), 542
alltrue() (in module matplotlib.cbook), 542
alphaState() (matplotlib.backends.backend_pdf.PdfFile

method), 841
amap() (in module matplotlib.mlab), 633
anchored() (matplotlib.transforms.BboxBase

method), 243
annotate() (in module matplotlib.pyplot), 660
annotate() (matplotlib.axes.Axes method), 387
Annotation (class in matplotlib.text), 373
append() (matplotlib.cbook.RingBuffer method),

539
apply_aspect() (matplotlib.axes.Axes method), 389
apply_tickdir() (matplotlib.axis.Tick method), 531
apply_tickdir() (matplotlib.axis.XTick method), 533
apply_tickdir() (matplotlib.axis.YTick method), 535
Arc (class in matplotlib.patches), 337
arc() (matplotlib.path.Path class method), 654
Arrow (class in matplotlib.patches), 339
arrow() (in module matplotlib.pyplot), 663
arrow() (matplotlib.axes.Axes method), 389
ArrowStyle (class in matplotlib.patches), 340
ArrowStyle.BarAB (class in matplotlib.patches), 341
ArrowStyle.BracketA (class in matplotlib.patches),

341
ArrowStyle.BracketAB (class in matplotlib.patches),

343
ArrowStyle.BracketB (class in matplotlib.patches),

343
ArrowStyle.Curve (class in matplotlib.patches), 343
ArrowStyle.CurveA (class in matplotlib.patches),

343

855

Matplotlib, Release 1.0.0

ArrowStyle.CurveAB (class in matplotlib.patches),
343

ArrowStyle.CurveB (class in matplotlib.patches),
343

ArrowStyle.CurveFilledA (class in mat-
plotlib.patches), 344

ArrowStyle.CurveFilledAB (class in mat-
plotlib.patches), 344

ArrowStyle.CurveFilledB (class in mat-
plotlib.patches), 344

ArrowStyle.Fancy (class in matplotlib.patches), 344
ArrowStyle.Simple (class in matplotlib.patches), 344
ArrowStyle.Wedge (class in matplotlib.patches), 344
Artist (class in matplotlib.artist), 317
artist_picker() (matplotlib.legend.DraggableLegend

method), 327
ArtistInspector (class in matplotlib.artist), 323
asarrays() (matplotlib.mlab.FIFOBuffer method),

631
AsteriskPolygonCollection (class in mat-

plotlib.collections), 551
auto_sized_delimiter() (matplotlib.mathtext.Parser

method), 623
AutoDateFormatter (class in matplotlib.dates), 580
AutoDateLocator (class in matplotlib.dates), 580
autofmt_xdate() (matplotlib.figure.Figure method),

589
autogen_docstring() (in module matplotlib.pyplot),

665
AutoHeightChar (class in matplotlib.mathtext), 615
AutoLocator (class in matplotlib.ticker), 818
autoscale() (in module matplotlib.pyplot), 665
autoscale() (matplotlib.axes.Axes method), 391
autoscale() (matplotlib.cm.ScalarMappable method),

549
autoscale() (matplotlib.colors.LogNorm method),

573
autoscale() (matplotlib.colors.Normalize method),

574
autoscale() (matplotlib.dates.AutoDateLocator

method), 581
autoscale() (matplotlib.dates.RRuleLocator method),

580
autoscale() (matplotlib.dates.YearLocator method),

582
autoscale() (matplotlib.ticker.Locator method), 817
autoscale_None() (matplotlib.cm.ScalarMappable

method), 549

autoscale_None() (matplotlib.colors.LogNorm
method), 574

autoscale_None() (matplotlib.colors.Normalize
method), 574

autoscale_view() (matplotlib.axes.Axes method),
392

AutoWidthChar (class in matplotlib.mathtext), 615
autumn() (in module matplotlib.pyplot), 666
Axes (class in matplotlib.axes), 385
axes() (in module matplotlib.pyplot), 666
axhline() (in module matplotlib.pyplot), 666
axhline() (matplotlib.axes.Axes method), 392
axhspan() (in module matplotlib.pyplot), 668
axhspan() (matplotlib.axes.Axes method), 393
Axis (class in matplotlib.axis), 527
axis() (in module matplotlib.pyplot), 669
axis() (matplotlib.axes.Axes method), 394
axis_date() (matplotlib.axis.Axis method), 527
AxisInfo (class in matplotlib.units), 821
axisinfo() (matplotlib.units.ConversionInterface

static method), 822
axvline() (in module matplotlib.pyplot), 671
axvline() (matplotlib.axes.Axes method), 395
axvspan() (in module matplotlib.pyplot), 672
axvspan() (matplotlib.axes.Axes method), 397

B
back() (matplotlib.backend_bases.NavigationToolbar2

method), 833
back() (matplotlib.cbook.Stack method), 540
BakomaFonts (class in matplotlib.mathtext), 615
bar() (in module matplotlib.pyplot), 674
bar() (matplotlib.axes.Axes method), 398
barbs() (in module matplotlib.pyplot), 675
barbs() (matplotlib.axes.Axes method), 400
barh() (in module matplotlib.pyplot), 678
barh() (matplotlib.axes.Axes method), 403
base() (matplotlib.ticker.LogFormatter method), 817
base() (matplotlib.ticker.LogLocator method), 818
base_repr() (in module matplotlib.mlab), 633
Bbox (class in matplotlib.transforms), 246
bbox_artist() (in module matplotlib.patches), 372
BboxBase (class in matplotlib.transforms), 243
BboxTransform (class in matplotlib.transforms), 259
BboxTransformFrom (class in mat-

plotlib.transforms), 259
BboxTransformTo (class in matplotlib.transforms),

259

856 Index

Matplotlib, Release 1.0.0

bin_boundaries() (matplotlib.ticker.MaxNLocator
method), 819

binary_repr() (in module matplotlib.mlab), 633
binom() (matplotlib.mathtext.Parser method), 623
bivariate_normal() (in module matplotlib.mlab), 633
blended_transform_factory() (in module mat-

plotlib.transforms), 257
BlendedAffine2D (class in matplotlib.transforms),

256
BlendedGenericTransform (class in mat-

plotlib.transforms), 255
blit() (matplotlib.backend_bases.FigureCanvasBase

method), 824
blit() (matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg

method), 839
blit() (matplotlib.backends.backend_wxagg.FigureCanvasWxAgg

method), 840
bone() (in module matplotlib.pyplot), 681
BoundaryNorm (class in matplotlib.colors), 570
bounds (matplotlib.transforms.BboxBase attribute),

243
Box (class in matplotlib.mathtext), 615
box() (in module matplotlib.pyplot), 681
boxplot() (in module matplotlib.pyplot), 681
boxplot() (matplotlib.axes.Axes method), 406
BoxStyle (class in matplotlib.patches), 345
BoxStyle.LArrow (class in matplotlib.patches), 345
BoxStyle.RArrow (class in matplotlib.patches), 347
BoxStyle.Round (class in matplotlib.patches), 347
BoxStyle.Round4 (class in matplotlib.patches), 347
BoxStyle.Roundtooth (class in matplotlib.patches),

347
BoxStyle.Sawtooth (class in matplotlib.patches), 347
BoxStyle.Square (class in matplotlib.patches), 347
broken_barh() (in module matplotlib.pyplot), 682
broken_barh() (matplotlib.axes.Axes method), 407
BrokenBarHCollection (class in mat-

plotlib.collections), 552
bubble() (matplotlib.cbook.Stack method), 540
Bunch (class in matplotlib.cbook), 537
button_press_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 824

button_release_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 824

byAttribute() (matplotlib.cbook.Sorter method), 540
byItem() (matplotlib.cbook.Sorter method), 540

C
cache_file() (matplotlib.cbook.ViewVCCachedServer

method), 541
Cairo, 851
CallbackRegistry (class in matplotlib.cbook), 537
CallbackRegistry.BoundMethodProxy (class in mat-

plotlib.cbook), 538
can_zoom() (matplotlib.axes.Axes method), 408
can_zoom() (matplotlib.projections.polar.PolarAxes

method), 267
center() (matplotlib.mlab.PCA method), 633
center_matrix() (in module matplotlib.mlab), 633
change_geometry() (matplotlib.axes.SubplotBase

method), 524
changed() (matplotlib.cm.ScalarMappable method),

549
Char (class in matplotlib.mathtext), 616
char_over_chars() (matplotlib.mathtext.Parser

method), 623
check_update() (matplotlib.cm.ScalarMappable

method), 549
checksum (matplotlib.dviread.Tfm attribute), 845
Circle (class in matplotlib.patches), 347
CircleCollection (class in matplotlib.collections),

553
CirclePolygon (class in matplotlib.patches), 348
circular_spine() (matplotlib.spines.Spine class

method), 810
cla() (in module matplotlib.pyplot), 684
cla() (matplotlib.axes.Axes method), 408
cla() (matplotlib.axis.Axis method), 527
cla() (matplotlib.spines.Spine method), 810
clabel() (in module matplotlib.pyplot), 684
clabel() (matplotlib.axes.Axes method), 408
clamp() (matplotlib.mathtext.Ship static method),

625
clean() (matplotlib.cbook.Grouper method), 539
cleanup_path() (in module matplotlib.path), 657
clear() (matplotlib.axes.Axes method), 410
clear() (matplotlib.cbook.MemoryMonitor method),

539
clear() (matplotlib.cbook.Stack method), 540
clear() (matplotlib.figure.Figure method), 589
clear() (matplotlib.mathtext.Parser method), 623
clear() (matplotlib.transforms.Affine2D method),

253
clf() (in module matplotlib.pyplot), 686

Index 857

Matplotlib, Release 1.0.0

clf() (matplotlib.figure.Figure method), 589
clim() (in module matplotlib.pyplot), 686
close() (in module matplotlib.pyplot), 686
close() (matplotlib.backends.backend_pdf.PdfPages

method), 842
close() (matplotlib.dviread.Dvi method), 843
close_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 824

close_group() (mat-
plotlib.backend_bases.RendererBase
method), 835

CloseEvent (class in matplotlib.backend_bases), 823
code_type (matplotlib.path.Path attribute), 654
cohere() (in module matplotlib.mlab), 633
cohere() (in module matplotlib.pyplot), 687
cohere() (matplotlib.axes.Axes method), 410
cohere_pairs() (in module matplotlib.mlab), 634
Collection (class in matplotlib.collections), 553
color() (matplotlib.collections.LineCollection

method), 558
Colorbar (class in matplotlib.colorbar), 565
colorbar() (in module matplotlib.pyplot), 691
colorbar() (matplotlib.figure.Figure method), 589
ColorbarBase (class in matplotlib.colorbar), 565
ColorConverter (class in matplotlib.colors), 570
Colormap (class in matplotlib.colors), 571
colormaps() (in module matplotlib.pyplot), 694
colors() (in module matplotlib.pyplot), 696
composite_transform_factory() (in module mat-

plotlib.transforms), 258
CompositeAffine2D (class in matplotlib.transforms),

258
CompositeGenericTransform (class in mat-

plotlib.transforms), 257
config_axis() (matplotlib.colorbar.ColorbarBase

method), 566
connect() (in module matplotlib.pyplot), 697
connect() (matplotlib.axes.Axes method), 414
connect() (matplotlib.cbook.CallbackRegistry

method), 538
connect() (matplotlib.patches.ConnectionStyle.Angle

method), 351
connect() (matplotlib.patches.ConnectionStyle.Angle3

method), 352
connect() (matplotlib.patches.ConnectionStyle.Arc

method), 352

connect() (matplotlib.patches.ConnectionStyle.Arc3
method), 352

connect() (matplotlib.patches.ConnectionStyle.Bar
method), 352

ConnectionPatch (class in matplotlib.patches), 349
ConnectionStyle (class in matplotlib.patches), 351
ConnectionStyle.Angle (class in matplotlib.patches),

351
ConnectionStyle.Angle3 (class in mat-

plotlib.patches), 351
ConnectionStyle.Arc (class in matplotlib.patches),

352
ConnectionStyle.Arc3 (class in matplotlib.patches),

352
ConnectionStyle.Bar (class in matplotlib.patches),

352
contains() (matplotlib.artist.Artist method), 318
contains() (matplotlib.axes.Axes method), 415
contains() (matplotlib.axis.Tick method), 531
contains() (matplotlib.axis.XAxis method), 532
contains() (matplotlib.axis.YAxis method), 534
contains() (matplotlib.collections.Collection

method), 554
contains() (matplotlib.figure.Figure method), 591
contains() (matplotlib.lines.Line2D method), 330
contains() (matplotlib.patches.Ellipse method), 353
contains() (matplotlib.patches.Patch method), 361
contains() (matplotlib.patches.Rectangle method),

367
contains() (matplotlib.text.Annotation method), 375
contains() (matplotlib.text.Text method), 377
contains() (matplotlib.transforms.BboxBase

method), 243
contains_path() (matplotlib.path.Path method), 654
contains_point() (matplotlib.axes.Axes method), 415
contains_point() (matplotlib.patches.Patch method),

361
contains_point() (matplotlib.path.Path method), 654
containsx() (matplotlib.transforms.BboxBase

method), 243
containsy() (matplotlib.transforms.BboxBase

method), 243
contiguous_regions() (in module matplotlib.mlab),

636
contour() (in module matplotlib.pyplot), 699
contour() (matplotlib.axes.Axes method), 415
contourf() (in module matplotlib.pyplot), 701
contourf() (matplotlib.axes.Axes method), 420

858 Index

Matplotlib, Release 1.0.0

ConversionInterface (class in matplotlib.units), 821
convert() (matplotlib.units.ConversionInterface

static method), 822
convert_mesh_to_paths() (mat-

plotlib.collections.QuadMesh static
method), 560

convert_mesh_to_triangles() (mat-
plotlib.collections.QuadMesh method),
560

convert_path_to_polygons() (in module mat-
plotlib.path), 657

convert_units() (matplotlib.axis.Axis method), 527
convert_xunits() (matplotlib.artist.Artist method),

318
convert_yunits() (matplotlib.artist.Artist method),

318
converter (class in matplotlib.cbook), 542
cool() (in module matplotlib.pyplot), 706
copper() (in module matplotlib.pyplot), 706
copy() (matplotlib.font_manager.FontProperties

method), 605
copy() (matplotlib.mathtext.GlueSpec method), 618
copy() (matplotlib.mathtext.Parser.State method),

623
copy_properties() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 829

corners() (matplotlib.transforms.BboxBase method),
244

count_contains() (matplotlib.transforms.BboxBase
method), 244

count_overlaps() (matplotlib.transforms.BboxBase
method), 244

create_dummy_axis() (matplotlib.ticker.TickHelper
method), 815

createFontList() (in module mat-
plotlib.font_manager), 607

cross_from_above() (in module matplotlib.mlab),
636

cross_from_below() (in module matplotlib.mlab),
636

csd() (in module matplotlib.mlab), 636
csd() (in module matplotlib.pyplot), 706
csd() (matplotlib.axes.Axes method), 426
csv2rec() (in module matplotlib.mlab), 637
csvformat_factory() (in module matplotlib.mlab),

638
Cursors (class in matplotlib.backend_bases), 823

customspace() (matplotlib.mathtext.Parser method),
624

D
datalim_to_dt() (matplotlib.dates.DateLocator

method), 580
date2num() (in module matplotlib.dates), 579
DateFormatter (class in matplotlib.dates), 579
DateLocator (class in matplotlib.dates), 580
dateutil, 851
DayLocator (class in matplotlib.dates), 582
dedent() (in module matplotlib.cbook), 542
default_units() (mat-

plotlib.units.ConversionInterface static
method), 822

delaxes() (in module matplotlib.pyplot), 710
delaxes() (matplotlib.figure.Figure method), 591
delete_masked_points() (in module mat-

plotlib.cbook), 542
demean() (in module matplotlib.mlab), 638
depth (matplotlib.dviread.Tfm attribute), 845
design_size (matplotlib.dviread.Tfm attribute), 845
destroy() (matplotlib.backend_bases.FigureManagerBase

method), 829
destroy() (matplotlib.mathtext.Fonts method), 616
destroy() (matplotlib.mathtext.TruetypeFonts

method), 626
detrend() (in module matplotlib.mlab), 638
detrend_linear() (in module matplotlib.mlab), 638
detrend_mean() (in module matplotlib.mlab), 638
detrend_none() (in module matplotlib.mlab), 638
dict_delall() (in module matplotlib.cbook), 543
disconnect() (in module matplotlib.pyplot), 710
disconnect() (matplotlib.axes.Axes method), 430
disconnect() (matplotlib.cbook.CallbackRegistry

method), 538
dist() (in module matplotlib.mlab), 638
dist_point_to_segment() (in module mat-

plotlib.mlab), 638
distances_along_curve() (in module mat-

plotlib.cbook), 543
distances_along_curve() (in module mat-

plotlib.mlab), 638
donothing_callback() (in module matplotlib.mlab),

639
dpi (matplotlib.figure.Figure attribute), 591
drag_pan() (matplotlib.axes.Axes method), 430

