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1 Introduction

SM is still evolving slowly, and this documentation may not be true, helpful, or complete.

In order of increasing plausibility, information may be obtained from the HELP command, this

document, the authors, and the source code. RHL is prepared to guarantee that the executable

code has not been patched.

If you find bugs, (reasonable) features that you want, wrong documentation, or anything else

that inspires you please let us know. At least under Unix the macro gripe should be a convenient

way to send us mail. Please also send us any clever macros that you would like to share.

Next a disclaimer: SM is copyright c©1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,

1998, 1999, 2000 Robert Lupton and Patricia Monger. This programme is not public domain, except

where specifically stated to the contrary, either in the code, or in the manual. If you have a legally

acquired copy you may use it on any computer “on the same site”, but you may not give it away or

sell it. If you have a legal copy we will provide some support and allow you with as many upgrades

as you provide tapes for (or wish to retrieve with ftp).

SM is provided ‘as is’ with no warranty, and we are not responsible for any losses resulting from

its use.

In addition to this manual there is a tutorial introduction which you might find less intimidating.

See section “The SM Tutorial” in The SM Tutorial.

This should be unimportant, but in case it isn’t you can submit SM bug reports (or requests

for new features) using the URL http://www.astro.princeton.edu/cgi-bin/gnatsweb.pl; you

want to query on category sm (and maybe smdoc) from advanced query; note that you can save

this query, set a bookmark, and so forth.
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2 Description of SM

SM is an interactive plotting programme with a flexible command language. The plot data may

be defined to SM in a number of ways. There is also a powerful mechanism for defining and editing

plot ‘macros’ (sets of SM plot commands that are defined and invoked as plot “subprogrammes”).

The features of SM are described fully in the next few sections, but let us start with a description

of how to produce your first SM plot. Before you start, notice that SM is case sensitive. Keywords

may be typed in lower or uppercase (as we do in this manual), but we would recommend using

lowercase. It is in fact possible to change the meanings of lowercase keywords, but this can be

confusing. If you are interested, see the section on “overloading”. See ‘uppercase’ in the index if

you really want to use your shift key.
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3 A simple plot

Let us assume that you have a file called mydata, which looks like this:

This is an example file

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512

SM has a history mechanism, so first type DELETE 0 10000 to tell SM to forget any commands

that it has remembered. Then choose a device to plot on. You do this with a command like dev

tek4010. If you don’t know what to call your terminal, use the LIST DEVICE command, ask some

local expert, look at the description of DEVICE, or (if desperate) read the manual (see Section A.2

[Graphcap], page 163). You’ll know that you have succeeded if typing BOX draws a box.

You should now have successfully chosen a graphics terminal. To actually plot something, use

the following set of commands. The text after the # is a comment, you don’t have to type this (or

the #).

DATA mydata # Specify desired datafile
LINES 3 100 # Choose which lines to use
READ i 1 # Read column 1 into ‘i’
READ { ii 2 iii 3 } # Read column 2 into ‘ii’ and 3 into ‘iii’
LIMITS i ii # Choose limits, based on i and ii
BOX # Draw the axes
PTYPE 4 0 # Choose square point markers
POINTS i ii # Plot i against ii
CONNECT i ii # and connect the points
XLABEL This is i # Label the X-axis
YLABEL This is ii # And the Y

You should now have a graph. If you had wanted to plot the third column instead of the second

you could have typed LIMITS i iii POINTS i iii instead. And of course you could plot ii against

iii as a third alternative. You were not limited to only use squares as markers or solid lines to

connect them - see PTYPE and LTYPE for details.

If you want a logarithmic plot, SM makes that easy for you. You can take logs of a vector using

the LG (or LN) commands on vectors; try it - SET x=1,10 SET y=x**3 set ly=LG(y) LIMITS x ly

CON x ly box. You might have wanted the axes to reflect the fact that you had logged the y axis.

The TICKSIZE command allows you to do this, and this is in fact the commonest use of it. Try

TICKSIZE 0 0 -1 0, and then repeating the x-y plot.
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What if you want hard copy of your hard-earned graph? There is a command (actually a macro)

called playback which will repeat all the commands that you have typed. Type ERASE to clear

the screen, then HISTORY to see the commands that you have issued. You probably don’t want the

ERASE command to be repeated, so type DELETE to delete it1.

If there are any other mistakes use DELETE m n to delete the lines m to n containing them. Now

type playback and your plot should reappear. But we wanted a hardcopy, so type dev laser

lqueue (or whatever your friendly Guru recommends as a hardcopy device), then playback. This

time, those plotting commands will appear on the laser printer not your terminal. To make them

actually appear, type hardcopy or issue another dev command. Be sure to say dev tek4010 (or

whatever device you chose) before you read any more of this document. It is possible to edit

the playback buffer, rather than simply deleting lines from within it. The section on ‘examples’

describes how to do this.

In fact, the same plot could have been produced from a data file which just contained the first

column. After saying READ i 1, you could have said SET ii = i*i SET iii = i**3 and proceeded

from there, or even skipped the file altogether by saying set i = 1,8 instead of READing it at all.

Such possibilities, and a good deal more, are described in greater detail in the rest of this manual.

What we just did was to define a simple ‘macro’, in this case the special one called all which

playback manipulates. A more explicit use of a macro would be to define a macro to square a

vector, that is to square each element of a vector. To do this say2

MACRO square 2 { SET $1 = $2*$2 }

So to calculate the vector ii we could now say

square ii i

which is the same as saying

SET ii = i*i

So now that you have met macros, how do you save them? The simplest and least reliable way is to

use SM’s history, and hope that the next time that you use SM it remembers the MACRO command

that you used to define square, so you can re-issue it. (Try exiting SM, then starting it up again

and typing HISTORY, then ^nnn where nnn is the number which is next to the desired command in

the resulting list.)

1 There is a macro era defined as DELETE HISTORY ERASE that wouldn’t have appeared on the list

in the first place, similarly lis is like HISTORY but won’t appear on the list of commands. As an

alternative, you can use the macro set_overload to make lowercase erase the same as DELETE

HISTORY erase, along with a number of other changes. This could be confusing for neophytes!

See “overloading”
2 It is usually easier to use SM’s editor to create macros, try ed square or read on.
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A brute force way is to say SAVE filename which will save almost all of your SM environment,

to be recovered using the RESTORE filename command at some later time, or later SM session.

Specifically, SAVE will save all your macros, variables, and vectors, along with your history buffer.

This is a very convenient way in practice but it does mean that you tend to carry around lots of

long-forgotten macros, variables, and vectors.

Another way is to write the macros to a disk file, using the MACRO WRITE command (see ‘Macros’).

Then you can retrieve your macros with MACRO READ. You should note that your macro all will

simply be a macro - to put it onto the history list say DELETE 0 10000 WRITE HISTORY all. (Of

course, you could write a macro to do this for you). Maybe saving your playback buffer is something

better done with SAVE, which will restore your playback buffer, while preparing files of useful macros

is a use for MACRO READ. Once the idea of macros gets into your blood, you can of course use an

editor to create your own files of macros, to be read with MACRO READ.
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4 Facilities within the Command Interpreter

This is a guide to the use of SM variables, the macro processor, the help command, and the his-

tory facilities. The vector arithmetic and plotting facilities are described below. Various examples

are scattered throughout the text, to give some guidance on the use of SM’s capabilities.

Perhaps the most important thing to know is how to escape from SM. If you have a prompt,

simply type QUIT1. If you are running some command, try CONTROL-C to get a prompt. Most

commands will eventually return control to the keyboard following a CONTROL-C. In addition, the

parser is reset, and the input buffer cleared. Sometimes CONTROL-C leaves a } on the buffer if

it thinks that it’ll help get back to the prompt, which can generate an irrelevant syntax error.

Occasionally it can still be confused – try typing a few characters and maybe a }.

When you have interrupted SM with a CONTROL-C, a macro called error_handler is executed, if

it is defined. The one that we provide does things like setting the expansion back to 1, and resetting

any window commands that you might have issued, and then prints a message handler... to tell

you that it’s done its work. If you don’t like this, see ‘private initialisation’ in the index for how to

get your own handler loaded automatically.

If you make a mistake, and SM notices a syntax error, it’ll print a message indicating where

you were and which macro you were running. It is possible for the wrong macro to be reported

(if SM has finished reading the macro before detecting the error), in which case you’ll be told that

the error occurred in a macro that called the offender. Setting VERBOSE (see Chapter 22 [Verbose],

page 151) to 3 or 4 provides a more direct way of finding the true location of the error.

If you define the variable traceback to be 1 (maybe with the line traceback 1 in your ‘.sm’

file) you’ll get a traceback of what macros were active when the error occurred; the same caveats

about the wrong macro being reported apply. In addition, the usual interrupt capabilities of your

operating system will work under SM, with a couple of quirks.

Under Unix, in case of emergency, type CONTROL-\, and SM will ask you if you want to return

to the prompt, and if you don’t it’ll offer a core dump, and then exit. As usual, typing CONTROL-Z

(from the C-shell) will interrupt the process, which may be restarted later. Under VMS, CONTROL-Z

will interrupt SM, and return you to the command interpreter (DCL). Typing CONTINUE will then

allow you to restart SM2.

1 or q which is a macro defined as DELETE HISTORY QUIT. This will exit SM just the same, but

the quit won’t appear on your history list, waiting to be playedback accidently. Actually, q

will query you before quitting
2 If you are using VMS, you may prefer to use CONTROL-Y as your interrupt character. A suitable

set of key definitions is in a file called maps_vms.dat in the top SM directory. It may be read

with the READ EDIT command (see Chapter 7 [Key Bindings], page 25), and this may be done

automatically in your startup macro by the variable edit in your ‘.sm’ file.
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If SM is running in a SPAWNed sub-process, then CONTROL-Z will reATTACH you to its parent.

To continue SM, use the DCL ATTACH command. We strongly suggest that you learn how to do

this, it makes life much easier – all you have to do is SPAWN a process from DCL and start SM

from there. Do check with your VMS system manager to ensure that you have the right quotas

for SPAWNing (Process limit must be at least 3, because SM will use one for itself and one for

hardcopies). An especially simple way to do all this is is to use the command file ‘kept_SM.com’ in

the main SM directory. It’ll handle the spawning and attaching for you.

Another fact to bear in mind is that the characters ^, $, and # are special, as ^ is used by

the history system, $ introduces a variable, and # starts a comment. The special meanings of all

of these characters except ^ can be turned off by preceding them with a \. To type a ^, use the

quote next character (initially CONTROL-Q or ESC-q) to quote the ^; i.e. type ESC-q.3 A \n is

interpreted as a carriage return, and a \ as the last character on a line escapes the newline, so that

the line and the one following it are treated as one long line. A \ preceding any other character

(except a "; see next paragraph) is simply a \. This character is used to set font types in the LABEL

commands, so it has no special meaning to the command interpreter, which simplifies the entering

of strings for LABEL commands.

A further problem is that symbols such as +, -, *, and / are used to separate words, which is

what you want for mathematics, but maybe not what you had in mind for filenames. Enclosing

a word in double quotes turns off all special meanings except ^; an embedded " may be escaped

with a \. Single quotes are used quite differently; enclosing a word in ’single quotes’ makes it into

a string so ’12’ is a two-character string and not an integer at all. There are times when this is

important; for example if(y == ’yes’) tests if the vector y is equal to the string ‘yes’, whereas

if(’yes’ == ’yes’) asks whether two identical strings are equal (they are). When you remember

that I can legally say set yes=’no’ you’ll appreciate the distinction.

The characters {} also perform quoting, turning off the special meanings of all characters (in-

cluding single and double quotes, but not ^). The difference between double quotes and braces is

that the latter have grammatical value; they are part of the syntax that SM understands. In most

cases you can use angle brackets instead of curly ones if the grammar needs the brackets but you

don’t want to turn off expansions (see Chapter 5 [Variables], page 15).

SM is case-sensitive. It will accept keywords in either upper or lower case, but this is a special

dispensation on its part. If you insist on typing in uppercase say load uppercase when you

first start SM, or put the line uppercase 1 in your ‘.sm’ file. Furthermore keywords may not be

abbreviated. This is not a great hardship as it is easy to define macros which make the minimum

abbreviation a synonym for the full command. Many such macros are predefined for you when

you first use SM; see Section A.19 [Libraries], page 205 for details. In particular, certain common

abbreviations of commands have been predefined by the SM startup file.

3 In fact you can rebind any character to replace ^, see Chapter 6 [History Editor], page 19
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Every time that SM is started, it looks for an environment file called ‘.sm’ which consists of

names of variables and their values. From # to the end of a line is taken to be a comment. A

list of directories to be searched in order for ‘.sm’ files is compiled into SM, it usually consists

of the current directory, then your home directory, and then some system directory. The system

default can be over-ridden by defining the environment variable SMPATH which is a list of directories

separated by single spaces. Each directory on the search path is tried in turn until a file is found

containing the desired variable, which allows your choices to take preference over those of the

system administrator. In the list of directories . is taken to be the current directory, and ~ is your

home directory unless you specified a command line -u name option, in which case it is taken to

be name’s home directory instead. This means that sm -u name will usually run SM as if you were

name. If name is null, then SM won’t look for a ‘.sm’ file in anyones home directory. The default

path is equivalent to an SMPATH of

export SMPATH=". ~ /u/sm/lib/"

(or an equivalent incantation). Note that the directory /u/sm/lib/ ends in a / so that a filename

can be directly appended (on a VMS system it would probably end in a : or ]).

An example file would be (the filenames are written in Unix)

# I’m a comment line
fonts /users/sm/fonts.bin
graphcap /users/sm/graphcap
help /users/sm/help/
macro /users/sm/macros/
name Robert # Or alternatively ‘Dr._Lupton’

The fonts file contains the SM fonts (in a binary form), the graphcap entry is used to define

the file used to describe graphics terminals (see Section A.2 [Graphcap], page 163), help is the

directory used by the help command, macro is the default directory where macros reside, and name

is what SM will call you (you can put spaces into your name by using underscores, e.g. My_Lord

will be referred to as My Lord). You can access entries in the environment file yourself, as described

in the section on variables. See the section Section A.19 [Libraries], page 205 to see how entries in

the ‘.sm’ file are used to influence the behaviour of SM, or consult your local expert. You might

want to borrow someones ‘.sm’ file when you first use SM, although you should do fine without one.

For more detail, and further special entries, see Chapter 22 [Environment Variables], page 109.

The name of the ‘.sm’ file can be specified on the command line as “-f name” or you can ask to

use name’s .sm file with -u name. VMS users should ensure that SM has been installed as a foreign

command to take advantage of these capabilities.

SM then tries to read in any macros in the file ‘default’ in the directory ‘macro’ and attempts

to execute the macro startup if it exists. If -m filename appears on the command line, this is

taken to be the name of another file of macros and these are read, and the eponymous macro

is executed (after any pre- or suf- fix has been removed. For instance if you start SM with the
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command sm -m /home/tst.m, it will first read the file /home/tst.m, and then attempt to execute

the macro tst).4

Anything left on the command line is treated as if it had been typed at the prompt, for example

sm restore vital.save will start by RESTORing from the file vital.save (see RESTORE if you want

to know what this means). The -m option is not really a good way to personalise SM. The startup

macro discussed under ‘useful macros’, which is run every time that you start SM, looks for a

directory macro2 in your ‘.sm’ file, and if it is there reads a file ‘default’ from it, and executes

the macro startup2 which it expects to find there. On case-insensitive operating systems, such

as VMS, you may need to quote the command line to prevent it being translated to upper case.

SM then attempts to read a set of history commands from a file in the current working directory,

passes control to the input routine and issues a prompt. The file is given by the entry hist_file

in your ‘.sm’ file, and if it isn’t present then no history will be remembered.

You are then able to type commands, as many as will fit on one line5, and use the features

described below.

You can use a combination of these features to run SM in ‘batch’ mode. If you had a history file

that you just wanted to run, then you could start SM, say playback, and quit. You could have a

macro called batch in batch.m that did just that, and say sm -m batch.m to execute it. In fact, you

don’t even need your own macro as one is pre-defined for you so sm batch is sufficient. You could

write your own macros along this lines to do more complex tasks. A more convenient alternative

(under unix) would be sm -S < history_file where the -S is explained in the next paragraph.

For completeness, we should mention the other command line flags, -h, -l logfile, -n, -q, -s,

-S, -v#, and -V. The -h prints a summary of command line options, if you specify a logfile with

-l everything that you type at the keyboard is copied into the logfile (except editing commands).

When you start SM it usually runs a macro startup; -n prevents this. The -s (for ‘stupid’, or

‘silent’ or ‘suppress’) flag disables the command line editor (although the history list is still saved,

so commands like playback will work), -q suppresses the initial ‘Hello’ message, and -S is like -s

but it also suppresses the prompt and stops SM from intercepting CONTROL-C. You can get the

same effect as -s from inside SM with the command TERMTYPE none. If you are reading from a

file or pipe SM behaves as if you had invoked it with the -S flag. This is useful if SM is being run

from inside another programme, via a pipe (VMS: mailbox), or on a very stupid terminal. If you

want to set a particular value of verbose, use -v for example -v-3 is equivalent to the VERBOSE -3

4 Under VMS, SM must have been installed as a foreign command for this to work, and it must

not have been linked with the debugger
5 Occasionally a <CR> is required by SM, so putting two commands on one line will give a

syntax error. The cause is the way that the grammar is written (see Section A.1.5 [Command

Internals], page 162), the fix is either to use two lines, or else to put an explicit carriage return

at the appropriate point with a \n
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command given interactively. If you want to know SM’s version string without starting SM, you

can use the -V flag.
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5 String Variables

Some SM users seem to be confused by variables and vectors; if you are one of these, the section

on quoting (see Chapter 19 [Quoting], page 77) might help.

SM maintains a set of variables which are defined with one of the statements

DEFINE name value
or

DEFINE name { value_list }
or

DEFINE name ( expression )

where name must consist of digits, letters and ‘ ’ (but must not start with a digit), and may be a

keyword.

Value may be a word or a number. Value_list has no such restrictions and may contain many

words. Note that due to the presence of the {}, variables are not expanded (i.e. replaced by their

value) in value_list, whereas they are in value. In fact, the list can be delimited by <> rather

than {}; see DEFINE for details.

The expression in DEFINE variable ( expr ) should be a scalar; if it is not, the first element

of the vector will be used and you will be warned, if VERBOSE (see Chapter 22 [Verbose], page 151)

is one or greater. Sometimes you just want to evaluate an expression and treat the answer as

a string; in this case use the special vector form $(expr) which is replaced by the value of the

expression — for example echo e is $(exp(1)). Expressions are further discussed under ‘Vectors

and Arithmetic’.

There are a number of special variables whose value is always the current value of some internal

SM variable such as the current position or the point type. The variable “date” is also special

and expands to give the current time and date, — try typing echo $date. You can freeze these

variables at their current value by saying define name | (see below).

Each time SM reads $name it replaces it by its value, considered as a character string. For

example,

DEFINE hi hello
WRITE STANDARD $hi

will print hello. This expansion is done before even the lowest level of lex analysis, so if a command

is attempting to read a value it is possible to give it the name of a SM variable. An example would

be the XLABEL command, which writes a string as the x-axis label of a graph,

DEFINE name Aelfred

XLABEL My name is $name
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will invoke the XLABEL command, and write My name is Aelfred below the x-axis. (Incidentally,

DEFINE Aelfred Aethelstan YLABEL $$name will write Aethelstan as the y-axis label, which can

be handy in macros. The use of the double $$ indicates to SM to do a double translation, as it

first expands to $Aelfred which then expands to Aethelstan).

A variable can be deleted by DEFINE name DELETE so for example the macro

MACRO undef 1 { DEFINE $1 DELETE }

invoked as

undef name

will undefine the variable name (see the section on macros if you are confused).

There are also three special values, :, |, and ?. The command define name : means ‘get the

value of name from the environment file’. If this fails, and if the variable is all uppercase, SM

will then try to use the value of an environment (VMS: logical) variable of the same name. Using

define name ? means ‘read the value of name from the keyboard’. You can specify a prompt to be

used, see DEFINE for details. The form with | has changed a little with version 2.1.1. The variables

that you can use with | have not changed, but their usage has slightly. They are all defined for you

when SM starts and each is always correct, tracking the current value of the corresponding internal

variable. For example, try echo $angle angle 45 echo $angle. If you now say define angle |,

$angle will cease to track the internal value and will remain fixed (the same effect can be achieved

with define angle 45). When you say define angle delete it will once more track the internal

value. Your old code will continue to work, but in many cases it is possible to remove the explicit

definition with |. This special sort of variable will not be SAVEd, and will not show up if you list

the currently defined variables. A list of the | variables is given in the section on DEFINE.

So using the example ‘.sm’ environment file listed in the previous section of the manual, DEFINE

name : will define name to be Robert, DEFINE angle | will give the last value set by the ANGLE

command, and DEFINE datafile ? will ask you for the value of ‘datafile’, which can be useful in

macros. For example,

DEFINE noise ? { Ring bell? } IF(’$noise’ != ’n’) { bell }

will execute the macro bell if you type anything but n in reply to the question ‘Ring bell?’.

When writing macros, it is also sometimes useful to know if a variable has been defined. The

variable $?name has the value 1 if name is defined, otherwise it is 0. For instance, there is a line

define term : if($?term) { termtype $term }

in the startup file, to set a termtype if present in the environment file.

There are also commands to read the values of variables from data files defined with the DATA

command.
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DEFINE name READ i

or

DEFINE name READ i j

will set name to be the i’th line of the file (or the j’th word of the i’th line). An example is given

in the section on ‘useful macros’. You can read variables from the headers of binary files (specified

with the IMAGE command) using DEFINE name IMAGE, although this is only supported for a limited

class of file_type’s (see Section A.15.1 [2-D Graphics], page 191).

All currently defined variables may be listed with

LIST DEFINE [ begin end ]

where the optional begin and end define the range of variables (alphabetically) to be listed. You

might prefer to use the macro lsv which won’t appear on your history list.

Variables are usually not expanded within double quotes or { }. If for some reason you need

to force expansion within double quotes, it can be done with $!name. The macro ‘load’ discussed

under useful macros gives an example of this mechanism. If you need to expand a variable, with

no questions asked (and even within {}), use $!!name.

Sometimes you may want to terminate a variable name where SM doesn’t want to, and this can

be done with a trick involving double quotes. Say you are writing a macro to find all the stars

redder than B-V = 1.0 in a set of data vectors, and you want to rename them with a trailing “ red”,

so star goes to star_red. So you write a foreach loop,

FOREACH x ( U B V R I J K ) { SET $x_red = $x IF(B-V >1)}

Well, that won’t work because SM thinks that you are referring to a previously defined variable

named x_red, so it will complain that x_red is not defined. But if you write it as $x""_red the

"" separate the x from the _red until $x is expanded, and then disappear, and all is well. When a

variable is read, SM skips over all whitespace before the definition, and this can cause problems if

you hit CONTROL-C in the middle, as the rest of the command will be thrown away. If you ever hit

a CONTROL-C, and can’t get a prompt, try typing any non-whitespace character.

Variables are string-variables, and are not primarily designed for doing arithmetic (that’s what

vectors are for). This is a common source of confusion so let’s consider some examples (at the risk

of anticipating some later sections of the manual).

DEFINE a 12

defines a variable a which consists of the two characters ‘1’ and ‘2’, and which can be used anywhere

— for example xlabel $a. What about vectors? Consider

SET x=10

which defines a single-element vector whose value is ten, ready to be used in expressions such as
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SET y=$a + x*12

Note that the $a is still just the two characters ‘1’ and ‘0’, but in this context that is interpreted

as the number ten. So what does

DEFINE y $a+x*12

do? Well, actually it results in a syntax error (the ‘+’ ends a word), so try

DEFINE y <$a+x*12>

This defines the variable y as the string ‘10+x*12’, it doesn’t evaluate the expression. You can

evaluate the expression if you want with

DEFINE y ( $a+x*12 )

which defines y as the string ‘130’. Incidently, you can sometimes get away without an explicit

variable with the syntax $($a+x*12) which also expands to the string ‘130’.

The fact that variables are simply strings can be used to build complex commands; consider for

example the macro

readem # read multiple lines columns with names in row 1
READ ROW names 1.s
DEFINE rc <$(names[(0)]) 1>
DO i=2,DIMEN(names) {

DEFINE rc <$rc $(names[($i - 1)]) $i>
}
LINES 2 0
READ < $rc >

which reads the names of a set of columns from line 1, builds a command to read the data in the

variable rc, and then reads all the data in one command. You could of course loop through names

reading each column in turn, but this should be a good deal faster.

By default variables are global, so if you have a variable $i, and a macro that you call also uses

a variable $i, the macro will change the value that you so carefully defined. To avoid this, it is

possible to force variables (and also vectors) to be local, using a command like DEFINE i LOCAL; in

this case the variable $i will softly and suddenly disappear when you leave the current macro (and

therefore you cannot make variables local at the topmost level, i.e. at the command prompt). In

fact, such variables aren’t strictly local, they have what’s called nested scope, as they are visible

from any macros that you may call — they simply do not propagate backwards up the call stack.

You are free to make a variable local in any (or all) macros, there’s no restriction on how deep such

local declarations may be nested.
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6 Command History

It is often very useful to be able to repeat a command, or perhaps correct a mistake in what you

have just typed. Ways of doing this are usually referred to as ‘history’, and SM has two distinct

mechanisms. One is very similar to that of the Unix C-Shell, and the other allows you to edit

commands using a syntax similar to the popular editor ‘emacs’, or a generalisation of the DCL

history under VMS. If you are not familiar with Unix, emacs, or VMS don’t despair; a description

of the commands and how to invoke them follows in this document. Both of these mechanisms are

implemented by the routine which reads input lines. As each line is sent to the parser, it is copied

onto a history list. This list may be printed with HISTORY, and the commands may be re-used by

referring to them by number, as ^nn, or by a unique abbreviation, as ^abbrev. In addition, the

last command may be repeated by using ^^ and the last word of the last command by ^$.1 These

symbols are expanded as soon as they are recognised (see examples, or experiment), and are then

available for modification by the editor. Sometimes a ^string will retrieve a command beginning

string, but not the one that you want. Version 2.1.1 no longer supports the use of ^TAB to

search for the next-most-recent command beginning string, but you can use the search commands

(CONTROL-R and CONTROL-S) instead. Some people really don’t want ^ to be their history character,

either because they’re used to something else (such as !), or because they want to type lots of real

^s (e.g. you are using TEX-style strings); if this describes you, rebind them – see the next section.

If you are considering the history list as a sort of programme to be repeated you may think that

HISTORY lists the commands in the wrong order; if so use HISTORY -.

For example, if I type:

PROMPT @
echo I like SM
HISTORY

SM will set the prompt to be @, replace the macro echo by its value WRITE STANDARD and print

I like SM

and then

3 HISTORY
2 echo I like SM
1 PROMPT @

(The actual numbers will be different, depending on what other commands you have executed, and

also because SM may have read a history file. In that case there’ll be many more commands on

the list, but no matter.) If I then type

^2 <CR>

1 ^^ and ^$ really do get back the last command typed, even if it isn’t on the history list. If you

want the last remembered command, use up-arrow or ^P
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(that is ^2 not control-2) the screen will look like

@ echo I like SM
I like SM

as if I had just typed it in (@ is the prompt) . Typing

^^ (Yes, ^$ ) <CR>

will now result in SM printing (truthfully)

I like SM (Yes, SM )

It is possible to delete commands from the history buffer with the DELETE command. If the

command is given with zero, one, or two arguments, then the specified range is deleted (but their

numbers are not re-used). If no arguments are given, the last command on the buffer is deleted, and

its number is released to be re-used. In other words, the command DELETE will delete first itself,

and then the previous command from the history list. The command DELETE HISTORY only removes

itself from the history list, and several of the common commands are defined as macros which use

it, for instance dev is defined as DELETE HISTORY DEVICE. This means that the command will not

appear on the history list, to confuse you when you do a playback. But if you now innocently use

dev in a macro, that macro won’t appear on the list either. Still worse, if you use dev twice in one

macro, the previous command will be deleted as well which could be quite confusing. You can also

delete lines of history using ESC-CONTROL-D as described shortly.

The numbering is consecutive, starting at zero. Each command retains its number until you use

a HISTORY command to list the remembered commands, in which case they are all renumbered,

and it is these new numbers that are listed.

By default only 80 lines are remembered, and as you continue typing earlier ones fall off the list.

Because the history buffer is also used to compose complex commands, this limit can be aggra-

vating. You may be able to defeat this by putting many commands on each line (you may have to

use \n to terminate label commands explicitly) or by writing macros. Alternatively you can define

a longer history buffer when you start SM by including an entry history in your environment file

which gives the number of commands to be remembered. If you set history to be 0 the history

list is made infinitely long. Incidently, it is the total number of commands that matters, not the

range of history numbers present.

This limit on the number of history lines isn’t enforced while writing a macro onto the history list

(using WRITE HISTORY). You can use this fact to write a sneaky macro that extends your history;

type HELP extend_history if you are interested.

Some people seem to like their history editors to remember where they were, so that after they

retrieve and execute a command the next CONTROL-P or ↑ will retrieve the command one further
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back on the history list (that is, if you have just retrieved command number 123 and executed it as

command number 234, then CONTROL-P will get you command number 124; you can execute it as

command number 235). If this describes you, define the variable remember_history_line, which

you can either do directly, or by putting a line remember_history_line 1 in your ‘.sm’ file.

The editor allows you to modify commands, either as you type them or as you retrieve them

from the history list. The various editing commands may be bound to keys of your choosing, but

the default bindings are given in this list of possible commands:

CONTROL-A

Go to start of line.

CONTROL-B

Go back one character. (Equivalent to ← ).

CONTROL-C

Interrupt (as usual).