Index 859

Matplotlib, Release 1.0.0

drag_pan() (matplotlib.backend_bases.NavigationToolbar2
method), 833

drag_zoom() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 833

draggable() (matplotlib.legend.Legend method), 328
DraggableLegend (class in matplotlib.legend), 326
drange() (in module matplotlib.dates), 579
draw() (in module matplotlib.pyplot), 711
draw() (matplotlib.artist.Artist method), 318
draw() (matplotlib.axes.Axes method), 430
draw() (matplotlib.axis.Axis method), 527
draw() (matplotlib.axis.Tick method), 531
draw() (matplotlib.backend_bases.FigureCanvasBase

method), 824
draw() (matplotlib.backend_bases.NavigationToolbar2

method), 833
draw() (matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg

method), 839
draw() (matplotlib.backends.backend_wxagg.FigureCanvasWxAgg

method), 840
draw() (matplotlib.collections.CircleCollection

method), 553
draw() (matplotlib.collections.Collection method),

554
draw() (matplotlib.collections.EllipseCollection

method), 557
draw() (matplotlib.collections.PolyCollection

method), 560
draw() (matplotlib.collections.QuadMesh method),

561
draw() (matplotlib.collections.RegularPolyCollection

method), 562
draw() (matplotlib.figure.Figure method), 591
draw() (matplotlib.legend.Legend method), 328
draw() (matplotlib.lines.Line2D method), 331
draw() (matplotlib.patches.Arc method), 338
draw() (matplotlib.patches.ConnectionPatch

method), 350
draw() (matplotlib.patches.FancyArrowPatch

method), 356
draw() (matplotlib.patches.Patch method), 361
draw() (matplotlib.patches.Shadow method), 370
draw() (matplotlib.spines.Spine method), 810
draw() (matplotlib.text.Annotation method), 375
draw() (matplotlib.text.Text method), 377
draw() (matplotlib.text.TextWithDash method), 382
draw_all() (matplotlib.colorbar.ColorbarBase

method), 566
draw_artist() (matplotlib.axes.Axes method), 430
draw_artist() (matplotlib.figure.Figure method), 591
draw_bbox() (in module matplotlib.patches), 372
draw_cursor() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 824

draw_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 824

draw_frame() (matplotlib.legend.Legend method),
328

draw_gouraud_triangle() (mat-
plotlib.backend_bases.RendererBase
method), 835

draw_gouraud_triangles() (mat-
plotlib.backend_bases.RendererBase
method), 835

draw_idle() (matplotlib.backend_bases.FigureCanvasBase
method), 824

draw_image() (mat-
plotlib.backend_bases.RendererBase
method), 835

draw_markers() (mat-
plotlib.backend_bases.RendererBase
method), 835

draw_path() (matplotlib.backend_bases.RendererBase
method), 836

draw_path_collection() (mat-
plotlib.backend_bases.RendererBase
method), 836

draw_quad_mesh() (mat-
plotlib.backend_bases.RendererBase
method), 836

draw_rubberband() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 833

draw_tex() (matplotlib.backend_bases.RendererBase
method), 836

draw_text() (matplotlib.backend_bases.RendererBase
method), 836

DrawEvent (class in matplotlib.backend_bases), 823
drawRectangle() (mat-

plotlib.backends.backend_qt4agg.FigureCanvasQTAgg
method), 839

Dvi (class in matplotlib.dviread), 843
DviFont (class in matplotlib.dviread), 844
dynamic_update() (mat-

860 Index

Matplotlib, Release 1.0.0

plotlib.backend_bases.NavigationToolbar2
method), 833

E
Ellipse (class in matplotlib.patches), 352
EllipseCollection (class in matplotlib.collections),

556
embedTTF() (mat-

plotlib.backends.backend_pdf.PdfFile
method), 841

empty() (matplotlib.cbook.Stack method), 540
Encoding (class in matplotlib.dviread), 844
encoding (matplotlib.dviread.Encoding attribute),

844
end() (matplotlib.backends.backend_pdf.Stream

method), 843
end_group() (matplotlib.mathtext.Parser method),

624
end_pan() (matplotlib.axes.Axes method), 431
enter_notify_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 824

entropy() (in module matplotlib.mlab), 639
environment variable

HOME, 210
MPLCONFIGDIR, 210
PATH, 52, 54, 55
PYTHONPATH, 224

epoch2num() (in module matplotlib.dates), 579
EPS, 851
Error() (in module matplotlib.mathtext), 616
errorbar() (in module matplotlib.pyplot), 711
errorbar() (matplotlib.axes.Axes method), 431
Event (class in matplotlib.backend_bases), 823
exception_to_str() (in module matplotlib.cbook),

543
exp_safe() (in module matplotlib.mlab), 639
expanded() (matplotlib.transforms.BboxBase

method), 244
extents (matplotlib.transforms.BboxBase attribute),

244

F
factory() (matplotlib.mathtext.GlueSpec class

method), 618
family_escape() (in module mat-

plotlib.fontconfig_pattern), 609

family_unescape() (in module mat-
plotlib.fontconfig_pattern), 609

FancyArrow (class in matplotlib.patches), 353
FancyArrowPatch (class in matplotlib.patches), 354
FancyBboxPatch (class in matplotlib.patches), 357
fftsurr() (in module matplotlib.mlab), 639
FIFOBuffer (class in matplotlib.mlab), 631
figaspect() (in module matplotlib.figure), 601
figimage() (in module matplotlib.pyplot), 714
figimage() (matplotlib.figure.Figure method), 591
figlegend() (in module matplotlib.pyplot), 716
figtext() (in module matplotlib.pyplot), 717
Figure (class in matplotlib.figure), 585
figure() (in module matplotlib.pyplot), 719
FigureCanvasBase (class in mat-

plotlib.backend_bases), 824
FigureCanvasPdf (class in mat-

plotlib.backends.backend_pdf), 841
FigureCanvasQTAgg (class in mat-

plotlib.backends.backend_qt4agg), 839
FigureCanvasWxAgg (class in mat-

plotlib.backends.backend_wxagg), 840
FigureFrameWxAgg (class in mat-

plotlib.backends.backend_wxagg), 840
FigureManagerBase (class in mat-

plotlib.backend_bases), 829
FigureManagerQTAgg (class in mat-

plotlib.backends.backend_qt4agg), 840
Fil (class in matplotlib.mathtext), 616
Fill (class in matplotlib.mathtext), 616
fill() (in module matplotlib.backends.backend_pdf),

843
fill() (in module matplotlib.pyplot), 720
fill() (matplotlib.axes.Axes method), 434
fill_between() (in module matplotlib.pyplot), 723
fill_between() (matplotlib.axes.Axes method), 437
fill_betweenx() (in module matplotlib.pyplot), 724
fill_betweenx() (matplotlib.axes.Axes method), 439
Filll (class in matplotlib.mathtext), 616
finalize_offset() (mat-

plotlib.legend.DraggableLegend method),
327

find() (in module matplotlib.mlab), 639
find_tex_file() (in module matplotlib.dviread), 845
finddir() (in module matplotlib.cbook), 543
findfont() (in module matplotlib.font_manager), 607
findfont() (matplotlib.font_manager.FontManager

method), 603

Index 861

Matplotlib, Release 1.0.0

findobj() (in module matplotlib.pyplot), 726
findobj() (matplotlib.artist.Artist method), 318
findobj() (matplotlib.artist.ArtistInspector method),

324
findSystemFonts() (in module mat-

plotlib.font_manager), 607
finish() (matplotlib.mathtext.Parser method), 624
fix_minus() (matplotlib.ticker.Formatter method),

815
fix_minus() (matplotlib.ticker.ScalarFormatter

method), 816
FixedFormatter (class in matplotlib.ticker), 815
FixedLocator (class in matplotlib.ticker), 818
flag() (in module matplotlib.pyplot), 726
flatten() (in module matplotlib.cbook), 543
flipy() (matplotlib.backend_bases.RendererBase

method), 837
FLTK, 851
flush_events() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 824

font (matplotlib.mathtext.Parser.State attribute), 623
font() (matplotlib.mathtext.Parser method), 624
FontconfigPatternParser (class in mat-

plotlib.fontconfig_pattern), 608
FontEntry (class in matplotlib.font_manager), 603
FontManager (class in matplotlib.font_manager),

603
fontName() (matplotlib.backends.backend_pdf.PdfFile

method), 841
FontProperties (class in matplotlib.font_manager),

605
Fonts (class in matplotlib.mathtext), 616
format_coord() (matplotlib.axes.Axes method), 440
format_coord() (mat-

plotlib.projections.polar.PolarAxes
method), 267

format_data() (matplotlib.ticker.Formatter method),
815

format_data() (matplotlib.ticker.LogFormatter
method), 817

format_data() (matplotlib.ticker.ScalarFormatter
method), 816

format_data_short() (matplotlib.ticker.Formatter
method), 815

format_data_short() (matplotlib.ticker.LogFormatter
method), 817

format_data_short() (mat-

plotlib.ticker.ScalarFormatter method),
816

format_xdata() (matplotlib.axes.Axes method), 440
format_ydata() (matplotlib.axes.Axes method), 440
FormatBool (class in matplotlib.mlab), 631
FormatDate (class in matplotlib.mlab), 631
FormatDatetime (class in matplotlib.mlab), 631
FormatFloat (class in matplotlib.mlab), 631
FormatFormatStr (class in matplotlib.mlab), 632
FormatInt (class in matplotlib.mlab), 632
FormatMillions (class in matplotlib.mlab), 632
FormatObj (class in matplotlib.mlab), 632
FormatPercent (class in matplotlib.mlab), 632
FormatStrFormatter (class in matplotlib.ticker), 816
FormatString (class in matplotlib.mlab), 632
Formatter (class in matplotlib.ticker), 815
FormatThousands (class in matplotlib.mlab), 632
forward() (matplotlib.backend_bases.NavigationToolbar2

method), 833
forward() (matplotlib.cbook.Stack method), 540
frac() (matplotlib.mathtext.Parser method), 624
frame (matplotlib.axes.Axes attribute), 440
frange() (in module matplotlib.mlab), 639
freetype, 851
from_bounds() (matplotlib.transforms.Bbox static

method), 246
from_extents() (matplotlib.transforms.Bbox static

method), 246
from_list() (matplotlib.colors.LinearSegmentedColormap

static method), 573
from_values() (matplotlib.transforms.Affine2D

static method), 253
fromstr() (matplotlib.mlab.FormatBool method), 631
fromstr() (matplotlib.mlab.FormatDate method), 631
fromstr() (matplotlib.mlab.FormatDatetime method),

631
fromstr() (matplotlib.mlab.FormatFloat method),

632
fromstr() (matplotlib.mlab.FormatInt method), 632
fromstr() (matplotlib.mlab.FormatObj method), 632
frozen() (matplotlib.transforms.Affine2DBase

method), 251
frozen() (matplotlib.transforms.BboxBase method),

244
frozen() (matplotlib.transforms.BlendedGenericTransform

method), 256
frozen() (matplotlib.transforms.CompositeGenericTransform

method), 257

862 Index

Matplotlib, Release 1.0.0

frozen() (matplotlib.transforms.IdentityTransform
method), 254

frozen() (matplotlib.transforms.TransformNode
method), 243

frozen() (matplotlib.transforms.TransformWrapper
method), 250

FT2Font() (in module mat-
plotlib.backends.backend_pdf), 841

FT2Font() (in module matplotlib.mathtext), 616
FT2Font() (in module matplotlib.text), 375
FT2Image() (in module matplotlib.mathtext), 616
full_screen_toggle() (mat-

plotlib.backend_bases.FigureManagerBase
method), 829

fully_contains() (matplotlib.transforms.BboxBase
method), 244

fully_containsx() (matplotlib.transforms.BboxBase
method), 244

fully_containsy() (matplotlib.transforms.BboxBase
method), 244

fully_overlaps() (matplotlib.transforms.BboxBase
method), 244

FuncFormatter (class in matplotlib.ticker), 815
function() (matplotlib.mathtext.Parser method), 624

G
gca() (in module matplotlib.pyplot), 727
gca() (matplotlib.figure.Figure method), 592
gcf() (in module matplotlib.pyplot), 727
gci() (in module matplotlib.pyplot), 727
GDK, 851
generate_fontconfig_pattern() (in module mat-

plotlib.fontconfig_pattern), 609
genfrac() (matplotlib.mathtext.Parser method), 624
get() (in module matplotlib.artist), 325
get() (matplotlib.cbook.RingBuffer method), 539
get_aa() (matplotlib.lines.Line2D method), 331
get_aa() (matplotlib.patches.Patch method), 361
get_adjustable() (matplotlib.axes.Axes method), 440
get_affine() (matplotlib.transforms.AffineBase

method), 251
get_affine() (matplotlib.transforms.BlendedGenericTransform

method), 256
get_affine() (matplotlib.transforms.CompositeGenericTransform

method), 257
get_affine() (matplotlib.transforms.IdentityTransform

method), 254

get_affine() (matplotlib.transforms.Transform
method), 249

get_agg_filter() (matplotlib.artist.Artist method),
318

get_aliases() (matplotlib.artist.ArtistInspector
method), 324

get_alpha() (matplotlib.artist.Artist method), 318
get_alpha() (matplotlib.backend_bases.GraphicsContextBase

method), 829
get_anchor() (matplotlib.axes.Axes method), 441
get_angle() (matplotlib.afm.AFM method), 313
get_animated() (matplotlib.artist.Artist method), 318
get_annotation_clip() (mat-

plotlib.patches.ConnectionPatch method),
350

get_antialiased() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 829

get_antialiased() (matplotlib.lines.Line2D method),
331

get_antialiased() (matplotlib.patches.Patch method),
361

get_array() (matplotlib.cm.ScalarMappable
method), 549

get_arrowstyle() (mat-
plotlib.patches.FancyArrowPatch method),
356

get_aspect() (matplotlib.axes.Axes method), 441
get_autoscale_on() (matplotlib.axes.Axes method),

441
get_autoscalex_on() (matplotlib.axes.Axes method),

441
get_autoscaley_on() (matplotlib.axes.Axes method),

441
get_axes() (matplotlib.artist.Artist method), 318
get_axes() (matplotlib.figure.Figure method), 594
get_axes_locator() (matplotlib.axes.Axes method),

441
get_axis_bgcolor() (matplotlib.axes.Axes method),

441
get_axisbelow() (matplotlib.axes.Axes method), 441
get_bbox() (matplotlib.patches.FancyBboxPatch

method), 358
get_bbox() (matplotlib.patches.Rectangle method),

367
get_bbox_char() (matplotlib.afm.AFM method), 313
get_bbox_patch() (matplotlib.text.Text method), 377
get_bbox_to_anchor() (matplotlib.legend.Legend

Index 863

Matplotlib, Release 1.0.0

method), 328
get_bounds() (matplotlib.spines.Spine method), 810
get_boxstyle() (matplotlib.patches.FancyBboxPatch

method), 358
get_c() (matplotlib.lines.Line2D method), 331
get_canvas() (mat-

plotlib.backends.backend_wxagg.FigureFrameWxAgg
method), 840

get_canvas() (mat-
plotlib.backends.backend_wxagg.NavigationToolbar2WxAgg
method), 840

get_canvas_width_height() (mat-
plotlib.backend_bases.RendererBase
method), 837

get_capheight() (matplotlib.afm.AFM method), 313
get_capstyle() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 829

get_child_artists() (matplotlib.axes.Axes method),
441

get_children() (matplotlib.artist.Artist method), 318
get_children() (matplotlib.axes.Axes method), 441
get_children() (matplotlib.axis.Axis method), 527
get_children() (matplotlib.axis.Tick method), 531
get_children() (matplotlib.figure.Figure method),

594
get_children() (matplotlib.legend.Legend method),

328
get_clim() (matplotlib.cm.ScalarMappable method),

549
get_clip_box() (matplotlib.artist.Artist method), 318
get_clip_on() (matplotlib.artist.Artist method), 318
get_clip_path() (matplotlib.artist.Artist method), 318
get_clip_path() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 829

get_clip_rectangle() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 829

get_closed() (matplotlib.patches.Polygon method),
366

get_cmap() (in module matplotlib.cm), 550
get_cmap() (matplotlib.cm.ScalarMappable

method), 549
get_color() (matplotlib.collections.LineCollection

method), 558
get_color() (matplotlib.lines.Line2D method), 331
get_color() (matplotlib.text.Text method), 377

get_colors() (matplotlib.collections.LineCollection
method), 558

get_connectionstyle() (mat-
plotlib.patches.FancyArrowPatch method),
356

get_contains() (matplotlib.artist.Artist method), 318
get_converter() (matplotlib.units.Registry method),

822
get_current_fig_manager() (in module mat-

plotlib.pyplot), 728
get_cursor_props() (matplotlib.axes.Axes method),

441
get_dash_capstyle() (matplotlib.lines.Line2D

method), 331
get_dash_joinstyle() (matplotlib.lines.Line2D

method), 331
get_dashdirection() (matplotlib.text.TextWithDash

method), 382
get_dashes() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 830

get_dashes() (matplotlib.collections.Collection
method), 554

get_dashlength() (matplotlib.text.TextWithDash
method), 382

get_dashpad() (matplotlib.text.TextWithDash
method), 382

get_dashpush() (matplotlib.text.TextWithDash
method), 382

get_dashrotation() (matplotlib.text.TextWithDash
method), 383

get_data() (matplotlib.lines.Line2D method), 331
get_data_interval() (matplotlib.axis.Axis method),

527
get_data_interval() (matplotlib.axis.XAxis method),

532
get_data_interval() (matplotlib.axis.XTick method),

533
get_data_interval() (matplotlib.axis.YAxis method),

534
get_data_interval() (matplotlib.axis.YTick method),

535
get_data_interval() (mat-

plotlib.ticker.TickHelper.DummyAxis
method), 814

get_data_ratio() (matplotlib.axes.Axes method), 442
get_data_ratio() (mat-

plotlib.projections.polar.PolarAxes

864 Index

Matplotlib, Release 1.0.0

method), 267
get_data_ratio_log() (matplotlib.axes.Axes method),

442
get_data_transform() (matplotlib.patches.Patch

method), 361
get_datalim() (matplotlib.collections.Collection

method), 554
get_datalim() (matplotlib.collections.QuadMesh

method), 561
get_default_filetype() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 824

get_default_size() (mat-
plotlib.font_manager.FontManager
method), 604

get_default_weight() (mat-
plotlib.font_manager.FontManager
method), 604

get_depth() (matplotlib.mathtext.MathTextParser
method), 619

get_dpi() (matplotlib.figure.Figure method), 594
get_drawstyle() (matplotlib.lines.Line2D method),

331
get_ec() (matplotlib.patches.Patch method), 361
get_edgecolor() (matplotlib.collections.Collection

method), 554
get_edgecolor() (matplotlib.figure.Figure method),

594
get_edgecolor() (matplotlib.patches.Patch method),

361
get_edgecolors() (matplotlib.collections.Collection

method), 554
get_extents() (matplotlib.patches.Patch method), 362
get_extents() (matplotlib.path.Path method), 654
get_facecolor() (matplotlib.collections.Collection

method), 554
get_facecolor() (matplotlib.figure.Figure method),

594
get_facecolor() (matplotlib.patches.Patch method),

362
get_facecolors() (matplotlib.collections.Collection

method), 554
get_family() (mat-

plotlib.font_manager.FontProperties
method), 606

get_family() (matplotlib.text.Text method), 377
get_familyname() (matplotlib.afm.AFM method),

314

get_fc() (matplotlib.patches.Patch method), 362
get_figheight() (matplotlib.figure.Figure method),

594
get_fignums() (in module matplotlib.pyplot), 728
get_figure() (matplotlib.artist.Artist method), 319
get_figure() (matplotlib.text.TextWithDash method),

383
get_figwidth() (matplotlib.figure.Figure method),

594
get_file() (matplotlib.font_manager.FontProperties

method), 606
get_fill() (matplotlib.patches.Patch method), 362
get_fillstyle() (matplotlib.lines.Line2D method), 331
get_font_properties() (matplotlib.text.Text method),

377
get_fontconfig_fonts() (in module mat-

plotlib.font_manager), 607
get_fontconfig_pattern() (mat-

plotlib.font_manager.FontProperties
method), 606

get_fontext_synonyms() (in module mat-
plotlib.font_manager), 608

get_fontfamily() (matplotlib.text.Text method), 377
get_fontname() (matplotlib.afm.AFM method), 314
get_fontname() (matplotlib.text.Text method), 377
get_fontproperties() (matplotlib.text.Text method),

377
get_fontsize() (matplotlib.text.Text method), 377
get_fontstretch() (matplotlib.text.Text method), 377
get_fontstyle() (matplotlib.text.Text method), 377
get_fontvariant() (matplotlib.text.Text method), 377
get_fontweight() (matplotlib.text.Text method), 378
get_formatd() (in module matplotlib.mlab), 640
get_frame() (matplotlib.axes.Axes method), 442
get_frame() (matplotlib.legend.Legend method), 328
get_frame_on() (matplotlib.axes.Axes method), 442
get_frame_on() (matplotlib.legend.Legend method),

329
get_frameon() (matplotlib.figure.Figure method),

594
get_fullname() (matplotlib.afm.AFM method), 314
get_fully_transformed_path() (mat-

plotlib.transforms.TransformedPath
method), 259

get_geometry() (matplotlib.axes.SubplotBase
method), 524

get_geometry() (matplotlib.gridspec.GridSpecBase
method), 611

Index 865

Matplotlib, Release 1.0.0

get_geometry() (matplotlib.gridspec.SubplotSpec
method), 612

get_gid() (matplotlib.artist.Artist method), 319
get_grid_positions() (mat-

plotlib.gridspec.GridSpecBase method),
611

get_gridlines() (matplotlib.axis.Axis method), 527
get_gridspec() (matplotlib.gridspec.SubplotSpec

method), 612
get_ha() (matplotlib.text.Text method), 378
get_hatch() (matplotlib.backend_bases.GraphicsContextBase

method), 830
get_hatch() (matplotlib.patches.Patch method), 362
get_hatch_path() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 830

get_height() (matplotlib.patches.FancyBboxPatch
method), 359

get_height() (matplotlib.patches.Rectangle method),
367

get_height_char() (matplotlib.afm.AFM method),
314

get_height_ratios() (mat-
plotlib.gridspec.GridSpecBase method),
612

get_hinting_type() (mat-
plotlib.mathtext.MathtextBackend
method), 621

get_hinting_type() (mat-
plotlib.mathtext.MathtextBackendAggRender
method), 621

get_hinting_type() (mat-
plotlib.mathtext.MathtextBackendBbox
method), 621

get_horizontal_stem_width() (matplotlib.afm.AFM
method), 314

get_horizontalalignment() (matplotlib.text.Text
method), 378

get_image_magnification() (mat-
plotlib.backend_bases.RendererBase
method), 837

get_images() (matplotlib.axes.Axes method), 442
get_joinstyle() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 830

get_kern() (matplotlib.mathtext.Fonts method), 617
get_kern() (matplotlib.mathtext.StandardPsFonts

method), 625

get_kern() (matplotlib.mathtext.TruetypeFonts
method), 626

get_kern_dist() (matplotlib.afm.AFM method), 314
get_kern_dist_from_name() (matplotlib.afm.AFM

method), 314
get_kerning() (matplotlib.mathtext.Char method),

616
get_kerning() (matplotlib.mathtext.Node method),

623
get_label() (matplotlib.artist.Artist method), 319
get_label() (matplotlib.axis.Axis method), 527
get_label_position() (matplotlib.axis.XAxis

method), 532
get_label_position() (matplotlib.axis.YAxis

method), 534
get_label_text() (matplotlib.axis.Axis method), 527
get_legend() (matplotlib.axes.Axes method), 442
get_legend_handles_labels() (matplotlib.axes.Axes

method), 442
get_lines() (matplotlib.axes.Axes method), 443
get_lines() (matplotlib.legend.Legend method), 329
get_linestyle() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 830

get_linestyle() (matplotlib.collections.Collection
method), 554

get_linestyle() (matplotlib.lines.Line2D method),
331

get_linestyle() (matplotlib.patches.Patch method),
362

get_linestyles() (matplotlib.collections.Collection
method), 554

get_linewidth() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 830

get_linewidth() (matplotlib.collections.Collection
method), 554

get_linewidth() (matplotlib.lines.Line2D method),
331

get_linewidth() (matplotlib.patches.Patch method),
362

get_linewidths() (matplotlib.collections.Collection
method), 554

get_loc() (matplotlib.axis.Tick method), 531
get_locator() (matplotlib.dates.AutoDateLocator

method), 581
get_ls() (matplotlib.lines.Line2D method), 331
get_ls() (matplotlib.patches.Patch method), 362

866 Index

Matplotlib, Release 1.0.0

get_lw() (matplotlib.lines.Line2D method), 331
get_lw() (matplotlib.patches.Patch method), 362
get_major_formatter() (matplotlib.axis.Axis

method), 527
get_major_locator() (matplotlib.axis.Axis method),

528
get_major_ticks() (matplotlib.axis.Axis method),

528
get_majorticklabels() (matplotlib.axis.Axis method),

528
get_majorticklines() (matplotlib.axis.Axis method),

528
get_majorticklocs() (matplotlib.axis.Axis method),

528
get_marker() (matplotlib.lines.Line2D method), 331
get_markeredgecolor() (matplotlib.lines.Line2D

method), 331
get_markeredgewidth() (matplotlib.lines.Line2D

method), 331
get_markerfacecolor() (matplotlib.lines.Line2D

method), 331
get_markerfacecoloralt() (matplotlib.lines.Line2D

method), 331
get_markersize() (matplotlib.lines.Line2D method),

331
get_markevery() (matplotlib.lines.Line2D method),

331
get_matrix() (mat-

plotlib.projections.polar.PolarAxes.PolarAffine
method), 266

get_matrix() (matplotlib.transforms.Affine2D
method), 253

get_matrix() (matplotlib.transforms.AffineBase
method), 251

get_matrix() (matplotlib.transforms.BboxTransform
method), 259

get_matrix() (mat-
plotlib.transforms.BboxTransformFrom
method), 259

get_matrix() (mat-
plotlib.transforms.BboxTransformTo
method), 259

get_matrix() (mat-
plotlib.transforms.BlendedAffine2D
method), 257

get_matrix() (mat-
plotlib.transforms.CompositeAffine2D
method), 258

get_matrix() (mat-
plotlib.transforms.IdentityTransform
method), 254

get_matrix() (mat-
plotlib.transforms.ScaledTranslation
method), 259

get_mec() (matplotlib.lines.Line2D method), 332
get_metrics() (matplotlib.mathtext.Fonts method),

617
get_mew() (matplotlib.lines.Line2D method), 332
get_mfc() (matplotlib.lines.Line2D method), 332
get_mfcalt() (matplotlib.lines.Line2D method), 332
get_minor_formatter() (matplotlib.axis.Axis

method), 528
get_minor_locator() (matplotlib.axis.Axis method),

528
get_minor_ticks() (matplotlib.axis.Axis method),

528
get_minorticklabels() (matplotlib.axis.Axis method),

528
get_minorticklines() (matplotlib.axis.Axis method),

528
get_minorticklocs() (matplotlib.axis.Axis method),

528
get_minpos() (matplotlib.axis.XAxis method), 533
get_minpos() (matplotlib.axis.XTick method), 534
get_minpos() (matplotlib.axis.YAxis method), 534
get_minpos() (matplotlib.axis.YTick method), 535
get_ms() (matplotlib.lines.Line2D method), 332
get_mutation_aspect() (mat-

plotlib.patches.FancyArrowPatch method),
356

get_mutation_aspect() (mat-
plotlib.patches.FancyBboxPatch method),
359

get_mutation_scale() (mat-
plotlib.patches.FancyArrowPatch method),
356

get_mutation_scale() (mat-
plotlib.patches.FancyBboxPatch method),
359

get_name() (matplotlib.font_manager.FontProperties
method), 606

get_name() (matplotlib.text.Text method), 378
get_name_char() (matplotlib.afm.AFM method),

314
get_navigate() (matplotlib.axes.Axes method), 443
get_navigate_mode() (matplotlib.axes.Axes

Index 867

Matplotlib, Release 1.0.0

method), 443
get_numsides() (mat-

plotlib.collections.RegularPolyCollection
method), 562

get_offset() (matplotlib.ticker.FixedFormatter
method), 815

get_offset() (matplotlib.ticker.Formatter method),
815

get_offset() (matplotlib.ticker.ScalarFormatter
method), 816

get_offset_text() (matplotlib.axis.Axis method), 528
get_offsets() (matplotlib.collections.Collection

method), 555
get_pad() (matplotlib.axis.Tick method), 531
get_pad_pixels() (matplotlib.axis.Tick method), 532
get_patch_transform() (matplotlib.patches.Arrow

method), 340
get_patch_transform() (matplotlib.patches.Ellipse

method), 353
get_patch_transform() (matplotlib.patches.Patch

method), 362
get_patch_transform() (mat-

plotlib.patches.Rectangle method), 367
get_patch_transform() (mat-

plotlib.patches.RegularPolygon method),
369

get_patch_transform() (matplotlib.patches.Shadow
method), 370

get_patch_transform() (matplotlib.patches.YAArrow
method), 372

get_patch_transform() (matplotlib.spines.Spine
method), 810

get_patches() (matplotlib.legend.Legend method),
329

get_path() (matplotlib.lines.Line2D method), 332
get_path() (matplotlib.patches.Arrow method), 340
get_path() (matplotlib.patches.Ellipse method), 353
get_path() (matplotlib.patches.FancyArrowPatch

method), 356
get_path() (matplotlib.patches.FancyBboxPatch

method), 359
get_path() (matplotlib.patches.Patch method), 362
get_path() (matplotlib.patches.PathPatch method),

365
get_path() (matplotlib.patches.Polygon method),

366
get_path() (matplotlib.patches.Rectangle method),

367

get_path() (matplotlib.patches.RegularPolygon
method), 369

get_path() (matplotlib.patches.Shadow method), 370
get_path() (matplotlib.patches.Wedge method), 371
get_path() (matplotlib.patches.YAArrow method),

372
get_path() (matplotlib.spines.Spine method), 810
get_path_collection_extents() (in module mat-

plotlib.path), 657
get_path_effects() (matplotlib.patches.Patch

method), 362
get_path_effects() (matplotlib.text.Text method),

378
get_path_extents() (in module matplotlib.path), 657
get_path_in_displaycoord() (mat-

plotlib.patches.ConnectionPatch method),
350

get_path_in_displaycoord() (mat-
plotlib.patches.FancyArrowPatch method),
356

get_paths() (matplotlib.collections.Collection
method), 555

get_paths() (matplotlib.collections.QuadMesh
method), 561

get_picker() (matplotlib.artist.Artist method), 319
get_pickradius() (matplotlib.axis.Axis method), 528
get_pickradius() (matplotlib.collections.Collection

method), 555
get_pickradius() (matplotlib.lines.Line2D method),

332
get_plot_commands() (in module matplotlib.pyplot),

728
get_points() (matplotlib.transforms.Bbox method),

247
get_points() (matplotlib.transforms.TransformedBbox

method), 248
get_position() (matplotlib.axes.Axes method), 443
get_position() (matplotlib.gridspec.SubplotSpec

method), 612
get_position() (matplotlib.spines.Spine method), 810
get_position() (matplotlib.text.Text method), 378
get_position() (matplotlib.text.TextWithDash

method), 383
get_projection_class() (in module mat-

plotlib.projections), 265
get_projection_class() (mat-

plotlib.projections.ProjectionRegistry
method), 264

868 Index

Matplotlib, Release 1.0.0

get_projection_names() (in module mat-
plotlib.projections), 265

get_projection_names() (mat-
plotlib.projections.ProjectionRegistry
method), 264

get_prop_tup() (matplotlib.text.Text method), 378
get_prop_tup() (matplotlib.text.TextWithDash

method), 383
get_radius() (matplotlib.patches.Circle method), 348
get_rasterization_zorder() (matplotlib.axes.Axes

method), 443
get_rasterized() (matplotlib.artist.Artist method),

319
get_recursive_filelist() (in module mat-

plotlib.cbook), 543
get_renderer_cache() (matplotlib.axes.Axes

method), 443
get_results() (matplotlib.mathtext.Fonts method),

617
get_results() (matplotlib.mathtext.MathtextBackend

method), 621
get_results() (mat-

plotlib.mathtext.MathtextBackendAggRender
method), 621

get_results() (mat-
plotlib.mathtext.MathtextBackendBbox
method), 621

get_results() (mat-
plotlib.mathtext.MathtextBackendBitmapRender
method), 622

get_results() (mat-
plotlib.mathtext.MathtextBackendCairo
method), 622

get_results() (mat-
plotlib.mathtext.MathtextBackendPath
method), 622

get_results() (mat-
plotlib.mathtext.MathtextBackendPdf
method), 622

get_results() (mat-
plotlib.mathtext.MathtextBackendPs
method), 622

get_results() (mat-
plotlib.mathtext.MathtextBackendSvg
method), 622

get_rgb() (matplotlib.backend_bases.GraphicsContextBase
method), 830

get_rotation() (in module matplotlib.text), 384

get_rotation() (mat-
plotlib.collections.RegularPolyCollection
method), 562

get_rotation() (matplotlib.text.Text method), 378
get_rotation_mode() (matplotlib.text.Text method),

378
get_sample_data() (in module matplotlib.cbook),

543
get_sample_data() (mat-

plotlib.cbook.ViewVCCachedServer
method), 541

get_scale() (matplotlib.axis.Axis method), 528
get_scale_docs() (in module matplotlib.scale), 264
get_setters() (matplotlib.artist.ArtistInspector

method), 324
get_shared_x_axes() (matplotlib.axes.Axes method),

443
get_shared_y_axes() (matplotlib.axes.Axes method),

443
get_siblings() (matplotlib.cbook.Grouper method),

539
get_size() (matplotlib.font_manager.FontProperties

method), 606
get_size() (matplotlib.text.Text method), 378
get_size_in_points() (mat-

plotlib.font_manager.FontProperties
method), 606

get_size_inches() (matplotlib.figure.Figure method),
594

get_sized_alternatives_for_symbol() (mat-
plotlib.mathtext.BakomaFonts method),
615

get_sized_alternatives_for_symbol() (mat-
plotlib.mathtext.Fonts method), 617

get_sized_alternatives_for_symbol() (mat-
plotlib.mathtext.StixFonts method),
625

get_sized_alternatives_for_symbol() (mat-
plotlib.mathtext.UnicodeFonts method),
626

get_sizes() (matplotlib.collections.CircleCollection
method), 553

get_sizes() (matplotlib.collections.RegularPolyCollection
method), 562

get_slant() (matplotlib.font_manager.FontProperties
method), 606

get_smart_bounds() (matplotlib.axis.Axis method),
528

Index 869

Matplotlib, Release 1.0.0

get_smart_bounds() (matplotlib.spines.Spine
method), 810

get_snap() (matplotlib.artist.Artist method), 319
get_snap() (matplotlib.backend_bases.GraphicsContextBase

method), 830
get_solid_capstyle() (matplotlib.lines.Line2D

method), 332
get_solid_joinstyle() (matplotlib.lines.Line2D

method), 332
get_sparse_matrix() (in module matplotlib.mlab),

640
get_spine_transform() (matplotlib.spines.Spine

method), 810
get_split_ind() (in module matplotlib.cbook), 544
get_state() (matplotlib.mathtext.Parser method), 624
get_str_bbox() (matplotlib.afm.AFM method), 314
get_str_bbox_and_descent() (matplotlib.afm.AFM

method), 314
get_stretch() (mat-

plotlib.font_manager.FontProperties
method), 606

get_stretch() (matplotlib.text.Text method), 378
get_style() (matplotlib.font_manager.FontProperties

method), 606
get_style() (matplotlib.text.Text method), 378
get_subplot_params() (matplotlib.gridspec.GridSpec

method), 611
get_subplot_params() (mat-

plotlib.gridspec.GridSpecBase method),
612

get_subplot_params() (mat-
plotlib.gridspec.GridSpecFromSubplotSpec
method), 612

get_subplotspec() (matplotlib.axes.SubplotBase
method), 524

get_supported_filetypes() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 824

get_supported_filetypes_grouped() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 825

get_texmanager() (mat-
plotlib.backend_bases.RendererBase
method), 837

get_text() (matplotlib.text.Text method), 378
get_text_heights() (matplotlib.axis.XAxis method),