CONTROL-D

Delete character under cursor.

CONTROL-E

Go to end of line.

CONTROL-F

Go forward one character. (Equivalent to → ).

CONTROL-H

Identical to CONTROL-? (DEL). Delete character to left of cursor.

CONTROL-I (TAB)

Insert spaces up to the next tab stop. By default a tab is taken to be 8 characters

wide, but this may be changed by specifying tabsize in your ‘.sm’ file.

CONTROL-J (LF)

Equivalent to CONTROL-M.

CONTROL-K

Delete to end of line. The deleted string is stored, and may be restored using

CONTROL-Y, repeatedly if so desired.

CONTROL-L

Redraw the current line.

CONTROL-M (CR)

Send line to be executed. Some terminals seem to replace CONTROL-M with a linefeed

(CONTROL-J), thereby making it impossible to make SM obey you. We therefore make

CONTROL-@ equivalent to CONTROL-M for emergency use. (This is control-space on many

terminals).
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CONTROL-N

Get the next command on the history list, if it exists (see CONTROL-P). (Equivalent to

↓ ).

CONTROL-O

Execute the previous command on the history list. Equivalent to CONTROL-PCONTROL-ECONTROL-M.

CONTROL-P

Get the previous command on the history list, if it exists (see CONTROL-N).(Equivalent

to ↑ ).

CONTROL-Q

Quote next character; Turn off any special significance to the editor. CONTROL-Q is

often used by the terminal, so we have defined CONTROL-[-q (that is escape followed by

q) as an alternative.

CONTROL-R

Search backwards (reversed) for a string; the opposite of CONTROL-S. The ‘string’ can

actually be any regular expression (see the manual entry for APROPOS). If you specify

a zero-length string (i.e. simply hit carriage return) the previous search string will be

reused.

CONTROL-S

Search forward for a string; the opposite of CONTROL-R. CONTROL-S is often used by

the terminal, so we have defined CONTROL-[-s (that is escape followed by s) as an

alternative.

CONTROL-T

Toggle insert/overwrite. By default, characters are inserted before the cursor. If over-

write is set, they replace the character under the cursor. Note that ESC-u will not

correctly restore words deleted with ESC-d in overwrite mode.

CONTROL-U

Delete from the cursor to the start of the line.

CONTROL-V

Go forward 5 lines.

CONTROL-W

Delete the previous word. Identical to ESC-h

CONTROL-Y

Insert the string most recently deleted with CONTROL-K after the cursor.

CONTROL-Z

Return to the operating system, without killing SM. (Under VMS, if you are running

SM in a spawned subprocess CONTROL-Z will attach you to DCL. Otherwise, SM returns

you to DCL.)

CONTROL-? (DEL)

Equivalent to CONTROL-H.
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ESC-CONTROL-D

Delete this line and remove it from the history list. Note that this is different from just

clearing a line with (e.g.) CONTROL-U, which only erases a copy of the line.

ESC-< Go to the first line of a macro, or the oldest history command.

ESC-> Go to the last line of a macro, or the most recent history command.

ESC-g Go to a given line of a macro, or a given history command. You’ll be prompted for the

line number, if you change your mind you can get out with DEL or CONTROL-H.

ESC-q Quote the next character, turning off any special significance to the editor. Identical

to CONTROL-Q.

ESC-s Search forward for a string. Identical to CONTROL-S.

ESC-v The opposite of CONTROL-V, go back 5 lines.

ESC-y Like CONTROL-Y, except that it gets older deletions, cycling back through a collection

of (currently 5) deleted lines.

Some ESC-letter combinations are available which operate upon complete words. A word is

defined as a whitespace delimited string, so 2.998e8 is a perfectly good word. In addition, it is

possible to undelete words that have been deleted with an ESC-d or ESC-h.

ESC-b Go to the start of the previous word.

ESC-d Delete to the beginning of the next word.

ESC-f Go to the beginning of the next word.

ESC-h Delete back to the beginning of the current word. The same as CONTROL-W.

ESC-u Restore the last word deleted, putting it before the cursor. Further ESC-u’s will restore

more words. When no more are available, the bell is rung.

Any printing character is inserted before the cursor (unless overwrite has been set with

CONTROL-T ). Illegal characters ring the terminal bell. If you insert a non-printing character

on a line, the cursor may get confused.

If ever you are stuck at the command interpreter, and you want to send a signal to the operating

system (e.g. a CONTROL-Y to DCL), but SM is catching the key and using it for its own purposes,

the easiest thing to do is to define a macro such as MACRO aa {aa} , and then run it. While it is

running (i.e. until you type CONTROL-C) keys should have their usual functions.
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7 Changing Key-Bindings

As mentioned above, it is possible to redefine the meanings of keys to the history (and macro)

editor. The command EDIT keyword key-sequence will make typing that sequence of keys corre-

spond to the command keyword. For example, to make CONTROL-R redraw the current line, you

could say EDIT refresh CONTROL-R. The keyword can be any in the list below, or any single char-

acter. Each character in the key-sequence can be a single character, CONTROL-C, or \nnn where nnn

is an octal number. Alternatively, READ EDIT filename will read a file specifying the new bindings

which has two lines of header, followed by pairs of keyword key-sequence. Lines starting with a

# are comments. An example is the file for VMS users given below.

A problem can come up with multiple-key sequences. Imagine that you have bound some

function to CONTROL-XCONTROL-A, for example

EDIT end_of_line ^X^A

then what happens when you try it? SM sees the CONTROL-X and uses its default binding, exit_

editor, and then sees a CONTROL-A and goes to the start of the line, which wasn’t the desired

effect. The solution is to tell SM that CONTROL-X is not a legal key, in which case it will either ring

the terminal bell (if there are no key-sequences starting with an CONTROL-X), or wait for the next

key. In short,

EDIT illegal ^X
EDIT end_of_line ^X^A

should work.

On a somewhat similar topic, the KEY (see Chapter 22 [Key], page 119) command may be used

to define a key to generate a string. See the end of the section on macros for how this works.

All the current key definitions may be listed using LIST EDIT, including the KEY definitions.

The names of operators, and their default bindings, are given in the following table:

CONTROL-A

start of line

CONTROL-B

previous char

CONTROL-C

CONTROL-D

delete char

CONTROL-E

end of line

CONTROL-F

next char
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CONTROL-G

illegal

CONTROL-H, DEL

delete previous char

CONTROL-I

tab

CONTROL-J

carriage return

CONTROL-K

kill to end

CONTROL-L

refresh

CONTROL-M, CONTROL-@

carriage return

CONTROL-N

next line

CONTROL-O

insert line above

CONTROL-P

previous line

CONTROL-Q, ESC-q

quote next

CONTROL-R

search reverse

CONTROL-S

search forward

CONTROL-T

toggle overwrite

CONTROL-U

delete to start

CONTROL-V

scroll forward

CONTROL-W, ESC-h

delete previous word

CONTROL-X

exit editor

CONTROL-Y

yank buffer
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CONTROL-Z

attach to shell

ESC-< first line

ESC-> last line

\034 escape

ESC-b previous word

ESC-d delete next word

ESC-f next word

ESC-g goto line

ESC-u undelete word

ESC-v scroll back

ESC-y yank previous buffer

ESC-CONTROL-D

delete from history

^ history char

A simple example of a bindings file for a hardened VMS user might be

# This is a set of DCL-ish key maps for SM
# name key
toggle_overwrite ^A
start_of_line ^H
delete_previous_word ^J
yank_buffer ^R
search_reverse ^[r
attach_to_shell ^Y

Note that that’s the two characters ^ and A not control-A. It could just as well have been written

\001. We need a new character for yank_buffer now that CONTROL-Y is otherwise engaged, and I

have chosen CONTROL-R (which means that I can’t use CONTROL-R to search backwards, so I chose

ESC-r for that). You should be warned that some terminal protocols map CONTROL-M to CONTROL-J,

so this use of CONTROL-J could render you unable to issue commands. As mentioned above, in an

emergency CONTROL-@ can be used instead of CONTROL-M.

When SM is started, or whenever the TERMTYPE command is used to change terminals, the arrow

keys are bound to the commands previous_line, ext_line, previous_char, and ext_char. For

terminals such as a Televideo-912, which uses characters such as CONTROL-K for arrow motion, these

can supersede the previous meanings (in this case kill_to_end); The only fix is to use the EDIT

or READ EDIT command to get what you want, probably within a macro.



28 SM

If you want to use ’ as your history character instead of ^ you need to say edit history_char

‘ edit ^ ^. If you try to use a character special to SM such as ! this won’t work (you’ll get a

syntax error) and you’ll have to use the next alternative, namely put the commands into a file and

say read edit filename, for example:

# Change the history character
# name key
history_char !
^ ^

Because this particular change is so common, it’s possible to specify that ‘ be your history character

simply by including a line history_char ‘ in your ‘.sm’ file (or you can choose your own character.

Choosing 0 has the effect of using the default, ^).

SM needs to know something about the terminal that you are using, so as to run the his-

tory/macro editor. This is entirely separate from the problem of describing the terminal’s graphics.

It will try to discover what sort of terminal you’re on by using the value of term from your ‘.sm’

file, or failing that the value of the environment variable TERM (Unix) or the logical variable TERM

(VMS). A term entry of selanar -21 is equivalent to a TERMTYPE selanar -21 command. You

can also use the TERMTYPE command directly. SM then uses the terminal type specified to look up

its properties in the termcap database (see Section A.17 [Termcap], page 197). You can also use

TERMTYPE to specify the size of the screen, or to turn off SM’s idea of where the cursor is. On some

terminals, you can only send a cursor to an absolute position and this is chosen to be the bottom

of the screen. This is not what you want for, e.g., a VT240 as it will lead to your graph scrolling

off the screen. The use of a negative screen size to TERMTYPE will disable this cursor motion, but

will also make editing lines slower. If a line of your graph is being deleted when the SM prompt

appears, you may need to use TERMTYPE dumb or TERMTYPE none.
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8 Talking to the Operating System

Any line from ! to the newline is passed to your shell (DCL under VMS, the Bourne shell under

unix. If you set the variable SHELL in either your ‘.sm’ file or the environment it will be used

instead; the former takes priority).1 For example, !ls or !directory will list the current directory.

The return code from the command is available in the variable $exit_status, on unix systems

it will be 0 for success, for weirder systems you should look in the system manual for the return

value of the C function system. $exit_status is one of the variables that can be set with DEFINE

exit_status |.

It is also possible to change the directory that SM uses to look for data or macro files with

the CHDIR command - for instance CHDIR "../more_data"2. If a directory name starts with ‘~’,

CHDIR replaces the ‘~’ with your home directory. This is the only place that ‘~’ is treated specially,

for instance it is not interpreted by the DATA command. Because directory names often contain

mathematical characters such as [ or /, it is wise to quote the directory, or use the macro cd which

quotes it for you.

1 The first of these commands in a SM session may be rather slow under VMS, as we have to

spawn a subprocess.
2 Unfortunately, this is currently not available to VMS users
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9 Macros

In SM, it is possible to define sets of plot commands as “subprogrammes”, which can be used

just like a plot command, to generate a standard plot. These plot macros allow variables (e.g.

name of the data file, plot label or limits, etc) to be supplied at execution time.

You can also bind commands to keys to save typing; for example I usually bind ‘cursor’ to the

PF1 key of my terminal. Such keyboard macros are discussed under KEY and at the bottom of this

section.

The macro facility consists of commands to define macros, delete them, write them to disk files,

read them from disk files, delete all those macros defined in a specified disk file and list all currently

defined macros. In addition, the help command applied to a macro prints out its definition. It is

possible to pass up to 9 arguments to a macro, referred to as $1, . . . , $9, and in addition $0 gives

the name of the macro. While macro arguments are being read they are treated as if they are in

sets of {}, except that variables are expanded. If you want to include a space in an argument,

enclose it in quotes. If the number of declared arguments is 10 or more, the macro is treated as

having a variable number of arguments. If it is 100 or more the last argument extends to the end

of the line. For further discussion see the discussion of how macros are used.

A macro is defined by the statement

MACRO name nargs { body-of-macro }

or

MACRO name nargs < body-of-macro >

where name may be up to 80 characters, and must not be a keyword1, and body-of-macro is the

statements within the macro, and may be up to 2000 characters long. Macros defined using an

editor on a file may be up to 10000 characters. If nargs, the number of arguments, is 0 it may be

omitted. Macros may also be created using the MACRO EDIT command, which is discussed below,

and which is probably easier. To define the macro in a disk file, the file format must be: the name

of the macro starts in the first column, followed by a tab or spaces, followed by the number of

arguments, if greater than 0, followed by commands, followed by comments if any. The next line

and any necessary subsequent lines contain the macro definition (starting in a column other than

the first one). Any number of macros may appear in the same file, as long as the macro name

is given in the first column and the definition starts in some other column. The first two blanks

or tabs are deleted in continuation lines, but any further indentation will survive into the macro

definition. Tabs will be replaced by spaces as the macro is read. By default a tab is taken to be 8

characters wide, but this may be changed by specifying tabsize in your ‘.sm’ file.

When a macro is invoked, by typing its name wherever a command is valid, for example at

a prompt, it first reads its arguments from the terminal (if they are not in the lookahead buffer,

1 unless you have been playing with OVERLOAD
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it will prompt you for them), and defines them as the variables $1, . . ., $9, before executing the

commands contained within the macro. The number of arguments must be declared correctly.

As an alternative it is possible to declare that a macro has a variable number of arguments by

declaring 10 or more2. The macro will then expect between 0 and the number declared modulo

10 arguments, all on the same line as the macro itself. (i.e. the argument list is terminated by a

newline, which may either be a ‘real’ one, or an \n). If the number of arguments is 100 or more

it is still reduced modulo 10, but the last argument is taken to be the rest of the line (which may

consist of many words). The macro may find out if a particular argument is provided by using $?

to see if the variable is defined. For example the macro check, in the format in which it would

appear in a file,

check 11 if($?1 == 1) { echo Arg 1 is $1 }\n

will echo its argument, if it has one, and

split 102 if($?2 == 0) { DEFINE 2 "(none)" }

echo $1:$2:

if invoked as split word many arguments will print word:many arguments:. If you add an ex-

plicit newline, split word many\n arguments, you’ll get word:many: and then a complaint that

arguments is not a macro.

If you try to execute a non-existent macro, if it is defined SM will call a special macro called

macro_error_handler. It has two arguments; the first is the string NOT_FOUND, and the second is

the name of your non-existent macro. When you start SM, the error handler is:

macro_error_handler 2 ## handle errors associated with macros
if($?missing_macro_continue) {

echo $2 is not a macro
RETURN

}
if(’$1’ == ’NOT_FOUND’) {

del1
define 3 "$2 is not a macro; aborting"

} else {
define 3 "Unknown macro error for $2: $1"

}
USER ABORT $3

which causes an immediate syntax error (the USER ABORT), and remove the errant command from the

history list (the del1). You can turn this off by defining the variable $missing_macro_continue,

which you can do in your ‘.sm’ file; this was the default in SM versions 2.1.0 and earlier, and is

what you get if the macro macro_error_handler isn’t defined.

2 More accurately, by specifying two or more digits; see Chapter 22 [Macro], page 125 for more

details and examples
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Unfortunately we can get into trouble with IF’s at the end of macros, for much the same

reason that RETURN can get into trouble (see Section A.1.5 [Command Internals], page 162). The

symptoms are that a macro either gets the arguments that were passed to the macro that called

it, or complains that it can’t handle numbered variables at all because it isn’t in a macro at all.

To avoid this, there is an explicit \n at the end of the macro check. It is possible to redefine the

values of arguments (it won’t affect the values you originally specified, arguments are passed by

value), or to DEFINE values for arguments that you didn’t declare. The latter case allows you to

have temporary variables, local in scope to the macro. An example is the rel macro, which is

defined as

rel 2 DEFINE 1 ($1) DEFINE 2 ($2) RELOCATE $1 $2

which allows you to specify expressions to the relocate command. For more examples see the ‘useful

macros’ section.

Newlines are allowed within macros, and as usual any text from a # to the next newline is

taken to be a comment. If a # is needed within a macro, escape the # with a \ or enclose it in

double quotes. If a macro starts with a comment the comment will not affect the macro’s speed of

execution. Macros starting with ## are treated specially by SAVE (they are not saved) and MACRO

LIST (they are not listed if VERBOSE is 0).

If the macro command is given as

MACRO name { DELETE }

or

MACRO name DELETE

the macro will be deleted (you can also delete a macro from the macro editor by specifying a

negative number of arguments). If the name is already defined, it will be silently redefined. Macros

may be nested freely, and even called recursively. For example, the definition

MACRO aa {aa}

is perfectly legal, but SM will go away and think about it for ever if you ever type aa (or at least

until you type CONTROL-C.) The definition

MACRO zz { zz zz # comment: not recommended }

is also legal, but in this case if you execute it SM will fill its call and macro stacks and complain

when it grabs more space. As before, it will think about it forever. More useful examples of

recursive macros are compatible (see Section A.20.3 [Mongo], page 213), which starts

IF($?1 == 0) { compatible 1 RETURN } . . .

providing a default value for its argument, and repeat which is discussed under DO.

To find how a particular macro is defined, type HELP macroname. For a listing of the first line

of all currently defined macros, type
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LIST MACRO

or

LIST MACRO x y

The optional x and y are the alphabetical (actually asciial ) range of macro names to list. As

mentioned above, if VERBOSE is 0, macros starting with ## are not listed by this command. There

is a macro ls defined as DELETE HISTORY LIST MACRO which will list macros without appearing on

the history list. (Or you could overload list; see under overload in the index).

A related command is APROPOS pattern which lists all macros and help files3 whose names or

initial comments contain the pattern, for example

APROPOS histogram

would list bar_hist and get_hist as well as the abbreviations hi and hist. If you wanted to find

all macros starting with a single comment character which mentioned histogram you could say

APROPOS "^#[^#] .*histogram"

where the double quotes prevent the #’s being interpreted as comment characters.

APROPOS ^[a-z]

will list all macros beginning with lowercase letters – this is similar to MACRO LIST a z, but pays

no attention to the value of VERBOSE.

It is also possible to read macros in from disk, and in fact when SM is started, it tries to read

the file ‘default’ in the directory specified by macro in the environment file ‘.sm’. The command

to read a file of macros is

MACRO READ filename

Any line with a # in the first column is treated as a comment, and is echoed to the terminal if

VERBOSE is greater than zero. All the currently defined macros may be written to a file with the

command

MACRO WRITE filename

If the file exists, it will be overwritten (under VMS, a new version of the file will be written).

Macros are written out in alphabetical order.

The command

MACRO WRITE macroname filename

writes the macro macroname to the file filename. This command remembers which file it last wrote

a macro to, and if the current filename is the same then it appends the macro to the end of the file,

3 usually; this may not be available on Unix System V and VMS systems.
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otherwise it overwrites it (or creates a new version under VMS) unless the filename is preceded

by a +, in which case the macros will always be appended. This allows a set of related macros to

be written to a file.

MACRO DELETE filename

undefined all macros which are defined in filename. This allows a file of macros to be read

in, used and forgotten again. The difference between this command and MACRO macroname DELETE

should be noted. The SAVE command is probably a better way of saving all current macros. The

format of macros on disk is name nargs text, where nargs may be omitted if it is 0. Continuation

lines start with a space or tab. See the files in the directory specified by macro in your ‘.sm’ file

for examples.

It is possible to define macros from the history list. The command

MACRO name i j

defines a macro name to be lines i to j inclusive of the history list, as seen using HISTORY. The

opposite of this command, which places a macro upon the history list, is WRITE HISTORY name.

Examples of these commands are the macros playback and edit_hist given in the section ‘A

Simple Plot’. This way of defining macros can be convenient if you have created a useful set of

commands on the history buffer, and now want to save it in a macro and go on to other things.

Editing the playback buffer, and then changing its name to something else (see next paragraph) is

a convenient way of saving it that implicitly uses this command.

Macros may be edited, using essentially the same keys as described above for the history editor.

The command MACRO EDIT name starts up the editor, which works on one line at a time.4 The

zeroth line has the format

0> Macro name : Number of arguments: n

where name is the name of the macro, and n is the number of arguments to the macro. If this line

is changed, except to change name or n, any changes made to the macro will be ignored (note that

the space after name is required). This can be useful if you decide that you didn’t want to make

those changes after all. Changing name or n has the obvious effect, except that if n is negative the

macro is deleted when you exit the editor. An empty macro is also deleted when you leave the

editor (i.e. one with no characters in it, not even a space). The first line that you are presented

with is the first line in the macro rather than this special one. Use CONTROL-N (or ↓ ) to get the

next line, CONTROL-P (or ↑ ) to get the previous line. Carriage return (CONTROL-M) inserts a new

line before the cursor, breaking the line in the process, while CONTROL-O inserts a new line before

the current line. To save the changes and return to the command interpreter use CONTROL-X. All

4 you might prefer to use the macro ed which is equivalent to MACRO EDIT, but doesn’t appear on

the history list and, if invoked without a macro name, will edit the same macro as last time. In

addition, you can list the current macro with hm.
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other keys have the same meaning as for the history editor (e.g. CONTROL-A to go to the beginning

of a line). Note that CONTROL-K and CONTROL-Y can be used to copy lines, and that the bindings

can be changed with EDIT or READ EDIT.

It wouldn’t be hard to write a macro that wrote out a macro to a file, invoked your favourite

text editor, then read the new definition back in; see the macro emacs_all for ideas.

It is sometimes convenient to define a key to be equivalent to typing some string, such as

playback or cursor. This can be done with the KEY command, whose syntax is KEY key string.

If you just type KEY <CR> you’ll be prompted for the key and string. In this case you are not using

the history editor to read the key, and you can simply hit the desired key followed by a space and

the desired string, terminated by a carriage return. If you put KEY, key and string on one line

you’ll probably have to quote the key with CONTROL-Q or ESC-q, or write the escape sequences out

in the way used by EDIT. If this sounds confusing, here is an example. Type KEY<CR>, then hit

the PF1 key on your terminal, type a space, and type "echo Hello World\N". Now just hit the

PF1 key and see what happens. (The closing \N meant ‘and put a newline at the end’). These

keyboard macros are not generally terminal independent, but they can be convenient. Definitions

for the ‘PF’ keys on your keyboard can be made in a terminal-independent way by specifying the

key as pfn or PFn where n is 1, 2, 3, or 4. If you always use the same terminal you might want to

put some KEY definitions in your private startup file (see the discussion of startup2 in the section

on useful macros). The current KEY definitions are listed with the LIST EDIT command, along with

the other key bindings.
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10 DO and FOREACH loops, WHILE loops, and IF
statements

Related to the macro facility are the DO, FOREACH, and WHILE commands. IF is included here as

a flow-of-control keyword.

The syntax for a DO loop is

DO variable = expr1 , expr2 [ , expr3 ] { command_list }

where the third expression is optional, defaulting to 1. The value of variable ($variable) is in turn

set to expr1, expr1+exp3, . . ., expr2, and the commands in command_list executed. Changing

the value of $variable within the command list has no effect upon the loop. Do loops may be

nested, but the name of the variable in each such loop must be distinct. A trivial example would

be

DO val = 123, 123+10, 2 { WRITE STANDARD $val }

while a more interesting example would be the macro square discussed in the section on examples.

For loops within macros, it’s often a good idea to make the loop variable local: DEFINE val

LOCAL DO val . . . (see Chapter 22 [Define], page 95).

Because the body of the loop must be scanned (and parsed) repeatedly, loops with many circuits

are rather slow. If at all possible you should try to use vector operations rather than DO loops. For

example the loop

DO i=0,DIMEN(x)-1 {
IF(x[$i] >= 0) {

SET x[$i]=SQRT(x[$i])
} ELSE {

SET x[$i]=0
}

}

is better written as

SET x=(x >= 0) ? SQRT(x) : 0

where the ternary operator ?: is discussed in the section on vectors (see Chapter 13 [Vectors],

page 45). If you only wanted the elements with x >= 0, you’d have said

SET x=SQRT(x) if(x >= 0)
}

As an alternative to DO loops, SM also has a general looping command, a while loop, for

example

set i=0
while {i < 10} {

commands
set i=i+1
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}

is equivalent to a DO loop. In addition to being more flexible, WHILE loops may also be interrupted

with the BREAK command, so the previous example could have been written (using variables

instead of vectors)

define i 0
while{1} {

echo Hi $i
define i ($i+1)
if($i == 10) { break }

}

Foreach loops are similar to do loops, with syntax

FOREACH variable ( list ) { command_list }

,

FOREACH variable { list } { command_list }

, or

FOREACH variable vector { command_list }

where the list may consist of a number of words or numbers. a vector. Each element in the list

(or of the vector) is in turn defined to be the value of $variable, and then the commands in

command_list are executed, so that for example the commands:

FOREACH i ( one 2 three ) { WRITE STANDARD $i }
SET str = {one 2 three}
FOREACH i str { WRITE STANDARD $i }

will print out:

one
2
three

twice. Foreach loops may be nested, but again the variables must be distinct. You can delimit the

list with {} so that it can include keywords (and other things that you want treated as strings such

as 0.1 or $date), but even then you can’t have the word delete in the list of a foreach. Sorry. It’s

often helpful to make the foreach variable LOCAL (see Chapter 22 [Set], page 139) inside macros,

e.g.

DEFINE var LOCAL FOREACH var . . .

If statements look similar, with syntax

IF ( expr ) { list } ELSE { list2 }

where the ELSE clause is optional, but if it is omitted the closing } must be followed by a newline

(or explicit \n) (see Section A.1.5 [Command Internals], page 162).
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If the (scalar) expression is true (i.e. non-zero), then the commands list are executed, otherwise

list2 is, if present. It is also possible to use IF statements directly in plotting commands, for

example POINTS x y IF(z > 1/x).

You can use logical operators within the expr (see Chapter 22 [If], page 115). Note that &&

and || do not‘short-circuit’; that is, in the expression expr1 && expr2 both expr1 and expr2 are

evaluated. In a scalar context (e.g. in an IF statement), the operators AND and OR are available

instead, and they do only evaluate the right hand side if it’s value is required.

It is possible to write general loops in SM by using of tail-recursive macros.1 The simplest

example would be

macro aa {echo hello, world\n aa}

which prints hello, world and then calls itself, so it prints hello, world and then calls itself, and

so on until you hit CONTROL-C. The absence of a space before the closing brace is very important,

as it allows SM to discard the macro before calling it again, which means that it won’t fill up its

call stack and start complaining. A more interesting example is the macro repeat which repeats a

given macro while the given condition is true. For example, if you say

macro aa { set i=i+1 calc i }
set i=0 repeat aa while i < 10

it will print the integers from 0 to 9. With a few checks, bells, and whistles the macro looks like:

repeat 103 # Repeat a macro ‘name’ while the condition is true
# syntax: repeat name while condition
# Example: set i=0 repeat body while i < 10
if(’$2’ != ’while’) {

echo Syntax: $0 macro while condition
return

}
if(int((whatis($1)-4*int(whatis($1)/4))/2) == 0) {

echo $1 is not a macro
return

}
macro _$1 {

if(($!!3) == 0) { return }
$!!1
_$!!1}

_$1
macro _$1 delete

and is one of SM’s default macros (type “help repeat” if you don’t believe me).

1 This was the only way before the days of WHILE loops (see Chapter 22 [While], page 155), and

as the technique is interesting, we’ve kept this section in the manual
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11 The Help Command

There is an online help command. Typing HELP <CR> or HELP HELP gives a list of the help menu,

or HELP keyword gives help with that keyword. The help menu consists of any files in the directory

specified by the entry help in the environment file, so for example HELP data types the file data

in that directory. For all cases except HELP help, the file is filtered through a version of the Unix

utility ‘more’ which pages the file. When ‘more’ offers you a ‘...’ prompt, type ? to see your

options. The same filter is used by e.g. LIST MACRO . If the command is HELP word, after HELP

tries to print the file word, it looks to see if word is a macro, and if so prints its definition. If word is

a variable, its value is then printed, and if word is also a vector HELP prints the dimension, followed

by the help string associated with the vector vector_name (see section on vectors).

The APROPOS command is also useful when you need help. APROPOS string scans all the help

files (if your operating system allows SM to do such things) and macro headers looking for the string.

The string may actually be a pattern (see the description of APROPOS for details). If VERBOSE (see

Chapter 22 [Verbose], page 151) is zero only the lines from the help files matching the pattern are

printed; if it is larger you are given a couple of lines of context on each side.

It is worth remembering that the index to this manual has an entry under weird, wherein are

listed all sorts of strange happenings, with explanations and suggestions for workarounds.
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12 Saving and Restoring a Session

If for some reason you want to stop a SM session for later resumption, and simply suspending

the process, ‘CONTROL-Z’, is not sufficient, (for instance the machine is going down), then the SAVE

command will write a file containing all your currently defined macros, variables, and vectors, along

with your current history buffer as the macro all. You will be prompted before each class of objects

is saved, or you can put the answers on the command line. The file is ascii, and can be edited if

you so desire. The filename defaults to ‘sm.dmp’ if not specified, or to the value of save_file from

your ‘.sm’ file. If some bug has crawled unbeknownst to us into SM, and results in some sort of

panic (such as a segmentation violation), a save file called ‘panic.dmp’ is written to your temporary

directory, no questions asked.

To restart, RESTORE filename will read them all back, using the same default file as for SAVE

if no filename is specified, and replace the current history buffer with the value of all from the

savefile. Of course, you could write a macro to preserve the current buffer (see the definition of

edit_all for hints). If the file wasn’t written by SAVE it is assumed to be a SM history file, one

of those written when you quit SM, and each line is assumed to be a command and written to the

end of the history buffer. This is generally useful when you started SM in the wrong directory. It

wouldn’t be hard to write a macro to use RESTORE to read a history file into a macro.