533
get_text_width_height_descent() (mat-

plotlib.backend_bases.RendererBase
method), 837

get_text_widths() (matplotlib.axis.YAxis method),
534

get_texts() (matplotlib.legend.Legend method), 329
get_ticklabel_extents() (matplotlib.axis.Axis

method), 528
get_ticklabels() (matplotlib.axis.Axis method), 528
get_ticklines() (matplotlib.axis.Axis method), 528
get_ticklocs() (matplotlib.axis.Axis method), 528
get_ticks_position() (matplotlib.axis.XAxis

method), 533
get_ticks_position() (matplotlib.axis.YAxis method),

534
get_tightbbox() (matplotlib.axes.Axes method), 444
get_tightbbox() (matplotlib.figure.Figure method),

594
get_title() (matplotlib.axes.Axes method), 444
get_title() (matplotlib.legend.Legend method), 329
get_transform() (matplotlib.artist.Artist method),

320
get_transform() (matplotlib.axis.Axis method), 529
get_transform() (matplotlib.patches.Patch method),

362
get_transform() (matplotlib.scale.LinearScale

method), 262
get_transform() (matplotlib.scale.LogScale method),

263
get_transform() (matplotlib.scale.ScaleBase

method), 263
get_transform() (mat-

plotlib.scale.SymmetricalLogScale
method), 264

get_transformed_clip_path_and_affine() (mat-
plotlib.artist.Artist method), 320

get_transformed_path_and_affine() (mat-
plotlib.transforms.TransformedPath
method), 259

get_transformed_points_and_affine() (mat-
plotlib.transforms.TransformedPath
method), 259

get_transforms() (matplotlib.collections.Collection
method), 555

get_underline_thickness() (matplotlib.afm.AFM
method), 314

get_underline_thickness() (mat-
plotlib.mathtext.Fonts method), 617

get_underline_thickness() (mat-

870 Index

Matplotlib, Release 1.0.0

plotlib.mathtext.StandardPsFonts method),
625

get_underline_thickness() (mat-
plotlib.mathtext.TruetypeFonts method),
626

get_unicode_index() (in module mat-
plotlib.mathtext), 627

get_unit() (matplotlib.text.OffsetFrom method), 376
get_unit_generic() (matplotlib.dates.RRuleLocator

static method), 580
get_units() (matplotlib.axis.Axis method), 529
get_url() (matplotlib.artist.Artist method), 320
get_url() (matplotlib.backend_bases.GraphicsContextBase

method), 830
get_urls() (matplotlib.collections.Collection

method), 555
get_used_characters() (matplotlib.mathtext.Fonts

method), 617
get_useOffset() (matplotlib.ticker.ScalarFormatter

method), 816
get_va() (matplotlib.text.Text method), 378
get_valid_values() (matplotlib.artist.ArtistInspector

method), 324
get_variant() (mat-

plotlib.font_manager.FontProperties
method), 606

get_variant() (matplotlib.text.Text method), 378
get_vertical_stem_width() (matplotlib.afm.AFM

method), 314
get_verticalalignment() (matplotlib.text.Text

method), 378
get_verts() (matplotlib.patches.Patch method), 362
get_view_interval() (matplotlib.axis.Axis method),

529
get_view_interval() (matplotlib.axis.Tick method),

532
get_view_interval() (matplotlib.axis.XAxis method),

533
get_view_interval() (matplotlib.axis.XTick method),

534
get_view_interval() (matplotlib.axis.YAxis method),

534
get_view_interval() (matplotlib.axis.YTick method),

535
get_view_interval() (mat-

plotlib.ticker.TickHelper.DummyAxis
method), 815

get_visible() (matplotlib.artist.Artist method), 320

get_weight() (matplotlib.afm.AFM method), 314
get_weight() (mat-

plotlib.font_manager.FontProperties
method), 606

get_weight() (matplotlib.text.Text method), 378
get_width() (matplotlib.patches.FancyBboxPatch

method), 359
get_width() (matplotlib.patches.Rectangle method),

367
get_width_char() (matplotlib.afm.AFM method),

314
get_width_from_char_name() (matplotlib.afm.AFM

method), 314
get_width_height() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 825

get_width_ratios() (mat-
plotlib.gridspec.GridSpecBase method),
612

get_window_extent() (matplotlib.axes.Axes
method), 444

get_window_extent() (mat-
plotlib.collections.Collection method),
555

get_window_extent() (matplotlib.figure.Figure
method), 594

get_window_extent() (matplotlib.legend.Legend
method), 329

get_window_extent() (matplotlib.lines.Line2D
method), 332

get_window_extent() (matplotlib.patches.Patch
method), 362

get_window_extent() (matplotlib.text.Text method),
378

get_window_extent() (matplotlib.text.TextWithDash
method), 383

get_x() (matplotlib.patches.FancyBboxPatch
method), 359

get_x() (matplotlib.patches.Rectangle method), 367
get_xaxis() (matplotlib.axes.Axes method), 444
get_xaxis_text1_transform() (matplotlib.axes.Axes

method), 444
get_xaxis_text2_transform() (matplotlib.axes.Axes

method), 445
get_xaxis_transform() (matplotlib.axes.Axes

method), 445
get_xbound() (matplotlib.axes.Axes method), 445
get_xdata() (matplotlib.lines.Line2D method), 332

Index 871

Matplotlib, Release 1.0.0

get_xgridlines() (matplotlib.axes.Axes method), 446
get_xheight() (matplotlib.afm.AFM method), 314
get_xheight() (matplotlib.mathtext.Fonts method),

618
get_xheight() (matplotlib.mathtext.StandardPsFonts

method), 625
get_xheight() (matplotlib.mathtext.TruetypeFonts

method), 626
get_xlabel() (matplotlib.axes.Axes method), 446
get_xlim() (matplotlib.axes.Axes method), 446
get_xmajorticklabels() (matplotlib.axes.Axes

method), 446
get_xminorticklabels() (matplotlib.axes.Axes

method), 446
get_xscale() (matplotlib.axes.Axes method), 446
get_xticklabels() (matplotlib.axes.Axes method),

446
get_xticklines() (matplotlib.axes.Axes method), 446
get_xticks() (matplotlib.axes.Axes method), 446
get_xy() (matplotlib.patches.Polygon method), 366
get_xy() (matplotlib.patches.Rectangle method), 367
get_xydata() (matplotlib.lines.Line2D method), 332
get_xyz_where() (in module matplotlib.mlab), 640
get_y() (matplotlib.patches.FancyBboxPatch

method), 359
get_y() (matplotlib.patches.Rectangle method), 368
get_yaxis() (matplotlib.axes.Axes method), 447
get_yaxis_text1_transform() (matplotlib.axes.Axes

method), 447
get_yaxis_text2_transform() (matplotlib.axes.Axes

method), 447
get_yaxis_transform() (matplotlib.axes.Axes

method), 448
get_ybound() (matplotlib.axes.Axes method), 448
get_ydata() (matplotlib.lines.Line2D method), 332
get_ygridlines() (matplotlib.axes.Axes method), 448
get_ylabel() (matplotlib.axes.Axes method), 448
get_ylim() (matplotlib.axes.Axes method), 448
get_ymajorticklabels() (matplotlib.axes.Axes

method), 448
get_yminorticklabels() (matplotlib.axes.Axes

method), 449
get_yscale() (matplotlib.axes.Axes method), 449
get_yticklabels() (matplotlib.axes.Axes method),

449
get_yticklines() (matplotlib.axes.Axes method), 449
get_yticks() (matplotlib.axes.Axes method), 449
get_zorder() (matplotlib.artist.Artist method), 320

getp() (in module matplotlib.artist), 325
getpoints() (matplotlib.patches.YAArrow method),

372
GetRealpathAndStat (class in matplotlib.cbook), 538
ginput() (in module matplotlib.pyplot), 728
ginput() (matplotlib.figure.Figure method), 594
Glue (class in matplotlib.mathtext), 618
GlueSpec (class in matplotlib.mathtext), 618
grab_mouse() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 825

GraphicsContextBase (class in mat-
plotlib.backend_bases), 829

gray() (in module matplotlib.pyplot), 729
grid() (in module matplotlib.pyplot), 729
grid() (matplotlib.axes.Axes method), 449
grid() (matplotlib.axis.Axis method), 529
griddata() (in module matplotlib.mlab), 640
GridSpec (class in matplotlib.gridspec), 611
GridSpecBase (class in matplotlib.gridspec), 611
GridSpecFromSubplotSpec (class in mat-

plotlib.gridspec), 612
group() (matplotlib.mathtext.Parser method), 624
Grouper (class in matplotlib.cbook), 538
grow() (matplotlib.mathtext.Accent method), 615
grow() (matplotlib.mathtext.Box method), 615
grow() (matplotlib.mathtext.Char method), 616
grow() (matplotlib.mathtext.Glue method), 618
grow() (matplotlib.mathtext.Kern method), 619
grow() (matplotlib.mathtext.List method), 619
grow() (matplotlib.mathtext.Node method), 623
GTK, 851

H
has_data() (matplotlib.axes.Axes method), 451
hatch() (matplotlib.path.Path class method), 654
have_units() (matplotlib.artist.Artist method), 320
have_units() (matplotlib.axis.Axis method), 529
Hbox (class in matplotlib.mathtext), 618
HCentered (class in matplotlib.mathtext), 618
height (matplotlib.dviread.Tfm attribute), 845
height (matplotlib.transforms.BboxBase attribute),

244
hex2color() (in module matplotlib.colors), 574
hexbin() (in module matplotlib.pyplot), 731
hexbin() (matplotlib.axes.Axes method), 451
hist() (in module matplotlib.pyplot), 734
hist() (matplotlib.axes.Axes method), 454

872 Index

Matplotlib, Release 1.0.0

hitlist() (matplotlib.artist.Artist method), 320
hlines() (in module matplotlib.pyplot), 737
hlines() (matplotlib.axes.Axes method), 457
Hlist (class in matplotlib.mathtext), 618
hlist_out() (matplotlib.mathtext.Ship method), 625
hold() (in module matplotlib.pyplot), 738
hold() (matplotlib.axes.Axes method), 458
hold() (matplotlib.figure.Figure method), 595
HOME, 210
home() (matplotlib.backend_bases.NavigationToolbar2

method), 833
home() (matplotlib.cbook.Stack method), 540
hot() (in module matplotlib.pyplot), 738
HourLocator (class in matplotlib.dates), 582
hours() (in module matplotlib.dates), 584
hpack() (matplotlib.mathtext.Hlist method), 619
Hrule (class in matplotlib.mathtext), 619
hsv() (in module matplotlib.pyplot), 738
hsv_to_rgb() (in module matplotlib.colors), 574
http_error_304() (mat-

plotlib.cbook.ViewVCCachedServer
method), 541

http_request() (mat-
plotlib.cbook.ViewVCCachedServer
method), 541

http_response() (mat-
plotlib.cbook.ViewVCCachedServer
method), 541

I
identity() (in module matplotlib.mlab), 640
identity() (matplotlib.transforms.Affine2D static

method), 253
IdentityTransform (class in matplotlib.transforms),

254
Idle (class in matplotlib.cbook), 539
idle_event() (matplotlib.backend_bases.FigureCanvasBase

method), 825
IdleEvent (class in matplotlib.backend_bases), 831
ignore() (matplotlib.transforms.Bbox method), 247
imageObject() (mat-

plotlib.backends.backend_pdf.PdfFile
method), 841

imread() (in module matplotlib.pyplot), 739
imsave() (in module matplotlib.pyplot), 739
imshow() (in module matplotlib.pyplot), 740
imshow() (matplotlib.axes.Axes method), 458
in_axes() (matplotlib.axes.Axes method), 461

in_cache_dir() (mat-
plotlib.cbook.ViewVCCachedServer
method), 541

IndexDateFormatter (class in matplotlib.dates), 580
IndexLocator (class in matplotlib.ticker), 818
infodict() (matplotlib.backends.backend_pdf.PdfPages

method), 842
inside_poly() (in module matplotlib.mlab), 641
interpolated() (matplotlib.path.Path method), 654
intersects_bbox() (matplotlib.path.Path method),

654
intersects_path() (matplotlib.path.Path method), 655
interval (matplotlib.backend_bases.TimerBase at-

tribute), 839
intervalx (matplotlib.transforms.BboxBase at-

tribute), 244
intervaly (matplotlib.transforms.BboxBase at-

tribute), 244
invalidate() (matplotlib.transforms.TransformNode

method), 243
inverse() (matplotlib.colors.BoundaryNorm

method), 570
inverse() (matplotlib.colors.LogNorm method), 574
inverse() (matplotlib.colors.NoNorm method), 574
inverse() (matplotlib.colors.Normalize method), 574
inverse_transformed() (mat-

plotlib.transforms.BboxBase method),
244

invert_xaxis() (matplotlib.axes.Axes method), 462
invert_yaxis() (matplotlib.axes.Axes method), 462
inverted() (matplotlib.projections.polar.PolarAxes.InvertedPolarTransform

method), 265
inverted() (matplotlib.projections.polar.PolarAxes.PolarTransform

method), 266
inverted() (matplotlib.transforms.Affine2DBase

method), 252
inverted() (matplotlib.transforms.BlendedGenericTransform

method), 256
inverted() (matplotlib.transforms.CompositeGenericTransform

method), 257
inverted() (matplotlib.transforms.IdentityTransform

method), 254
inverted() (matplotlib.transforms.Transform

method), 249
ioff() (in module matplotlib.pyplot), 743
ion() (in module matplotlib.pyplot), 743
is_alias() (matplotlib.artist.ArtistInspector method),

324

Index 873

Matplotlib, Release 1.0.0

is_closed_polygon() (in module matplotlib.cbook),
544

is_closed_polygon() (in module matplotlib.mlab),
641

is_color_like() (in module matplotlib.colors), 575
is_dashed() (matplotlib.lines.Line2D method), 332
is_decade() (matplotlib.ticker.LogFormatter

method), 817
is_dropsub() (matplotlib.mathtext.Parser method),

624
is_figure_set() (matplotlib.artist.Artist method), 320
is_first_col() (matplotlib.axes.SubplotBase method),

524
is_first_row() (matplotlib.axes.SubplotBase

method), 524
is_frame_like() (matplotlib.spines.Spine method),

811
is_gray() (matplotlib.colors.Colormap method), 571
is_last_col() (matplotlib.axes.SubplotBase method),

524
is_last_row() (matplotlib.axes.SubplotBase method),

524
is_math_text() (in module matplotlib.cbook), 544
is_math_text() (matplotlib.text.Text static method),

379
is_missing() (matplotlib.cbook.converter method),

542
is_numlike() (in module matplotlib.cbook), 544
is_numlike() (matplotlib.units.ConversionInterface

static method), 822
is_opentype_cff_font() (in module mat-

plotlib.font_manager), 608
is_overunder() (matplotlib.mathtext.Parser method),

624
is_scalar() (in module matplotlib.cbook), 544
is_scalar_or_string() (in module matplotlib.cbook),

544
is_sequence_of_strings() (in module mat-

plotlib.cbook), 544
is_slanted() (matplotlib.mathtext.Char method), 616
is_slanted() (matplotlib.mathtext.Parser method),

624
is_string_like() (in module matplotlib.cbook), 544
is_transform_set() (matplotlib.artist.Artist method),

320
is_unit() (matplotlib.transforms.BboxBase method),

244
is_writable_file_like() (in module matplotlib.cbook),

544
ishold() (in module matplotlib.pyplot), 743
ishold() (matplotlib.axes.Axes method), 462
isinteractive() (in module matplotlib.pyplot), 743
ispower2() (in module matplotlib.mlab), 641
issubclass_safe() (in module matplotlib.cbook), 544
isvector() (in module matplotlib.cbook), 544
isvector() (in module matplotlib.mlab), 641
iter_segments() (matplotlib.path.Path method), 655
iter_ticks() (matplotlib.axis.Axis method), 529
iterable() (in module matplotlib.cbook), 544

J
jet() (in module matplotlib.pyplot), 743
join() (matplotlib.cbook.Grouper method), 539
joined() (matplotlib.cbook.Grouper method), 539
JPG, 851

K
Kern (class in matplotlib.mathtext), 619
kern() (matplotlib.mathtext.Hlist method), 619
key_press() (matplotlib.backend_bases.FigureManagerBase

method), 829
key_press_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 825

key_release_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 825

KeyEvent (class in matplotlib.backend_bases), 831
kwdoc() (in module matplotlib.artist), 325

L
l1norm() (in module matplotlib.mlab), 641
l2norm() (in module matplotlib.mlab), 641
label_minor() (matplotlib.ticker.LogFormatter

method), 817
label_outer() (matplotlib.axes.SubplotBase method),

524
last() (matplotlib.mlab.FIFOBuffer method), 631
leave_notify_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 825

Legend (class in matplotlib.legend), 327
legend() (in module matplotlib.pyplot), 743
legend() (matplotlib.axes.Axes method), 462
legend() (matplotlib.figure.Figure method), 595

874 Index

Matplotlib, Release 1.0.0

less_simple_linear_interpolation() (in module mat-
plotlib.cbook), 544

less_simple_linear_interpolation() (in module mat-
plotlib.mlab), 641

levypdf() (in module matplotlib.mlab), 641
liaupunov() (in module matplotlib.mlab), 641
LightSource (class in matplotlib.colors), 571
limit_range_for_scale() (matplotlib.axis.Axis

method), 529
limit_range_for_scale() (matplotlib.scale.LogScale

method), 263
limit_range_for_scale() (matplotlib.scale.ScaleBase

method), 263
Line2D (class in matplotlib.lines), 329
linear_spine() (matplotlib.spines.Spine class

method), 811
LinearLocator (class in matplotlib.ticker), 818
LinearScale (class in matplotlib.scale), 262
LinearSegmentedColormap (class in mat-

plotlib.colors), 572
LineCollection (class in matplotlib.collections), 557
List (class in matplotlib.mathtext), 619
ListedColormap (class in matplotlib.colors), 573
listFiles() (in module matplotlib.cbook), 544
load() (in module matplotlib.mlab), 642
LocationEvent (class in matplotlib.backend_bases),

832
Locator (class in matplotlib.ticker), 817
locator_params() (in module matplotlib.pyplot), 745
locator_params() (matplotlib.axes.Axes method),