One problem with SAVE is that it saves lots of macros, including some of the system ones.

Specifically, all macros are saved except those beginning with “##”. This can be avoided with the

MACRO DELETE filename command, e.g. MACRO DELETE utils SAVE 1 1 1 MACRO READ utils. The

macro sav discussed under ‘useful macros’ will do this for you, and indeed not SAVE any macros that

have been read with the load macro. This is probably the best way to use the SAVE command. In

addition, sav also decides to save variables and macros, only prompting you about saving vectors.

sav is a good candidate for overloading (as save), and indeed is one of the macros redefined by the

set_overload command.



44 SM



Chapter 13: Vectors and Arithmetic 45

13 Vectors and Arithmetic

The basic unit of data in SM is the ‘vector’, a named set of one or more numbers or strings.

There is no limit to the number of vectors that may be defined. SM allows the user to read vectors

from files or define them from the keyboard, to plot them and to perform arithmetic operations

upon them. SM’s string-valued vectors are less generally useful, but can be used for such purposes

as labelling points on a graph.

To read a vector vec from a column of numbers in a file, where the filename has been specified

using DATA and, possibly, the range of lines in the file to be used has been specified using the LINES

command, use READ vec nn where nn is the column number, or READ { vec1 n1 vec2 n2 ... } to

read many vectors. It is also possible to read a row, using READ ROW vec nn, where nn is the row

number in the file. See READ for how to read a string-valued vector.

Instead of using simple column-oriented input it is possible to specify a format like those used

by C’s scanf functions (Fortran formats are not supported); if you provide your own format string

you can only read numbers. For example, if your data file has lines like

1:12:30 -45:30:11

you could read it with read ’%d:%d:%d %f:%f:%f’ { hr min sec deg dmin dsec }.

A vector may also be defined as SET vec = x1,x2,dx to take on the values x1,x1+dx,...,x2,

where dx defaults to 1 if omitted. If a scalar is encountered where a vector is expected, it is

promoted to be a vector of the appropriate dimension; all other dimension mismatches are errors.

Example:

SET value = 5
SET x = 0, 50, 2
SET y = x
SET y = x*0 + value
SET y[0] = 2*pi
SET y = value
SET x=0,1,.1 SET y=IMAGE(x,1.5)
SET s=str
SET s=’str’
SET s[0]=1.23
SET x=1.23
SET s=x
SET s=STRING(x)

will define a scalar, value, with a value of 5, then define a vector, x, with 26 elements, valued 0, 2,

4, 6,..., 50, then define another vector, y with size 26 and the same values as x, set all 26 elements

of y to have the value 5, set the first element of y to be 2 pi, set y to be a vector with one element

with value 5, and finally set y to be a vector with the values taken from a horizontal cross-section

from 0 to 1 through the current image. Unless a vector str is defined SET s=str is an error; to

make s a string-valued vector use SET s=’str’. SET s[0]=1.23 makes s[0] have the value "1.23"
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(a string), as s is now a pre-existing string vector. An arithmetic vector x is then defined, and s

is redefined as an arithmetic vector too – you must be careful when dealing with string vectors!

Finally, we explicitly convert an arithmetic vector to a string-valued one with the STRING operator.

This is a somewhat contrived example, designed mainly to illustrate the convenience of the SET

command. The ability to set particular elements is mostly used in macros such as smirnov2 which

calculates the Kolmogorov-Smirnov statistic from a pair of vectors.

If you don’t have many data points, rather than type them into a file, and use READ vec nn to

define a vector, you can use the command

SET vec = { list }

For example

SET r = 0,10

is equivalent to

SET r = { 0 1 2 3 4 5 6 8 9 10 }

In fact, { list } is an expression, so SET vec = 2*{1 3 1} is also legal. If the first element of

a list is a word, the vector is taken to be string-valued: SET s={ William William Henry Steven

} defines a 4-element string vector, or you can use a string in quotes: SET s=<’1’ 2 3 4> (if you

used SET s={’1’ 2 3 4} the first element would be ’1’ rather than 1). Once a vector is defined,

you can write it to a file for later study using the PRINT command.

A scalar may be an integer, a floating point number, a scalar expression, DIMEN(vector), or

WORD[expr]. The last two are the dimension of a vector, and an element of the vector with expr

a scalar subscript. Note that subscripts start at 0 and that [ ] ‘not’ () are used to subscript

variables. The expression WORD[expr] is in fact allowed even if expr is not a scalar, in which case

the result is a vector with the same dimension as expr, and with the values taken from WORD in the

obvious way.

Once vectors are defined, they may be combined into expressions using the operators +, -, *, /,

**, CONCAT and the functions COS(), SIN(), TAN(), ACOS(), ASIN(), ATAN(), ATAN2(), ABS(),

DIMEN(), INT(), LG(), EXP(), LN(), SQRT(), STRING(), STRLEN(), and SUM(). The meaning

of most of these is obvious, ATAN2 is like ATAN but takes two arguments, x and y and returns an

angle in the proper sector. DIMEN returns the number of elements in a vector, SUM gives the sum of

all the elements, CONCAT concatenates two vectors, INT gives the integral part of a vector, STRING

converts a number to a string, and STRLEN gives the length of a string (in plotting units, not just

the number of characters). STRING uses the same code as the axis-labelling routines, so FORMAT can

be used to modify its behaviour; whether the x- or y-axis formats is used depends on whether the

label is more nearly horizontal or vertical. An example would be

set x=3.08e16 define s (string(x)) relocate 0.5 0.5 putlabel 5 $s
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The precedence and binding are as for C (or Fortran), and may be altered by using parentheses

(CONCAT has a binding just below + and -). All of these operators work element by element, so

y = 2 + sin(x)

is interpreted as

yi = 2 + sin(xi)

If there is a size mismatch the operation will only be carried out up to the length of the shorter

vector and a message is printed; if VERBOSE is 1 or more, the line where the error occurred will be

printed too. The constant PI is predefined.

You can also use WORD([ expr [ , . . . ]]) as part of an expression, where WORD is a macro taking

zero or more arguments. Suppose we define a macro pow with two arguments as

SET $0 = $1**$2

then the command

SET y = 10 + 2*pow(1 + x,3)

is equivalent to SET y = 10 + 2*(1 + x)**3.

In addition to these arithmetic operations, there are also logical operators == (equals), != (not

equals), >, >=, <, <=, && (logical and), and || (logical or). The meanings of the symbols are the

same as in C, and as in C the value 0 is false while all other values are true. Note that && and || do

not‘short-circuit’; that is, in the expression expr1 && expr2 both expr1 and expr2 are evaluated.

In a scalar context (e.g. in an IF statement), the operators AND and OR are available instead, and

they do only evaluate the right hand side if it’s value is required (see Chapter 22 [If], page 115).

String vectors may only be concatenated, added, or tested for (in)equality. Adding two string-

valued vectors concatenates their elements, so

{ a b c } + { x y z }

results in the vector ax by cz.

Testing equality for string vectors seems to cause some confusion. Consider

set str=<’a’ b c d>
if(’a’ == ’str’) { # test if the strings ‘a’ and ‘str’ are equal
if(’a’ == str) { # test if the string ‘a’ equals the vector ‘str’
if(a == str) { # test if the vector ‘a’ equals the vector ‘str’

The second of these tests will succeed, but if you then try

if(’b’ == str) { # try to see if ‘b’ is an element of str

the test will fail as ’b’ == str is the 4-element vector { 0 1 0 1 } and only its first element is used

by the if test; what you want is
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if(sum(’b’ == str)) { # is ‘b’ an element of str?

There are also a number of less mathematical operations. If you have an IMAGE (see Chapter 22

[Image], page 116) defined, you can extract a set of values using the expression IMAGE(expr,expr),

where the two exprs give the coordinates where the values are desired. Note that this may be used

as a way of reading large data files that are stored unformatted. The expression HISTOGRAM(expr

: expr) can be used to convert a vector into a histogram. The second expression is taken to be

the centres of the desired bins: bin boundaries are taken at the mean points (and points in the first

expression lying on a boundary are taken to fall into the lower bin. Note the use of ‘:’ not ‘,’).

Vectors may be assigned to, using the syntax

SET vec = expr

or

SET vec[ expr ] = expr

or

SET vec = WORD(expr)

or

SET DIMEN(vec) = number

or

SET vec = expr1 IF(expr2)

or

SET vec = expr1 ? expr2 : expr3

The first form sets vec to have the value expr, element by element, vec is the name of the new

vector. The form vec[expr] may be used to assign to an element of a vector, as usual the index

starts at 0. Before you can use SET to assign values to the elements of a vector, you must create it

using one of the other forms of the SET command.

If you want to define a vector to which you will subsequently assign values using SET vec[ expr

] = expr, you may use SET DIMEN(vec) = number which declares vec to be a vector of size number,

and initialises it to zero. You can optionally supply a qualifier to the number, either a .f (the

default), or a .s to specify that the vector is string valued.

If the IF clause is present, only those elements of expr1 for which the corresponding element

of expr2 is true (non-zero) are copied into vec; in general vec will have a smaller dimension than

expr1. The last SET statement (with ?:) again borrows from C. If expr1_i is true, then vec_i is set

to expr2_i, otherwise it is set to expr3_i. In this form of conditional assignment, the dimension

of vec is the same as that of the right hand side. It may look strange, but it can be just what you

want.
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Each vector also has a help field, which may be used to provide a string describing the vector.

The field is set by

SET HELP vec str

and viewed by

HELP vec

or via the string-valued expression HELP(name).

If VERBOSE is one or more, if a vector is arithmetic or string will also be noted. Vectors may be

printed using the

PRINT [ file ] [format] { vec1, . . ., vecn }

command, where if the optional file is missing, the values are typed to the keyboard; if the

optional format is omitted, a suitable one will be chosen for you. Any combination of string- and

arithmetic-vectors may be printed. If a value exceeds 1e36, it is printed as a *. This is consistent

with the convention used in reading data that a ‘missing’ number is represented as 1.001e36; see

READ for details. Vectors may be deleted with the command

DELETE vec

and listed with the command

LIST SET

Vectors are listed in ascii order along with their dimension, and any help string specified using

the SET HELP command

Once you start writing (or using) complicated macros you’ll get bitten by the fact that a macro

called by a macro called by a friend’s macro uses a scratch vector called x or i, and that this vector

quietly overwrites your vector called x or i. To avoid this, conscientious macro writers make their

vectors LOCAL.1. After the command SET x LOCAL in a macro, any redefinitions of x within that

macro, or any macros called by it, will be discarded when the macro exits. The vector isn’t strictly

speaking local to the macro as it’s visible from macros that are more deeply nested, but the effect

is similar. A word on caution: a macro can exit sooner than you expect; the classic example is

cube 11 # print a vector’s cube for people we like
define name local define name :
if(’$name’ != ’Thatcher’) {

set x local set x = $1
set x = x*x*x
print The answer is $(x)

}

1 well, to be honest the LOCAL command’s a recent addition to SM so there are lots of macros

out there that don’t do this
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Because the if might be followed by an else, the macro is read and popped from the input stack

before it’s executed, causing confusion.

An IF clause has been added to the plotting commands, to allow only those elements of a vector

which satisfy some condition to be plotted, for example

POINTS x y IF(z > 3*x)

Of course, you could have used the IF command and the regular POINTS command if you had

preferred. In fact,

CONNECT x y IF(z > 3*x)

isn’t quite the same as

SET log = z > 3*x SET x = x IF(log) SET y = y IF(log)
CONNECT x y

as the former will only connect contiguous points.
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14 Drawing Labels and SM’s TEX Emulation

There are two separate ways to specify special characters to SM, by using a syntax very similar

to TEX (the type-setting system created by Donald Knuth that we used for this manual), or the

traditional Mongo way. You might ask what are the advantages of TEX? One is that sub- and

super- scripts are handled much more naturally, making it much harder to type MV=−8 when you

meant MV = −8. Another is that you no longer have to remember that θ is hidden in the Greek

font as ‘q’, you can simply type \theta. A third would be that you may well know TEX already.

If you want to make SM understand TEX strings you should define the variable TeX_strings

(if you put a line TeX_strings 1 in your ‘.sm’ file this will be done automatically). You can, of

course, undefine it at any time to revert to the old-fashioned strings described below. Using TEX-

style strings is strongly recommended by the authors; all future and most recent improvements to

SM’s labels are only supported in TEX mode.

If you want to change the default font used for labels, define the variable default_font; if

you wanted to use the \oe (Old English) font you could either say (DEFINE default_font oe)

interactively, or put a line in your ‘.sm file’: default_font oe. This affects axis as well as

regular labels and only works if you use TeX_strings (of course).

For some devices with hardware fonts (for example, postscript printers or a Tektronix 4010

terminal), if expand is exactly 1, and angle is exactly 0, the hard fonts will be used for speed.

Various strategies to defeat this are discussed below.

14.1 An Introduction to TEX

(TEXsperts should skip this section.) If you don’t know TEX let’s start with an example:

label \pi^{\-21/2} = {\3\int}e^{-x^2}\,dx

will print a well-known result (You’ll have to RELOCATE somewhere where the label will be visible

first, of course). (If you want to try it now, you should be careful typing those ^’s, as they are

special to the history editor, dealing with this is discussed below.) In this example the characters

\, {, }, and ^ are special (and so is _ which wasn’t used). Postponing \ for the moment, ^ means

‘make the next group a superscript’, _ means ‘make the next group a subscript’, where a group

is either a single character, a single control sequence (wait a moment!), or a string enclosed in

braces. So A_a^{SM}B would appear as Aa
SMB. A \ can serve one of two functions, either turning

off the special meaning of the next character (so \_ is simply a _ with no special significance),

or to introduce a named ‘control sequence’. These fall into three groups, those that change fonts,

those that serve as abbreviations for single characters (e.g. \pi in the example), and those that

are macros. The font changes persist until the end of the string, or the current group, whichever

comes first.
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14.2 Available Fonts

The available fonts are ‘greek’, ‘old english’, ‘private’, ‘roman’, ‘script’, and ‘tiny’. They may be

referred to either by a two-character control sequences (\gr, \oe, \pr, \rm, \sc, or \ti) or simply

by the first character (e.g. \r for the roman font). In addition \i or \it can be used to make the

current font italic (remember to use italics within {} so that their effect is limited!). The ‘bold’

font \b or \bf is makes the current font bold, and can be toggled off with a second \bf if you didn’t

simply group it. I’d strongly recommend treating \bf like any other font change, and group them

rather than relying on this toggling action.

The slant of \it letters can be controlled by the command sequence \slant, which takes an

argument which is the tangent of the desired slope (i.e. it is the degree of shear). You can also

compress all letters along the direction that they are being written using \condense; for example

{\slant0.4\condense0.5 Hello World}.

You can alter the size of the letters by using an escape such as \6 which scales the current group

(any font change is local to a group). \6 corresponds to multiplying the size by 1.26 or about 3,

\-4 scales by 1/1.24 or 0.48. This is similar to the ‘magstep’ used in scaling fonts in TEX. These

scale factors are in addition to the expansion produced by going up or down (^ or _), or setting

EXPAND.

14.3 SM’s TEX Control Sequences

Other control sequences either consist of one non-alphabetic character, or else a name consisting

only of letters, so \, or \palmtree is valid but \one2three is not. If a alphabetic name is followed

by a space, the space is treated as simply delimiting the name and is discarded. For example,

AB^{\alpha_\beta CD} will appear as ABαβCD (note that the space after beta disappeared). How

do you make just a few characters italic (script, old english, etc.)? Try ABC{\it DEF}GHI. You

can’t read a subscript, and want it in ‘tiny’ font? Try \Lambda_{\ti ab}. All of the Greek letters

are defined, as \alpha-\omega,\Alpha-\Omega, there are various mathematical symbols (e.g. \int,

\infty, or \sqrt), some astronomical (e.g. \AA for Å), and some miscellaneous characters (e.g.

\snow to draw a snowflake). You can generate a complete list of definitions by saying load fonts

TeX_defs.

Some of these definitions are more complex than just special characters, if you know TEX most

of them should be familiar.

\bar str Draw a bar over str.

\border n str

Add an n-pixel border of whitespace to str and draw it.

\centre

\center Center a string horizontally
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\colour

\ctype

\color Change to the specified colour.

\over str1 str2

Draw str1 over str2, separated by a horizontal line. This isn’t nearly as sophisticated

as TEX’s \over, and never will be. It’s written in SM’s TEX emulator which is pretty

limited. If you are a LaTEX user, SM’s \frac may be more familiar.

\phantom str

Don’t actually draw str, but take up as much space as str would have if you had

drawn it.

\smash str

Draw str but pretend that it took up no space.

\strut Make the current formula have at least the depth and height of a parenthesis.

You can also define your own TEX definitions by using the special command \def\name{value}

inside a label. It produces no output, but defines name to expand to value. For example, I could

define \TeX to produce TEX by saying

LABEL \def\TeX{T\raise-200\kern-20E\raise200X}.

Once a definition has been made it is remembered forever (well, until you leave SM actually)

whatever devices you plot on. You must make sure that all curly brackets are properly paired inside

your definition. You can have arguments just like real TEX, referred to as #1, #2, #3 and so forth,

for example

\def\sub#1{_{#1}}

Your SM guru can compile TEX-definitions into the binary fonts file, instructions are given in

the fonts appendix.

14.4 SM’s Extensions to TEX

We have made a number of extensions to TEX that are useful in a plotting package, but wouldn’t

be especially valuable in a printed document. We have also distorted the meanings of some of TEX’s

control words; sorry.

\point n s
\apoint angle n s

Insert a points (such as would be drawn with DOT) into a label. The string \point43

(or \point 4 3) will draw a point at the current position in the string, of ptype ‘4 3’.

This sequence, from the \ to the 3, is treated as a single character as regards things

like subscripts. If you want to specify an angle, use something like \apoint 45 4 0.



54 SM

\hrule width

Draw a horizontal line at the level of the current baseline, of length width in screen

units. It will be multiplied by the current expansion.

\kern dx \kern # moves the current plot position by # horizontally, where the distance # is

specified in screen units (the whole screen is 32768 across). It is multiplied by the

expansion currently in effect, and may be positive or negative. See also \raise.

\line type length

\line inserts a line into a label, at about the level of the middle of a lower-case

character. e.g. \line 1 1000 will draw a line of length 1000 (in screen units, so the

screen is 32768 across), of ltype 1. See also \hrule.

\move dx dy

Move a group by (dx,dy), but don’t disturb SM’s current idea of where it is. This

means that we can draw a line over a character with a string such as \move 0 300{\line

0 400}A. It is possible to use the commands such as \width to take the guesswork out

of such commands, for example the definition of \bar is

\def\bar#1{\move0\advance\height{#1}by100{\rule\width{#1}}#1}

\raise dy \raise # moves the current plot position by # vertically, where the distance # is speci-

fied in screen units (the whole screen is 32768 across). It is multiplied by the expansion

currently in effect, and may be positive or negative. See also \kern.

\vrule depth height

Draw a vertical line at the current position of depth d and height h (and width 0) in

screen units. Dimensions are multiplied by the current expansion.

There are also a number of control sequences that can be used whenever a number is expected

(by \kern, \line, \move, or \raise); for an example of their use see \move in the preceding table.

\advance num1 [ by ] num

Increment first number (which can be of the form \width{. . .}) by the second. The by

is optional.

\depth{. . .}

The depth a group would have if it were drawn.

\divide num1 [ by ] num2

Divide the num1 by num2/1000. As for \advance, num1 and num2 need not be ‘simple’

numbers but can be combinations of widths, advances, and so on. The by is optional.

\height{. . .}

The height a group would have if it were drawn.

\multiply num1 [ by ] num2

Multiply the num1 by num2/1000. See \divide for the lack of restrictions on num1 and

num2. The by is optional.
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\width{. . .}

The width a group would have if it were drawn

If you want to know the dimensions of the string that you have just drawn (or just not drawn,

q.v. PUTLABEL 0) you can look at the internal variables $sdepth, $sheight, and $slength.

14.5 Caveats and Cautions when using TEX

Now for a few caveats: Firstly, because \n is a newline, you must type \\nu or "\nu" to get a

ν. Secondly, the superscript character ^ is special to the history editor, so to type it interactively

you must quote it with the quote_next key (usually CONTROL-Q or ESC-q, i.e. type CONTROL-Q^).

Alternatively, you could change your history character to some under-used character such as % or

’ (which is the solution that I use: you can choose a new character such as ’ by simply putting a

line history_char ’ in your ‘.sm’ file). Thirdly, TEX (and our pseudoTEX) are rather verbose and

labels may not fit on one line. The solution is to continue the line by ending it with a \. This is

probably best done within a macro, as the continuation line won’t appear on your history list if

typed at the prompt. You can currently have about 25 continuation lines (2000 characters).

A final point will only worry TEXies, namely that the emulation isn’t perfect: for example \sum_

i won’t put the i beneath the summation symbol. Some of the other discrepancies were listed in

the previous section.

14.6 How to Stop the Device using its Fonts

If EXPAND is set to exactly 1, and ANGLE is exactly 0, then SM will use hardware fonts, when

available, in writing labels. This is faster, but can lead to two styles of labels in one plot which is

ugly.

There are various ways to trick SM into always using its own fonts: you can say say “ANGLE

360”, or use a \0 to select a font with (explicitly) no expansion. To affect the axis tick labels too,

using the AXIS or BOX commands, you’ll have to say “EXPAND 1.0001” or somesuch.

Rather than always expanding your plots, you could ask your SM Guru to edit the ‘graphcap’

file to prevent a given device (usually a printer) from ever using hardware fonts. Tell her to see

Section A.2 [Graphcap], page 163. If she won’t oblige, you can define your own device in your own

graphcap file, and put yours first in the ‘.sm’ file. For example, my ‘.sm’ file includes the line

+graphcap /d/rhl/graphcap

and the file ‘/d/rhl/graphcap’ looks like:

# Private overrides for RHL:
#
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postscript|postscript + no hardware fonts:\
:TB@:TE@:TC=postscript:

Then I set $printer to postscript (also in ‘.sm’) and all is well.

An alternative is to specify the device as

DEVICE postscript :TB@:TE@:tc=postscript:

which is perhaps simpler (you’d just define your value of printer properly).

14.7 Old-style Labels

If you insist on using old-style labels (which are still the default), here’s a quick summary. Type

\a or \\a to change to font a for one character (first form) or permanently (second form). The

possible fonts are g, o, p, r, s, and t for ‘greek’, ‘old english’, ‘private’, ‘roman’, ‘script’, and

‘tiny’ respectively. In addition, the pseudo-fonts u and d move text ‘up’ and ‘down’ respectively,

and i produces ‘italic’ (actually just slanted) characters. Size changes are just like any other font

change, so \6 and \-4 will affect one character and the rest of the string respectively. This is really

somewhat simpler than it sounds - try

label \gp\u\-21/2\2\d = \3\g:e\u-x\u2\d\s dx

Note that ‘tiny’ is a misnomer, it is (nowadays) just a font that look better if you need small letters

( \t\-6 will produce a shrunken ‘tiny’ font, just like the old days). Spaces are treated differently

in different fonts, as a greek space is a negative space (i.e. a backspace), and a script space is only

half as wide as a normal space.
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15 Getting Hardcopies of Plots

There isn’t really any need for this section because SM doesn’t distinguish between hardcopy

devices such as laser printers and other devices such as graphics terminals, except that it saves

up plotting commands for hardcopy devices and sends them all when you are finished. There are,

however, hard and easy ways to do anything and this section is intended to make your life a little

simpler.

When a device that can produce hardcopy is closed the plot is sent off to the printer (using the

command given as SY in the device’s graphcap entry). The only way to close a device is to open

another, any other, so it is just as good to say dev x11 as it is to say hardcopy dev x11 as the

macro hardcopy does no more than open the null device. So one way to produce a plot is to say

device postscript
plotting commands
device x11

There are many different printers available, and even if you are using a postscript printer you

might want portrait (postport) or landscape (postland) plots, so it is traditional to put the name

of the desired printer into a variable printer. It is so traditional, indeed, that it can be done with

a line such as

printer postport

in your ‘.sm’ file.

The two commonest incantations are probably

device $printer
playback
device x11

or

device $printer
my_macro
device x11

which can be simplified to hcopy and hmacro my_macro respectively. The former can be given a

single history number (e.g. hcopy 12) to only make a hardcopy of the one command, or a range

of numbers (hcopy 1 12) to plot those lines (inclusive). The latter, if you omit the name of the

macro, will prompt you to create a temporary macro that is then printed. If you want to make a

hardcopy of the last line you have a choice, either hcopy -1 or hmacro, and then use the history

editor to retrieve the desired line.

Some sites have many hardcopy devices of the same type, in which case they usually set up the

SY command to expect an argument which is the name of the desired printer. You can deal with

this by including it in your printer variable: define printer "postscript latypus" but this



58 SM

can be a nuisance, especially as unix already has a special (environment) variable PRINTER that

specifies your default printer. The resolution is that both hcopy and hmacro are quite careful; if

you have an SM variable PRINTER it is taken to be your default printer; if you don’t have one they

look for one in your ‘.sm’ file, if they don’t find one there they look for an environment (VMS:

logical) variable. If all of these fail they take the first argument (hcopy) or last argument (hmacro)

to be the name of the printer.

So if you have a PRINTER variable anywhere, hcopy and hmacro macro_name will work as before,

if you don’t then you’ll have to say hcopy printer_name or hmacro macro_name printer_name.
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16 Overloading Keywords

Sometimes you might wish that SM’s authors had decided to make a command behave a bit

differently, for instance that ERASE or QUIT didn’t appear on the history list, or that SAVE deleted

all the system macros before saving your environment. Of course, you can (usually) write macros

to get around these annoyances, but you can’t easily give them the same names as the original

commands (for these examples the macros are called era, q, and sav).

It is possible to change the meaning of keywords (to ‘overload’ them), but it can be confusing,

primarily because your new commands may not behave the same way that this manual claims. For

example, if you were perverse, you could define points to mean QUIT. Another danger is that you

could end up with a recursive call – for instance if you wrote your own version of box that did

all sorts of cunning things, then drew a box. If you said box in your macro, then overloaded the

keyword, you’d have a macro that called itself. If you tried to use it, nothing would happen for a

while, and then you’d start getting messages about “extending i/o stack” until you hit CONTROL-C.

Or if you redefined help to mean DELETE HISTORY HELP (in upper case to avoid recursive calls, and

in case delete has been overloaded), then set help vec Help string won’t work (you’d have to

use set HELP vec . . .).

Despite these warnings, overloading the meaning of SM’s keywords can be very convenient.

There are two sets of system macros that do just this, the compatibility ones (see Section A.20.3

[Mongo], page 213), and one called set_overload that is described below.

In addition to the semi-trivial use of overloading to allow you to type erase not era, it is possible

to add extra functionality to simple commands. For example, set_overload defines window to save

the window parameters in variables, and box then uses these values to label appropriate axes in

touching boxes. Another example is that (when overloaded) lines saves the line numbers used, so

that you can write a macro to print the top 10 lines of a file (it’s called head).

So how do you do it? The command OVERLOAD keyword # will remove the special meaning of

lowercase keyword if # is non-zero, or reinstate it otherwise. You can still use the uppercase form

– you can’t overload that. So now that e.g. box has no special meaning you can define it to be a

macro. What the set_overload macro does is to define new meanings for a number of keywords,

the new definitions are in the macro file ‘overload’. If you intend using them (and I do all the

time) you should look at this file. You can get them loaded by default by having a line overload

1 in your ‘.sm’ file. If you don’t like some, e.g. box, you can simply say OVERLOAD box 0 in your

private startup file (see ‘private initialisation’) which is run after the system startup.

Most of the changes are benign, but not all. For example, the new definition of relocate allows

expressions, but it’ll break if you try to say relocate ( 100 1000 ) to move to absolute screen

coordinates. You can still say RELOCATE ( 100 1000) of course, and that’s why most of the system

macros are actually written in uppercase. The definition of box (actually bo, which box calls) may

seem very complex, but it has to deal with box \n as well as box 1 2, and it must know if you have
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used the WINDOW command. This brings up another point – if you overload keywords, you could

slow SM down. It isn’t that overloading is inefficient, it’s just that the macros that replace the old

keywords may do a good deal of work, box is a case in point. Even when the macro is short and to

the point, it’s still extra work to parse the original word and find its value as a macro.
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17 Examples of Useful Macros

When you start SM the directory specified as macro in your ‘.sm’ file is searched for a file

‘default’, and then the macro startup from that file is executed. At the time of writing of this

manual, startup was defined as:
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startup ## macro invoked upon startup
FOREACH 1 { default_font device edit file_type history_char \

macro macro2 overload printer prompt prompt2 SHELL } {
DEFINE $1 :

}
FOREACH 1 { TeX_strings case_fold_search fan_compress \

line_up_exponents noclobber overload \
remember_history_line traceback uppercase } {
DEFINE $1 :
IF($?$1) {

IF(’$$1’ == ’0’) {
DEFINE $1 DELETE

}
}

}
IF($?prompt) { PROMPT $prompt\n DEFINE prompt DELETE
} ELSE { PROMPT : }
IF($?device) { DEVICE $device
} ELSE { DEFINE device nodevice }
IF($?default_font && $?TeX_strings == 0) {

echo You can only define a default font if you use TeX
}
IF($?history_char) { # use $history_char as history character

IF(’$history_char’ != ’0’ && ’$history_char’ != ’1’) {
EDIT history_char $history_char

}
EDIT ^ ^
DEFINE history_char DELETE

}
# load the default macros
DEFINE mfiles < stats utils > # $mfiles is used by ‘sav’
FOREACH f ( mongo $mfiles ) { MACRO READ "$!macro"$f }
FOREACH var ( x_col y_col data_file ) { DEFINE $var . }
# load uppercase if defined in .sm file
IF($?uppercase) {

MACRO READ "$!macro"uppercase
}
# and overload keywords such as erase, if so desired
set_overload $?overload
# and some keymaps
IF($?edit) { READ EDIT "$!edit" }
# and an optional macro file, with macro startup2
IF($?macro2) {

MACRO READ "$!macro2"default
IF(is_set(startup2,1)) { startup2 } # startup2 is defined

}
# provide a \n after the IF

As this macro is executed every time that you run SM, let us consider it in some detail. After

setting the prompt, it looks for entries for a number of variables in your ‘.sm’ file. Some (such as
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printer) are simply DEFINEd, while some (such as TeX_strings) are only DEFINEd if they have a

non-zero value. Because some of the values might not be numeric, the comparison is forced to be

done on strings by enclosing the quantities in single quotes. An entry prompt is interpreted as a

primary prompt, mostly for compatibility with the use of $prompt2 to set the secondary prompt.