464
log2() (in module matplotlib.mlab), 643
LogFormatter (class in matplotlib.ticker), 816
LogFormatterExponent (class in matplotlib.ticker),

817
LogFormatterMathtext (class in matplotlib.ticker),

817
LogLocator (class in matplotlib.ticker), 818
loglog() (in module matplotlib.pyplot), 745
loglog() (matplotlib.axes.Axes method), 465
LogNorm (class in matplotlib.colors), 573
LogScale (class in matplotlib.scale), 262
logspace() (in module matplotlib.mlab), 643
longest_contiguous_ones() (in module mat-

plotlib.mlab), 643
longest_ones() (in module matplotlib.mlab), 643

M
mainloop() (matplotlib.backend_bases.ShowBase

method), 838
make_axes() (in module matplotlib.colorbar), 566
make_compound_path() (matplotlib.path.Path class

method), 655
make_compound_path_from_polys() (mat-

plotlib.path.Path class method), 655
makeMappingArray() (in module matplotlib.colors),

575
margins() (in module matplotlib.pyplot), 747
margins() (matplotlib.axes.Axes method), 466
markerObject() (mat-

plotlib.backends.backend_pdf.PdfFile
method), 841

math() (matplotlib.mathtext.Parser method), 624
MathtextBackend (class in matplotlib.mathtext), 620
MathtextBackendAgg() (in module mat-

plotlib.mathtext), 621
MathtextBackendAggRender (class in mat-

plotlib.mathtext), 621
MathtextBackendBbox (class in mat-

plotlib.mathtext), 621
MathtextBackendBitmap() (in module mat-

plotlib.mathtext), 622
MathtextBackendBitmapRender (class in mat-

plotlib.mathtext), 622
MathtextBackendCairo (class in mat-

plotlib.mathtext), 622
MathtextBackendPath (class in matplotlib.mathtext),

622
MathtextBackendPdf (class in matplotlib.mathtext),

622
MathtextBackendPs (class in matplotlib.mathtext),

622
MathtextBackendSvg (class in matplotlib.mathtext),

622
MathTextParser (class in matplotlib.mathtext), 619
MathTextWarning, 620
matplotlib (module), 309
matplotlib.afm (module), 313
matplotlib.artist (module), 317
matplotlib.axes (module), 385
matplotlib.axis (module), 527
matplotlib.backend_bases (module), 823
matplotlib.backends.backend_pdf (module), 841
matplotlib.backends.backend_qt4agg (module), 839

Index 875

Matplotlib, Release 1.0.0

matplotlib.backends.backend_wxagg (module), 840
matplotlib.cbook (module), 537
matplotlib.cm (module), 549
matplotlib.collections (module), 551
matplotlib.colorbar (module), 565
matplotlib.colors (module), 569
matplotlib.dates (module), 577
matplotlib.dviread (module), 843
matplotlib.figure (module), 585
matplotlib.font_manager (module), 603
matplotlib.fontconfig_pattern (module), 608
matplotlib.gridspec (module), 611
matplotlib.legend (module), 326
matplotlib.lines (module), 329
matplotlib.mathtext (module), 614
matplotlib.mlab (module), 629
matplotlib.nxutils (module), 807
matplotlib.patches (module), 337
matplotlib.path (module), 653
matplotlib.projections (module), 264
matplotlib.projections.polar (module), 265
matplotlib.pyplot (module), 659
matplotlib.scale (module), 262
matplotlib.spines (module), 809
matplotlib.text (module), 373
matplotlib.ticker (module), 813
matplotlib.transforms (module), 241
matplotlib.type1font (module), 846
matplotlib.units (module), 821
matrix_from_values() (mat-

plotlib.transforms.Affine2DBase static
method), 252

matshow() (in module matplotlib.pyplot), 748
matshow() (matplotlib.axes.Axes method), 467
max (matplotlib.transforms.BboxBase attribute), 245
maxdict (class in matplotlib.cbook), 544
MaxNLocator (class in matplotlib.ticker), 819
MemoryMonitor (class in matplotlib.cbook), 539
min (matplotlib.transforms.BboxBase attribute), 245
minorticks_off() (in module matplotlib.pyplot), 749
minorticks_off() (matplotlib.axes.Axes method), 468
minorticks_on() (in module matplotlib.pyplot), 749
minorticks_on() (matplotlib.axes.Axes method), 468
MinuteLocator (class in matplotlib.dates), 582
minutes() (in module matplotlib.dates), 584
mkdirs() (in module matplotlib.cbook), 544
MonthLocator (class in matplotlib.dates), 582

motion_notify_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 825

mouse_move() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 833

MouseEvent (class in matplotlib.backend_bases),
832

movavg() (in module matplotlib.mlab), 643
mpl_connect() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 825

mpl_disconnect() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 826

MPLCONFIGDIR, 210
MultipleLocator (class in matplotlib.ticker), 818
mutated() (matplotlib.transforms.Bbox method), 247
mutatedx() (matplotlib.transforms.Bbox method),

247
mutatedy() (matplotlib.transforms.Bbox method),

247
mx2num() (in module matplotlib.dates), 579

N
Name (class in matplotlib.backends.backend_pdf),

841
NavigationToolbar2 (class in mat-

plotlib.backend_bases), 832
NavigationToolbar2QTAgg (class in mat-

plotlib.backends.backend_qt4agg), 840
NavigationToolbar2WxAgg (class in mat-

plotlib.backends.backend_wxagg), 840
nearest_long() (matplotlib.ticker.LogFormatter

method), 817
NegFil (class in matplotlib.mathtext), 623
NegFill (class in matplotlib.mathtext), 623
NegFilll (class in matplotlib.mathtext), 623
new_figure_manager() (in module mat-

plotlib.backends.backend_pdf), 843
new_figure_manager() (in module mat-

plotlib.backends.backend_qt4agg), 840
new_figure_manager() (in module mat-

plotlib.backends.backend_wxagg), 840
new_gc() (matplotlib.backend_bases.RendererBase

method), 837
new_subplotspec() (mat-

plotlib.gridspec.GridSpecBase method),

876 Index

Matplotlib, Release 1.0.0

612
new_timer() (matplotlib.backend_bases.FigureCanvasBase

method), 826
no_norm (in module matplotlib.colors), 575
Node (class in matplotlib.mathtext), 623
non_math() (matplotlib.mathtext.Parser method),

624
NoNorm (class in matplotlib.colors), 574
nonsingular() (in module matplotlib.transforms), 260
nonsingular() (matplotlib.dates.DateLocator

method), 580
norm_flat() (in module matplotlib.mlab), 643
Normalize (class in matplotlib.colors), 574
normalize (in module matplotlib.colors), 575
normpdf() (in module matplotlib.mlab), 643
Null (class in matplotlib.cbook), 539
NullFormatter (class in matplotlib.ticker), 815
NullLocator (class in matplotlib.ticker), 818
num2date() (in module matplotlib.dates), 579
num2epoch() (in module matplotlib.dates), 579
numpy, 851
numvertices (matplotlib.patches.RegularPolygon at-

tribute), 369

O
OffsetFrom (class in matplotlib.text), 375
onetrue() (in module matplotlib.cbook), 545
onHilite() (matplotlib.backend_bases.FigureCanvasBase

method), 826
onpick() (matplotlib.lines.VertexSelector method),

337
onRemove() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 826

open_group() (mat-
plotlib.backend_bases.RendererBase
method), 837

Operator (class in mat-
plotlib.backends.backend_pdf), 841

option_image_nocomposite() (mat-
plotlib.backend_bases.RendererBase
method), 837

option_scale_image() (mat-
plotlib.backend_bases.RendererBase
method), 837

orientation (matplotlib.patches.RegularPolygon at-
tribute), 369

OSXFontDirectory() (in module mat-
plotlib.font_manager), 607

OSXInstalledFonts() (in module mat-
plotlib.font_manager), 607

over() (in module matplotlib.pyplot), 749
overlaps() (matplotlib.transforms.BboxBase

method), 245

P
p0 (matplotlib.transforms.BboxBase attribute), 245
p1 (matplotlib.transforms.BboxBase attribute), 245
padded() (matplotlib.transforms.BboxBase method),

245
paintEvent() (mat-

plotlib.backends.backend_qt4agg.FigureCanvasQTAgg
method), 839

pan() (matplotlib.axis.Axis method), 529
pan() (matplotlib.backend_bases.NavigationToolbar2

method), 833
pan() (matplotlib.ticker.Locator method), 817
parse() (matplotlib.fontconfig_pattern.FontconfigPatternParser

method), 608
parse() (matplotlib.mathtext.MathTextParser

method), 620
parse() (matplotlib.mathtext.Parser method), 624
parse_afm() (in module matplotlib.afm), 314
Parser (class in matplotlib.mathtext), 623
Parser.State (class in matplotlib.mathtext), 623
parts (matplotlib.type1font.Type1Font attribute), 846
Patch (class in matplotlib.patches), 360
PatchCollection (class in matplotlib.collections), 558
PATH, 52, 54, 55
Path (class in matplotlib.path), 653
path_in_path() (in module matplotlib.path), 657
path_intersects_path() (in module matplotlib.path),

657
path_length() (in module matplotlib.cbook), 545
path_length() (in module matplotlib.mlab), 643
PathCollection (class in matplotlib.collections), 559
PathPatch (class in matplotlib.patches), 364
PCA (class in matplotlib.mlab), 632
pchanged() (matplotlib.artist.Artist method), 320
pcolor() (in module matplotlib.pyplot), 749
pcolor() (matplotlib.axes.Axes method), 468
pcolorfast() (matplotlib.axes.Axes method), 470
pcolormesh() (in module matplotlib.pyplot), 752
pcolormesh() (matplotlib.axes.Axes method), 472
PDF, 851

Index 877

Matplotlib, Release 1.0.0

PdfFile (class in matplotlib.backends.backend_pdf),
841

PdfPages (class in mat-
plotlib.backends.backend_pdf), 842

pdfRepr() (in module mat-
plotlib.backends.backend_pdf), 843

pick() (matplotlib.artist.Artist method), 320
pick() (matplotlib.axes.Axes method), 473
pick() (matplotlib.backend_bases.FigureCanvasBase

method), 827
pick_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 827

pickable() (matplotlib.artist.Artist method), 320
PickEvent (class in matplotlib.backend_bases), 834
pickle_dump() (in module mat-

plotlib.font_manager), 608
pickle_load() (in module matplotlib.font_manager),

608
pie() (in module matplotlib.pyplot), 753
pie() (matplotlib.axes.Axes method), 473
pieces() (in module matplotlib.cbook), 545
pink() (in module matplotlib.pyplot), 754
plot() (in module matplotlib.pyplot), 754
plot() (matplotlib.axes.Axes method), 474
plot() (matplotlib.cbook.MemoryMonitor method),

539
plot_date() (in module matplotlib.pyplot), 757
plot_date() (matplotlib.axes.Axes method), 477
plotfile() (in module matplotlib.pyplot), 759
plotting() (in module matplotlib.pyplot), 760
PNG, 851
point_in_path() (in module matplotlib.path), 657
point_in_path_collection() (in module mat-

plotlib.path), 657
points_to_pixels() (mat-

plotlib.backend_bases.RendererBase
method), 837

polar() (in module matplotlib.pyplot), 762
PolarAxes (class in matplotlib.projections.polar),

265
PolarAxes.InvertedPolarTransform (class in mat-

plotlib.projections.polar), 265
PolarAxes.PolarAffine (class in mat-

plotlib.projections.polar), 265
PolarAxes.PolarTransform (class in mat-

plotlib.projections.polar), 266

PolarAxes.RadialLocator (class in mat-
plotlib.projections.polar), 266

PolarAxes.ThetaFormatter (class in mat-
plotlib.projections.polar), 267

poly_below() (in module matplotlib.mlab), 643
poly_between() (in module matplotlib.mlab), 643
PolyCollection (class in matplotlib.collections), 559
Polygon (class in matplotlib.patches), 365
pop_state() (matplotlib.mathtext.Parser method),

624
popall() (in module matplotlib.cbook), 545
pprint_getters() (matplotlib.artist.ArtistInspector

method), 324
pprint_setters() (matplotlib.artist.ArtistInspector

method), 324
pprint_setters_rest() (mat-

plotlib.artist.ArtistInspector method),
324

pprint_val() (matplotlib.ticker.LogFormatter
method), 817

pprint_val() (matplotlib.ticker.ScalarFormatter
method), 816

prctile() (in module matplotlib.mlab), 644
prctile_rank() (in module matplotlib.mlab), 644
prepca() (in module matplotlib.mlab), 644
press() (matplotlib.backend_bases.NavigationToolbar2

method), 833
press_pan() (matplotlib.backend_bases.NavigationToolbar2

method), 833
press_zoom() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 834

print_bmp() (matplotlib.backend_bases.FigureCanvasBase
method), 827

print_cycles() (in module matplotlib.cbook), 545
print_emf() (matplotlib.backend_bases.FigureCanvasBase

method), 827
print_eps() (matplotlib.backend_bases.FigureCanvasBase

method), 827
print_figure() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 827

print_figure() (mat-
plotlib.backends.backend_qt4agg.FigureCanvasQTAgg
method), 840

print_figure() (mat-
plotlib.backends.backend_wxagg.FigureCanvasWxAgg
method), 840

878 Index

Matplotlib, Release 1.0.0

print_pdf() (matplotlib.backend_bases.FigureCanvasBase
method), 827

print_png() (matplotlib.backend_bases.FigureCanvasBase
method), 827

print_ps() (matplotlib.backend_bases.FigureCanvasBase
method), 827

print_raw() (matplotlib.backend_bases.FigureCanvasBase
method), 827

print_rgb() (matplotlib.backend_bases.FigureCanvasBase
method), 827

print_svg() (matplotlib.backend_bases.FigureCanvasBase
method), 827

print_svgz() (matplotlib.backend_bases.FigureCanvasBase
method), 827

prism() (in module matplotlib.pyplot), 762
process() (matplotlib.cbook.CallbackRegistry

method), 538
process_selected() (matplotlib.lines.VertexSelector

method), 337
project() (matplotlib.mlab.PCA method), 633
projection_factory() (in module mat-

plotlib.projections), 265
ProjectionRegistry (class in matplotlib.projections),

264
prop (matplotlib.type1font.Type1Font attribute), 846
properties() (matplotlib.artist.Artist method), 320
properties() (matplotlib.artist.ArtistInspector

method), 324
PS, 851
psd() (in module matplotlib.mlab), 644
psd() (in module matplotlib.pyplot), 762
psd() (matplotlib.axes.Axes method), 479
PsfontsMap (class in matplotlib.dviread), 844
push() (matplotlib.cbook.Stack method), 540
push_current() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 834

push_state() (matplotlib.mathtext.Parser method),
624

pyfltk, 851
pygtk, 851
pyqt, 851
python, 851
PYTHONPATH, 224
pytz, 851

Q
Qt, 851

Qt4, 851
quad2cubic() (in module matplotlib.cbook), 545
quad2cubic() (in module matplotlib.mlab), 645
QuadMesh (class in matplotlib.collections), 560
quiver() (in module matplotlib.pyplot), 764
quiver() (matplotlib.axes.Axes method), 481
quiverkey() (in module matplotlib.pyplot), 767
quiverkey() (matplotlib.axes.Axes method), 484

R
radius (matplotlib.patches.Circle attribute), 348
radius (matplotlib.patches.RegularPolygon at-

tribute), 369
raise_if_exceeds() (matplotlib.ticker.Locator

method), 817
raster graphics, 851
rc() (in module matplotlib), 310
rc() (in module matplotlib.pyplot), 768
rcdefaults() (in module matplotlib), 311
rcdefaults() (in module matplotlib.pyplot), 769
read_cache() (mat-

plotlib.cbook.ViewVCCachedServer
method), 541

rec2csv() (in module matplotlib.mlab), 645
rec2txt() (in module matplotlib.mlab), 646
rec_append_fields() (in module matplotlib.mlab),

646
rec_drop_fields() (in module matplotlib.mlab), 646
rec_groupby() (in module matplotlib.mlab), 646
rec_join() (in module matplotlib.mlab), 646
rec_keep_fields() (in module matplotlib.mlab), 647
rec_summarize() (in module matplotlib.mlab), 647
recache() (matplotlib.lines.Line2D method), 332
recache_always() (matplotlib.lines.Line2D method),

332
recs_join() (in module matplotlib.mlab), 647
Rectangle (class in matplotlib.patches), 366
recursive_remove() (in module matplotlib.cbook),

545
redraw_in_frame() (matplotlib.axes.Axes method),

485
Reference (class in mat-

plotlib.backends.backend_pdf), 842
refresh() (matplotlib.dates.AutoDateLocator

method), 581
refresh() (matplotlib.ticker.Locator method), 817
register() (matplotlib.mlab.FIFOBuffer method), 631

Index 879

Matplotlib, Release 1.0.0

register() (matplotlib.projections.ProjectionRegistry
method), 265

register_axis() (matplotlib.spines.Spine method),
811

register_backend() (in module mat-
plotlib.backend_bases), 839

register_cmap() (in module matplotlib.cm), 550
register_scale() (in module matplotlib.scale), 264
Registry (class in matplotlib.units), 822
RegularPolyCollection (class in mat-

plotlib.collections), 561
RegularPolygon (class in matplotlib.patches), 368
relativedelta (class in matplotlib.dates), 583
release() (matplotlib.backend_bases.NavigationToolbar2

method), 834
release_mouse() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 828

release_pan() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 834

release_zoom() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 834

relim() (matplotlib.axes.Axes method), 485
remove() (matplotlib.artist.Artist method), 320
remove() (matplotlib.cbook.Stack method), 541
remove_callback() (matplotlib.artist.Artist method),