If device is defined it is used to set the default plotting device, and both it and printer are used

by a couple of macros (hcopy and hmacro) that produce hardcopy. The variables TeX_strings and

default_fonts are used in producing labels (see Section A.21 [Fonts], page 214). Because TEX

uses ^ for superscripts, we allow you to put a history_char line in ‘.sm’ to specify a character

to use rather than ^ for history (I use ‘). If you use 0, or omit the value (so it is set to 1), no

history character is defined to replace ^. The variable file_type is used by the IMAGE command

to determine the file format that you use (e.g. C, or unformatted fortran).

Startup doesn’t have to check that macro was successfully defined as it must have been found

for startup to have been read in the first place. Macro specifies where to look for macro libraries,

and startup next sets the variable mfiles containing the names of some of the system macros

to be loaded, and reads them. The macro load defined below also maintains the mfiles list, as

does unload. It is used by the sav macro, which is discussed below the main listing of macros that

follows. We also set some variables used by the id macro.

As part of our effort to be nice to users, if you have uppercase 1 in your ‘.sm’ file, we also load

the uppercase macros. Next startup overloads some keywords if overload is in your ‘.sm’ file,

reads a file of keybindings (if edit is given in ‘.sm’), and finally tries to read a second optional

macro directory macro2, and executes a macro startup2 if it’s defined (that’s what the macro is_

set is checking). This is quite important, as it provides a way to customise SM to your personal

taste without convincing the local SM guru that your taste should be foisted on everyone. If you

want a prompt that is different, or a definition of q that just quits without asking questions, you

can get them by using macro2. You can see that it is possible to tailor SM pretty much as you

wish without changing a line of code, just by playing with the startup macro.

SM provides various compatibility macros, and some to package often-used functions. The macro

files ‘stats’ and ‘utils’, which are read when SM is started, provide various useful macros, a few of

which are presented here. To see a current list, either look at the files directly, set VERBOSE to zero

and list all the macros, look at the listing in this manual (see Section A.19 [Libraries], page 205), or

use lsm to list macro files (this only works if you are running Unix; try lsm demos). We give here a

number of macros taken from the files ‘default’, ‘mongo’, ‘stats’, and ‘utils’. Among those not

listed are those like lin defined to be lines that are pure abbreviations, those like xlogarithm

defined as SET x=lg(x) which provide functionality in a perhaps familiar form, and many more like

those that are given here which provide enhancements (e.g. the macro barhist). A discussion of

a few of the more interesting or obscure follows. Keywords are written in uppercase, because you

might have been playing tricks with overloading the lowercase equivalents. Many of these macros,

in fact all from ‘default’ and ‘mongo’, start with ## so as not to show up in listings made when
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VERBOSE is 0, and so as not to be SAVEd. In the interest of brevity we have omitted most of these

initial comments.

cumulate 2 # Find the cumulative distribution of $1 in $2
DEFINE sum 0 SET $2=0*$1 SET HELP $2 Cumulation of $1
DO i=0,DIMEN($1)-1 {

DEFINE sum ( $sum + $1[$i] )
SET $2[$i] = $sum

}
define sum delete

da 1 DATA "$1"
del1 1 DELETE HISTORY \n
dev 1 del1 DEFINE device $1 DEVICE $1
dra 2 # Draw, accepting expressions

define 1 ($1) define 2 ($2) draw $1 $2
edit_hist # Edit the history list

del1 MACRO all 0 100000 # define "all" from buffer
WRITE STANDARD Editing History Buffer\n
MACRO EDIT all # do the editing
DELETE 0 100000 # empty history buffer
WRITE HISTORY all # replace history by "all"

era del1 ERASE
gauss 1 # Evaluate a Gaussian : N($mean,$sig)

SET $0 = 1/(SQRT(2*PI)*$sig)*EXP(-(($1-$mean)/$sig)**2/2)
get 2 # Syntax: get i j. Read a column from a file.

# Name of vector is jth word of line i.
DEFINE nn READ $1 $2 echo reading $nn\n
READ $nn $2
SET HELP $nn Column $2 from $data_file
DEFINE nn DELETE

hardcopy DEVICE nodevice # close old device
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hcopy 13 ## hcopy [printer] [l1] [l2] Make hardcopy of playback buffer
# optionally specify printer ($1) and desired lines ($2-$3)
# if the printer ($1) is omitted (i.e. $1 is missing or a
# number), it will be taken from the value of the environment
# variable PRINTER, if defined.
IF($?printer == 0) {

DEFINE printer ? { what kind of printer? }
}
IF($?1) {

IF(WHATIS($1) == 0) { # a number
if($?2) { DEFINE 3 $2 }
DEFINE 2 $1
DEFINE 1 DELETE

}
}
IF($?1) {

DEVICE $printer $1
} ELSE {

IF($?PRINTER == 0) { DEFINE PRINTER : } # which one?
IF($?PRINTER) {

DEVICE $printer $PRINTER
} ELSE {

DEVICE $printer
}

}
IF($?2 == 0) {

DEFINE 2 0 DEFINE 3 10000
} ELSE {

IF($?3 == 0) { DEFINE 3 $2 }
}
playback $2 $3 \n DEVICE $device
bell
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hmacro 12 ## hmacro [macro] [printer] Make hardcopy of a macro
# If only 1 argument is present, it is taken to be the printer
# unless an environment PRINTER variable is defined, when
# that’s used as a printer, and the argument is taken to be
# a macro. If no macro is specified, make a temp one
IF($?printer == 0) {

DEFINE printer ? { what kind of printer? }
}
del1
IF($?2 == 0) { # only one arg

IF($?PRINTER == 0) { DEFINE PRINTER : }
IF($?PRINTER) {

DEFINE 2 $PRINTER
}

}
IF($?1) {

if($?2) { # 2 args
DEFINE _mac $1
DEFINE _temp 0 # no temp macro

} ELSE { # 1 arg, take as printer
DEFINE 2 $1 # printer
DEFINE _temp 1 # need temp macro

}
} ELSE { # no $1

IF($?2 == 0) { DEFINE 2 " " }
DEFINE _temp 1 # need temp macro

}
IF($_temp) {

DEFINE _mac _mac
echo "Create temporary macro, exit with ^X"
MACRO EDIT $_mac
IF(is_set($_mac,1) == 0) {

DEFINE _mac DELETE DEFINE _temp DELETE
DEFINE _test DELETE
RETURN

}
}
DEVICE $printer $2
$_mac \n DEVICE $device
IF($_temp) { MACRO $_mac DELETE }
DEFINE _mac DELETE DEFINE _temp DELETE bell
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load # load macros in default directory
DEFINE macro : # get default directory
MACRO READ "$!macro"$1 # read macro file
IF($?mfiles == 0) {

DEFINE mfiles $1
} ELSE {

DEFINE 3 0
FOREACH 2 ( $mfiles ) {
IF(’$2’ == ’$1’) { DEFINE 3 1 }

}
IF($3 == 0) { DEFINE mfiles < $mfiles $1 > }

}
load2 1 # load macros in (second) default directory

DEFINE macro2 : # get directory
IF($?macro2) {

MACRO READ "$!macro2"$1 # read macro file
} ELSE {

echo Directory macro2 is not defined
}

logerr 3 # logerr x y error, where y is logged, and error isn’t
SET _y = 10**$2
SET d_y = LG(_y + $3) - $2 ERRORBAR $1 $2 d_y 2
SET d_y = $2 - LG(_y - $3) ERRORBAR $1 $2 d_y 4
DELETE _y DELETE d_y

lsq 15 # do a least squares fit to a set of vectors
# syntax: lsq x y [ x2 y2 [rms]] Fit line y2=$a*x2+$b to x y
# optionally, calculate rms residual as $rms
# see rxy to find product moment correlation coeff,
# and spear for Spearman’s corr. coeff., and significance
SET _n = DIMEN($1) # number of points
SET _sx = SUM($1) # sigma x
SET _sy = SUM($2) # sigma y
SET _sxy = SUM($1*$2) # sigma xy
SET _sxx = SUM($1*$1) # sigma xx
DEFINE a ( (_n*_sxy - _sx*_sy)/(_n*_sxx - _sx*_sx) )
DEFINE b ( (_sy - $a*_sx)/_n )
IF($?3 && $?4) {

SET $4=$a*$3+$b
IF($?5) {

DEFINE $5 ( sqrt(sum(($a*$1 + $b - $2)**2)/dimen($2)) )
}

}
FOREACH v ( _n _sx _sy _sxy _sxx ) { DELETE $v }
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playback ## define "all" from buffer, and run it
# with args, only playback those lines
IF($?1 == 0) {

DEFINE 1 0 DEFINE 2 10000
} ELSE {

IF($?2 == 0) { DEFINE 2 $1 }
}
del1 MACRO all $1 $2 all

read_old 1 del1 # read a Mongo file onto the history buffer
READ OLD temp $1
WRITE HISTORY temp MACRO temp { DELETE }

rel 2 # Relocate, accepting expressions
define 1 ($1) define 2 ($2) relocate $1 $2

reverse 1 # reverse the order of a vector
SET _i = DIMEN($1),1,-1 SORT < _i $1 > DELETE _i

sav 1 # Save to a file $1, don’t save from files ‘$mfiles’
_save $1

_save 1 # Save to a file $1, don’t save from files ‘$mfiles’
del1
FOREACH 2 ( $mfiles ) { MACRO DELETE "$!macro"$2 }
DEFINE 2 0 define 2 ? { save vectors? }
SAVE "$!1" 1 $2 1
FOREACH 2 ( $mfiles ) { MACRO READ "$!macro"$2 }

Cumulate is given as a way not to write macros if you can help it (in this case, I couldn’t). A

better example is reverse which reverses the order of the elements in a vector without resorting

to a DO loop.

The macro da could have been defined to be DATA, but there are various special characters that

appear in filenames; try data /usr/spool/junk or data disk$data:[ETHELRED]junk.dat. The

macro da provides a set of double quotes to escape these unwanted interpretations. Incidently, da

"/usr/spool/junk" won’t work.

DELETE HISTORY deletes the last command on the history buffer, so del1 alone on a line will

delete itself, which can be used to prevent a command from appearing on the history list, for

example changing devices with dev; dev also defines a variable device which is used by the hcopy

and hmacro macros to make hardcopies, while returning you to your initial device. The startup

macro listed above also sets device, if it is specified in your ‘.sm’ file. You should be careful not to

include more than one del1 macro in any macro that you write yourself, as each del1 will remove

a command from history and you could find commands mysteriously disappearing.

Gauss evaluates a Gaussian, e.g. SET x=-3,3,0.05 SET g=gauss(x) lim x g box con x g, an

example of using a macro like a function definition. (For this example to work, you have to define

variables mean and sig first).

There is an example of reading variables from files and using them in macro get. This reads

a word from a line in a file with the DEFINE nn READ i j command, which sets $nn to be the jth
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word on line i of the current data file. This variable is then used to READ a vector, which is given

the appropriate name. So if a file looks like:

This is an example file
alpha beta gamma delta
1 10 0.1 1e1
2 20 0.2 1e2
3 30 0.3 1e3
4 40 0.4 1e4
5 50 0.5 1e5

then the commands

GET 2 1 GET 2 2 GET 2 3 GET 2 4

will read ‘1 2 3 4 5’ into vector alpha, ‘10 20 30 40 50’ into beta and so forth. Note that

DEFINE READ file_id 1 LABEL $file_id

will write out ‘This is an example file’ to the current position of the plot pointer (see, e.g. RELOCATE).

Incidently, READ ROW omega 5 would set the vector omega to have values ‘3 30 0.3 1e3’.

The macros hcopy and hmacro make hardcopies of, respectively, the playback buffer and a

macro. Both assume that the variables device and printer are set. device is set from your ‘.sm’

file and by the dev macro; printer is assumed set in ‘.sm’. (See ‘startup’ file above). If all is well,

the macros switch to device printer (with an argument to specify which sub-printer is desired.

We have so many laser printers here...), execute the desired commands, and return to the initial

device. When the printer device is closed, hardcopy will result. Note the use of \n to ensure that

no nasty things happen; if there were no \n and the buffer ended with LABEL Hi, the plot could

appear with a label Hi device tek4010. The versions of hcopy and hmacro given here accept a

variable number of arguments (‘13’ means up to 3 arguments). The first (if present) is taken to be

the desired laser printer1, the next argument is the number of the first line that you want played

back, and the third is the last line number. (If you omit both line numbers you’ll get the whole

buffer; if you omit the second you’ll just get the one line). The macro sees what it has been given

by using $? to see which variables are defined, and acts accordingly. hmacro is somewhat similar,

except that if you omit an argument it is taken to be the macro name, and a temporary one is

created for you. The playback macro deals with its arguments in a similar way, and is discussed

further in the examples at the end of this section.

load enables you to read a set of macros from a directory specified as macro in your environment

file. Load2 is similar, but it looks in directory macro2. The macro unload (not listed here) will

undefine the loaded macros. Note that a list of all the loaded macros is kept in $mlist, which is

used by the sav macro to avoid SAVEing lots of system macros. sav is written in terms of a macro

_save so that it won’t itself be forgotten (by MACRO DELETE) while in the middle of saving macros.

1 Actually, if the environment (VMS: logical) ‘.sm’ variable PRINTER is defined the macros pretend

that it was the first argument, so you can simply type hcopy.
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If you want to put errorbars on logarithmic plots, logerr is the macro you’ve been looking

for. It calculates the correct length for the errorbars, and plots them de-logging and re-logging as

appropriate.

The macros rel and dra illustrate a method of using expressions, rather than numbers, in the

commands RELOCATE and DRAW. There are Good Reasons why DRAW won’t accept an expression

directly (see Section A.1.5 [Command Internals], page 162). These macros exploit the fact that the

arguments to a macro are whitespace delimited, so a string such as 1+2/$x comprises one argument.

Redefining the arguments means that the macros don’t have to define, and then delete, a couple of

variables to hold the expressions.

Now that you have had your appetite whetted, we strongly recommend that you take the time to

look through the other macros that are available (see Section A.19 [Libraries], page 205). Otherwise

how would you know that there are macros to draw arrows on plots, do KS and Wilcoxon tests on

vectors, and a host of other good things?
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18 More Examples of Macros

In all these examples, we’ll use the del1 macro discussed above to keep commands off the

history list. Let’s start with a Fourier series, to demonstrate SM’s ability to manipulate vectors.

All keywords are capitalised for clarity. Start SM, choose a plotting device (with the dev macro),

and erase all the commands on the history (or playback) buffer with DELETE 0 10000. Then type

the following commands:

SET px=-PI/10,2*PI,PI/200
SET y=SIN(px) + SIN(3*px)/3 + SIN(5*px)/5 + SIN(7*px)/7
SET y=(y>0)?y:0
LIMITS -1 7 y
BOX
CONNECT px y

The vector px could just as well have been read from a file. You should now have a part of a

square-wave, truncated at 0.

Now consider a simpler way of doing the same thing. For the present, clear the history buffer

again (DELETE 0 10000), and type:

SET px=-PI/10,2*PI,PI/200
SET y=SIN(px)
DO i=1,3 {

SET val = 2*$i + 1
SET y = y + SIN(val*px)/val

}
DELETE val
LIMITS -1 7 y
BOX
CONNECT px y

Here we use a vector val to save a value, an equivalent (but slower) loop using SM variables would

be

DO i=1,3 {
DEFINE val (2*$i + 1)
DEFINE y = y + SIN($val*px)/$val

}
DEFINE val DELETE

That is all very well if you only ever wanted to sum the first four terms of the series. Fortunately

there is a way to change this, using the macro editor. First define a macro consisting of all the

commands on the history list:

del1 MACRO all 0 10000

will define the macro all to be history lines 0-10000. (You need the del1 to avoid having the

MACRO all 0 10000 in your macro). Then you can edit it using
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del1 MACRO EDIT all

when you have made the desired changes (e.g. changing DO i=1,3 to DO i=1,20) use CONTROL-X

to leave the editor and return to the command editor. Now you could type all to run your new

macro, or put it back onto the history list. To do the latter, delete the commands now on the

history list (the now-familiar DELETE 0 10000), then del1 WRITE HISTORY all to put the macro

all onto the list. Now the playback command will run all those commands, and produce a better

squarewave. (As discussed in a moment, playback is a macro so type it in lowercase, unless you

have defined your own PLAYBACK macro.)

This ability to edit the history buffer is convenient, and there is a macro provided called edit_

hist which goes through exactly the steps that we took you through. The trick of including a del1

in macros is pretty common, for example h is defined as del1 HELP so that it won’t appear on the

history list. The macro playback is rather similar to edit_hist, but instead of editing and then

writing all, it executes it. We discussed the possibility of just playing back a limited number of

lines while talking about hcopy, just say playback n1 n2.

Now that you have a set of commands which produce a Fourier plot, it would be nice to define a

macro to make plots, taking the number of terms as an argument, and then free the history buffer

for other things. After a playback, the macro all is defined, so let’s change its name to square.

There is a macro ed defined more-or-less as del1 MACRO EDIT, so type ed all to enter the macro

editor. Use ↑ or CONTROL-P to get to line 0 and change the number of arguments from 0 to 1, and

the name of the macro from all to square (the space between the name and the : is required.)

Then go to the DO i=1,20 line, and change 20 to $1. Exit with CONTROL-X, clear the screen with

era and type square 10. Now how do you save your nice macro? WRITE MACRO square filename

will write it to file ‘filename’, and next time you run SM MACRO READ filename will define it. In

fact there is a command SAVE to save everything which can be a mindless way of proceeding. A

macro similar to this Fourier macro called square is in the file demos in the default macro directory

(and was used to produce the top left box of the cover to this manual). To try it yourself, type

something like load demos square 20. (20 is the number of terms to sum.)

If your wondering why ed is only ‘more-or-less’ defined as del1 MACRO EDIT, it’s because the

real ed checks to see if you have provided a macro name, and if you haven’t it edits the same macro

as last time.

But enough of macros which fiddle with the history buffer. Here are four sets of macros which

do useful things, and may give some idea of the power available. First a macro to use the values of

a third vector to mark points, then one to do least-squares fits to data points, then a macro to join

pairs of points, and finally some macros to handle histograms and Gaussians. These macros are

given in the format that SM would write them to disk (ready for a MACRO READ), with the name,

then the number of arguments if greater than 0, then the body of the macro.

First the points.
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alpha_poi 3 # alpha_poi x y z. Like poi x y, with z as labels for points
DO i=0,DIMEN($1)-1 {

DEFINE _x ($1[$i]) DEFINE _y ($2[$i])
RELOCATE $_x $_y
DEFINE _z ($3[$i])
PUTLABEL 5 $_z

}
FOREACH v (_x _y _z) { DEFINE $v DELETE }

Here we use the temporary variables _x _y _z to get around restrictions on expressions in RELOCATE

commands. Note the DO loop running from 0 to DIMEN($1)-1, produced by array indices starting

at 0 not 1. If you wanted to use character strings as labels, this could be done by using the DEFINE

READ command, but this would be a good deal slower as SM would have to rescan the file for

each data-point. The top right box of this manual’s cover was made using this macro. The use

of alpha_poi (and also the macro file called ascii) has been superseded by the introduction of

string-valued vectors into SM. Nowadays you’d simple read the column that you want to label the

point with as a string (e.g. READ lab 3.s), set the point type to that string (e.g. PTYPE lab), and

plot the points as usual (e.g. POINTS x y).

The least-squares macro makes heavy use of the SUM operator. It could be used to find the

dimension of a vector too, but only clumsily, and DIMEN is provided anyway. The macro is:

lsq 4 # Do a least squares fit to a set of vectors
# Syntax: lsq x y x2 y2 Fit line y2=$a*x2+$b to x y
DEFINE _n (DIMEN($1)) # number of points
DEFINE _sx (SUM($1)) # Sigma x
DEFINE _sy (SUM($2)) # Sigma y
DEFINE _sxy (SUM($1*$2)) # Sigma xy
DEFINE _sxx (SUM($1*$1)) # Sigma xx
DEFINE a (($_n*$_sxy - $_sx*$_sy)/($_n*$_sxx - $_sx*$_sx))
DEFINE b (($_sy - $a*$_sx)/$_n)
SET $4=$a*$3+$b
FOREACH v ( _n _sx _sy _sxy _sxx ) {DEFINE $v DELETE }

This does a linear fit, leaving the coefficients in $a and $b. It could be easily generalised to deal

with weights, fits constrained to pass through the origin, quadratics...

Our third example connects pairs of points. This was written to deal with a set of data points

before and after a certain correction had been applied.

pairs 4 # pairs x1 y1 x2 y2. Connect (x1,y1) to (x2,y2)
DO i=0,DIMEN($1)-1 {

DEFINE _x ($1[$i]) DEFINE _y ($2[$i])
RELOCATE $_x $_y
DEFINE _x ($3[$i]) DEFINE _y ($4[$i])
DRAW $_x $_y

}
FOREACH v ( _x _y ) { DEFINE $v DELETE }
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After the introduction of vectors for ANGLE and EXPAND (in version 2.1) this macro can be rewritten

to be much faster:

pairs 4 # pairs x1 y1 x2 y2. connect (x1,y1) to (x2,y2)
DEFINE 6 { ptype angle expand aspect }
FOREACH 5 { $!!6 } { DEFINE $5 | }
FOREACH 5 {fx1 fx2 fy1 fy2 gx1 gx2 gy1 gy2} {

DEFINE $5 DELETE
}
ASPECT 1
SET _dx$0=($3 - $1)*($gx2 - $gx1)/($fx2 - $fx1)
SET _dy$0=($4 - $2)*($gy2 - $gy1)/($fy2 - $fy1)
PTYPE 2 0
SET _a$0=(_dx$0 == 0 ? (_dy$0 > 0 ? PI/2 : -PI/2) : \

(_dy$0 > 0 ? ATAN(_dy$0/_dx$0) : ATAN(_dy$0/_dx$0) + PI))
ANGLE 180/pi*_a$0
EXPAND SQRT(1e-5 + _dx$0**2 + _dy$0**2)/(2*128)
POINTS (($1 + $3)/2) (($2 + $4)/2)
FOREACH 5 { $!!6 } { $5 $$5 DEFINE $5 DELETE }
FOREACH 5 ( _a _dx _dy ) { DELETE $5$0 }

Note how DEFINE name | is used to save things like the angle and expansion, while DEFINE name

DELETE is used to ensure that the up-to-date versions of things like fx1 are used (i.e. that they

haven’t been DEFINEd with a !). The name of the macro ($0) is used to make unique vector

names, or at least names like _dxpairs that are very unlikely to be in use.

SM allows you to plot a pair of vectors as a histogram, but what if you have only got the raw

data points, not yet binned together? Fortunately, SM can do this binning for you. Consider the

following macro:

get_hist 6 # get_hist input output-x output-y base top width
# given $1, get a histogram in $3, with the centres of the
# bins in $2. Bins go from $4 to $5, with width $6.
SET $2 = $4+$6/2,$5+$6/2,$6
SET HELP $2 X-vector for $3
SET $3=0*$2 SET HELP $3 Histogram from $1, base $4 width $5
DO i=0,DIMEN($1)-1 {

DEFINE j ( ($1[$i] - $4)/$6 )
SET $3[$j] = $3[$j] + 1

}
DEFINE j DELETE

Since this was written, a new feature was added to SM, the expression HISTOGRAM(x:y), to make

histograms. The macro we discussed above can now be written much more efficiently as:
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get_hist 6 # get_hist input output-x output-y base top width
# given $1, get a histogram in $3, with the centres of the
# bins in $2. Bins go from $4 to $5, with width $6.
SET $2 = $4+$6/2,$5+$6/2,$6
SET HELP $2 X-vector for $3
SET $3=HISTOGRAM($1:$3)
SET HELP $3 Histogram from $1, base $4 width $5

Suppose that your data is in vector x, for want of a better name, and it has values between 0

and 20. Then the command

get_hist x xx yy 0 20 1

will produce a histogram in yy, bin centres in xx, running from 0 to 20 with bins 1 unit wide. So

you could plot it with lim xx yy box hi xx yy , and maybe it looks like a Gaussian. So what is

the mean and standard deviation? The command

stats x mean sig kurt echo $mean $sig $kurt

will answer that, and find the kurtosis too. (Macro stats consists of lines such as define $2 (

sum($1)/dimen($1) ) ). Then we could use the macro gauss to plot the corresponding Gaussian,

set z=0,20,.1 set gg=gauss(z) set gg=gg*dimen(x) con z gg

The bottom left box of the cover was made this way. What if you don’t like the way that the

histogram looks? Try the macro barhist. Now, if you wanted to plot a lognormal, you’d have to

write your own macro, and you could use SORT to find medians and add another macro to utils,

followed by one to find Wilcoxon statistics... (Since this was written a wilcoxon macro was donated

to stats).
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19 What Quotes What When

This chapter is not really needed as all of its contents can be found elsewhere in this manual,

but as people manage to become confused anyway, here’s a summary. There are three ways in

which characters can alter SM’s behaviour: they can affect the way that characters and keywords

are interpreted, they can be special to the grammar, and they can perform both functions. If you

are confused, you might find a verbosity of four or five helpful.

". . ." Turn off the expansion of variables, the significance of mathematical operators such

as / or :, and the recognition of keywords. For example, after DEFINE rhl Patricia,

/data/$rhl would be interpreted as four tokens (/, data, /, and Patricia), while

"/data/$rhl" is only one (/data/$rhl). Note that in the former case, the data will

be taken to be part of a DATA command, and may well lead to a syntax error. If you

need to force a variable to be expanded within double quotes, use an exclamation mark:

"$!rhl". Double quotes have no syntactical significance.

Incidently, "12" is a number as the closing " is read before the characters 12 are parsed.

You need to say "12 " to make 12 a word; in a different package you might call that a

bug.

’. . .’ Single quotes surround strings which may contain white space (spaces or tabs), char-

acters such as + or /, or keywords. They don’t affect variable expansion, so you have

to enclose them in double quotes if you want to protect them. Of course, you must

make sure that you are not quoting the single quotes – use ’"$abcd"’ rather than

"’$abcd’" . Strings are significant to the grammar so only use single quotes where

they are needed. For example DATA ’my_file’ is a syntax error, and SET s=’abc’ and

SET s=abc mean quite different things.

{. . .} Turn off all interpretation of special characters and keywords, just like double quotes.

In fact, braces even turn off the expansion of $!var, to expand a variable within braces

you need to say $!!var but you only very seldom need this. Braces have syntactical

significance, delimiting lists. Wherever you can use braces you can use angle brackets.

<. . .> Almost identical to {. . .}, but don’t turn off variable expansions. In fact, <> don’t al-

ways turn off keyword interpretation – specifically they only do so in str_list’s (if you

want to know what this means you’ll have to read SM’s grammar in file ‘control.y’).

In practice you’ll probably only meet this if you try saying Foreach f < quit when

ahead > { echo $f }.

(. . .) Parentheses don’t turn off any sort of expansion, but can have syntactical significance.

You are most likely to see this in DEFINE var ( 1 + 2 ) where the parentheses tell SM

to evaluate the expression before defining the variable var as 3. Note that DEFINE var

< 1 + 2 > defines var as 1 + 2 .
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$name Expand name as a variable. Expansion is turned off within single and double quotes

and within braces. Because the expansion happens before the parser sees the input,

variables cannot have any syntactical significance as the parser never knows about

them. This means that variables could be used to make SM look like something quite

different; for example after DEFINE begin "{ " DEFINE end "} ", you can say

MACRO hi $begin echo Hello World $!!end

(This is a little tricky. The spaces in DEFINE begin "{ " are needed so that SM is still

in quote mode when it processes the {. You can probably figure out why I need to say

$!!end – the !! should be a Helpful Hint.)

$(expr) Evaluate the expression expr and substitute the resulting value. This is identical to

DEFINE temp ( expr ) $temp, but much more convenient.

As a reasonably complex example, try to guess the output from:

DEFINE hi {<"$!(’Hello’)" World>} DEFINE hello $hi echo :$hi:$hello:

If you are not sure, try it (you might find VERBOSE 5 helpful)1.

1 The {} turn off all expansions, so hi is defined to be <"$!(’Hello’)" World>. The state-

ment defining hello then becomes DEFINE hello <"$!(’Hello’)" World>, and the ‘!’ ensures

that the expression ’Hello’ is evaluated and substituted; ’Hello’ is a string valued vector,

admittedly with only one element, so it evaluates to the five characters ‘Hello’ and the state-

ment becomes DEFINE hello <Hello World>which means that hello is defined as Hello World.