320
remove_callback() (mat-

plotlib.backend_bases.TimerBase method),
839

remove_stale_files() (mat-
plotlib.cbook.ViewVCCachedServer
method), 541

render() (matplotlib.mathtext.Accent method), 615
render() (matplotlib.mathtext.Box method), 616
render() (matplotlib.mathtext.Char method), 616
render() (matplotlib.mathtext.Node method), 623
render() (matplotlib.mathtext.Rule method), 625
render_filled_rect() (mat-

plotlib.mathtext.MathtextBackend
method), 621

render_glyph() (matplotlib.mathtext.Fonts method),
618

render_glyph() (mat-
plotlib.mathtext.MathtextBackend
method), 621

render_glyph() (mat-
plotlib.mathtext.MathtextBackendAggRender
method), 621

render_glyph() (mat-
plotlib.mathtext.MathtextBackendBbox
method), 621

render_glyph() (mat-
plotlib.mathtext.MathtextBackendCairo
method), 622

render_glyph() (mat-
plotlib.mathtext.MathtextBackendPath
method), 622

render_glyph() (mat-
plotlib.mathtext.MathtextBackendPdf
method), 622

render_glyph() (mat-
plotlib.mathtext.MathtextBackendPs
method), 622

render_glyph() (mat-
plotlib.mathtext.MathtextBackendSvg
method), 623

render_rect_filled() (matplotlib.mathtext.Fonts
method), 618

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendAggRender
method), 621

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendBbox
method), 622

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendCairo
method), 622

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendPath
method), 622

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendPdf
method), 622

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendPs
method), 622

render_rect_filled() (mat-
plotlib.mathtext.MathtextBackendSvg
method), 623

RendererBase (class in matplotlib.backend_bases),
835

report() (matplotlib.cbook.MemoryMonitor
method), 539

880 Index

Matplotlib, Release 1.0.0

report_memory() (in module matplotlib.cbook), 545
reserveObject() (mat-

plotlib.backends.backend_pdf.PdfFile
method), 841

reset_position() (matplotlib.axes.Axes method), 485
reset_ticks() (matplotlib.axis.Axis method), 529
resize() (matplotlib.backend_bases.FigureCanvasBase

method), 828
resize() (matplotlib.backend_bases.FigureManagerBase

method), 829
resize_event() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 828

ResizeEvent (class in matplotlib.backend_bases),
838

restore() (matplotlib.backend_bases.GraphicsContextBase
method), 830

revcmap() (in module matplotlib.cm), 550
reverse_dict() (in module matplotlib.cbook), 545
rgb2hex() (in module matplotlib.colors), 575
rgb_to_hsv() (in module matplotlib.colors), 575
rgrids() (in module matplotlib.pyplot), 769
RingBuffer (class in matplotlib.cbook), 539
rk4() (in module matplotlib.mlab), 647
rms_flat() (in module matplotlib.mlab), 648
rotate() (matplotlib.transforms.Affine2D method),

253
rotate_around() (matplotlib.transforms.Affine2D

method), 253
rotate_deg() (matplotlib.transforms.Affine2D

method), 253
rotate_deg_around() (mat-

plotlib.transforms.Affine2D method),
253

rotated() (matplotlib.transforms.BboxBase method),
245

rrule (class in matplotlib.dates), 583
RRuleLocator (class in matplotlib.dates), 580
Rule (class in matplotlib.mathtext), 624
run() (matplotlib.cbook.Idle method), 539
run() (matplotlib.cbook.Timeout method), 541

S
safe_isinf() (in module matplotlib.mlab), 648
safe_isnan() (in module matplotlib.mlab), 648
safe_masked_invalid() (in module mat-

plotlib.cbook), 545
safezip() (in module matplotlib.cbook), 545

save() (in module matplotlib.mlab), 648
save_figure() (mat-

plotlib.backend_bases.NavigationToolbar2
method), 834

savefig() (in module matplotlib.pyplot), 769
savefig() (matplotlib.backends.backend_pdf.PdfPages

method), 842
savefig() (matplotlib.figure.Figure method), 596
sca() (in module matplotlib.pyplot), 770
sca() (matplotlib.figure.Figure method), 598
ScalarFormatter (class in matplotlib.ticker), 816
ScalarMappable (class in matplotlib.cm), 549
scale() (matplotlib.transforms.Affine2D method),

253
scale_factory() (in module matplotlib.scale), 264
ScaleBase (class in matplotlib.scale), 263
scaled() (matplotlib.colors.Normalize method), 574
ScaledTranslation (class in matplotlib.transforms),

259
scatter() (in module matplotlib.pyplot), 770
scatter() (matplotlib.axes.Axes method), 485
Scheduler (class in matplotlib.cbook), 540
sci() (in module matplotlib.pyplot), 773
score_family() (mat-

plotlib.font_manager.FontManager
method), 604

score_size() (matplotlib.font_manager.FontManager
method), 604

score_stretch() (mat-
plotlib.font_manager.FontManager
method), 604

score_style() (mat-
plotlib.font_manager.FontManager
method), 604

score_variant() (mat-
plotlib.font_manager.FontManager
method), 604

score_weight() (mat-
plotlib.font_manager.FontManager
method), 604

scroll_event() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 828

SecondLocator (class in matplotlib.dates), 583
seconds() (in module matplotlib.dates), 584
segment_hits() (in module matplotlib.lines), 337
segments_intersect() (in module matplotlib.mlab),

649

Index 881

Matplotlib, Release 1.0.0

semilogx() (in module matplotlib.pyplot), 773
semilogx() (matplotlib.axes.Axes method), 488
semilogy() (in module matplotlib.pyplot), 775
semilogy() (matplotlib.axes.Axes method), 489
set() (matplotlib.artist.Artist method), 321
set() (matplotlib.transforms.Affine2D method), 254
set() (matplotlib.transforms.Bbox method), 247
set() (matplotlib.transforms.TransformWrapper

method), 250
set_aa() (matplotlib.lines.Line2D method), 332
set_aa() (matplotlib.patches.Patch method), 362
set_adjustable() (matplotlib.axes.Axes method), 491
set_agg_filter() (matplotlib.artist.Artist method), 321
set_alpha() (matplotlib.artist.Artist method), 321
set_alpha() (matplotlib.backend_bases.GraphicsContextBase

method), 830
set_alpha() (matplotlib.collections.Collection

method), 555
set_alpha() (matplotlib.colorbar.ColorbarBase

method), 566
set_alpha() (matplotlib.patches.Patch method), 362
set_anchor() (matplotlib.axes.Axes method), 491
set_animated() (matplotlib.artist.Artist method), 321
set_annotation_clip() (mat-

plotlib.patches.ConnectionPatch method),
350

set_antialiased() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 830

set_antialiased() (matplotlib.collections.Collection
method), 555

set_antialiased() (matplotlib.lines.Line2D method),
332

set_antialiased() (matplotlib.patches.Patch method),
362

set_antialiaseds() (matplotlib.collections.Collection
method), 555

set_array() (matplotlib.cm.ScalarMappable method),
549

set_arrowstyle() (mat-
plotlib.patches.FancyArrowPatch method),
356

set_aspect() (matplotlib.axes.Axes method), 491
set_autoscale_on() (matplotlib.axes.Axes method),

492
set_autoscalex_on() (matplotlib.axes.Axes method),

492
set_autoscaley_on() (matplotlib.axes.Axes method),

492
set_axes() (matplotlib.artist.Artist method), 321
set_axes() (matplotlib.lines.Line2D method), 333
set_axes_locator() (matplotlib.axes.Axes method),

492
set_axis() (matplotlib.dates.AutoDateLocator

method), 581
set_axis() (matplotlib.ticker.TickHelper method),

815
set_axis_bgcolor() (matplotlib.axes.Axes method),

492
set_axis_off() (matplotlib.axes.Axes method), 492
set_axis_on() (matplotlib.axes.Axes method), 492
set_axisbelow() (matplotlib.axes.Axes method), 492
set_backgroundcolor() (matplotlib.text.Text

method), 379
set_bad() (matplotlib.colors.Colormap method), 571
set_bbox() (matplotlib.text.Text method), 379
set_bbox_to_anchor() (matplotlib.legend.Legend

method), 329
set_bounds() (matplotlib.patches.FancyBboxPatch

method), 359
set_bounds() (matplotlib.patches.Rectangle

method), 368
set_bounds() (matplotlib.spines.Spine method), 811
set_bounds() (matplotlib.ticker.TickHelper method),

815
set_boxstyle() (matplotlib.patches.FancyBboxPatch

method), 359
set_c() (matplotlib.lines.Line2D method), 333
set_canvas() (matplotlib.figure.Figure method), 598
set_canvas_size() (matplotlib.mathtext.Fonts

method), 618
set_canvas_size() (mat-

plotlib.mathtext.MathtextBackend
method), 621

set_canvas_size() (mat-
plotlib.mathtext.MathtextBackendAggRender
method), 621

set_capstyle() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 830

set_children() (mat-
plotlib.transforms.TransformNode
method), 243

set_clim() (matplotlib.cm.ScalarMappable method),
549

set_clip_box() (matplotlib.artist.Artist method), 321

882 Index

Matplotlib, Release 1.0.0

set_clip_on() (matplotlib.artist.Artist method), 321
set_clip_path() (matplotlib.artist.Artist method), 321
set_clip_path() (matplotlib.axis.Axis method), 529
set_clip_path() (matplotlib.axis.Tick method), 532
set_clip_path() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 830

set_clip_rectangle() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 830

set_closed() (matplotlib.patches.Polygon method),
366

set_cmap() (in module matplotlib.pyplot), 776
set_cmap() (matplotlib.cm.ScalarMappable

method), 550
set_color() (matplotlib.collections.Collection

method), 555
set_color() (matplotlib.collections.LineCollection

method), 558
set_color() (matplotlib.lines.Line2D method), 333
set_color() (matplotlib.patches.Patch method), 363
set_color() (matplotlib.spines.Spine method), 811
set_color() (matplotlib.text.Text method), 379
set_color_cycle() (matplotlib.axes.Axes method),

492
set_colorbar() (matplotlib.cm.ScalarMappable

method), 550
set_connectionstyle() (mat-

plotlib.patches.FancyArrowPatch method),
357

set_contains() (matplotlib.artist.Artist method), 321
set_cursor() (matplotlib.backend_bases.NavigationToolbar2

method), 834
set_cursor_props() (matplotlib.axes.Axes method),

492
set_dash_capstyle() (matplotlib.lines.Line2D

method), 333
set_dash_joinstyle() (matplotlib.lines.Line2D

method), 333
set_dashdirection() (matplotlib.text.TextWithDash

method), 383
set_dashes() (matplotlib.backend_bases.GraphicsContextBase

method), 831
set_dashes() (matplotlib.collections.Collection

method), 555
set_dashes() (matplotlib.lines.Line2D method), 333
set_dashlength() (matplotlib.text.TextWithDash

method), 383

set_dashpad() (matplotlib.text.TextWithDash
method), 383

set_dashpush() (matplotlib.text.TextWithDash
method), 383

set_dashrotation() (matplotlib.text.TextWithDash
method), 383

set_data() (matplotlib.lines.Line2D method), 333
set_data_interval() (matplotlib.axis.Axis method),

529
set_data_interval() (matplotlib.axis.XAxis method),

533
set_data_interval() (matplotlib.axis.YAxis method),

534
set_data_interval() (matplotlib.ticker.TickHelper

method), 815
set_data_interval() (mat-

plotlib.ticker.TickHelper.DummyAxis
method), 815

set_default_color_cycle() (in module mat-
plotlib.axes), 525

set_default_intervals() (matplotlib.axis.Axis
method), 529

set_default_intervals() (matplotlib.axis.XAxis
method), 533

set_default_intervals() (matplotlib.axis.YAxis
method), 534

set_default_locators_and_formatters() (mat-
plotlib.scale.LinearScale method), 262

set_default_locators_and_formatters() (mat-
plotlib.scale.LogScale method), 263

set_default_locators_and_formatters() (mat-
plotlib.scale.ScaleBase method), 264

set_default_locators_and_formatters() (mat-
plotlib.scale.SymmetricalLogScale
method), 264

set_default_weight() (mat-
plotlib.font_manager.FontManager
method), 605

set_dpi() (matplotlib.figure.Figure method), 598
set_drawstyle() (matplotlib.lines.Line2D method),

333
set_ec() (matplotlib.patches.Patch method), 363
set_edgecolor() (matplotlib.collections.Collection

method), 555
set_edgecolor() (matplotlib.figure.Figure method),

598
set_edgecolor() (matplotlib.patches.Patch method),

363

Index 883

Matplotlib, Release 1.0.0

set_edgecolors() (matplotlib.collections.Collection
method), 555

set_facecolor() (matplotlib.collections.Collection
method), 555

set_facecolor() (matplotlib.figure.Figure method),
598

set_facecolor() (matplotlib.patches.Patch method),
363

set_facecolors() (matplotlib.collections.Collection
method), 556

set_family() (matplotlib.font_manager.FontProperties
method), 606

set_family() (matplotlib.text.Text method), 379
set_fc() (matplotlib.patches.Patch method), 363
set_figheight() (matplotlib.figure.Figure method),

598
set_figure() (matplotlib.artist.Artist method), 322
set_figure() (matplotlib.axes.Axes method), 493
set_figure() (matplotlib.text.Annotation method),

375
set_figure() (matplotlib.text.TextWithDash method),

383
set_figwidth() (matplotlib.figure.Figure method),

598
set_file() (matplotlib.font_manager.FontProperties

method), 606
set_fill() (matplotlib.patches.Patch method), 363
set_fillstyle() (matplotlib.lines.Line2D method), 333
set_font_properties() (matplotlib.text.Text method),

379
set_fontconfig_pattern() (mat-

plotlib.font_manager.FontProperties
method), 606

set_fontname() (matplotlib.text.Text method), 379
set_fontproperties() (matplotlib.text.Text method),

379
set_fontsize() (matplotlib.text.Text method), 380
set_fontstretch() (matplotlib.text.Text method), 380
set_fontstyle() (matplotlib.text.Text method), 380
set_fontvariant() (matplotlib.text.Text method), 380
set_fontweight() (matplotlib.text.Text method), 380
set_foreground() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 831

set_frame_on() (matplotlib.axes.Axes method), 493
set_frame_on() (matplotlib.legend.Legend method),

329
set_frameon() (matplotlib.figure.Figure method),

598
set_gamma() (mat-

plotlib.colors.LinearSegmentedColormap
method), 573

set_gid() (matplotlib.artist.Artist method), 322
set_graylevel() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 831

set_ha() (matplotlib.text.Text method), 380
set_hatch() (matplotlib.backend_bases.GraphicsContextBase

method), 831
set_hatch() (matplotlib.patches.Patch method), 363
set_height() (matplotlib.patches.FancyBboxPatch

method), 359
set_height() (matplotlib.patches.Rectangle method),

368
set_height_ratios() (mat-

plotlib.gridspec.GridSpecBase method),
612

set_history_buttons() (mat-
plotlib.backend_bases.NavigationToolbar2
method), 834

set_horizontalalignment() (matplotlib.text.Text
method), 380

set_joinstyle() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 831

set_label() (matplotlib.artist.Artist method), 322
set_label() (matplotlib.axis.Tick method), 532
set_label() (matplotlib.colorbar.ColorbarBase

method), 566
set_label1() (matplotlib.axis.Tick method), 532
set_label2() (matplotlib.axis.Tick method), 532
set_label_coords() (matplotlib.axis.Axis method),

529
set_label_position() (matplotlib.axis.XAxis

method), 533
set_label_position() (matplotlib.axis.YAxis method),

534
set_label_text() (matplotlib.axis.Axis method), 529
set_linespacing() (matplotlib.text.Text method), 380
set_linestyle() (mat-

plotlib.backend_bases.GraphicsContextBase
method), 831

set_linestyle() (matplotlib.collections.Collection
method), 556

set_linestyle() (matplotlib.lines.Line2D method),
333

884 Index

Matplotlib, Release 1.0.0

set_linestyle() (matplotlib.patches.Patch method),
363

set_linestyles() (matplotlib.collections.Collection
method), 556

set_linewidth() (mat-
plotlib.backend_bases.GraphicsContextBase
method), 831

set_linewidth() (matplotlib.collections.Collection
method), 556

set_linewidth() (matplotlib.lines.Line2D method),
334

set_linewidth() (matplotlib.patches.Patch method),
364

set_linewidths() (matplotlib.collections.Collection
method), 556

set_locs() (matplotlib.ticker.Formatter method), 815
set_locs() (matplotlib.ticker.ScalarFormatter

method), 816
set_lod() (matplotlib.artist.Artist method), 322
set_ls() (matplotlib.lines.Line2D method), 334
set_ls() (matplotlib.patches.Patch method), 364
set_lw() (matplotlib.collections.Collection method),

556
set_lw() (matplotlib.lines.Line2D method), 334
set_lw() (matplotlib.patches.Patch method), 364
set_ma() (matplotlib.text.Text method), 380
set_major_formatter() (matplotlib.axis.Axis

method), 529
set_major_locator() (matplotlib.axis.Axis method),

530
set_marker() (matplotlib.lines.Line2D method), 334
set_markeredgecolor() (matplotlib.lines.Line2D

method), 335
set_markeredgewidth() (matplotlib.lines.Line2D

method), 335
set_markerfacecolor() (matplotlib.lines.Line2D

method), 335
set_markerfacecoloralt() (matplotlib.lines.Line2D

method), 335
set_markersize() (matplotlib.lines.Line2D method),

335
set_markevery() (matplotlib.lines.Line2D method),

335
set_matrix() (matplotlib.transforms.Affine2D

method), 254
set_mec() (matplotlib.lines.Line2D method), 336
set_message() (mat-

plotlib.backend_bases.NavigationToolbar2

method), 834
set_mew() (matplotlib.lines.Line2D method), 336
set_mfc() (matplotlib.lines.Line2D method), 336
set_mfcalt() (matplotlib.lines.Line2D method), 336
set_minor_formatter() (matplotlib.axis.Axis

method), 530
set_minor_locator() (matplotlib.axis.Axis method),

530
set_ms() (matplotlib.lines.Line2D method), 336
set_multialignment() (matplotlib.text.Text method),

380
set_mutation_aspect() (mat-

plotlib.patches.FancyArrowPatch method),
357

set_mutation_aspect() (mat-
plotlib.patches.FancyBboxPatch method),
360

set_mutation_scale() (mat-
plotlib.patches.FancyArrowPatch method),
357

set_mutation_scale() (mat-
plotlib.patches.FancyBboxPatch method),
360

set_name() (matplotlib.font_manager.FontProperties
method), 607

set_name() (matplotlib.text.Text method), 380
set_navigate() (matplotlib.axes.Axes method), 493
set_navigate_mode() (matplotlib.axes.Axes

method), 493
set_norm() (matplotlib.cm.ScalarMappable method),

550
set_offset_position() (matplotlib.axis.YAxis

method), 534
set_offset_string() (matplotlib.ticker.FixedFormatter

method), 815
set_offsets() (matplotlib.collections.Collection

method), 556
set_over() (matplotlib.colors.Colormap method),

571
set_pad() (matplotlib.axis.Tick method), 532
set_params() (matplotlib.ticker.MaxNLocator

method), 819
set_patch_circle() (matplotlib.spines.Spine method),

811
set_patch_line() (matplotlib.spines.Spine method),

811
set_patchA() (matplotlib.patches.FancyArrowPatch

method), 357

Index 885

Matplotlib, Release 1.0.0

set_patchB() (matplotlib.patches.FancyArrowPatch
method), 357

set_path_effects() (matplotlib.patches.Patch
method), 364

set_path_effects() (matplotlib.text.Text method), 380
set_paths() (matplotlib.collections.Collection

method), 556
set_paths() (matplotlib.collections.LineCollection

method), 558
set_paths() (matplotlib.collections.PatchCollection

method), 559
set_paths() (matplotlib.collections.PathCollection

method), 559
set_paths() (matplotlib.collections.PolyCollection

method), 560
set_paths() (matplotlib.collections.QuadMesh

method), 561
set_picker() (matplotlib.artist.Artist method), 322
set_picker() (matplotlib.lines.Line2D method), 336
set_pickradius() (matplotlib.axis.Axis method), 530
set_pickradius() (matplotlib.collections.Collection

method), 556
set_pickradius() (matplotlib.lines.Line2D method),

336
set_points() (matplotlib.transforms.Bbox method),

247
set_position() (matplotlib.axes.Axes method), 493
set_position() (matplotlib.spines.Spine method), 811
set_position() (matplotlib.text.Text method), 380
set_position() (matplotlib.text.TextWithDash

method), 384
set_positions() (mat-

plotlib.patches.FancyArrowPatch method),
357

set_powerlimits() (matplotlib.ticker.ScalarFormatter
method), 816

set_radius() (matplotlib.patches.Circle method), 348
set_rasterization_zorder() (matplotlib.axes.Axes

method), 493
set_rasterized() (matplotlib.artist.Artist method),

322
set_rgrids() (matplotlib.projections.polar.PolarAxes

method), 267
set_rotation() (matplotlib.text.Text method), 380
set_rotation_mode() (matplotlib.text.Text method),

381
set_rscale() (matplotlib.projections.polar.PolarAxes

method), 268

set_rticks() (matplotlib.projections.polar.PolarAxes
method), 269

set_scale() (matplotlib.axis.Axis method), 530
set_scientific() (matplotlib.ticker.ScalarFormatter

method), 816
set_segments() (mat-

plotlib.collections.LineCollection method),
558

set_size() (matplotlib.font_manager.FontProperties
method), 607

set_size() (matplotlib.text.Text method), 381
set_size_inches() (matplotlib.figure.Figure method),

598
set_slant() (matplotlib.font_manager.FontProperties

method), 607
set_smart_bounds() (matplotlib.axis.Axis method),

530
set_smart_bounds() (matplotlib.spines.Spine

method), 811
set_snap() (matplotlib.artist.Artist method), 323
set_snap() (matplotlib.backend_bases.GraphicsContextBase

method), 831
set_solid_capstyle() (matplotlib.lines.Line2D

method), 336
set_solid_joinstyle() (matplotlib.lines.Line2D

method), 336
set_stretch() (matplotlib.font_manager.FontProperties

method), 607
set_stretch() (matplotlib.text.Text method), 381
set_style() (matplotlib.font_manager.FontProperties

method), 607
set_style() (matplotlib.text.Text method), 381
set_subplotspec() (matplotlib.axes.SubplotBase

method), 524
set_text() (matplotlib.text.Text method), 381
set_thetagrids() (mat-

plotlib.projections.polar.PolarAxes
method), 269

set_tick_params() (matplotlib.axis.Axis method),
530

set_ticklabels() (matplotlib.axis.Axis method), 530
set_ticklabels() (matplotlib.colorbar.ColorbarBase

method), 566
set_ticks() (matplotlib.axis.Axis method), 530
set_ticks() (matplotlib.colorbar.ColorbarBase

method), 566
set_ticks_position() (matplotlib.axis.XAxis method),

533

886 Index

Matplotlib, Release 1.0.0

set_ticks_position() (matplotlib.axis.YAxis method),
534

set_title() (matplotlib.axes.Axes method), 493
set_title() (matplotlib.legend.Legend method), 329
set_transform() (matplotlib.artist.Artist method),

323
set_transform() (matplotlib.lines.Line2D method),

336
set_transform() (matplotlib.text.TextWithDash

method), 384
set_tzinfo() (matplotlib.dates.DateFormatter

method), 579
set_tzinfo() (matplotlib.dates.DateLocator method),

580
set_under() (matplotlib.colors.Colormap method),

571
set_unit() (matplotlib.text.OffsetFrom method), 376
set_units() (matplotlib.axis.Axis method), 530
set_url() (matplotlib.artist.Artist method), 323
set_url() (matplotlib.backend_bases.GraphicsContextBase

method), 831
set_urls() (matplotlib.collections.Collection

method), 556
set_useOffset() (matplotlib.ticker.ScalarFormatter

method), 816
set_va() (matplotlib.text.Text method), 381
set_variant() (mat-

plotlib.font_manager.FontProperties
method), 607

set_variant() (matplotlib.text.Text method), 381
set_verticalalignment() (matplotlib.text.Text

method), 381
set_verts() (matplotlib.collections.LineCollection

method), 558
set_verts() (matplotlib.collections.PolyCollection

method), 560
set_view_interval() (matplotlib.axis.Axis method),

530
set_view_interval() (matplotlib.axis.Tick method),

532
set_view_interval() (matplotlib.axis.XAxis method),

533
set_view_interval() (matplotlib.axis.XTick method),

534
set_view_interval() (matplotlib.axis.YAxis method),

535
set_view_interval() (matplotlib.axis.YTick method),

535

set_view_interval() (matplotlib.ticker.TickHelper
method), 815

set_view_interval() (mat-
plotlib.ticker.TickHelper.DummyAxis
method), 815

set_visible() (matplotlib.artist.Artist method), 323
set_weight() (mat-

plotlib.font_manager.FontProperties
method), 607

set_weight() (matplotlib.text.Text method), 381
set_width() (matplotlib.patches.FancyBboxPatch

method), 360
set_width() (matplotlib.patches.Rectangle method),

368
set_width_ratios() (mat-

plotlib.gridspec.GridSpecBase method),
612

set_window_title() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 828

set_window_title() (mat-
plotlib.backend_bases.FigureManagerBase
method), 829

set_x() (matplotlib.patches.FancyBboxPatch
method), 360

set_x() (matplotlib.patches.Rectangle method), 368
set_x() (matplotlib.text.Text method), 381
set_x() (matplotlib.text.TextWithDash method), 384
set_xbound() (matplotlib.axes.Axes method), 495
set_xdata() (matplotlib.lines.Line2D method), 336
set_xlabel() (matplotlib.axes.Axes method), 495
set_xlim() (matplotlib.axes.Axes method), 496
set_xmargin() (matplotlib.axes.Axes method), 497
set_xscale() (matplotlib.axes.Axes method), 497
set_xticklabels() (matplotlib.axes.Axes method), 497
set_xticks() (matplotlib.axes.Axes method), 498
set_xy() (matplotlib.patches.Polygon method), 366
set_xy() (matplotlib.patches.Rectangle method), 368
set_y() (matplotlib.patches.FancyBboxPatch

method), 360
set_y() (matplotlib.patches.Rectangle method), 368
set_y() (matplotlib.text.Text method), 381
set_y() (matplotlib.text.TextWithDash method), 384
set_ybound() (matplotlib.axes.Axes method), 499
set_ydata() (matplotlib.lines.Line2D method), 336
set_ylabel() (matplotlib.axes.Axes method), 499
set_ylim() (matplotlib.axes.Axes method), 500
set_ymargin() (matplotlib.axes.Axes method), 501

Index 887

Matplotlib, Release 1.0.0

set_yscale() (matplotlib.axes.Axes method), 501
set_yticklabels() (matplotlib.axes.Axes method), 501
set_yticks() (matplotlib.axes.Axes method), 502
set_zorder() (matplotlib.artist.Artist method), 323
setp() (in module matplotlib.artist), 325
setp() (in module matplotlib.pyplot), 776
shade() (matplotlib.colors.LightSource method), 571
shade_rgb() (matplotlib.colors.LightSource

method), 572
Shadow (class in matplotlib.patches), 369
Ship (class in matplotlib.mathtext), 625
show_popup() (mat-

plotlib.backend_bases.FigureManagerBase
method), 829

ShowBase (class in matplotlib.backend_bases), 838
shrink() (matplotlib.mathtext.Accent method), 615
shrink() (matplotlib.mathtext.Box method), 616
shrink() (matplotlib.mathtext.Char method), 616
shrink() (matplotlib.mathtext.Glue method), 618
shrink() (matplotlib.mathtext.Kern method), 619
shrink() (matplotlib.mathtext.List method), 619
shrink() (matplotlib.mathtext.Node method), 623
shrunk() (matplotlib.transforms.BboxBase method),

245
shrunk_to_aspect() (mat-

plotlib.transforms.BboxBase method),
245

silent_list (class in matplotlib.cbook), 545
simple_linear_interpolation() (in module mat-

plotlib.cbook), 545
single_shot (matplotlib.backend_bases.TimerBase

attribute), 839
size (matplotlib.dviread.DviFont attribute), 844
size (matplotlib.transforms.BboxBase attribute), 245
slopes() (in module matplotlib.mlab), 649
sort() (matplotlib.cbook.Sorter method), 540
Sorter (class in matplotlib.cbook), 540
soundex() (in module matplotlib.cbook), 545
space() (matplotlib.mathtext.Parser method), 624
span_where() (mat-

plotlib.collections.BrokenBarHCollection
static method), 553

specgram() (in module matplotlib.mlab), 649
specgram() (in module matplotlib.pyplot), 777
specgram() (matplotlib.axes.Axes method), 503
spectral() (in module matplotlib.pyplot), 779
Spine (class in matplotlib.spines), 809

splitx() (matplotlib.transforms.BboxBase method),
245

splity() (matplotlib.transforms.BboxBase method),
245

spring() (in module matplotlib.pyplot), 779
spy() (in module matplotlib.pyplot), 779
spy() (matplotlib.axes.Axes method), 504
sqrt() (matplotlib.mathtext.Parser method), 624
SsGlue (class in matplotlib.mathtext), 625
Stack (class in matplotlib.cbook), 540
stackrel() (matplotlib.mathtext.Parser method), 624
StandardPsFonts (class in matplotlib.mathtext), 625
StarPolygonCollection (class in mat-

plotlib.collections), 562
start() (matplotlib.backend_bases.TimerBase

method), 839
start_event_loop() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 828

start_event_loop_default() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 828

start_filter() (matplotlib.backend_bases.RendererBase
method), 837

start_group() (matplotlib.mathtext.Parser method),
624

start_pan() (matplotlib.axes.Axes method), 506
start_rasterizing() (mat-

plotlib.backend_bases.RendererBase
method), 837

stem() (in module matplotlib.pyplot), 780
stem() (matplotlib.axes.Axes method), 506
step() (in module matplotlib.pyplot), 781
step() (matplotlib.axes.Axes method), 506
stineman_interp() (in module matplotlib.mlab), 650
StixFonts (class in matplotlib.mathtext), 625
StixSansFonts (class in matplotlib.mathtext), 625
stop() (matplotlib.backend_bases.TimerBase

method), 839
stop() (matplotlib.cbook.Scheduler method), 540
stop_event_loop() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 828

stop_event_loop_default() (mat-
plotlib.backend_bases.FigureCanvasBase
method), 828

stop_filter() (matplotlib.backend_bases.RendererBase
method), 837

888 Index

Matplotlib, Release 1.0.0

stop_rasterizing() (mat-
plotlib.backend_bases.RendererBase
method), 838

Stream (class in matplotlib.backends.backend_pdf),
842

strftime() (matplotlib.dates.DateFormatter method),
580

string_width_height() (matplotlib.afm.AFM
method), 314

strip_math() (in module matplotlib.cbook), 545
strip_math() (matplotlib.backend_bases.RendererBase

method), 838
Subplot (in module matplotlib.axes), 523
subplot() (in module matplotlib.pyplot), 781
subplot2grid() (in module matplotlib.pyplot), 782
subplot_class_factory() (in module matplotlib.axes),

525
subplot_tool() (in module matplotlib.pyplot), 783
SubplotBase (class in matplotlib.axes), 523
SubplotParams (class in matplotlib.figure), 600
subplots() (in module matplotlib.pyplot), 783
subplots_adjust() (in module matplotlib.pyplot), 784
subplots_adjust() (matplotlib.figure.Figure method),

599
SubplotSpec (class in matplotlib.gridspec), 612
subs() (matplotlib.ticker.LogLocator method), 818
SubSuperCluster (class in matplotlib.mathtext), 625
subsuperscript() (matplotlib.mathtext.Parser

method), 624
summer() (in module matplotlib.pyplot), 784
suptitle() (in module matplotlib.pyplot), 784
suptitle() (matplotlib.figure.Figure method), 599
SVG, 852
switch_backend() (in module matplotlib.pyplot), 784
switch_backends() (mat-

plotlib.backend_bases.FigureCanvasBase
method), 829

symbol() (matplotlib.mathtext.Parser method), 624
SymmetricalLogScale (class in matplotlib.scale),

264

T
table() (in module matplotlib.pyplot), 785
table() (matplotlib.axes.Axes method), 507
texname (matplotlib.dviread.DviFont attribute), 844
Text (class in matplotlib.text), 376
text() (in module matplotlib.pyplot), 785
text() (matplotlib.axes.Axes method), 507

text() (matplotlib.figure.Figure method), 599
TextWithDash (class in matplotlib.text), 382
Tfm (class in matplotlib.dviread), 845
thetagrids() (in module matplotlib.pyplot), 787
Tick (class in matplotlib.axis), 531
tick_bottom() (matplotlib.axis.XAxis method), 533
tick_left() (matplotlib.axis.YAxis method), 535
tick_params() (in module matplotlib.pyplot), 788
tick_params() (matplotlib.axes.Axes method), 509
tick_right() (matplotlib.axis.YAxis method), 535
tick_top() (matplotlib.axis.XAxis method), 533
Ticker (class in matplotlib.axis), 532
TickHelper (class in matplotlib.ticker), 814
TickHelper.DummyAxis (class in matplotlib.ticker),

814
ticklabel_format() (in module matplotlib.pyplot),

788
ticklabel_format() (matplotlib.axes.Axes method),

510
TIFF, 852
Timeout (class in matplotlib.cbook), 541
TimerBase (class in matplotlib.backend_bases), 838
title() (in module matplotlib.pyplot), 789
Tk, 852
to_filehandle() (in module matplotlib.cbook), 545
to_mask() (matplotlib.mathtext.MathTextParser

method), 620
to_png() (matplotlib.mathtext.MathTextParser

method), 620
to_polygons() (matplotlib.path.Path method), 655
to_rgb() (matplotlib.colors.ColorConverter method),

570
to_rgba() (matplotlib.cm.ScalarMappable method),

550
to_rgba() (matplotlib.colors.ColorConverter

method), 570
to_rgba() (matplotlib.mathtext.MathTextParser

method), 620
to_rgba_array() (matplotlib.colors.ColorConverter

method), 571
to_values() (matplotlib.transforms.Affine2DBase

method), 252
todate (class in matplotlib.cbook), 546
todatetime (class in matplotlib.cbook), 546
tofloat (class in matplotlib.cbook), 546
toint (class in matplotlib.cbook), 546
tostr (class in matplotlib.cbook), 546