Apart from being a red herring, the colons are only there to make it easy to see which variable

expands to what.
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20 Reserved Keywords

Keywords are reserved, so don’t try to use them as macro names or whatever. You can use the

lowercase forms if you explicitly ask to be allowed to overload them. The control words are :

WORD STRING FLOAT INTEGER ( ) { } \n ! APROPOS BREAK CHDIR DEFINE DELETE DO
EDIT ELSE FOREACH HELP HISTORY IF KEY LIST LOCAL MACRO OLD OVERLOAD PRINT
PROMPT QUIT READ RESTORE RETURN ROW SAVE SET STANDARD TABLE TERMTYPE USER
VERBOSE WHILE WRITE

Arithmetic words are :

ABS ACOS ASIN ATAN ATAN2 CONCAT COS DIMEN EXP FFT INT LG LN PI RANDOM
SIN SQRT STRLEN SUM TAN WHATIS POWER_SYMBOL [ ] = + - * ** / < > | & ? :

SM plotting keywords are:

ANGLE ASPECT AXIS BOX CONNECT CONTOUR CTYPE CURSOR DATA DEVICE DOT DRAW
ERASE ERRORBAR EXPAND FORMAT GRID HISTOGRAM IMAGE LABEL LEVELS LIMITS
LINES LOCATION LTYPE LWEIGHT MINMAX NOTATION POINTS PTYPE PUTLABEL RANGE
RELOCATE SHADE SORT SPLINE TICKSIZE WHATIS WINDOW XLABEL YLABEL

With the exception of POWER_SYMBOL (which is equivalent to **) these are described below, with

the convention that arguments between square brackets are optional. This has nothing to do with

their use in subscripting arrays!
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21 Glossary of Terms used in this Manual

.sm See Environment File.

Environment File

When you start SM it looks in a file (by default called ‘.sm’) to discover where to find

files that it needs (such as the default macros, the help files, and the font files). You

can access variables stored in the environment file yourself, although this is probably

seldom done by non-gurus. For more details, see Chapter 22 [Environment Variables],

page 109.

Expression

An SM expression is something that can appear on the right hand side of a SET com-

mand. More specifically, it is something that can appear as part of the right hand side

of a SET command (this excludes implied do loops: SET x=1,10,2). Expressions may

also appear in other contexts, such as in the ANGLE command, or in DEFINE name (

expression ). A formal definition of an expression is given by the YACC grammar in

‘control.y’ as the non-terminal symbol expr.

Filecap Binary files produced by different programmes (and languages, and even compilers) are

not identical, Fortran ‘unformatted’ files being a glaring example. A filecap file is a

database used to describe the byte-by-byte format of binary files, to allow SM to read

them (using the IMAGE command).

Graphcap There are a very large range of graphics terminals (and laser printers and so forth)

in this world, and each seems to have its own set of commands. A graphcap file is a

database that is able to describe (almost) all of these dialects, allowing SM to plot on

a wide range of devices

History SM remembers commands as you type them, so that you can repeat them or mod-

ify them (which includes correcting mistakes). The set of remembered commands is

referred to as the history buffer.

List The word list is used in a few places in the manual in the specific sense defined by

the YACC grammar in ‘control.y’. A list is simply a list of words or numbers, and

its meaning depends on the context. For example, SET x=3*{1 2 3} will set the vector

x to be 2 4 6, while MACRO hi { echo Hello} will define the macro hi.

Macro A macro is an abbreviation for a set of commands, so instead of typing a complicated

sequence of commands you can simply type the macro’s name. You can either think of

macros as a new commands in their own right or as subroutines.

Mongo Mongo is a plotting package written by John Tonry, and widely used in astronomy

departments. SM’s command language was based on Mongo’s, and we have provided

some support for an easy transition from Mongo to SM.
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p expr A parenthesised expression. Many commands expect to be passed the name of a vector,

but will accept an expression in parentheses; for example in the command POINTS x (y

+ 2/z), (y + 2/z) is a p expr.

s expr A scalar expression. This is a term used in some of the command descriptions; examples

would be 210157, x[12], or x. In the latter case, the first element of the vector x would

be used, so it is equivalent to x[0].

Stdgraph SM uses the stdgraph device driver for most devices, using the information in the

graphcap file (see Section A.2 [Graphcap], page 163).

String A string to SM is a sequence of characters enclosed in single quotes: ’This is a

string’. Strings are primarily used in vector expressions, but are also used in a

few other places (e.g. to specify a format for a PRINT or READ command). Note that

characters in double quotes are not strings to SM, merely characters protected from

variable expansion.

Termcap Terminals come in many, many, flavours and types. Their peculiarities are described

by a termcap file, allowing SM’s command editor to run on (almost) any terminal.

TEX TEX is a typesetting language developed by Donald Knuth. We provide an emulation

of certain parts of TEX’s mathematics mode in SM’s label commands.

Overload A keyword (such as DEFINE or SET) is said to be overloaded if its meaning has been

changed. Usually this will be by adding functionality, rather than by actually changing

what it does.

Variable A variable is an abbreviation for a sequence of characters, and may appear anywhere

that the characters in question could appear. Even if the variable contains a number

(e.g. 6.62559e-34) it is still just a characters, although SM may choose to treat them

as a number in some contexts (e.g. the right-hand side of a SET command).

Vector A set of one (actually, zero) or more elements. The elements can be either numerical

(floating point) or strings. Vectors are SM’s primary data type. Do not confuse a

1-element vector (a scalar) with a variable (see Chapter 5 [Variables], page 15).

YACC The SM command language is written in a language called YACC (which is supported

on Unix systems). We have provided an implementation of YACC called Bison in the

SM distribution.
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22 Command Reference

This is the reference manual to SM’s commands

Syntax: ABORT

ABORT closes the current device without producing any hardcopy. If you are writing an output

file it will be removed. You are left talking to the null device, so you probably want to follow

ABORT with a DEVICE command.

Syntax: AND

In a scalar context, you can use AND instead of &&. The difference is that AND doesn’t evaluate

the right-hand-side of the expression if the left-hand-side is false; See Chapter 22 [If], page 115, for

examples.

Syntax: ANGLE expr

For most purposes only the first element of the expr is used, let’s call it D as it’s an angle in

degrees.

ANGLE will cause text from LABEL to come out D degrees anti-clockwise from horizontal. It

also causes points to be rotated counter-clockwise by D degrees.

If D is non-zero it will force axis and other labels to be written with SM’s internal fonts, and

will overrule the tendency to put x-axis labels horizontal, and y-axis labels vertical.

For plotting points the full vector of values is used, with the point rotated by the value of expr.

If more points are specified than the dimension of expr, the first element will be used for the excess.

The current value of ANGLE is (almost) always available as the variable $angle (it is one of the

special variables that are affected by the DEFINE variable | command).

Syntax: APROPOS pattern

Apropos lists all macros whose name or introductory comments match the given pattern. Prob-

ably the most common use for the command is simply to look for a word – e.g. APROPOS histogram.

If your system supports it, APROPOS will also search the help files for the given pattern (in this

case matches may not extend over more than one line). If VERBOSE is zero only the line containing

the match is printed; if VERBOSE is one or more then a couple of lines on each side of the match are

printed too. If the pattern matches more than once each match will be printed, merged together
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if appropriate and separated by line of dashes otherwise. If you use ‘q’ to stop looking at the help

files APROPOS will immediately proceed to search the macros.

The pattern is a slightly restricted version of a normal Unix regular expression, specifically:

. Matches any character except \n.

[...] Matches any of the characters listed in the [ ].

If the first character is a ^ it means use anything except the range specified (in any

other position ^ isn’t special)

A range may be specified with a - (e.g. [0-9]), and if a ] is to be part of the range, it

must appear first (or after the leading ^, if specified). A - may appear as the special

range ---.

^ Matches only at the start of the string. Note that you must quote the ^ with an ESQ-Q

if you use it as your history character – look in the index under history to learn how

to change it.

$ Matches only at the end of a string.

\t Tab

\n Newline

\. (any other character) simply escapes the character (e.g. \^)

* Any number of the preceding character (or range)

? One or more of the preceding character or range

By default searches are case insensitive, but you can make searching sensitive to case by deleting

the variable case fold search (you can do this by putting a line case_fold_search 0 in your ‘.sm’

file if you so desire).

The name and the comments are searched separately, so you could list all macros beginning

with a, b, c, d, e, or z by saying

APROPOS ^[a-ez]

(which works because all comments start with a #), or

APROPOS "^#[^#]"

to list all macros that start with a single # (the quotes are needed to stop the #’s from being treated

as comment characters).

Syntax: ASPECT A

Set the aspect ratio (Y/X) to be A; This is used in drawing characters and points and is reset

when a new DEVICE command is issued.
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The current values of the x- and y- dimensions of the current device are (almost) always available

as the variables $nx and $ny, and the current aspect ratio is $aspect (they are some of the special

variables that are affected by the DEFINE variable | command).

If A is exactly 0, the current aspect ratio is printed – this is equivalent to echo $aspect and is

retained as a curiosity.

Usually the aspect ratio is calculated by SM to make characters look right (and to make square

points square), but it is sometimes useful to override this, especially when positioning labels on

graphs that will be plotted on printers of different aspect ratios.

It might be worth going through an example. Suppose that you want to make a plot that really

is square when printed; how should you proceed?

The available plotting area runs from 0–32767 on each axis. So a plot set up as

location 5000 20000 5000 20000

will have the same aspect ratio as the plotting device, in general rectangular. We can write this as

define len 15000 # axis length, SCREEN units
location 5000 $(5000 + $len) 5000 $(5000 + $len)

if we feel sophisticated.

The variable $aspect tells you the Y/X ratio of the current device; so the location

location 5000 $(5000+$len) 5000 $(5000+int($len/$aspect)) box

will be a square box. Of course, you’d probably really want to say

if($aspect > 1) {
location 5000 $(5000+int($aspect*$len)) 5000 $(5000+$len) box

} else {
location 5000 $(5000+$len) 5000 $(5000+int($len/$aspect)) box

}

There is a problem with this; the sizes of points and labels are varied to look right with the

current aspect ratio. This means that a

putlabel 5 Hello World

command that looks fine on the screen of your workstation will look awful on the printer. That’s

where the ASPECT command comes into play: on your workstation lie to SM and tell it that the

aspect ratio is that of the printer. How do you do that? Well, the slick way is to say

macro aspect_as_device 1 {
DEVICE $1
define 1 $aspect
ABORT
DEVICE $device
ASPECT $1
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}

which assumes that you use a version of the device command that saves the current device as

$device; the macro dev does this, and you can overload device to mean dev. Then you can say

aspect_as_device postport

to force the same aspect ratio as the postport device.; your plots will look ugly on the screen

but beautiful when printed.

Arithmetic

Arithmetic is allowed on vectors and scalars in SM, using the following operators, where expr

is a expression, s expr is a scalar expression (e.g. a number), and vector the name of a vector.

Nonary (?):

PI Pi

Unary:

-expr Change sign ABS(expr) Absolute value
ACOS(expr) Arccosine ASIN(expr) Arcsine
ATAN(expr) Arctangent COS(expr) Cosine
CTYPE() Return CTYPEs DIMEN(vector) Dimension of a vector
EXP(expr) Exponential FLOAT(expr) Convert to float
GAMMA(expr,expr) Incomplete gamma fn INT(expr) Integral part
LG(expr) Log_10 LN(expr) Log_e
RANDOM(s_expr) Random numbers SIN(expr) Sine
SORT(expr) Sort SQRT(expr) Square root
STRING(expr) Convert to a string SUM(expr) Sum_i expr_i
TAN(expr) Tangent VECTOR[expr] Elements of an array
{ list } Set vector to list < list > Set vector to list
( expr ) Raise precedence

Binary:

expr + expr Add expr - expr Subtract
expr CONCAT expr Concatenate expr * expr Multiply
expr / expr Divide expr ** expr Exponentiate
expr & expr Bitwise AND expr | expr Bitwise OR
expr << expr Bitshift left expr >> expr Bitshift right
expr % expr Modulus ATAN2(expr_y,expr_x) Atan2

(note that a bitwise XOR may be achieved as | - &).

There are also some special operators:

HISTOGRAM(expr:expr) Construct histogram
IMAGE(expr,expr) Extract cross section (x, y coordinates)
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IMAGE[expr,expr] Extract cross section (x, y indices)
expr1 ? expr2 : expr3 expr2 if expr1 is true, else expr3
DO(s_expr, s_expr) Implicit DO loop
DO(s_expr, s_expr, s_expr) Implicit DO loop with increment

GAMMA returns an incomplete Gamma function, so GAMMA(a,infty) = 1.

RANDOM generates a vector of s_expr random numbers in the range [0,1]. If you don’t specify a

seed (using SET RANDOM) one will be chosen for you based on the current time.

ATAN2 is the same as C’s function of the same name, and is equivalent to ATAN(y/x). It gives a

result in the range -pi -- pi dealing correctly with divisions by zero.

CTYPE returns a vector of red + 256*green + 256^2*blue, giving the currently defined colours;

CTYPE(STRING) returns their names (see Chapter 22 [Strings], page 144).

DO generates a range of values, e.g. set x=do(1,5) sets x to have the values 1 2 3 4 5; this

is the same as set x=1,5; but set y=100 + sin(pi*do(0,10)/10) is more interesting. You can

specify an increment, so do(5,1,-1) is 5 4 3 2 1.

The expression VECTOR[expr] results in a vector of the same dimension as the expr, with

elements taken from VECTOR (i.e. VECTOR[INT(expr_i)]). See, for example, the macro interp.

You can also use WORD([ expr [ , . . . ]]) as part of an expression, where WORD is a macro taking

zero or more arguments.

The precedences are what you’d expect, with ** being highest, then *, / and %, then + and -,

then CONCAT, then the bitwise and logical operators, and finally ?: has the lowest priority of all.

You should not assume any precedence between logical and bitwise operators, because if you do

you’ll be fooled (e.g. 1||0 | 0x6 is 7, but 0x6 | 1||0 is 1); if you use parentheses all will be well

(1||(0 | 0x6) is 1 and 0x6 | (1||0) is 7).

If you have defined an image file with the IMAGE command, IMAGE(expr,expr) is an expression

to extract values from your image. The two expressions give the x and y values where the image

is to be sampled. For example SET x=0,1,.01 SET z=IMAGE(x,0.5) will extract a horizontal cross

section through an image. As an alternative, you can use (0-based) indices to extract the values

with IMAGE[expr,expr]; there are examples under IMAGE (see Chapter 22 [Image], page 116).

HISTOGRAM(expr1:expr2) constructs a histogram from a vector, where the data is in expr1,

and expr2 (which must be sorted) gives the location of the bins. If the values of expr2 are equally

spaced, the ‘location’ of the bin means the centre; if they are not, a bin is defined by saying that

points with value (e2[i-1] + e2[i])/2 <= x < (e2[i] + e2[i+1])/2 go into the ith bin. Note

that values on bin boundaries go into the higher bin.

a ? b : c is very useful if you want to treat some value of an expression specially. You could do

this with a loop but ?: is much faster; for example
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set y = lg(x > 0 ? x : 1e-37)
set y = sqrt(x >=0 ? x : 0)

Due to the way that SM evaluates these expressions you may see warnings from the parts of the

expressions that are not used (i.e. where the logical expression is false). You can turn down the

verbosity, of course, or you could try sending mail us mail to see if we can’t fix it (but it isn’t easy,

or else we’d have done it already).

See ‘Logical’ for the logical operators, ‘Strings’ for string operators, and ‘whatis’ for finding out

if strings are numbers, words, vectors, or whatever.

Syntax: AXIS A1 A2 VSMALL VBIG AX AY ALEN ILABEL ICLOCK
AXIS A1 A2 VSMALL VBIG VLAB AX AY ALEN ILABEL ICLOCK
AXIS A1 A2 ASMALL ABIG AX AY ALEN ILABEL ICLOCK

Makes an axis labeled from A1 to A2 at location AX, AY, length ALEN. The first form (with

VSMALL and VBIG) specifies the values where you want small and big ticks explicitly; if you specify

the string-valued vector VLAB it will be used to label the big ticks. The third form is more obscure:

If ABIG > 0 use that for spacing of large ticks. If ASMALL < 0 make a logarithmic axis, if ASMALL =

0, do the default. (See TICKSIZE for more on the meaning of negative ASMALL and/or ABIG). If

ASMALL > 0 try to use that for the spacing of small ticks.

ILABEL is 0 for no labels, 1 for labels parallel to axis, 2 for perpendicular to axis, and 3 for

neither labels nor ticks. ANGLE determines the angle of the axis.

ICLOCK is used for (too) many purposes; it’s treated as three integers of 1, 2, and 1 bits respec-

tively.

ICLOCK & 0x1: Control the ticks orientation:
0 Anticlockwise from the axis
1 Clockwise from the axis

(ICLOCK>>1) & 0x3: Control the tick direction:
0 Ticks are perpendicular to axis
1 Ticks are vertical
2 Ticks are vertical
3 Don’t draw any ticks

(ICLOCK>>3) & 0x1: Control which side of the axis the ticks appear:
0 The same size as the labels
1 The opposite side to the labels

If you prefer not to think in terms of bitwise operators, this can be written as if ICLOCK is

even the ticks are anticlockwise on the axis, if odd they are clockwise. You usually want the ticks

perpendicular to the axes, and this is what you get with ICLOCK 0 or 1; if it is 2 or 3 the ticks are

vertical, and if 4 or 5 they are horizontal. The labels are on the opposite side of the axis from the

ticks unless you add 8 to the numbers given above.

For example, the following commands are equivalent to BOX:
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ANGLE 0
AXIS $fx1 $fx2 0 0 $gx1 $gy1 $($gx2-$gx1) 1 $(0|8)
AXIS $fx1 $fx2 0 0 $gx1 $gy2 $($gx2-$gx1) 0 $(1|8)
ANGLE 90
AXIS $fy1 $fy2 0 0 $gx1 $gy1 $($gy2-$gy1) 2 $(1|8)
AXIS $fy1 $fy2 0 0 $gx2 $gy1 $($gy2-$gy1) 0 $(0|8)
ANGLE 0

(except that I set ICLOCK’s 0x8 bit to draw the ticks outside the box).

If you want to label the bottom axis of some plot only at prime points try

SET b={1 2 3 5 7 11 13 17 19} SET s=0,20
AXIS 0 20 s b 3500 3500 27500 1 0

If you have used LIMITS to scale the axes and LOCATION or WINDOW to move them, you could

say something like

AXIS $fx1 $fx2 s b $gx1 $gy1 $($gx2-$gx1) 1 0

An example of using your own string valued labels would be:

set s=1,7,.5 set b=1,7 set labs={ O B A F G K M }
LIMITS 1 7 0 0
AXIS 0 10 s b labs 3500 3500 27500 1 0

which works as expected. If you don’t have a shift key and try using lower case (obafgkm) you’ll

be surprised as all the letters are not at the same level (as they don’t all have the same height).

The easiest way to deal with this is to make them all the same height:

set labs={ o b a f g k m } + ’\\strut’

(a strut is a TEXism that has the height and depth of a parenthesis; I’m afraid that you do have

to escape the \ in the string). If that leaves too much space try:

set labs=’\\move 100’ + { o b a f g k m } + ’\\strut’

I think that you get the point.

If you want more control over placement and sizes of axis labels and ticks, you can force SM to

draw them separately:

EXPAND 0.5
AXIS $fx1 $fx2 0 0 $gx1 $gy1 $($gx2-$gx1) 0 $(1<<3)
EXPAND 1.44
AXIS $fx1 $fx2 0 0 $gx1 $gy1 $($gx2-$gx1) 1 $(3<<1)

gives smaller-than-usual ticks outside the box with larger-than-usual labels (you could have used

define default_font "2" to achieve the latter)

The distance of labels from axes is controlled by the SM variable label_offset; increase it to

move them further away.
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Rather than use AXIS to draw all of your axes, it may be easier to use BOX with some 3’s to

disable its axis-drawing habits. You’ll still get a box, but no ticks or labels. For example,

LIMITS 0 1 0 10 BOX 1 2 0 3 TICKSIZE 0 0 -1 0 BOX 3 3 1 3

will label the y-axis with both linear and logarithmic axes.

This was changed in V2.1: To specify logarithmic axes you should now specify the logarithms,

just as you do to BOX. For example, to draw a logarithmic axis running from 1 to 1000, specify A1

as 0 and A2 as 3, rather than 1 and 1000.

See NOTATION if you want to control the use of floating point or exponential notation. You can

control the font used by setting the variable default_font. If you want your positive and negative

exponents to line up define the SM variable line_up_exponents; if it’s 1 they’ll be padded with a

space, if 2 or more, with a + (you can do this in your ‘.sm’ file).

Syntax: BOX [ INTEGER1 INTEGER2 [ INTEGER3 INTEGER4 ] ]

BOX puts axes around the plot region, labelling the lower and left according to the values set

by LIMITS and TICKSIZE. If arguments INTEGER1 and INTEGER2 are included (default 1 and 2)

they are used as ILABEL arguments for the lower and left axes (see AXIS). An ILABEL of 0 means

to omit axis labels, 1 produces labels parallel to the axis, 2 perpendicular, 3 omits both labels and

tickmarks, and 4 omits the axis entirely. INTEGER3 and INTEGER4 are used for the top and right

axes.

If you want to change the font used for axis labels, define the variable default_font, either

interactively (DEFINE default_font oe), or by putting a line in your ‘.sm’ file: default_font

oe. This affects regular as well as axis labels, and only works if you use TeX_strings, which we

recommend anyway.

See Chapter 22 [Notation], page 128 if you want to control the use of floating point or exponential

notation, and some details on how to draw exponents. If you want more control over your axis

labels, see Chapter 22 [Axis], page 88.

Syntax: Break

Exit the current WHILE (see Chapter 22 [While], page 155) loop, and continue executing

commands after it.

You cannot use BREAK to escape from a DO loop; either embed the loop in a macro and use

RETURN to exit early, or rewrite the DO as a WHILE loop.

Syntax: CHDIR WORD

CHDIR



Chapter 22: Command Reference 91

Set the current directory to be WORD, where WORD is any valid directory. It might be wise to

enclose it in quotes, e.g. CHDIR "[-.more_data]", or use the cd macro. The new directory only

affects SM, for example DATA or SAVE commands. When you exit SM, you will be back where

you started. If the directory starts with a ‘~’, the ‘~’ will be replaced by the name of your home

directory. This is the only place that ‘~’ is significant; in particular it will not be recognised by the

DATA command.1

Your current directory is always available as the $cwd variable.

Syntax: CONNECT WORD1 WORD2 [ IF (expr) ]

CONNECT draws line segments connecting the points in vectors WORD1 and WORD2. If the IF

clause is present, only connect those points for which expr (see the section on vector arithmetic)

is non-zero. Only contiguous points in the input vectors will be connected, resulting in a number

of line-segments. If you don’t want this behaviour, say something like

set l = (z==1) ? 1 : 0 set x=xx if(l) set yy=y if(l) connect xx yy

In fact, either or both of the WORDs may be replaced by ‘parenthesised expressions’, i.e. expres-

sions in parentheses. For example,

CONNECT x (2*y)

plots x against 2y.

If WORD1 and WORD2 have different dimensions CONNECT will ignore the excess points in the

longer vector. If you want to plot a constant value you’ll have to explicitly promote it, for example

CONNECT x (1+0*x)

which makes a rather boring plot.

To draw a line in a label you can either use CONNECT or DRAW, or use the TEX-macro \line

to directly insert your line.

Syntax: CONTOUR

Makes a contour plot of an image read by the IMAGE command (see Chapter 22 [Image],

page 116). The contour levels are set using LEVELS; plot coordinates are taken to be those set by

the LIMITS command, and contours are drawn in the current LTYPE. It is not possible to produce

labeled contours.

Any pixels whose value is NaN are ignored, as are any whose value equals the SM variable

$missing_data; by default this is some very large number (usually 1e37). If a contour line runs

1 Due to a VMS RTL bug, this command is not available on all VMS systems.
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into a missing data point it simply stops, rather than being made to join up with some other line

that also runs into a missing point.

See also DITHER for dithering images, IMAGE CURSOR for using cursors to get values from

images, MINMAX for finding the minimum and maximum of images, and Arithmetic for extracting

cross-sections of images.

Syntax: CTYPE WORD
CTYPE INTEGER
CTYPE = expr

With WORD, set the line colour to be WORD, if your display device supports coloured lines, where

WORD must be one of default, white, black, red, green, blue, cyan, magenta, or yellow. The

colours are those composed of three, zero, one, or two of the primary colours red, green, and blue.

When a device is opened it sets default to some device specific value (e.g. white for xwindows,

black for sunwindows).

Initially, CTYPE INTEGER is another way of selecting the same colours as are available with

CTYPE WORD, where CTYPE 1 is the equivalent of the first colour listed above, or white (so

default is 0). However, the CTYPE = expr command redefines the available colours to be the

elements of the array given by expr. If it is arithmetic, each element of is interpreted as RED

+ 256*GREEN + 256^2*BLUE for the given colour, where 0 is off, and 255 corresponds to full

intensity. If the expr is string-valued it specifies the names to be used for the colours that you

have just defined. Any connection between the names and colours is, of course, up to you. You can

get the current value of CTYPE with DEFINE ctype |, and vectors of the current ctypes and their

names as CTYPE() and CTYPE(STRING).

So another way to get white lines would be to say:

CTYPE = { 0 255 0 } + 256*({ 0 255 255 } + 256*{0 255 0 })
CTYPE 1

while

CTYPE 2

would give green lines.

CTYPE ={ black white green }

would make your colour names correspond to reality again. You can use any names you like, you

are certainly not restricted to the initial set.

You can reset the colours to their default (i.e. correct) values using the macro reset_ctype.

If you want to add a new colour you can say:

CTYPE = CTYPE() concat 200 + 256*(100 + 256*100)
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CTYPE = CTYPE(STRING) concat ’pink’

and delete one with

foreach f {"" string} {
set ct=ctype($f) if(ctype(string) != ’pink’) ctype = ct

}

(see also macros add_ctype and del_ctype).

Many devices (e.g. sunview) require you to specify a number of colours that is a power of 2,

so asking for 70 colours will use up 128 slots. It is probably a good idea to use as few colours as

possible, as they are scarce resources on most displays. You should also be aware that the display

may use some of ‘your’ slots for the background, so specifying 63 colours on (e.g.) a sun actually

requires 64 (and asking for 64 will use up 128). If you specify more colours than are physically

available, or more than the device driver thinks that you deserve, SM will interpolate your values

of CTYPE for you.

If you are using X11 (see Chapter 22 [XWindows], page 105), you will probably need to use the

-cmap flag when openinig your device if you want to allocate many private colours.

The default colour is specified in the device drivers, or in the DC (Default Colour) graphcap

capability, and is set whenever a device is opened, so don’t try to modify it with a CTYPE = expr

command. You can, however, override the default colour with a foreground entry in your ‘.sm’ file;

it should be the name of a colour (as listed above). You may also be able to specify a background

colour (as background). This is either a colour name or a set of three integers in the range 0-255

specifying the red, green, and blue values. We allow you this chance to specify arbitrary colours

because it’s your only chance to affect the background, and you can’t use a CTYPE = command

to compose your own palette. On some devices the name of the background colour may be chosen

from a wider selection; for example if you are using Xwindows you may use any name from the

colour database.

Syntax: CURSOR
CURSOR WORD1 WORD2
CURSOR READ

Display the cross-hair cursor to enable you to get positions (in user coordinates). The current

cursor position is typed on the screen every time that you hit a key; some keys are special, specifically

you can exit the cursor routine by hitting ‘e’ or ‘q’. If you exit with ‘e’, CURSOR issues a relocate

command to set the current plot position to the cursor position, and puts the command in the

history buffer. If you exit with ‘q’, no entry is made in the buffer (but the current position is still

updated). Usually successive positions overwrite each other, but if a digit is used to mark a point

then the position is followed by a newline, so the next time you hit a key its position will appear on

the next line. (You can remember that digits lead to numerous values appearing). If the verbosity
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(see Chapter 22 [Verbose], page 151) is one or more, a message will be printed reminding you what

keys to use.

If you simply want to read the current position of the cursor, you can say CURSOR READ; this is

mostly useful within macros (see, for example, animate in the macro file ‘3d’).

Many graphics devices have things called “GIN terminators”. SM usually expects that this

be set to ‘Carriage Return’ with no extra characters, EOT is a popular (unacceptable) choice. If

you have trouble check your graphics setup screen, then with your SM Guru who can look up in

graphcap to see what is expected. If the local Guru were very friendly, he could change your GIN

terminator to anything he wanted, even EOT, but he probably isn’t.

The second form enables you to define a pair of vectors WORD1 and WORD2. SM provides you

with a cursor, and every time that you hit a key it prints its position (just as above). If the letter

is ‘e’ it draws a point of the current type at the current position, prints the current position, and

enters the (x,y) coordinates in the vectors; if you use ‘m’ to mark a point the coordinates are not

written to the screen, but the point is still added to the vectors. ‘p’ defines the current point, and

exits. Exit without defining another point with ‘q’, so the sequence ‘e’ ‘q’ is equivalent to ‘p’. You

can also abort with a CONTROL-C in which case WORD1 and WORD2 are unchanged.

Note that if you want to use SPLINE on the vectors produced in this way, you should take care

that at least one of the vectors is monotonic and increasing, or use the SORT command.

See also IMAGE CURSOR which returns the value under the cursor as well as the position if

an IMAGE (see Chapter 22 [Image], page 116) has been defined.

For devices with mice, if the buttons do anything, they should generate the characters ‘e’, ‘p’,

and ‘q’ (starting at the left).

The SunWindows cursor is slightly different. The cursor position is given by a pointing finger

(it’s the best we could do), and SM won’t see any characters typed at the keyboard until you

hit a carriage return. Device sunwindows is obsolete anyway, you should simply switch to using

the sunview driver. Its cursor has a bug, in that it only sees every other character typed at the

keyboard. If I knew why I’d fix it.

Syntax: DATA file

Use file file as the source of data read with the READ command. The file is assumed to have

numerical data in columns separated by spaces, or tabs. The range of lines specified by LINES is

reset. If the file can’t be opened for read, you will be warned. The variable $data_file is set to

file. See the READ command to see how to read the data. You may need to quote the filename,

e.g. DATA "/usr/file", which you can do by using the macro da: da /usr/file.

Perverse people who wish to use filenames such as ‘12’ or ‘3.14’ will find that they get syntax

errors. If they must persist DATA "3.14 " will work.
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Syntax: DEFINE name value
LOCAL DEFINE name ...
DEFINE name { value_list } [ \[ INTEGER, INTEGER \] ]
DEFINE name < value_list > [ \[ INTEGER, INTEGER \] ]
DEFINE name DELETE
DEFINE name LOCAL
DEFINE name ( expr )
DEFINE name :
DEFINE name |
DEFINE name ? [ { prompt } ]
DEFINE name ? [ < prompt > ]
DEFINE name READ INTEGER
DEFINE name READ INTEGER INTEGER2
DEFINE name IMAGE
IMAGE DEFINE name value
LIST DEFINE [ begin end ]

All of these varieties of DEFINE define variable name to have some value, but as variables can

be defined in all sorts of ways there are a good many possibilities. With the prefix LOCAL (which

is allowed in front of any of the DEFINE commands), the variable will be local to the macro; (see

Chapter 22 [Local], page 122).

Name is a single word starting with a letter, and containing only letters, digits, or ‘ ’, and may

be a keyword. Whenever SM comes across $name, it is interpreted as a reference to variable name

and $name is replaced by its value. (Note that some variables such as date are special as they

always contain an up-to-date value, for an example try echo $date sometime. These variables are

listed under DEFINE name |.) You can also evaluate expressions with $(expr), for example echo

$(pi/2). The value can’t be longer than about 80 characters, except for the value_list form in

which case its length can be essentially infinite.

If you just want to know if a variable is defined, then $?name is defined to have the value 1 if

name is defined, and 0 otherwise. Variables are not usually expanded within double quotes or {},

but if you use the syntax $!name the variable will be expanded within double quotes; $!!name will

be expanded anywhere.

For the variants of DEFINE name value and DEFINE name value_list, value is either a word

or number, or a list. The difference between using {} and <> to delimit a list is that keywords can

appear within {}, but variables are not usually expanded.

With the optional [ INTEGER, INTEGER ] clause (I apologise for the notation in the manual;

those [] are required) you can choose a subrange, just as SUBSTR (see Chapter 22 [Strings],

page 144) can choose a part of a vector element. For example,

define s <"/abc/def">[1,-2] echo $s

prints

DEFINE



96 SM

abc/d

Why is this useful? Because it provides a way of working around limits on lengths of vector

elements; otherwise this example is equivalent to

define s (substr(’/abc/def’, 1,-2)) echo $s

DEFINE name DELETE, deletes a variable (see also the macro undef to undefine variables).

DEFINE name LOCAL, which is only allowed within macros, creates a variable which will only

be visible from the current macro, and from macros called by it (see Chapter 22 [Local], page 122).

Such local variables are automatically destroyed when leaving the macro within which they were

created, and may not be explicitly deleted. This is similar to the behaviour of numbered variables,

except that they really are local (i.e. they are only visible in the macro, and not in its descendents;

SM’s LOCAL variables have nested scope rather than being truly local).

An alternative is to prefix the DEFINE command itself with LOCAL; DEFINE me LOCAL DEFINE

me RHL is exactly equivalent to LOCAL DEFINE me RHL.

A common use for DEFINE LOCAL is:

define i local
foreach i { sorbus aucuparia } { set $i local }

to protect a FOREACH (or DO) variable, and all local vectors, in one simple line. It is because such

loop variables are automatically destroyed that attempts to delete local variables are not reported

at VERBOSE levels of 1 or less.

DEFINE name ( expr ) defines a variable to have the value of a (scalar) expression. When

possible, it is more efficient to use vectors to perform calculations on scalars, rather than putting

them into variables. It is also more efficient (and more obscure!) to use numbered variables (macro

arguments) than real named ones. As a special dispensation, the expression can be an element of

a string-valued vector (elements of arithmetic vectors are allowed too of course).

DEFINE name : defines the variable name from the environment file. If name can’t be found,

and is capitalised, SM will look for it in the environment (as a logical variable for VMS users).

DEFINE name | is used to define a variable from an internal SM variable such as expand or angle.

These variables can be listed with LIST DEFINE | (or by LIST DEFINE if VERBOSE is two or more);

a possibly incomplete list is: angle, aspect, ctype, cwd, date, exit_status, expand, fx1, fx2,

fy1, fy2, gx1, gx2, gy1, gy2, ltype, ltype_expand, lweight, nx, ny, ptype, sdepth, sheight,

slength, distance, theta, phi, uxp, uyp, verbose, xp, and yp. The current plot limits are fx1

etc., (or gx1 etc. in device coordinates), the size of the screen (in pixels, or dots, or whatever

the hardware uses) is nx * ny, the current position (in user coordinates) is (uxp,uyp) , the current

position (in plot coordinates) is (xp,yp), exit_status is the return code from the last ! command,

sdepth, sheight, and slength are the depth, height, and length of the last string drawn to the

screen, distance, theta, and phi are the viewpoint for surface plots (see Chapter 22 [Viewpoint],
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page 153), and the rest should be obvious. In the case of angle, expand, and ptype, if you used a

vector to set (e.g.) the expansion, the value given will be that of its first element, and there’s also

an extra value giving its dimension. This allows you to say things like

if(dimen(<$angle>) == 2) { echo You used a vector angle command }

This sort of variable changed a little with version 2.1.1. The variables that you can use have

not changed, but their usage has slightly. They are all defined for you when SM starts and each is

always correct, tracking the current value of the corresponding internal variable. For example, try

echo $angle\n angle 45 echo $angle. If you now say define angle |, $angle will cease to track

the internal value and will remain fixed (the same effect can be achieved with define angle 45).

When you say define angle delete it will once more track the internal value. Your old code will

continue to work, but in many cases it is possible to remove the explicit definition with |. This

special sort of variable will not be SAVEd, and will not show up if you list the currently defined

variables (unless VERBOSE is two or more).

DEFINE name ? will prompt you for the value of name at the keyboard, using the prompt string

if given, otherwise the name of the variable. The old value of the variable (if defined) is printed

within [], and is taken to be the default if you simply hit carriage return. As previously discussed,

the difference between {} and <> is in the treatment of keywords and variables. If you don’t want

to use {} (probably because of something weird to do with when variables are expanded), you can

always use quotes within <>.

The versions of the DEFINE command including READ define variables from the current data

file. DEFINE name READ INTEGER sets name to be line INTEGER of the current data file, while

DEFINE name READ INTEGER INTEGER2 defines name to be word INTEGER2 of line INTEGER. name

is subject to the usual restrictions. If the line begins with a # the first character is simply ignored

when defining variables.

DEFINE name IMAGE defines a variable from a file read with the IMAGE or TABLE command.

Currently this only works for NX, NY, X0, X1, Y0, Y1, or any keyword from a FITS header. Any

minus signs (-) appearing in name are converted to underscores (_), as SM doesn’t allow - in a

variable name.

You can define further such variables using IMAGE DEFINE name value, a facility that is chiefly

useful in connection with the WRITE IMAGE command (see Chapter 22 [Image], page 116).

LIST DEFINE lists all currently defined variables, or all those which are between begin and end

alphabetically (asciily). You can use LIST DEFINE | to list internal variables, or LIST DEFINE

IMAGE to list image variable (see Chapter 22 [List], page 121).

Examples

DEFINE v1 5.993
DEFINE label1 KPNO
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DEFINE label1 < National Optical Astronomical Observatory >
DEFINE v2 ($v1 + 3.4)
DEFINE v1 DELETE
DEFINE age ? { How old are you? }
DEFINE macros : WRITE STANDARD "$!macros"

(Note that we couldn’t have used <> to prompt for your age, because then the ? after you would

be treated as a keyword).

To illustrate the DEFINE name READ commands, consider a file with the following lines:

This is a file containing astronomical data
Magnitude Intensity Wavelength Error

Then using the DEFINE commands as follows:

DEFINE title READ 1
DEFINE labelx READ 2 3

will assign the string This is a file containing astronomical data to the variable title, and

the word Wavelength to the variable labelx, so you can say XLABEL $labelx.

Syntax: DELETE [ INTEGER1 [ INTEGER2 ] ]
DELETE HISTORY [ ! ]
DELETE HISTORY [ INTEGER1 [ INTEGER2 ] ]
DELETE WORD

Delete commands INTEGER1 to INTEGER2 (inclusive) from the history buffer. If the INTEGERs are

not present, delete the last command. DELETE 0 will delete all history commands. If the INTEGERs

are negative they are interpreted relative to the current command, so -1 is the last command.

The DELETE HISTORY commands are identical to the DELETE commands, except they

themselves do appear on the history list; they are preserved for backwards compatibility and

because DELETE HISTORY \n can be used to prevent a command from appearing on the history

list (the macro del1). If a macro contains a DELETE HISTORY, or calls a macro that contains one,

or ... the macro will not appear on the history list. Traditionally, this meant that if there were

two (or more) occurrences of DELETE HISTORY the previous command(s) were also be deleted,

but in SM version 2.2.1 this has been changed, and DELETE HISTORY will only delete the last

command typed at the keyboard. If for some nefarious purpose you really do want to delete older

commands too, you can say DELETE HISTORY ! and the command will work the old way.

DELETE WORD deletes the vector WORD (see SET WORD or READ WORD for how to define

vectors), MACRO name DELETE is used to delete a macro, DEFINE name DELETE deletes a variable.
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Syntax: DEVICE WORD [ rest_of_line ]
DEVICE INTEGER [ WORD ] [ rest_of_line ]
DEVICE META WORD
DEVICE META CLOSE

(The DEVICE INTEGER form is retained for historical interest and backwards compatibility only.)

Choose a device to plot to. Exactly which devices are available depends on your hardware

configuration and how SM was compiled. You can list available devices with the LIST DEVICE

command (see Chapter 22 [List], page 121). When you specify a device the previous device is

closed, which may lead to some action being taken (for example, sending a plot to a printer).

When a device is opened it is looked up by name in the ‘graphcap’ file (see Section A.2 [Graph-

cap], page 163). In some cases all the information that SM needs to plot to the device is available

there (for example xterm or postscript); such devices are referred to as stdgraph devices. Other-

wise the graphcap entry will contain the name of the real device driver, for example x11. Anything

else on the line is passed to the device driver. In particular, for the stdgraph devices an argument

that is not specifically processed by the device is taken to be the name of a file to save the plot in.

Thus device postscript foo.ps creates a plot in a file called ‘foo.ps’2

The pseudo-device META is special (see Chapter 22 [Meta], page 127). It is used to support

metafiles, which allow you to save a plot as you display it, and finally send it to a different device.

Especially for hardcopy devices, you may have to specify which one you want, e.g. DEVICE

postscript latypus. Because this depends on how your local graphcap was configured, you’ll

have to see your Guru for guidance; see Section A.2 [Graphcap], page 163.

When a device is opened, it is set to the current CTYPE, LWEIGHT, and LTYPE, and the

proper aspect ratio is chosen to make text and plotted points look nice. It also looks for an entry

foreground in your ‘.sm’ file, and uses it as the default colour for the device (this overrides any

default that the device driver may have specified). The device driver may (or may not) choose to

honour a background entry as well. These colours may be specified either as names (see CTYPE),

or the background colour may be given as a set of three numbers, which are interpreted as the red,

green, and blue intensities in the range 0 - 255. Some devices may allow you a wider selection of

background names; for example the Xwindows driver allows any name from the colour database.

If you want to use some foreground colour that CTYPE doesn’t usually understand you must

define it before opening the device. For example, after defining the macro

2 This isn’t actually the preferred way to create a postscript file; it’s better to use a specialised

device such as postfile (see Chapter 22 [Postscript], page 101), or at least to say device

postscript ":SY=mv $F foo.ps:" (see Chapter 22 [Stdgraph], page 102).
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add_colour 4 ## add a colour to the standard set. Usage: name r g b
CTYPE=<0 255 0 255 0 0 0 255 255 $2> + \

256*(<0 255 0 0 255 0 255 0 255 $3> + \
256*<0 255 0 0 0 255 255 255 0 $4>)

ctype=<default white black red green blue cyan magenta yellow $1>

you could say add_colour gray 200 200 200, after which ‘gray’ would be a perfectly good ‘fore-

ground’ colour.

Different ways of plotting to the same device (e.g. portrait or landscape) are accommodated

by using different drivers (e.g. postport and postland for postscript devices) rather than some

magic command to SM.

The NULL device

DEVICE nodevice is always available; it is a bit bucket where plot commands may be sent

never to be seen again, the equivalent of /dev/null (under unix) or nl: under VMS.

It is useful because it is always available; it’s the current device when SM is started. Because

SM submits plots only when the current device is closed, and because opening nodevice closes the

current device, it is also used by the hardcopy command (in fact hardcopy is a macro that expands

to DEVICE nodevice).

Borland Graphics on a PC

SM works on a PC running DOS either by using Borland’s graphics or windows (see the section

on MS-Windows); this section describes the former. SM was ported to run under DOS by Laurent

Bartholdi, who also wrote the BGI and MS-Windows device drivers. He gets all the credit for the

PC version of SM, but of course he is not responsible for any remaining bugs (some of which we

almost certainly created while merging the PC and regular versions).

The graphics drivers, the ‘.bgi’ files, are assumed to be in a directory given by the DOS BGIPATH

environment variable; alternatively you can specify a bgipath variable in your ‘.sm’ file.

The DEVICE command takes two optional arguments: DEVICE bgi devtype mode. The first,

devtype, is the type of hardware that you are running. If you want the driver to try to figure this

out for itself, use DEVICE bgi detect (this is the default if you omit devtype entirely); for a listing of

possibilities say DEVICE bgi ?. The second argument, mode, determines how SM switches between

screen and graphics modes. Your options are none, swap (the default), or switch; experiment to

see which works better for you. At present, a certain amount of ‘snow’ is left at the top of the

graphics screen. This is very dependent on the details of your graphics card, and we see no general

way to prevent its appearance.

Once you have decided what options you like best, you can set a variable stdmode in your ‘.sm’

file (e.g. to detect swap) to save yourself some typing.

There is a ‘hot key’, ALT-F1, that can be used to toggle between text and graphics mode.
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The current return value of the function coreleft is available as $coreleft (which is like any

other DEFINE var | variable).

OS/2 Presentation Manager

The OS2PM driver is used to display graphics in a Presentation Manger graphics window under

OS/2 v2.x (you should specify your terminal as os2pc). Two optional arguments are currently

supported:

-n Disable all backing for the graphics window. This will significantly increase the drawing

speed, but the contents of the graphics window will not be redrawn when portions of

the window are uncovered or when the window is resized.

-gWxH Specify the window geometry. The W and H parameters should contains the WIDTH

and HEIGHT of the graphics window in pixels.

If DEVICE os2pm is specified without the -gWxH argument the graphics window will be created

the same size as the last previously displayed window. If this is the first time the graphics window

is created it will default to 600 x 400 pixels.

For example,

DEVICE os2pm -g800x500
.
.
.

DEVICE os2pm -n

The first DEVICE statement will produce an 800 x 500 pixel graphics window with backing

enabled. The second will again produce an 800 x 500 pixel window but with no backing.

Graphics Metafiles

As described elsewhere (see Chapter 22 [Meta], page 127) SM can save graphics commands to

a metafile while producing a plot on your screen.

Postscript Devices

Strictly speaking, there are no postscript devices, merely postscript drivers in stdgraph (see

Section A.2 [Graphcap], page 163). On the other hand, SM is able to drive postscript printers

in a totally transparent way, so a user can think of SM’s postscript capability as discrete drivers.

In the following descriptions the arguments to the device command are referred to as $1, $2, and

so on. Aliases are listed in parentheses after the device name, so post_colour can also be called

post_color. Those currently supported are:

postscript (POSTSCRIPT)

The basic driver; produces 8x8inch output on the default printer.
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postport (POSTPORT)

A full-page portrait-mode plot.

postland (POSTLAND)

A full-page landscape-mode plot.

post_colour (post_color)

Like postscript, but generates a colour postscript plot, and sends it to a printer called

ps colour0.

blackpostscript

Like post_colour, but uses a black background.

postfile (postencap)

Like postscript, but generate an encapsulated postscript file in $1.

postlandfile

Like postland, but generate an encapsulated postscript file in $1.

post_remote (postscript_remote)

Like postscript, but prints to a printer $2 on host $1.

postland_remote

Like postscript, but prints to a printer $2 on host $1.

postport_remote

Like postport, but prints to a printer $2 on host $1.

For an example of defining your own postscript device that takes a printer name as an argument,

see Section A.2 [Graphcap], page 163.

The Silicon Graphics (and RS-6000) Device

The Silicon Graphics device driver works. If you read this and want more documentation, send

mail to us and we’ll get to it.

The General Device Driver, using Graphcap

By far the majority of devices that SM supports are driven through the stdgraph device; a

partial list includes tek4010, tek4012, pericom, selanar, (or hirez ), versaterm (or macvt ),

vt640 (a vt100 with retrographics ), vt240 in REGIS mode, hard4012 or hard4010 for a tek4010

that really has no decent ascii mode, tek4025, wyse1575, cit414a or 414a. We also support

graphcap drivers for Postscript, QMS, and LN03 laser printers, (device names postscript, qms

and ln03). Stdgraph can also cooperate with raster devices, for instance to plot on a lineprinter.

For the stdgraph (i.e. default) device driver the final word on the command line (if present) is

taken to be the name of a file to receive the output that would ordinarily go to the screen, so if

you say

device graphon outfile
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and then create a plot nothing will seem to happen. However, if you close the device and write

‘outfile’ to the terminal (maybe using /passall if you are running VMS) your plot will appear.

In addition, any word beginning with a colon will be taken to be part of a graphcap entry (see

Section A.2 [Graphcap], page 163), and prepended to the entry in the graphcap file for your chosen

device. For example, if you wanted to save your postscript output in a file you could say

dev postscript ":SY=echo File is $F:"

which would replace the SY entry that sent the output to the printer by a new one that merely tells

you what the file is called. If you’d prefer to give it a memorable name, you could say

dev postscript ":SY=echo File is \$F:OF=name:"

or

dev postscript :SY@: :OF@: name

(it doesn’t matter if the entries are all in the same word). The former redefines the output file

OF to be “name”, and makes SY tell you so. The latter disables both OF and SY, so the generated

postscript would ordinarily go to the terminal (just like any other graphics terminal), but a file

‘name’ is specified, so the output is sent there instead.

If you find yourself frequently wanting to use a customised stdgraph device, this mechanism can

become rather tedious; you’d rather simply invent the device and be done with it. The proper way

to do this is to create a local graphcap file (see Section A.3 [Graphcap File], page 164), and add

your new device to it. For example, if you wanted to define a postscript device that took the name

of the printer as its argument, you’d put an entry

mypostscript|like postscript, but specify the printer as its argument:\
:SY=lpr -r -P$1 $F:TC=postscript:

in your file, and merrily proceed with making beautiful plots using DEVICE mypostscript fred. If

you always want to use your new device you could call it postscript and in effect redefine the old

postscript device (note carefully that I said :TC=postscript: not :tc=postscript:; if I hadn’t,

an infinite loop would have resulted).

The SunView (and Sunwindows) Devices

As the sunwindows driver is now obsolete, and may well disappear in some future release, you

should use the sunview driver instead. If you insist on using the old driver, it must be run from

within a gfxtool.

The SunView window driver supports a subset of the usual SunView command line arguments,

specifically:

-WH Summarise options

-Wi Open window as an icon
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-Wl label Specify label for the window (default: SM)

-Wn Don’t label window

-WP x y Position of icon

-Wp x y Position of window -Ws w h Size of window

The standard SunView popup ‘frame’ menu has been modified to allow you to erase the graphics

screen. It is perfectly safe to use the menu to quit the graphics window, in this case the next device

sunview command will create a new one. If SM thinks that the window is active when you try to

kill it, it will warn you; failing to believe it may result in a cascade of complaints to the console

window. There is a bug in the cursor routine (I claim that it is a SunView bug) that means that

SM sees only every other key-stroke.

A Tcl/Tk Widget

It’s possible to build SM to support a Tk widget (on unix boxes only; the SM Tk graphics are

based on X11). If this interests you, specify the TK device when building SM, then build tkSM in

the callable directory and say

tkSM smtk.tcl

to run an example that we wrote. The source code should be easily modifiable to add features that

your application needs.

The Unix-PC Device

On a Unix-PC DEVICE upc opens a window of 304 by 192 pixels, which is about 4 by 4 inches.

To quote the author (Peter Teuben, teuben@astro.umd.edu),

1. This whole Unixpc version is an experimental version, take it as is, it works on my configuration,

but may not work on yours.

2. I’m playing with allowing a second and third parameter to the upc device name, which would

allow you to change the default size of 304 by 192 pixels (The size in X must be a multiple

of 16 though). Right now I have it check environment variables YAPP_X and YAPP_Y, but this

may not work satisfactorily.

3. I spawn windows using the public domain program ‘wlogin’, this may be of some importance

if your ‘upc’ device in SM fails.

I don’t have a Unix PC, so I can’t work on this driver.

PC Graphics under MS-Windows

This section needs more work; send mail to rhl@astro.princeton.edu.
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VAX/VMS UIS$ device

the VAXUIS driver is used to display graphics on a VAX Workstation using the VAX UIS$

library routines. The optional X and Y parameters specify the size of the graphics window ( in

centimeters ) created on the workstation screen.

If called without the optional X and Y parameters the graphics display window will be the same

size as that previously displayed.

If the X and Y parameters are not specified the first time the DEVICE vaxuis command is issued,

the graphics display window will occupy 1/2 the height and 1/2 the width of the workstation screen.

For example, to create a 15 cm wide x 10 cm tall display window say:

DEVICE vaxuis 15 10

The X-Windows Devices (X10 and X11)

There are two X-Windows drivers, one for X10 and one for X11 and they differ in their treatment

of command line arguments. The X11 driver is considerably more sophisticated and will be treated

first.

The X11 window driver (device x11) supports a subset of the standard command line arguments,

specifically (the X-resources names appear in parentheses at the ends of the descriptions):

#geom Specify icon geometry (.icongeometry)

-bd n Border width (.borderwidth)

-bg colour

Background colour (.background)

-device n (.device)

Use X11-device n

-cmap Use a private colour map for this device (.colormap)

-colormap

Use a private colour map for this device (same as -cmap). (.colormap)

-colourmap

Use a private colour map for this device (same as -cmap). (.colormap)

-cmap Use a private colour map for this device (.colormap)

-display name

Name of display to open (.display)

-fg colour

Foreground colour (.foreground)

-fn fontname

Name of hardware font to use (.font)
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-geometry geom

Specify window geometry (.geometry)

-help Summarise options

-kbdfocus

Preserve keyboard focus (the same as -focus). Without this, some window managers

transfer focus to the graphics window when it is created; probably not what you want

(.kbdfocus)

-iconic Open window as an icon (.iconic)

-name name

-ndevice n (.ndevice)

Allow up to n X11 devices

-nocurswind

Do not show the cursor position while in cursor mode (same as -nocw) Specify name

of window (.name)

-preopened display_id:window_id

Specify device and window id’s

-synchronise

Synchronise with server (debugging only) (.synchronise)

-title title

Specify title of window (.title)

Where geom is a standard geometry string of the form WxH+-X+-Y, and the preopened option is

for a programme calling SM non-interactively. All options may be abbreviated, so

device x11 -i #-1+1 -g 512x512+100+100

specifies that the graphics window be created as an icon in the top right hand corner of the screen,

and that the real window should be 512*512 and positioned near the top left corner.

SM is able to open more than one x11 device (by default it can handle 5); see the -device and

-ndevice options. You can say device x11 -dev + to switch to the next open X11 device; device

x11 -dev - switches to the previous one.

If you want to raise your graphics window so that you can see it, you can either use the window

manager, reopen the device (dev x11), erase the screen, or use the PAGE command.

On hardware that doesn’t support a backing store (or if you have chosen to disable a backing

store when compiling the X11 driver) the screen will only be refreshed when it is active or when

SM is waiting for input. If your operating system doesn’t support the select() system call you

may be even worse off, but reopening the device (device x11) should still result in the screen being

redrawn.
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If you use CTYPE = expr to ask for more than a small number of special colours (see Chapter 22

[Ctype], page 92), you will probably need to specify -cmap to get your own colour map; if you don’t

SM may well complain about being unable to allocate colours.

The X10 driver is known as xwindow, and you can optionally specify a device to open, and a

window ID, on the command line. For example

device xwindows DEVICE unix:0

will open a graphics window on device unix:0. (You can optionally include a ID number after the

DEVICE if you are calling SM from a programme, and have already opened the window). The X10

driver doesn’t bother to remember any hardware characters that you may have written on a graph,

so that if you refresh the window they won’t appear. If this worries you can, as always, force the

software character set with an expand 1.001.

Syntax: DITHER x y min max fac

Generates a dithered represention of an image read by the IMAGE command (see Chapter 22

[Image], page 116). The vectors x and y are set to points whose density is proportional to the

image’s intensity (only values between min and max are considered).

Any pixels whose value is NaN are ignored, as are any whose value equals the SM variable

$missing_data; by default this is some very large number.

The dithering algorithm used is Floyd-Steinberg, and each pixel of the image is represented by

(up to) fac*fac points, where (of course) all fac*fac points are only used for intensities greater than

equal to max. Even the case fac == 1 can produce nice output for suitably sampled images.

The resulting vectors are usually plotted as ptype 1 1.

An example of dithering an image would be:

IMAGE image_file
DITHER x y 0 3000 4
PTYPE 1 1
POINTS x y

Of course, you can be more sophisticated; for example:

define min 3000 define max 60000 define gamma 2
set ii = image[*,*]
set ii=(ii < $min ? 0 : ii > $max ? 1 : (ii-$min)/($max - $min)
set image[*,*] = (1 + $gamma)*ii/(1 + $gamma*ii)
dither x y 0 1 4
define v local foreach v (x y) {

set $v=$v + 0.5*random(dimen($v))
}
POINTS x y
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or

DITHER x y 0 3000 1
expand 0.3 + IMAGE(x,y)/3000
PTYPE 4 3
POINTS x y

See also IMAGE for reading images, CONTOUR for contouring them, IMAGE CURSOR for

using cursors to get values from images, MINMAX for finding the minimum and maximum of

images, and Arithmetic for extracting cross-sections of images.

Syntax: DO variable = start, end [ , incr ] { commands }

While the value of $variable runs from start to end, the commands are executed. The optional

increment defaults to 1. It is not possible to change the value of the loop variable inside a loop (or

at least it has no effect on the next iteration). To break out of a loop you have to break out of the

current macro as well with RETURN (see Chapter 10 [Loops and If], page 37).

For example,

DO i=1,10,0.5 { WRITE STANDARD $i }

will write 1 1.5 2 2.5 ... 10 to the terminal. The commands may be spread over several lines.

Syntax: DOT

Draw a point at the current location (set by RELOCATE, DRAW, etc.) in the style determined

by PTYPE. The point’s size and rotation are governed by EXPAND and ANGLE.

To insert dots into labels, it may be easier to use the ‘TEX’ definition \point or \apoint which

inserts a dot of a specified PTYPE into a string (see Section A.21 [Fonts], page 214).

Syntax: DRAW #1 #2
DRAW ( #1 #2 )

Draw a line from the current position (set with, for example RELOCATE) to (#1, #2) in user

coordinates. If the parentheses are present, use screen coordinates.

Syntax: EDIT function key_strokes

Bind a function to a set of key_strokes for the editor. For example, EDIT refresh CONTROL-R

makes the CONTROL-R key refresh the screen. A complete list of functions is given in the ‘Changing

Key-Bindings’ section in the main part of this manual (see under ‘bindings’ in the index). Each

character in the key sequence can be specified as a character, e.g. ‘a’ or the single character
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‘CONTROL-A’, as ‘CONTROL-C’ representing the single character CONTROL-C as the two character

sequence ‘^’ followed by ‘c’, or by ‘\nnn’ where nnn is an octal number (e.g. EDIT refresh \022).

In order to use multiple key sequences (e.g. CONTROL-ACONTROL-BCONTROL-C) you must first

undefine any sub-sequences, in this case CONTROL-A and CONTROL-ACONTROL-B, by making them

illegal – EDIT illegal CONTROL-A.

See READ for how to define a set of keys from a file, and KEY for how to define keys to execute

commands.

Environment (‘sm’) Variables

SM environment variables are defined in ‘.sm’ files, which are searched for along a path which

typically consists of the current directory, your home directory, and then some system place. You

can specify your own search path by setting the environment (VMS: logical) variable SMPATH. If

~ appears in a path it is interpreted as your home directory unless you specified -u NAME when

starting SM, in which case it will be interpreted as NAME’s home directory instead. Alternatively,

you can specify the name of the environment file using the ‘-f’ flag on the command line; if it starts

with a ‘/’ it will be taken to be an absolute path name, otherwise it will be taken relative to the

current path.

If you invoke SM with the -f or -u flags, the are not passed on to raster devices, so if you plot

to a device that invokes rasterise it will use the .sm files specified by $SMPATH.

Each line of the files is taken to consist of a variable name, and the rest of the line which is

taken to be its value. Any variable may be accessed using the DEFINE name : command, which

defines name from the environment file.

Comments run from ‘#’ to the end of the line. If the first character of a line is a ‘@’ or ‘+’

the name is taken to start with the second character. A ‘@’ means that the entry isn’t present,

and that SM should stop searching the path for it. A ‘+’ means that SM should keep on searching

the current ‘.sm’ file, and then the rest of the search path, looking for more entries with the same

name. If it finds one, the second value is added to the end of the first (and if the second occurrence

also had a ‘+’ specified the search continues).