Index 889

Matplotlib, Release 1.0.0

tostr() (matplotlib.mlab.FormatFormatStr method),
632

tostr() (matplotlib.mlab.FormatInt method), 632
tostr() (matplotlib.mlab.FormatObj method), 632
tostr() (matplotlib.mlab.FormatString method), 632
toval() (matplotlib.mlab.FormatBool method), 631
toval() (matplotlib.mlab.FormatDate method), 631
toval() (matplotlib.mlab.FormatFloat method), 632
toval() (matplotlib.mlab.FormatInt method), 632
toval() (matplotlib.mlab.FormatObj method), 632
Transform (class in matplotlib.transforms), 248
transform() (matplotlib.projections.polar.PolarAxes.InvertedPolarTransform

method), 265
transform() (matplotlib.projections.polar.PolarAxes.PolarTransform

method), 266
transform() (matplotlib.transforms.Affine2DBase

method), 252
transform() (matplotlib.transforms.BlendedGenericTransform

method), 256
transform() (matplotlib.transforms.CompositeGenericTransform

method), 257
transform() (matplotlib.transforms.IdentityTransform

method), 254
transform() (matplotlib.transforms.Transform

method), 249
transform() (matplotlib.type1font.Type1Font

method), 846
transform_affine() (mat-

plotlib.transforms.Affine2DBase method),
252

transform_affine() (mat-
plotlib.transforms.BlendedGenericTransform
method), 256

transform_affine() (mat-
plotlib.transforms.CompositeGenericTransform
method), 257

transform_affine() (mat-
plotlib.transforms.IdentityTransform
method), 255

transform_affine() (matplotlib.transforms.Transform
method), 249

transform_angles() (mat-
plotlib.transforms.Transform method),
249

transform_non_affine() (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
method), 266

transform_non_affine() (mat-

plotlib.transforms.AffineBase method),
251

transform_non_affine() (mat-
plotlib.transforms.BlendedGenericTransform
method), 256

transform_non_affine() (mat-
plotlib.transforms.CompositeGenericTransform
method), 258

transform_non_affine() (mat-
plotlib.transforms.IdentityTransform
method), 255

transform_non_affine() (mat-
plotlib.transforms.Transform method),
249

transform_path() (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
method), 266

transform_path() (mat-
plotlib.transforms.CompositeGenericTransform
method), 258

transform_path() (mat-
plotlib.transforms.IdentityTransform
method), 255

transform_path() (matplotlib.transforms.Transform
method), 250

transform_path_affine() (mat-
plotlib.transforms.AffineBase method),
251

transform_path_affine() (mat-
plotlib.transforms.CompositeGenericTransform
method), 258

transform_path_affine() (mat-
plotlib.transforms.IdentityTransform
method), 255

transform_path_affine() (mat-
plotlib.transforms.Transform method),
250

transform_path_non_affine() (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
method), 266

transform_path_non_affine() (mat-
plotlib.transforms.AffineBase method),
251

transform_path_non_affine() (mat-
plotlib.transforms.CompositeGenericTransform
method), 258

transform_path_non_affine() (mat-
plotlib.transforms.IdentityTransform

890 Index

Matplotlib, Release 1.0.0

method), 255
transform_path_non_affine() (mat-

plotlib.transforms.Transform method),
250

transform_point() (mat-
plotlib.transforms.Affine2DBase method),
252

transform_point() (matplotlib.transforms.Transform
method), 250

transformed() (matplotlib.path.Path method), 655
transformed() (matplotlib.transforms.BboxBase

method), 245
TransformedBbox (class in matplotlib.transforms),

248
TransformedPath (class in matplotlib.transforms),

259
TransformNode (class in matplotlib.transforms), 242
TransformWrapper (class in matplotlib.transforms),

250
translate() (matplotlib.transforms.Affine2D method),

254
translated() (matplotlib.transforms.BboxBase

method), 246
transmute() (matplotlib.patches.ArrowStyle.Fancy

method), 344
transmute() (matplotlib.patches.ArrowStyle.Simple

method), 344
transmute() (matplotlib.patches.ArrowStyle.Wedge

method), 345
transmute() (matplotlib.patches.BoxStyle.LArrow

method), 345
transmute() (matplotlib.patches.BoxStyle.RArrow

method), 347
transmute() (matplotlib.patches.BoxStyle.Round

method), 347
transmute() (matplotlib.patches.BoxStyle.Round4

method), 347
transmute() (matplotlib.patches.BoxStyle.Roundtooth

method), 347
transmute() (matplotlib.patches.BoxStyle.Sawtooth

method), 347
transmute() (matplotlib.patches.BoxStyle.Square

method), 347
tricontour() (in module matplotlib.pyplot), 789
tricontour() (matplotlib.axes.Axes method), 510
tricontourf() (in module matplotlib.pyplot), 792
tricontourf() (matplotlib.axes.Axes method), 513
tripcolor() (in module matplotlib.pyplot), 795

tripcolor() (matplotlib.axes.Axes method), 516
triplot() (in module matplotlib.pyplot), 797
triplot() (matplotlib.axes.Axes method), 517
TruetypeFonts (class in matplotlib.mathtext), 626
TruetypeFonts.CachedFont (class in mat-

plotlib.mathtext), 626
ttfdict_to_fnames() (in module mat-

plotlib.font_manager), 608
ttfFontProperty() (in module mat-

plotlib.font_manager), 608
twinx() (in module matplotlib.pyplot), 798
twinx() (matplotlib.axes.Axes method), 518
twiny() (in module matplotlib.pyplot), 798
twiny() (matplotlib.axes.Axes method), 519
Type1Font (class in matplotlib.type1font), 846

U
unichr_safe() (in module matplotlib.mathtext), 627
unicode_safe() (in module matplotlib.cbook), 546
UnicodeFonts (class in matplotlib.mathtext), 626
union() (matplotlib.transforms.BboxBase static

method), 246
unique() (in module matplotlib.cbook), 546
unit() (matplotlib.transforms.Bbox static method),

247
unit_circle() (matplotlib.path.Path class method),

656
unit_circle_righthalf() (matplotlib.path.Path class

method), 656
unit_rectangle() (matplotlib.path.Path class method),

656
unit_regular_asterisk() (matplotlib.path.Path class

method), 656
unit_regular_polygon() (matplotlib.path.Path class

method), 656
unit_regular_star() (matplotlib.path.Path class

method), 657
unmasked_index_ranges() (in module mat-

plotlib.cbook), 546
update() (matplotlib.artist.Artist method), 323
update() (matplotlib.backend_bases.NavigationToolbar2

method), 834
update() (matplotlib.figure.SubplotParams method),

601
update() (matplotlib.gridspec.GridSpec method),

611
update_bbox_position_size() (mat-

plotlib.text.Annotation method), 375

Index 891

Matplotlib, Release 1.0.0

update_bbox_position_size() (matplotlib.text.Text
method), 382

update_bruteforce() (matplotlib.colorbar.Colorbar
method), 565

update_coords() (matplotlib.text.TextWithDash
method), 384

update_datalim() (matplotlib.axes.Axes method),
519

update_datalim_bounds() (matplotlib.axes.Axes
method), 519

update_datalim_numerix() (matplotlib.axes.Axes
method), 519

update_datalim_to_current() (mat-
plotlib.mlab.FIFOBuffer method), 631

update_fonts() (mat-
plotlib.font_manager.FontManager
method), 605

update_from() (matplotlib.artist.Artist method), 323
update_from() (matplotlib.collections.Collection

method), 556
update_from() (matplotlib.lines.Line2D method),

337
update_from() (matplotlib.patches.Patch method),

364
update_from() (matplotlib.text.Text method), 382
update_from_data() (matplotlib.transforms.Bbox

method), 247
update_from_data_xy() (matplotlib.transforms.Bbox

method), 247
update_from_path() (matplotlib.transforms.Bbox

method), 248
update_normal() (matplotlib.colorbar.Colorbar

method), 565
update_params() (matplotlib.axes.SubplotBase

method), 524
update_position() (matplotlib.axis.XTick method),

534
update_position() (matplotlib.axis.YTick method),

535
update_positions() (matplotlib.text.Annotation

method), 375
update_scalarmappable() (mat-

plotlib.collections.Collection method),
556

update_ticks() (matplotlib.colorbar.ColorbarBase
method), 566

update_units() (matplotlib.axis.Axis method), 530
use() (in module matplotlib), 311

useOffset (matplotlib.ticker.ScalarFormatter at-
tribute), 816

V
value_escape() (in module mat-

plotlib.fontconfig_pattern), 609
value_unescape() (in module mat-

plotlib.fontconfig_pattern), 609
Vbox (class in matplotlib.mathtext), 626
VCentered (class in matplotlib.mathtext), 626
vector graphics, 852
vector_lengths() (in module matplotlib.cbook), 547
vector_lengths() (in module matplotlib.mlab), 651
VertexSelector (class in matplotlib.lines), 337
Vf (class in matplotlib.dviread), 845
view_limits() (matplotlib.ticker.LinearLocator

method), 818
view_limits() (matplotlib.ticker.Locator method),

817
view_limits() (matplotlib.ticker.LogLocator

method), 818
view_limits() (matplotlib.ticker.MaxNLocator

method), 819
view_limits() (matplotlib.ticker.MultipleLocator

method), 819
viewlim_to_dt() (matplotlib.dates.DateLocator

method), 580
ViewVCCachedServer (class in matplotlib.cbook),

541
vlines() (in module matplotlib.pyplot), 798
vlines() (matplotlib.axes.Axes method), 519
Vlist (class in matplotlib.mathtext), 626
vlist_out() (matplotlib.mathtext.Ship method), 625
vpack() (matplotlib.mathtext.Vlist method), 626
Vrule (class in matplotlib.mathtext), 626

W
waitforbuttonpress() (in module matplotlib.pyplot),

800
waitforbuttonpress() (matplotlib.figure.Figure

method), 600
Wedge (class in matplotlib.patches), 370
wedge() (matplotlib.path.Path class method), 657
WeekdayLocator (class in matplotlib.dates), 582
weeks() (in module matplotlib.dates), 584
weight_as_number() (in module mat-

plotlib.font_manager), 608
width (matplotlib.dviread.Tfm attribute), 845

892 Index

Matplotlib, Release 1.0.0

width (matplotlib.transforms.BboxBase attribute),
246

widths (matplotlib.dviread.DviFont attribute), 844
win32FontDirectory() (in module mat-

plotlib.font_manager), 608
win32InstalledFonts() (in module mat-

plotlib.font_manager), 608
window_hanning() (in module matplotlib.mlab), 651
window_none() (in module matplotlib.mlab), 651
winter() (in module matplotlib.pyplot), 800
wrap() (in module matplotlib.cbook), 547
write() (matplotlib.backends.backend_pdf.Stream

method), 843
write_cache() (mat-

plotlib.cbook.ViewVCCachedServer
method), 541

writeInfoDict() (mat-
plotlib.backends.backend_pdf.PdfFile
method), 841

writeTrailer() (mat-
plotlib.backends.backend_pdf.PdfFile
method), 842

writeXref() (matplotlib.backends.backend_pdf.PdfFile
method), 842

wxpython, 852
wxWidgets, 852

X
x0 (matplotlib.transforms.BboxBase attribute), 246
x1 (matplotlib.transforms.BboxBase attribute), 246
x11FontDirectory() (in module mat-

plotlib.font_manager), 608
XAxis (class in matplotlib.axis), 532
xaxis_date() (matplotlib.axes.Axes method), 521
xaxis_inverted() (matplotlib.axes.Axes method), 521
xcorr() (in module matplotlib.pyplot), 800
xcorr() (matplotlib.axes.Axes method), 521
xlabel() (in module matplotlib.pyplot), 802
xlat() (matplotlib.cbook.Xlator method), 542
Xlator (class in matplotlib.cbook), 541
xlim() (in module matplotlib.pyplot), 802
xmax (matplotlib.transforms.BboxBase attribute),

246
xmin (matplotlib.transforms.BboxBase attribute),

246
xscale() (in module matplotlib.pyplot), 803
XTick (class in matplotlib.axis), 533
xticks() (in module matplotlib.pyplot), 804

xy (matplotlib.patches.Polygon attribute), 366
xy (matplotlib.patches.Rectangle attribute), 368
xy (matplotlib.patches.RegularPolygon attribute),

369
xy() (matplotlib.cbook.MemoryMonitor method),

539

Y
y0 (matplotlib.transforms.BboxBase attribute), 246
y1 (matplotlib.transforms.BboxBase attribute), 246
YAArrow (class in matplotlib.patches), 371
YAxis (class in matplotlib.axis), 534
yaxis_date() (matplotlib.axes.Axes method), 523
yaxis_inverted() (matplotlib.axes.Axes method), 523
YearLocator (class in matplotlib.dates), 581
ylabel() (in module matplotlib.pyplot), 804
ylim() (in module matplotlib.pyplot), 805
ymax (matplotlib.transforms.BboxBase attribute),

246
ymin (matplotlib.transforms.BboxBase attribute),

246
yscale() (in module matplotlib.pyplot), 805
YTick (class in matplotlib.axis), 535
yticks() (in module matplotlib.pyplot), 805

Z
zoom() (matplotlib.axis.Axis method), 531
zoom() (matplotlib.backend_bases.NavigationToolbar2

method), 834
zoom() (matplotlib.ticker.Locator method), 818

Index 893

	I User's Guide
	Introduction
	Installing
	OK, so you want to do it the hard way?
	Installing from source
	Build requirements
	Building on OSX

	Pyplot tutorial
	Controlling line properties
	Working with multiple figures and axes
	Working with text

	Interactive navigation
	Navigation Keyboard Shortcuts

	Customizing matplotlib
	The matplotlibrc file
	Dynamic rc settings

	Using matplotlib in a python shell
	Ipython to the rescue
	Other python interpreters
	Controlling interactive updating

	Working with text
	Text introduction
	Basic text commands
	Text properties and layout
	Writing mathematical expressions
	Text rendering With LaTeX
	Annotating text

	Image tutorial
	Startup commands
	Importing image data into Numpy arrays
	Plotting numpy arrays as images

	Artist tutorial
	Customizing your objects
	Object containers
	Figure container
	Axes container
	Axis containers
	Tick containers

	Customizing Location of Subplot Using GridSpec
	GridSpec and SubplotSpec
	Adjust GridSpec layout
	GridSpec using SubplotSpec
	GridSpec with Varying Cell Sizes

	Legend guide
	What to be displayed
	Multicolumn Legend
	Legend location
	Multiple Legend

	Event handling and picking
	Event connections
	Event attributes
	Mouse enter and leave
	Object picking

	Transformations Tutorial
	Data coordinates
	Axes coordinates
	Blended transformations
	Using offset transforms to create a shadow effect
	The transformation pipeline

	Path Tutorial
	Bézier example
	Compound paths

	Annotating Axes
	Annotating with Text with Box
	Annotating with Arrow
	Placing Artist at the anchored location of the Axes
	Using Complex Coordinate with Annotation
	Using ConnectorPatch
	Zoom effect between Axes
	Define Custom BoxStyle

	Toolkits
	Basemap
	GTK Tools
	Excel Tools
	Natgrid
	mplot3d
	AxesGrid

	Screenshots
	Simple Plot
	Subplot demo
	Histograms
	Path demo
	mplot3d
	Ellipses
	Bar charts
	Pie charts
	Table demo
	Scatter demo
	Slider demo
	Fill demo
	Date demo
	Financial charts
	Basemap demo
	Log plots
	Polar plots
	Legends
	Mathtext_examples
	Native TeX rendering
	EEG demo

	What's new in matplotlib
	new in matplotlib-1.0
	new in matplotlib-0.99
	new in 0.98.4

	License
	License agreement for matplotlib 1.0.0

	Credits

	II The Matplotlib FAQ
	Installation FAQ
	Report a compilation problem
	matplotlib compiled fine, but nothing shows up with plot
	Cleanly rebuild and reinstall everything
	Install from svn
	Install from git
	Backends
	OS-X questions
	Windows questions

	Usage
	Matplotlib, pylab, and pyplot: how are they related?

	Howto
	Plotting: howto
	Contributing: howto
	Matplotlib in a web application server
	Search examples

	Troubleshooting
	Obtaining matplotlib version
	matplotlib install location
	.matplotlib directory location
	Report a problem
	Problems with recent svn versions

	III The Matplotlib Developers' Guide
	Coding guide
	Version control
	Style guide
	Documentation and docstrings
	Developing a new backend
	Writing examples
	Testing
	Licenses

	Documenting matplotlib
	Getting started
	Organization of matplotlib's documentation
	Formatting
	Figures
	Referring to mpl documents
	Internal section references
	Section names, etc
	Inheritance diagrams
	Emacs helpers

	Doing a matplolib release
	Testing
	Branching
	Packaging
	Release candidate testing:
	Uploading
	Announcing

	Working with transformations
	matplotlib.transforms

	Adding new scales and projections to matplotlib
	Creating a new scale
	Creating a new projection
	API documentation

	Docs outline
	Reviewer notes

	IV The Matplotlib API
	API Changes
	Changes beyond 0.99.x
	Changes in 0.99
	Changes for 0.98.x
	Changes for 0.98.1
	Changes for 0.98.0
	Changes for 0.91.2
	Changes for 0.91.1
	Changes for 0.91.0
	Changes for 0.90.1
	Changes for 0.90.0
	Changes for 0.87.7
	Changes for 0.86
	Changes for 0.85
	Changes for 0.84
	Changes for 0.83
	Changes for 0.82
	Changes for 0.81
	Changes for 0.80
	Changes for 0.73
	Changes for 0.72
	Changes for 0.71
	Changes for 0.70
	Changes for 0.65.1
	Changes for 0.65
	Changes for 0.63
	Changes for 0.61
	Changes for 0.60
	Changes for 0.54.3
	Changes for 0.54
	Changes for 0.50
	Changes for 0.42
	Changes for 0.40

	matplotlib configuration
	matplotlib

	matplotlib afm
	matplotlib.afm

	matplotlib artists
	matplotlib.artist
	matplotlib.legend
	matplotlib.lines
	matplotlib.patches
	matplotlib.text

	matplotlib axes
	matplotlib.axes

	matplotlib axis
	matplotlib.axis

	matplotlib cbook
	matplotlib.cbook

	matplotlib cm
	matplotlib.cm

	matplotlib collections
	matplotlib.collections

	matplotlib colorbar
	matplotlib.colorbar

	matplotlib colors
	matplotlib.colors

	matplotlib dates
	matplotlib.dates

	matplotlib figure
	matplotlib.figure

	matplotlib font_manager
	matplotlib.font_manager
	matplotlib.fontconfig_pattern

	matplotlib gridspec
	matplotlib.gridspec

	matplotlib mathtext
	matplotlib.mathtext

	matplotlib mlab
	matplotlib.mlab

	matplotlib path
	matplotlib.path

	matplotlib pyplot
	matplotlib.pyplot

	matplotlib nxutils
	matplotlib.nxutils

	matplotlib spine
	matplotlib.spine

	matplotlib ticker
	matplotlib.ticker

	matplotlib units
	matplotlib.units

	matplotlib backends
	matplotlib.backend_bases
	matplotlib.backends.backend_gtkagg
	matplotlib.backends.backend_qt4agg
	matplotlib.backends.backend_wxagg
	matplotlib.backends.backend_pdf
	matplotlib.dviread
	matplotlib.type1font

	V Glossary
	Module Index
	Index