Some entries in the environment file are special to SM, although you are free to use them to

your own ends as well. For most of those for which SM is only interested in whether the variable

is defined, a value of 0 means that it shouldn’t be defined. The variables are:

background

The background colour for plots

case_fold_search

If non-zero, make searches case insensitive
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default_font

The default font for labels; you can also set this interactively, e.g. expand 1.001

define default_font "\oe\3".

device Your initial graphics device

edit A file of keybindings to read (see Chapter 7 [Key Bindings], page 25).

fan_compress

Apply fan compression when connecting lines. This was donated by a user, and is

intended to reduce the number of lines actually plotted to the device; whether it is

useful is not clear. The reference is IEEE Computer Graphics and Applications, March

1989, ‘Faster Plots by Fan Data-Compression’, by R.A. Fowell and D.D. McNeil.

file_type

The type of 2-D image for the IMAGE command

filecap The filecap file to use (default: same as graphcap)

line_up_exponents

Force an extra space before single-digit exponents in axis labels

fonts The name of the binary fonts file

foreground

The foreground colour for plots

graphcap The graphcap file to use

help The help directory

history The length of the history list (default: 80)

history_char

The character used to recall commands (default: ^)

history_file

File to save history in

macro The default macro directory

macro2 Your private macro directory

missing_macro_continue

If defined, a reference to a missing macro isn’t a syntax error

name The name SM calls you by

noclobber

Refuse to overwrite existing files with MACRO WRITE or PRINT.

overload If non-zero, overload some commands

printer The default printer (see hcopy and hmacro)
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prompt The initial value of SM’s prompt

prompt2 The initial value of SM’s secondary prompt

remember_history_line

Remember which line you last reused

save_file

Default file to save a SM session in

save_read_ptr

Save the position of the read pointer between READ commands

temp_dir The directory for temporary files

term Default terminal, over-ruling TERM

termcap The file describing terminals to SM

TeX_strings

Use TEX-style strings for labels

traceback

Print the macro stack following an error

uppercase

Define uppercase versions of some macros

x_gutter

y_gutter Modify the spacing between windows when using the WINDOW command. (These are

not actually read from the ‘.sm’ by the default startup macro, you have to set them

yourself).

Under Unix, you should omit the termcap entry, or point it at ‘/etc/termcap’. Also under Unix,

SM knows how to look up your name, so you can omit the name entry. If you try to use a name

with more than one word, SM will use the first so you’ll have to call yourself ‘my lord’ rather than

‘my lord’ (the ‘ ’ will be replaced by a space).

Some of these are used directly by SM (e.g. help, fonts, but some are merely used by the

startup macro to set the initial value of SM variables (e.g. TeX_strings, file_type). Other

names may be used by the default startup macro, e.g. macro2 to specify a private macro directory

or term to specify the terminal that you are using. See the discussion of startup under ‘useful

macros’.

Syntax: ERASE

ERASE erases the graphics screen. The macro era erases the screen without appearing on

the history buffer. If you want to start a new output page on a hardcopy device use the PAGE

command.
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You may be able to erase individual lines with LTYPE ERASE, if you can you should look at

the macro undo.

Syntax: ERRORBAR WORD1 WORD2 expr INTEGER

ERRORBAR is analogous to POINTS; it draws one-sided error bars on all points defined by

vectors WORD1 and WORD2, where the length of each errorbar is set by the corresponding value in

expr. INTEGER is 1 to put the bar along the +x direction, 2 for +y, 3 for -x, and 4 for -y. Use

EXPAND to govern the size of the caps. In fact, instead of either or both of WORD1 and WORD2 you

can use an expression in parentheses, for example ERRORBAR (lg(x)) (lg(y)) 120 1.

See also the macros ec and err for backwards compatibility with Mongo, and error_x and

error_y to produce (symmetrical) two-sided errorbars. There is also a macro logerr to draw

errorbars on logarithmic plots.

Syntax: EXPAND expr

EXPAND expands all characters and points, its default is 1.0. Note that the EXPAND factor

is used in determining the plot window size in the WINDOW command. This means you should

declare your EXPAND size to SM (if other than the default) before you use WINDOW. The current

value of EXPAND is available as a DEFINE expand |.

If EXPAND is set to exactly 1, and ANGLE is exactly 0, then SM will use hardware fonts,

when available, in writing labels. This is faster, but if you don’t like it say “EXPAND 1.00001”, or

“ANGLE 0.00001”, or use a \r explicitly to select the roman font.

EXPAND can in fact be given a vector of values, which are used for each point in a POINTS

command. This supersedes the use of a fractional PTYPE (although we still support it as a quaint

anachronism). Using vectors for both ANGLE and EXPAND makes it easy to draw a vector field,

see (for example) the vfield macro. If more points are specified than the dimension of expr, the

first element will be used for the excess.

Syntax: FFT n pexpr1 pexpr2 WORD1 WORD

Fourier transform 2 vectors (treated as the real and imaginary parts of a complex vector),

returning the answer in the two vectors WORD1 and WORD2. The input vectors may be the names

of vectors or expressions in parentheses. The direction is specified by n, either +1 for a forward

transform, or -1 for an inverse.

The dimension of the vectors need not be a power of 2, but the transform is more efficient if it is.

The worst case is when n is prime, in which case this command performs a slow Fourier transform

in O(n^2) time.
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Syntax: FOREACH variable ( list ) { commands }
FOREACH variable { list } { commands }
FOREACH variable WORD { commands }

In the first two forms, the value of variable is set to each element of list in turn, and then the

commands are executed. An example would be

FOREACH
var ( alpha 2 gamma ) { WRITE STANDARD $var }

which would write alpha, 2, and then gamma to the terminal (see Chapter 10 [Loops and If],

page 37).

The form with {} can be useful if you want the list exactly as you type it, for example

FOREACH f { 0.1 $date } { echo $f }

The form FOREACH variable WORD ... is used to iterate over a vector, either arithmetic or

string. For example,

SET str={Sorbus Aucuparia David Monger}
FOREACH f str { echo $f }

It is often useful to define the FOREACH variable to be LOCAL (see Chapter 22 [Define],

page 95), e.g. DEFINE f LOCAL in the last example.

Syntax: FORMAT [ x-format-string y-format-string ]

Allow the user to specify the axis tick label formats. The format should be given as a standard

C (e.g. %4.1g) or Fortran (e.g. F10.4). This format will be in effect until unset by issuing the

FORMAT command with no argument, in which case SM will figure out the best format for you,

or until you issue a new FORMAT command with new format strings.

If a format is specified as “0”, the format string is left unchanged; if it is given as “1”, the

default value is reinstated. The command FORMAT 1 1 is thus equivalent to FORMAT.

Syntax: GRID [ INTEGER1 [ INTEGER2 ] ]

Grid draws a grid at either major ( INTEGER1 = 0 ) or minor ( INTEGER1 = 1 ) tickmarks within

a box. The default is INTEGER1 = 0. You can use INTEGER2 to specify only drawing an x- or y-axis

grid: if INTEGER2 is omitted or 0, draw both x and y; if it’s 1 only draw x; if it’s 2 only draw y (3

is equivalent to 0).

Syntax: HELP [ word ]
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The HELP command tries to help you with word. If possible, it prints the entry from the help

directory specified in your ‘.sm’ file, the definition of word if it’s a macro, the value of word if it’s a

variable, and the HELP string if it is a vector. If none of these are defined, HELP confesses defeat.

You might want to use the abbreviation h which will not appear on your history list (or you could

overload help itself). Further discussion of the HELP command is given in See Chapter 11 [Getting

Help], page 41.

If word is omitted it is assumed to be HELP.

You can associate a help string with a vector with the command SET HELP.

See also APROPOS and LIST.

Syntax: HISTOGRAM WORD1 WORD2 [ IF (expr) ]

HISTOGRAM connects the points in vectors WORD1 and WORD2 as a histogram. The ith bin

of the histogram is taken to run from (x[i-1] + x[i])/2 to (x[i] + x[i+1])/2; for the case of

equally spaced x-values, this reduces to saying that the x values are the bin centres.

If the IF clause is present, only use those points for which expr (see the section on vector

arithmetic) is true (i.e. non-zero). Only contiguous parts of the histogram are connected; if you

don’t want this behaviour, say something like

set l = (z==1) ? 1 : 0 set x=xx if(l) set yy=y if(l) histogram xx yy

In fact, either or both of the WORDs may be replaced by ‘parenthesised expressions’, i.e. expres-

sions in parentheses. For example,

HISTOGRAM x (2 + y)

to plot x against 2 + y. There is a macro barhist for drawing bar charts. See Arithmetic for how

to convert vectors of data into histograms, and SHADE for how to shade them.

Syntax: HISTORY [ - ]

List the current commands stored in the buffer. For details on the history system, see Chapter 6

[History Editor], page 19. With the optional minus sign, the history list is printed backwards which

is probably what you want if you are thinking of it as a set of commands to repeat. It’s possible

to overload list to be a synonym for HISTORY, see ‘overloading’ in the index.

Syntax: IDENTIFICATION str

IDENTIFICATION puts the current date and time followed by str outside the upper right

hand corner of the plot region. (Actually, identification is a macro, which RELOCATEs to a
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point above the right-hand axis, and half way between the top axis and the top of the page, and

then writes a string with a PUTLABEL 4.) Note that the variable $data_file is set to the name

of the current data file, and $date always expands to the current date and time.

Syntax: IF ( expr ) { list }
IF ( expr ) { list } ELSE { list }

If the expr is true (non-zero), then the list of commands are executed, otherwise the ELSE

clause is executed. For various complicated reasons, the ELSEless command must end with a newline

(or as usual a \n) (see Chapter 10 [Loops and If], page 37). One common use for IF tests is when

the expression tests if a variable has been defined, e.g.

IF($?file_name == 0) { DEFINE file_name ? }

within some macro.

Note that you can write IF-ELSE IF-ELSE blocks as

if(’Robert’ == ’Patricia’) {
echo Something’s wrong

} else { if(’Patricia’ == ’Ralph’) {
echo Still wrong

} else {
echo Go Yankees

}}

The usual SM logical operators && and || do not ‘short-circuit’, unlike e.g. C (Why? Because

they are intrinsically vector statements, so SM cannot simply evaluate the left hand side of the

expression and, based on the result, decide to skip the right). Fortunately, in a scalar context you

can use the AND and OR operators instead, and they don’t evaluate the right hand side if its value

is irrelevant. In other words,

if($?one && $one == 1) { echo One } else { echo No-one }

generates an error if there’s no $one variable:

variable one is not defined
Syntax error at "="
if ( 0 & & =

^

if($?one AND $one == 1) { echo One } else { echo No-one }

is OK.

There are also commands using IF to define vectors conditionally (see SET), and to plot parts

of vectors (See CONNECT, HISTOGRAM, POINTS).
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Syntax: IMAGE [n] file
IMAGE [n] file xmin xmax ymin ymax
IMAGE [n] file [ * : *]
IMAGE [n] file [ x1, x1 : *]
IMAGE [n] file [ * : y0, y1]
IMAGE [n] file [ x1, x1 : y0, y1]
IMAGE ( nx , ny )
IMAGE ( nx , ny ) xmin xmax ymin ymax
IMAGE CURSOR
IMAGE CURSOR WORD WORD WORD
IMAGE DELETE
IMAGE DEFINE variable value
WRITE IMAGE WORD

Read an image from file, optionally specifying the range of coordinates covered by the data

values. If you do not specify them they will be taken to be 0 nx-1 0 ny-1 where nx and ny are

the dimensions of the image. If you specify ( nx, ny ) instead of a filename an empty image of the

desired size will be created (see Section A.15.1 [2-D Graphics], page 191).

If you specify n the n’th IMAGE extension of a fits file will be read; the primary data unit (i.e.

the start of the file) is n == 0.

If you want to read part of an image you can specify the desired part using [ ... : ... ]; (n.b.

those [] are part of the command you type, not optional parameters). If you want the whole range

use *, otherwise a pair of 0-indexed integers. In other words,

IMAGE file
and
IMAGE file [ * : * ]

are identical; you can read only the first 100 elements of the first row of an image into a vector

with

IMAGE file [ 0,99 : 0,0] SET x=IMAGE[*,*]

IMAGE CURSOR is identical to the CURSOR command (see Chapter 22 [Cursor], page 93),

except that value of the image under the cursor is returned in addition to the position; IMAGE

CURSOR WORD WORD WORD is equivalent to CURSOR WORD WORD, but it also generates

a vector of image intensities.

IMAGE DELETE will forget the current image and levels.

The file format is specified using a ‘filecap’ file, similar to ‘graphcap’, and the entry to use in

this file is given by the variable file_type (see Section A.15.1 [2-D Graphics], page 191). The file

is unformatted, and should start with two integers giving the dimensions of the data array, followed

by the data values written row by row.
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The current entries in ‘filecap’ support files written from C, or from fortran in one of a variety of

ways. For C programmers, DEFINE file_type C, the file should be written with open/write/close.

For Fortran, there are a variety of options depending on operating systems and the details of how

the file was opened. Under Unix, simply DEFINE file_type unix. Under VMS you have a choice.

You can either create a variable record type file (recordtype=’variable’ in the OPEN statement)

and choose file_type vms_var, or set recordtype=’fixed’ choose recl to be the x-dimension

of the array and define file type to be vms_fixed. You must set recordtype in one of these two

ways. By default, data is taken to be real (float in C), but this can be overridden in the filecap

entry for a file type. There is also an entry for FITS files (FITS is the ‘standard’ image transport

format for astronomical images). If you want to use a different file type you’ll have to learn about

‘filecap’ (see Section A.15.1 [2-D Graphics], page 191), or else see your local SM Guru.

So under VMS either your code should look like (file type = vms_var)

integer i,j
real arr(100,10)

c
open(2,file=filename,form=’unformatted’,recordtype=’variable’)
i = 100
j = 10

c now write your data into arr
write(2) i,j
write(2) arr
end

or, with file type = vms_fixed,

integer i,j
real arr(100,10)

c
open(2,file=filename,form=’unformatted’,recl=100,recordtype=’fixed’)
i = 100
j = 10

c write your data into arr here
write(2) i,j
do 1 j=1,10

write(2) (arr(i,j),i=1,100)
1 continue

end

Under Unix, either of these programme fragments would work after omitting the record infor-

mation from the open statement.

See Chapter 22 [Set], page 139 for an example of creating an image from scratch or a vector.

If you have an image defined (using the IMAGE command), you can extract a cross-section using

the SET name = IMAGE ( expr , expr ) command. The two expressions give the (x,y) coordinates

where you want the image to be sampled. For example,
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SET x=0,1,.01 SET z=IMAGE(x,0.5)

will extract a horizontal cross section through an image. You can also use IMAGE[expr,expr] to

extract values via their indices, where either or both of the exprs may be * meaning "all values";

this is especially useful to those who like to use SM’s images as a way of reading binary data.

An example of creating an image from scratch would be

image (51,81) 0 1 0 1
define NX image define NY image
set ix=0,$NX*$NY-1 set iy=ix
set iy=int(iy/$NX) set ix=ix - $NX*iy
set x=ix/($NX-1) set y=iy/($NY-1)
set image[ix,iy] = sin(x)*sin(y)

If you have a vector v of size NX*NY, you can say

set image[*,*] = v

to convert it to an image. The data is arranged row-by-row (i.e. in the fortran order).

If you wanted to extract the top row of an image, after

define NY IMAGE define NX IMAGE
set ix=0,$NX-1

you can get the top row with any one of

set rr=image[ix,$NY-1]
set rr=image[do(0,$NX-1),$NY-1]
set rr=image[*,$NY-1]

If you want to add 100 to every value of an image, you can say

set image[*,*] = image[*,*] + 100

It’s obviously pretty easy to use SM to manipulate images point-by-point in this way.

You can write the current image to a file using WRITE IMAGE filename. Only a small subset

of the images that SM can read can be written; currently your choices are "C", "CH", and "FITS";

all of these will write out floating point values (as images are stored as floats), and the FITS writer

assumes that you have IEEE arithmetic, in conformity to the FITS standard. All current image

keywords (i.e. those available via DEFINE name IMAGE) are written to the FITS header; you can

define further keywords with IMAGE DEFINE name value.

Writing and reading images is an space- and time-efficient way of saving/rereading vectors in

a binary format; if you use the FITS file format (i.e. set file_type to FITS) the data will be

suitably byteswapped if necessary. For example,
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data file.dat
read { x 1 y 2 z 3 }
image (3, dimen(x) )
set image[0,*] = x
set image[1,*] = y
set image[2,*] = z
image define filename file.dat
define file_type fits
write image save.fts

and then, in some other SM session:

define file_type fits
image file.dat
define filename IMAGE
set x = image[0,*]
set y = image[1,*]
set z = image[2,*]

Note well that defining the image as image(dimen(x), 3) would be far less efficient.

See also ARITHMETIC for how to extract a cross-section into a vector and DEFINE for defining

a variable from the image header. Images may be displayed with CONTOUR or DITHER, and

examined with IMAGE CURSOR.

Syntax: KEY
KEY key string

Define a key to generate a string. This is most often used simply to save typing some common

command such as edit_hist. With the command KEY, you are prompted for the key to define,

and the string. Because you are not using the history editor when you type the key, you can simply

hit the key that you want defined, type a space, and then type the string terminated by a carriage

return. The other form, where the whole command appears on one line, is probably more suitable

for use in a macro such as your private startup macro (see under startup2 in the index). If you try

entering it at the keyboard any special characters in key, such as ESC, will be interpreted by the

history editor so you’ll probably have to quote the key with CONTROL-Q or ESC-q. Alternatively

you can use ^ and printing characters , or octal numbers, to represent the escape characters in the

same way as for EDIT (see Chapter 22 [Edit], page 108). If key is given as pf# or PF# (where #

is 1, 2, 3, or 4) it will be interpreted as a special function key on your keyboard in a terminal-

independent way (see the description of termcap (see Section A.17 [Termcap], page 197) to see

how these keys are defined). KEY definitions are listed along with other key bindings by the LIST

EDIT command.

If the string ends in a \N, it will be executed the moment that the key is struck. (Note that

this is \N not \n, which would have been interpreted as a newline.)
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Only 10 keys can be defined, after that you’ll start overwriting earlier definitions (this is a result

of the way that KEY was implemented; if it is a serious nuisance send us mail).

Syntax: LABEL str

LABEL writes the string str, which starts one space after LABEL and continues to the last

non-space character, at the current location (set by RELOCATE, etc). After the label is written

the current location is on the baseline, just to the right of the last character drawn. You can of

course use quotes to include trailing white space. LABEL str is exactly equivalent to PUTLABEL

9 str (see Chapter 22 [Putlabel], page 132).

The string’s size and angle are determined by EXPAND and ANGLE. For more information on

fonts and such like, See Chapter 14 [Labels], page 51.

Syntax: LEVELS WORD
LEVELS expr

Set the levels for the CONTOUR command to be the values of the vector WORD or to the values

of the expression.

Syntax: LIMITS WORD WORD
LIMITS WORD Y1 Y2
LIMITS X1 X2 WORD
LIMITS X1 X2 Y1 Y2

LIMITS sets the coordinates of the plot region. All coordinates in RELOCATE, DRAW, etc,

are referred to these limits. The various forms specify explicit limits for the x or y axis (X1 X2 or

Y1 Y2), or default (specify the name of the vector to be used).

In fact, either or both of the WORDs may be replaced by ‘parenthesised expressions’, i.e. expres-

sions in parentheses. For example,

LIMITS 0 5 (ln(y))

will scale the y axis according to the logarithm of vector y (but not produce a logarithmic axis -

see TICKSIZE for this capability).

The current value of the minimum and maximum values on the x and y axes can be obtained

with a DEFINE | command, e.g. DEFINE fx1 |.

If the two limits specified for an axis are the same, the limits for that axis will not be changed.

You can specify that the limits on one or both axes have a desired range using the RANGE

command. This command affects the performance of the LIMITS command. If a non-zero RANGE
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has been set, LIMITS will ensure that the upper and lower limits differ by that amount. (e.g. after

RANGE 2 0 , LIMITS 0 1 0 1 is equivalent to LIMITS -0.5 1.5 0 1 ). If you specify a vector, the

range is centred on the median value. If you have specified a range, and then ask for logarithmic

axes with TICKSIZE, you may get complaints that logarithmic axes are impossible. Simply unset

RANGE, and the problem should go away.

Syntax: LINES INTEGER INTEGER

Use only lines INTEGER1 to INTEGER2 from the current data file (specified with the DATA

command). If VERBOSE is greater than 0, the lines actually read will be reported. LINES 0 0

will use the entire file, which is also the default following a DATA command. The variables $_l1

and $_l2 will be set to the first and last lines specified.

Syntax: LIST DEFINE [ begin end ]
LIST DEFINE |
LIST DEFINE IMAGE
LIST DEVICE [ pattern ]
LIST EDIT
LIST MACRO [ begin end ]
LIST SET
LIST TABLE

list all the currently defined variables (DEFINE) or macros (MACRO), optionally only within

the range begin - end . If VERBOSE is 0 macros beginning ## won’t be listed. You can list the

internal variables (i.e. those such as $fx1 that track SM internal variables) with LIST DEFINE |,

or by setting VERBOSE to be two or more.

LIST DEFINE IMAGE lists all IMAGE variables (as read from files with IMAGE or TABLE,

or defined with IMAGE DEFINE name val). FITS keywords are omitted if verbose is 0. You can

use DEFINE name IMAGE to convert these to regular SM variables. The variables listed when

verbose is 0 are those written to the headers of files written using the WRITE IMAGE or WRITE

TABLE commands.

LIST EDIT will list all the keybindings. If VERBOSE is 0 only the keys that don’t generate

themselves are listed (i.e. because A is bound to A it isn’t listed). If VERBOSE is 1, in addition

all non-printing keys are listed, and if VERBOSE is 2 or greater all keys are listed. Both the EDIT

and the KEY bindings are listed.

LIST DEVICE will list all the devices known to SM. The devices are listed with each device on

an (indented) line, first the primary name, then a list of aliases in parentheses, then a full name.

If pattern is provided only those lines that match the given pattern will be printed, for details on

SM’s regular expressions See Chapter 22 [Apropos], page 83. An example would be

LIST DEVICE ^post
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to list all devices whose principle name begins ‘post’.

LIST SET lists all currently defined vectors. For each vector the name, the dimension and the

HELP field are given. See SET for how to set the latter.

LIST TABLE lists all columns available in the current TABLE; this currently only works for

FITS binary tables.

For a list of the history buffer use HISTORY (macro lis), to list a macro use HELP (macro h).

It can be useful to overload ‘list’ so that it doesn’t appear on the history list, and so that ‘list’ by

itself corresponds to the command HISTORY (this is done for you if you use set_overload or put

overload in your ‘.sm’ file).

Syntax: LOCAL DEFINE name value
DEFINE name LOCAL
LOCAL set name = expr
SET name LOCAL

Usually, SM’s variables (see Chapter 22 [Define], page 95) and vectors (see Chapter 22 [Set],

page 139) have global scope, meaning that if you define one in a macro it is still defined when you

return to the command prompt. This is often what you want, but not always; for example macros

often define scratch vectors that must be explicitly deleted before returning. This is annoying,

but a more serious problem is that two different macros can each set a vector called i, but mean

different things.

The solution to this is to make your vectors and variables local to a macro, meaning that they

are only visible within that macro, and from any called from it. This is really a nested scope rather

than local, but LOCAL is easier to type. Such local objects are automatically destroyed when they

go out of scope.

For example, if you define the macro bar as

macro bar 2 {
echo $(goo)
set goo local
set goo=$1
if(goo < $2) {

bar $(goo+1) $2
}
echo $(goo)

},

the command set goo=0 bar 1 5 will count from 0 to 5 and down again, and if you run the macro

yar (defined as macro yar { set foo local set foo=1\n}) the vector foo will not be defined at

global scope.
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Note that, as usual, you may have to be a little careful to ensure that you don’t exit a macro

before you expect. The symptoms would be that your local variable or vector was already destroyed,

or that it referred to one at less restrictive scope (see Section A.1.5 [Command Internals], page 162).

The easiest fix is to add a comment line to the end of the macro.

Syntax: LOCATION GX1 GX2 GY1 GY2

Set the physical location of the plot. The plot region is the rectangle inside the box drawn by

BOX. Vectors and points are truncated at the bounds of the plot region. LOCATION specifies (in

device coordinates) where the plot region is located. LOCATION can be used to make an arbitrary

size and shape plot, providing that you want it rectangular.

Because all devices have the same coordinate system in SM (0-32767), this command is consid-

erably more useful than it used to be. The default LOCATION is 3500 31000 3500 31000. You can

get at the current values of GX1 etc. using the DEFINE | command.

While you are using WINDOW (see Chapter 22 [Window], page 154), LOCATION commands

have no effect. SM remembers them, however, and obeys the most recent one when you are finished

with WINDOW.

See the RELOCATE ( x y ) command to draw labels outside the plot region, and DRAW ( x

y ) to draw lines there.

If you want to increase the x-location by 500 (say), you can say:

LOCATION $($gx1 + 500) $gx2 $gy1 $gy2

This is sometimes useful to make room for an axis label; if your verbosity is 1 or higher you’ll be

advised of the appropriate displacement.

Syntax: Logical Operators

The following logical operators are allowed on vectors and scalars in SM, where non-zero means

true:

Unary:

!expr Logical Complement

Binary:

expr == expr Equal to expr != expr Not equal
expr < expr Less than expr <= expr Less than or equal
expr > expr Greater than expr >= expr Greater than or equal
expr && expr Logical and expr || expr Logical or
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Only !, ==, and != are allowed for string valued vectors. All arithmetic vectors test unequal to

all string-valued vectors.

For string vectors, there are three cases to consider: vstr1 == vstr2 generates a vector of the

same length as vstr1 (with must be the same length as vstr2) by comparing the two vectors

element by element; ’str1’ == vstr generates a vector of the same length as vstr by comparing

each element of the vector vstr to the string str1; and ’str1’ == ’str2’ which returns a scalar

by comparing the strings str1 and str2 (so it’s false in this example).

As in C, == has a higher precedence than &&, which in turn has higher precedence than ||. As

noted in See Chapter 22 [If], page 115, && and || evaluate both the left- and right- hand expressions.

If this is a problem, you can use AND and OR instead.

Note that there is also a ternary operator, (expr1) ? expr2 : expr3 which has the value expr2

if expr1 is true, and expr3 if it is false.

See ‘arithmetic’ for the arithmetical operators See Chapter 22 [Arithmetic], page 86. You can

test to see if a variable is defined by looking at the value of $?var (see Chapter 22 [Define], page 95).

Syntax: LTYPE INTEGER
LTYPE ERASE
LTYPE EXPAND number

All lines except for those making up axes and characters are drawn with line type INTEGER,

meaning:

0 solid 1 dot
2 short dash 3 long dash
4 dot - short dash 5 dot - long dash
6 short dash - long dash

the default is a solid line, LTYPE 0. The current value of LTYPE is available as an internal variable

(e.g. DEFINE ltype |)

LTYPE ERASE and will erase any lines that are redrawn (e.g. LTYPE 0 BOX LTYPE ERASE

BOX will first draw a box, and then erase it). Not all devices can support erasing individual lines,

if yours doesn’t you’ll have to ERASE the whole screen. A convenient way to use LTYPE ERASE

is the undo macro. (in fact, LTYPEs 10 and 11 are used to implement LTYPE ERASE, LTYPE

10 to start erasing, LTYPE 11 to notify a device that you’ve finished doing so).

LTYPE EXPAND makes all dots, dashes, and spaces in the chosen ltype larger (or smaller) by

the value specified.

Syntax: LWEIGHT number
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Set all lines to have a weight of number, where the bigger the blacker. Generally, an lweight of

0 is taken to be the hardware’s preferred width. The current value of LWEIGHT is available as an

internal variable (e.g. DEFINE lweight |)

Syntax: MACRO EDIT name
MACRO LIST [begin end ]
MACRO name [ narg ] { body }
MACRO name [ narg ] < body >
MACRO name DELETE
MACRO name #1 #2
MACRO READ file
MACRO WRITE file
MACRO DELETE file
MACRO WRITE name [ + ] file

MACRO EDIT name allows you to edit a macro. All the commands available to the history

editor area available (including the ^ history), except that CONTROL-M inserts a line before the

cursor, CONTROL-N and CONTROL-P get the next and previous lines respectively, and CONTROL-V

and ESC-v move forwards and backwards 5 lines at a time. To exit use CONTROL-X (or whatever

you have bound to exit_editor). The macro need not exist, and both its name and number of

arguments can be changed by editing the zeroth line of the macro (CONTROL-P from the first line. If

this line is corrupted, or deleted, no changes are made to the macro when you exit. If the number

of arguments is negative, the macro will be deleted when you exit.) You may prefer to use the

macro ed instead of MACRO EDIT, as it doesn’t appear on the history list and, if invoked without

a macro name will edit the macro that you edited last. Incidently, hm (‘help macro’) will list the

last macro that you edited with ed. The keybindings may be changed with READ EDIT.

LIST MACRO lists all currently defined macros, or all those which are between begin and end

alphabetically (asciily). If VERBOSE is 0, macros starting with ## are not listed.

MACRO name [narg] { body } defines name to be body, where name is a single word, and body

may be anything (most users need not worry about the form in angle brackets; it is occasionally

useful when writing clever macros). A macro is invoked by typing its name. The optional nargs is

the number of arguments the macro expects, default 0.

If the macro’s body is defined to be delete, the macro is deleted. MACRO name DELETE also

deletes a macro.

Arguments are referred to as $1, $2, . . . $n, up to a maximum of $9. $0 gives the name of the

macro. If the number of arguments has more than one digit (e.g. 03 or 12), the macro is taken to

have a variable number of arguments, between the ‘tens’ digit and the ‘units’ digit. For example, 12

means 1 or 2 arguments, 39 means between 3 and 9 arguments, and 02 means 0, 1, or 2. Confused?

HELP will tell you what SM knows about a macro’s arguments. There’s one problem here; if you

say
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MACRO woosie 01 {
if($?1) {

echo An argument: $1
} else {

echo No arguments
}

}

SM will interpret that 01 as the integer 1 before the macro’s defined, so that’s equivalent to MACRO

woosie 1 { . . . }. So you cleverly say MACRO woosie "01" { . . . }; but that won’t work either as

the closing " is seen before the 01’s parsed; you have to say MACRO woosie "01 " { . . . } — and

that does work.3 You don’t have to go through any such contortions in files read by MACRO READ,

but they have their own problems.

If the number declared is greater than 99 the last argument will extend to the end of the line,

and may consist of many words. When called, all the arguments must appear on the same line as

the macro itself. This line may, as usual, be ended with an explicit \n. The macro can determine

whether it has been supplied a given argument by using the $? construction (see DEFINE). It is

also possible to change the values of arguments using DEFINE just as usual, and even to DEFINE

arguments that you didn’t declare. These are temporary variables, local to the macro, and will

disappear when you exit the macro.

Macros must end in space or newline, and if they don’t SM will silently add one (why? to prevent

the macro stack being popped prematurely see Section A.1.5 [Command Internals], page 162). If

you want to defeat this, end your macro with an explicit #, e.g. macro echo {WRITE STANDARD#};

a slightly less efficient alternative would be macro echo 111 {WRITE STANDARD $1}.

MACRO name #1 #2 defines macro name to consist of lines #1 — #2 of the history buffer. If

#1 or #2 is negative it is interpreted relative to the current command, so saying MACRO last2 -1

-2 will define a macro last2 consisting of the last 2 commands issued.

MACRO READ file reads the macros in file and defines them. See RESTORE for how to

also restore the history buffer from macro all.

MACRO DELETE file has the effect of deleting all macros defined in file.

MACRO WRITE file writes all currently defined macros to file in alphabetical order. If the

file exists, and $noclobber is defined, SM will refuse to overwrite the file. You can set noclobber

by specifying it in your ‘.sm’ file.

MACRO WRITE name [ + ] file writes the macro name to file. If the + is specified, or the

file is the same as for the previous use of this command, the macro is written to the bottom of the

file, otherwise the file is created. If the file exists and you aren’t simply appending, and $noclobber

3 See discussion of double quotes in see Chapter 19 [Quoting], page 77 if you want to know why.
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is defined, SM will refuse to overwrite the file. You can set noclobber by specifying it in your ‘.sm’

file.

Syntax: DEVICE META WORD
DEVICE META CLOSE
META READ WORD

If you open the special device called META it doesn’t close the current device, merely intercepts

plotting commands and stores them away as well as executing them immediately. This continues

until you issue a CLOSE command.

The command META READ reads a metafile and executes it on the current device. So to make

hardcopy of a plot you could say something like:

device x11
device meta metafile.dat
my_cunning_macro
more_brilliance
device meta close

after which (maybe after exiting SM and restarting it), you could say:

device postscript
meta read metafile.dat
device 0

to make a hardcopy.

It is safe to concatenate metafiles together, if the fancy takes you.

Because of the way that SM interrogates devices about their abilities, while using META all

ltypes, lweights, and fonts will be emulated in software (this guarantees that the device you playback

on will be able to handle the code). If the current device can handle dots (i.e. PTYPE 0 0) then

META will attempt to use them too, but if it can’t then META will be reduced to faking them.

This could be a serious problem, so good luck. Metafiles do not support colour, again due to the

impossibility of knowing if they will have the same behaviour as the original device.

Syntax: MINMAX min max

Set variables min and max to the the maximum and minimum values of an image read by the

IMAGE command. Only that portion of the image within the current LIMITS is examined. This

may be useful for setting contour levels, or doing a halftone plot (see the macro greyscale).

For example, the commands:

MINMAX min max
SET levs = $min,$max,($max-$min)/9
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LEVELS levs

will choose a set of 10 levels which cover the complete range of the data.

Syntax: NOTATION XLO XHI YLO YHI

Set axis label format (exponential or floating). By default, all numbers between 1e-4 and 1e4 are

written as floating point numbers, and all numbers outside this range are written with an exponent.

This corresponds to a NOTATION -4 4 -4 4 command.

If you set XLO=XHI and/or YLO=YHI, all values on that axis will be plotted using exponents

(including 1); as a special case if both XLO and XHI are 0 NOTATION will be reset for this axis.

If you want your positive and negative exponents to line up define the SM variable line_up_

exponents; if it’s 1 they’ll be padded with a space, if 2 or more, with a + (you can do this in your

‘.sm’ file).

Syntax: OR

In a scalar context, you can use OR instead of ||. The difference is that OR doesn’t evaluate

the right-hand-side of the expression if the left-hand-side is true; See Chapter 22 [If], page 115, for

examples.

Syntax: OVERLOAD keyword INTEGER

Allow “keyword” (in lowercase) to be used as a macro name if integer is non-zero. For example,

overload set 1 overload define 1
macro set { DEFINE } macro define { SET }

would interchange the meanings of the SET and DEFINE commands. The uppercase forms of the

keywords retain their usual meanings. overload set 0 would reinstate the usual meaning of set.

You may be surprised by the effects of overloading certain keywords. For example, if you overload

help to mean DELETE HISTORY HELP, then set help vec help_string won’t work (you’d have to

say set HELP vec . . .).

This command is intended to be used for changing the default action of commands, rather than

for a wholesale renaming of keywords! A more practical example than the above would be

overload erase 1 macro erase { del1 ERASE }

to prevent erase commands from appearing on the history list. See the macro set_overload for

a set of definitions like this. It can be automatically executed by including an “overload” line on

your ‘.sm’ file.
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Syntax: PAGE

PAGE starts a new page for a hardcopy plot (n.b. the device driver for raster plots is unable to

support multiple page plots).

On window systems (X11, SunView) page will raise the window and refresh it if necessary.

Syntax: POINTS WORD1 WORD2 [ IF (expr) ]

POINTS makes points of the current style (PTYPE), linetype (LTYPE), colour (CTYPE), size

(EXPAND), and rotation (ANGLE) at the points in vectors WORD1 and WORD2. If the IF clause is

present, only use those points for which expr (see the section on vector arithmetic) is non-zero. In

fact, either or both of the WORDs may be replaced by ‘parenthesised expressions’, i.e. expressions in

parentheses. For example,

POINTS x (lg(y))

to plot x against the logarithm of y.

In case you ever need to know, the distance from the centre of a point to a corner is 128 screen

units when unexpanded, if the ASPECT (see Chapter 22 [Aspect], page 84) ratio is unity.

Syntax: PRINT [+] [ file ] [ ’format’ ] { list }
PRINT [+] [ file ] [ ’format’ ] < list >

Print the vectors specified by list to file, if file is absent, print to the terminal (the output

is paged, sort of). The name of each vector is printed at the head of the appropriate column. If the

output is going to a file, each line of the header starts with a ‘#’, so the file can be read without

using the LINES command.

The header is not printed if the variable print_noheader is defined and non-zero. For example,

I have a macro

p 111 ## print a vector or expression. E.g. "p x" or "p sin(x)"
local define print_noheader 1
local set foo=$1
if(whatis(foo) & 2**5) {

print ’%g ’ { foo }
} else {

print ’%s ’ { foo }
}
#

to print vectors on a single line. In addition, no header is printed if you are not actually printing

any vectors, in this case no newline is appended to the string. This provides a way of controlling
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string output, and suppressing newlines, e.g. PRINT ’S’ {} PRINT ’M\n’ {}. You probably will

usually want to use WRITE STANDARD instead (see Chapter 22 [Write], page 156).

With the optional ‘+’ the vectors are appended to the file, otherwise it is overwritten unless

$noclobber is defined, in which case SM will refuse to touch the file. You can set noclobber by

specifying it in your ‘.sm’ file.

The optional format string is of the type accepted by the C function ‘printf’, and you should see

a book on C (or maybe the online system manual or help command) for more details. Basically,

the format string is copied to the file with format specifiers beginning with % signs replaced by

the numbers that you want printed. The format specifiers to use are the floating point ones, %e

(exponential), %f (floating point), and %g (computer’s choice), d, o, x for printing numbers as

integers (the latter two are octal and hexadecimal), or %s for strings. Fields are right justified by

default, you can insert a - just after the % to left justify them. A % may be written as %%, and a

tab as \t. Lines are not terminated by a newline by default, you have to write them explicitly as

\n.

For example,

SET x=1,10 SET y=x**2
PRINT file ’%10f (%10.2e)\n’ { x y }

will produce

#........x............y
#
..1.000000.(..1.00e+00)
..2.000000.(..4.00e+00)
..3.000000.(..9.00e+00)
(etc.)

where I have replaced each space by a . for clarity. If you say

PRINT ’%g ’ { x }

you will get

..........x

1.2.3.4.5.6.7.8.9.10.

If you want very long output lines you’ll run into one of SM’s internal limits; the maximum

length of a string (currently 160 characters). You might try to work around this by putting part

of the formatted output into string vectors and then using a %s format to write it out; such an

approach can be made to work, for example instead of

print file ’Date: %2d %2d %4d\n’ { dd mm yy }

you can write
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set date = sprintf(’Date: %2d’,dd) + \
sprintf(’ %2d’,mm) + \
sprintf(’ %4d’,yy)

print file ’%s\n’ { date }

If you think that this is a hack I rather agree with you, but it does permit formatted output of up

to 400 characters.

Syntax: PROMPT new_prompt

The current prompt is replaced by new_prompt; the default is :. Any occurrences of the character

‘*’ are taken as instructions to ring the terminal bell. When you start SM your prompt is set to

the value of the entry prompt in your ‘.sm’ file (if you have one).

If you enter a partial command (e.g. macro foo { or echo ABC\) SM switches to a different

prompt. By default this is >>, but if you define the variable prompt2 that will be used instead.

You can set prompt2 in your ‘.sm’ file.

Syntax: PTYPE n s
PTYPE WORD
PTYPE ( expr )
PTYPE { list }

PTYPE n s causes points to be drawn as n sided polygons of a style s, where s refers to:

0 open

1 skeletal (center connected to vertices)

2 starred

3 solid

For example, PTYPE 1 1 (or PTYPE 0 0) makes points appear as dots, PTYPE 4 1 (the default)

makes (diagonal) crosses, and PTYPE 6 3 makes filled hexagons. Points made up of lines (types 0,

1, and 2) are drawn using the current LTYPE.

When possible PTYPE 0 0 will draw the smallest possible dots that the device is capable of; these

may or may not be different from PTYPE 1 1.

The current value of PTYPE is available as an internal variable (e.g. DEFINE ptype |)

PTYPE WORD or PTYPE ( expr ) use vector WORD or the expression expr as its source of

n and s, ( so you may define different point types for each point) except that the numbers are

contracted together. If the entry has a fractional part, it is treated as an expansion factor, relative

to the current expansion (no fractional part means default expansion); so if n is a vector giving
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the desired number of sides for a set of points, s is a vector giving the desired types, and e is

a vector giving the desired relative sizes (0 <= e < 1), you’d want to say PTYPE (10*n+s+e). For

example, an an entry of 103.5 in WORD is the same as PTYPE 10 3, EXPAND 0.5, but if you now say

EXPAND 2 the net expansion will be unity. It’s much easier to use a vector of expansions directly

to the EXPAND command, but fractional ptypes are preserved for backwards compatibility. N.b.

due to a bug in X10R4 for the Sun, PTYPE n 3 does not work for dev xwindows on a sun. If more

points are specified than the dimension of expr, the first element will be used for the excess.

If WORD is a string-valued vector, its elements are used to label the points of the graph. They are

drawn at the current expand and angle (vector-valued EXPANDs and ANGLEs are ignored), and in

the current default font. For TEX-string users this can be specified with the variable default_font,

which can either simply be defined, or set in your ‘.sm’ file.

PTYPE { list } defines the symbol to use with the POINTS command to be some creation of

the user. The list consists of a set of c x y where c is a letter, and x and y are integers. If c is ‘m’

or ‘r’ (move or relocate) the plot pointer is moved to the point (x,y), if it is ‘d’ (draw) or absent a

line is drawn from the current position to the point (x,y). The coordinates are measured relative

to the current point being plotted, and are measured in screen coordinates (i.e. 0-32767). Both

EXPAND and ANGLE are applied to the (x,y) values as usual.

As an example the command

PTYPE { m 0 500 500 0 0 -500 -500 0 0 500 }

will define the marker to be a diamond, something like:

/\
/ \
\ /
\/

(but with unbroken lines). As a more useful example, there is a macro upper which defines a

variable $upper to draw an upper limit sign, used as

PTYPE $upper

(if ANGLE were 180, they’d be lower limits).

Syntax: PUTLABEL INTEGER str

PUTLABEL writes a label at the current location with rotation and size specified by ANGLE

and EXPAND (exactly like LABEL). The label is centered with respect to the current location

according to the argument INTEGER which can be 1 - 9 meaning that the label is:

left centre right
above 7 8 9
centered 4 5 6
below 1 2 3
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(cf. a vt100 keyboard) To be a little more precise, ‘above’ means that the string’s baseline (the

bottom of characters such as ‘a’ that have no descender) is at the level of the current point, while

‘below’ means that the top of the tallest character in the string is level with the current point. If

you don’t like this neglect of descenders, try

MACRO myputl 102 {label \raise\advance\depth{$2}by100{}\n putlabel $1 $2}
myputl 7 This is a Label

(You can then say overload putlabel 1 macro putlabel {myputl} if the mood takes you). After

the label is written the current location is on the baseline, just to the right of the last character

drawn. If INTEGER is 0 the string isn’t actually drawn, but the string’s dimensions are calculated

(and are available as $swidth, $sheight, and $sdepth), and any TEX definitions are remembered.

If PUTLABEL 5 isn’t quite what you want (as it centres vertically as well as horizontally), try

LABEL \centre{H_\alpha} instead.

See Chapter 14 [Labels], page 51, for a description of how to enter a label with funny characters,

sub- and super-scripts, and so forth.

If EXPAND is set to exactly 1, and ANGLE is exactly 0, then SM will use hardware fonts, when

available, in writing labels. This is faster, but if you don’t like it say “EXPAND 1.00001”, or use

a \r explicitly to select the roman font. Or ask your SM Guru to edit the ‘graphcap’ file to stop

your printer from ever using hardware fonts (or read the discussion under LABEL).

Syntax: QUIT

Quits the programme entirely.

The macro ‘q’ is defined as something like

DELETE HISTORY DEFINE 1 0 # default value
DEFINE 1 ? { Are you sure? Enter 1 to really quit }
IF($1) { QUIT }

so you won’t quit accidently, and the QUIT won’t appear in the history file. This is an obvious

candidate for overloading.

Syntax: RANGE number_x number_y

If number is non-zero, set the range on the x or y axis to be number, so LIMITS will choose two

values that differ by number. Nothing will happen until you issue a LIMITS command.

For instance, if you wanted to ensure that the y axis of a logarithmic plot spans exactly two

decades the commands RANGE 0 2 LIMITS x y would choose suitable y limits, with actual values

appropriate for the y vector (in fact symmetrical about the median value).
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Syntax: READ WORD INTEGER
READ [ ! ] { WORD INTEGER WORD INTEGER . . . }
READ [ ! ] { . . . WORD range . . . }
READ ROW WORD INTEGER
READ [ ! ] ’format’ { WORD WORD . . . }
READ EDIT WORD
READ OLD WORD WORD
META READ WORD WORD

READ WORD INTEGER reads a column of data from the file specified by the DATA command,

using the lines specified by LINES. Columns may be separated by white space (blanks or tabs) or

by a comma, or by some combination of the two. It’s OK if some of the columns contain text,

providing that you don’t try to read them. You can read text columns into string vectors, as

described in the next paragraph. The data is read into the vector WORD, which will be created, from

column INTEGER. Any field beginning with a * is taken to be ‘empty’, and is assigned the value

1.001e36. Any line beginning with a # is skipped over (and printed if VERBOSE is greater than

1), any line beginning with a ! is skipped and always written to the terminal. Long (logical) lines

may be spread over several (physical) lines by ending the line with a ‘\’; no line may exceed a total

of 1500 characters. If you use continuation lines, note that SM’s line numbers (for example, as set

with the LINES command) apply to logical not physical lines; a continued line counts as only one

line.

You can optionally specify a type of vector by adding a suffix onto the integer; ‘.f’ (the default)

or ‘.g’ means floating point, ‘.d’, ‘.o’, ‘.i’, or ‘.x’ means integer, ‘.s’ means string-valued. String

valued vectors can be used as input to PTYPE commands, or simply for reading columns from

data files that you want to PRINT.

READ { WORD INTEGER WORD INTEGER ... } is the same as repeating READ WORD INTEGER for

each vector, but more efficient as it only has to read the file once.

READ { x 1 s 5.s y 2.f z 3.i }

will read columns 1 and 2 into floating point vectors x and y, column 3 into an integer-valued

vector z, and column 5 into string-valued vector s. As noted below, you can omit the INTEGERs

by specifying an empty format: READ ” { x y.d } (those are two single quotes).

Usually SM stops reading at the first invalid line, but if you say READ ! all the lines specified

with LINES (or the entire file) are read. Missing numerical fields are set to be invalid (i.e. they are

treated as *); missing string values are left blank. This is probably most useful with the %n format

specifier.

If INTEGER is invalid (<= 0), the contents of the file are written to the standard output. READ

ROW is very similar, but the values are read from row INTEGER of the file (any LINES command

is ignored). The same type qualifiers are allowed as for reading columns. There is no limit to the
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number of elements in the vector, except that implied by the maximum length of a line. You cannot

specify a range of columns to read with READ ROW, but try

SET i=2,5
READ ROW x 1
SET x=x[i]

If the first field is a string, you can say READ ROW s 1.s SET x=ATOF(s[i]).

If your data is in a number of columns (e.g. you have written it out to a file ten values to a line)

you can specify a range of columns, for example

READ { x 1-4 y 5 z 6-10 }.

You can only use ranges for numerical vectors, and only with the list form of READ. Ranges won’t

work if there is a short line at the end, but you can still say something like

LINES 0 100
READ { x 1-4 }
READ ROW _x 101
SET x=x CONCAT _x

which will be almost as efficient if you have defined $save_read_ptr.

In order to speed up multiple reads of the same file, SM usually remembers where it got to in a

file; this is disabled if you undefine the variable $save_read_ptr (which can be done in your ‘.sm’

file by setting it to 0). The remembered position is forgotten every time that you issue a DATA

command, or try to re-read part of the file. You can get into trouble if you read part of a file,

modify the file without reissuing a DATA command, and then read some more, but in normal usage

it should be safe to leave saving the read pointer enabled.

Instead of using simple column-oriented input it is possible to specify a format similar to those

used by C’s scanf functions (Fortran formats are not supported); if you don’t know C then most

of what you need to know is that characters in the input must match those in the input file, except

that items to be read are specified with format strings that start %. For example, a format abc%f:%f

expects the input to consist of ‘abc’ then two floating point numbers separated by a colon. If the

% is followed by a * the field is read but isn’t assigned to a vector. You can specify a newline as \n

or a tab as \t.

As a further example, if your data file has lines like

1:12:30 -45:30:11

you could read it with

read ’%d:%d:%d %f:%f:%f’ { hr min sec deg dmin dsec }.

The type of the vector is deduced from the format string; you can’t use .f or .s in the vector list

(why would you want to specify a type twice?).
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As a special case, of you specify an empty format (”) the named vectors are read as floats from

the first n columns of the file, so

READ ’’ { x y z }

is equivalent to

READ { x 1.f y 1.f z 3.f }

or simply

READ { x 1 y 1 z 3 }

You can use the usual qualifiers, e.g.

READ ’’ { x y z flags.x }

and omit columns entirely by replacing the vector’s name with .:

READ ’’ { x . z }

I said that the %-formats were ‘similar’ to scanf’s; they differ in the way that they treat field

widths and white space. If you don’t specify a width at all SM follows the usual C behaviour of

skipping white space between items; if you do specify a field width no space is skipped over before

the field begins. You can always explicitly skip spaces with a %*[ ] format. The %n format returns

the number of fields matched rather than the number of characters.

The supported format letters are d, e, f, g, o, n, s, x, and [, their meanings are:

%d Read an integer into a floating vector (‘d’ stands for ‘decimal’). If a field width is

specified trailing spaces are treated as spaces not zeros – this isn’t fortran you know.

The field " 1234 " (i.e. a field width of 6, %6d) has the value 1234 not 12340.

%e

%g Read a floating point number with or without an exponent into a floating vector. As

for %d, trailing spaces in a fixed-width field are treated as spaces not zeros.

%f Read a floating point number without an exponent into a floating vector. As for %d,

trailing spaces in a fixed-width field are treated as spaces not zeros.

%n Return the number of fields that are already correctly matched in the current line; this

is only useful in conjunction with READ !.

%o Like %d, but the number’s taken to be octal.

%s Read a string into a string-valued vector. If a field width is specified the entire field

is read spaces and all; if there is no width initial spaces are skipped as usual and the

string is terminated by the first white space character.

%x Like %d, but the number’s taken to be in hex.

READ



Chapter 22: Command Reference 137

%[...] Read a string consisting of the characters ... into a string valued vector. You can

specify a range as a-z so %[a-zABC0-9] would read a string consisting of any lower

case character or digit, or one of A, B, or C. If the first character is ^, read any

characters except those specified (e.g. %[^abc] reads anything but the letters a, b, or

c). If a field width is specified characters that don’t match those specified at the end

of the field are ignored.

%% Not a conversion format, but a literal %.

READ EDIT WORD reads a new set of keybindings from the file WORD. The format and syntax

are given under History (see Chapter 22 [History], page 114) in the introduction.

READ OLD WORD1 WORD2 defines macro WORD1 to be the the contents of file WORD2. This is

provided for compatibility with Mongo (see Section A.20.3 [Mongo], page 213) and the read_old

macro. You no longer need use read_old to read SM history files, use RESTORE instead.

If VERBOSE (see Chapter 22 [Verbose], page 151) is greater than 0, the lines actually read will

be reported.

META READ WORD reads a metafile, as produced with the pseudo-device META, and executes

the enclosed commands on the current device.

Syntax: RELOCATE X Y
RELOCATE ( X Y )

The first form sets the current position to (X,Y) in user coordinates without drawing a line.

The second (with parentheses) sets the position in ‘screen’ coordinates, i.e. 0-32767. The current

position is used by the DRAW, LABEL, and PUTLABEL commands.

There are a couple of pairs of internal variables ($uxp,$uyp) and ($xp,$yp) that give the

current position of the plot pointer, either in user or screen coordinates.

Syntax: RESTORE [ filename ]

Restore all the current macros, variables, and vectors from file filename (if omitted the default

is to use the value of save_file in your ‘.sm’ file, or failing that ‘sm.dmp’). In addition, the current

history buffer is replaced by the macro all if defined in the RESTOREd file.

The file should have been written by the SAVE command, and RESTORE will treat any other

file type as if it were a SM history file and add its commands to the end of the current history list.

If VERBOSE (see Chapter 22 [Verbose], page 151) is greater than 0, some extra information is

printed.
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Syntax: RETURN

Return from the current macro, which includes breaking out of DO and FOREACH loops. If

you are not executing a macro, simply return to the prompt (this is more or less equivalent to

typing CONTROL-C).

A RETURN can be useful while playing with fiddling with data interactively. For example, if

you want to playback a set of commands, but then do other things when the plot has appeared, you

could put a RETURN after the desired part of the playback buffer. (This doesn’t work quite the

way that you might naively think. Playback works by defining a macro all from the history list,

and then executing it. The RETURN is actually returning from this macro, rather than directly

from the command list, but the effect is the same. If RETURN always returned directly to the

prompt, macros such as hcopy wouldn’t work.)

If VERBOSE is 2 or more, the name of the macro being returned from is output.

If the very last command in a macro is RETURN then the RETURN will take place, not from

the desired macro, but from where the macro was called from. You can work around this by putting

a space after the RETURN, or simply omitting it as it isn’t doing anything anyway. If a RETURN

comes last on a history list, this problem will lead to macros such as hcopy not working correctly.

Syntax: SAVE [ filename ]

Save some or all of the current macros, variables, and vectors in file filename (if omitted the

default is to use the value of save_file in your ‘.sm’ file, or failing that ‘sm.dmp’). The current

history buffer may also be saved, as the macro all.

You are prompted for whether you want to save variables, vectors, and macros (which includes

all, the current playback buffer). Macros beginning ## are not saved, as they are assumed to be

system macros. Variables and vectors whose names start with a ‘ ’ are assumed to be temporaries,

and are not saved either.

The opposite to SAVE is RESTORE (see Chapter 22 [Restore], page 137). You may want to

use the MACRO DELETE WORD command to undefine macros from e.g. the ‘utils’ macro file.

See, for example, the macro sav (which can be overloaded).

If VERBOSE (see Chapter 22 [Verbose], page 151) is greater than 0, some extra information is

printed.
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Syntax: SET name = expr
LOCAL SET name = ...
SET name = { expr }
SET name = < expr >
SET name = expr IF ( expr )
SET name = expr1, expr2 [, expr3 ]
SET name = expr1 ? expr2 : expr3
SET name LOCAL
SET DIMEN ( name ) = INTEGER
SET name = WORD ( [ WORD [ , WORD . . . ] ] )
SET name [ expr ] = expr
SET name [ expr, expr ] = expr
SET IMAGE[expr, expr] = expr
SET HELP WORD [ rest ]
SET RANDOM s_expr

Conduct various operations on vectors of data. The simplest, SET name = expr sets vector name

to be equal to the expression expr. If the IF clause is present, name will only contain those elements

of expr for which it is true (non-zero). A special case of an expression is simply a list of values

within braces (or angle brackets).4 For string-valued vectors, the only allowable expressions are

a string-valued vector, the CONCATenation of two string vectors, the addition (i.e. element-by-

element concatenation), or a string in single quotes (e.g. SET s=’Hello, World’ or SET ss=’n_{’

+ < e cl co g > + ’}’).

Within a macro, any of these commands that set an entire vector may be preceded by the word

LOCAL. This ensures that the vector name is only visible within that macro, and any called from

it (see Chapter 22 [Local], page 122). Future references to the name automatically refer to the

local vector, so only the first occurrence need be preceeded by LOCAL. Such local vectors are

automatically destroyed when they go out of scope; in fact it is illegal to delete one explicitly.

An equivalent way to achieve this is with the command SET name LOCAL, after which the vector

may be SET in local scope (so SET x LOCAL SET x=10 SET x=20 is equivalent to LOCAL SET x=10

SET x=20).

Note that, as usual, you may have to be a little careful to ensure that you don’t exit a macro

before you expect. The symptoms would be that your local vector was already destroyed, or that

it referred to one at less restrictive scope (see Section A.1.5 [Command Internals], page 162). The

easiest fix is to add a comment line to the end of the macro.

With expressions separated by commas the SET command is like a DO loop, setting name to

be the values between expr1 and expr2, at increments of expr3 (which defaults to 1). You can

4 You are not allowed to use commas in such a list, so set x={1, 2, 3, 4 } makes x a string vector;

but set x=atof(x) soon fixes that (or say set x=atof({1, 2, 3, 4 }) in the first place). You

can use index and substr to achieve the same result for truly string-valued vectors.
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also use an implicit DO as part of an expression, e.g. SET x=1 + do(0,10,2)/10 (see Chapter 22

[Arithmetic], page 86).

The command with ? and : is similar to the C ternary operator. If expr1 is true, take the

corresponding value of name for expr2, otherwise use expr3. This command is worth learning, as

it can often be used to replace a DO loop. This command is in fact simply a special case of SET x

= expr.

If you have a DO loop that calculates each element of a vector in turn, something that is possible

if inefficient in SM,5 you need to define a vector before you use it. You will also need to declare a

vector (or create it by putting it on the left of a SET command) if you want to use a vector-valued

subscript on the left of an expression. This can be done with the SET DIMEN(name) = INTEGER,

which also initialises it to 0. Thus SET DIMEN(y) = DIMEN(x) is equivalent to SET y = 0*x.

You cannot use expressions as the dimension, but SET y = $(4 + 4) works perfectly well. You can

optionally specify a qualifier to the dimension, in just the same way that you can specify a qualifier

to a column in a READ command, so SET DIMEN(s) = 10.s declares a 10-element string-valued

vector. See also SET WORD [ expr , expr ] = val.

SET name = WORD ( [ arg [ , arg . . . ] ] ) allows you to use a macro as a sort of function

definition. Within the macro WORD any assignment to $0 has the effect of assigning to name,

and the other arguments behave as normal. The arguments arg can be words or numbers (but not

general expressions) and are separated by commas. Note that this is a change to the syntax of this

command! Previously only one argument was permitted, but it could be an expression, and the

result was returned by assigning to $1 in a rather confusing way.

SET word[expr] = expr sets the elements expr of vector word to the values of the vector on

the right hand side. If the left hand side is a string but the right hand side is numerical it will be

converted. The first expr is converted to an integer before being used as an index; if it is too small

it’s set to 0, if too large to the largest allowable index. For example,

set i=0,10 set x=100*i
set dimen(y) = dimen(x)
set y[i-1] = x

will result in a complaint that -1 is an invalid index and set y = { 100 200 300 . . . }. Note that

arrays are subscripted with [ ] not (), and that, as always, indices start at 0 not at 1. The word

must exist before you can do this to it.

If your range of indices is contiguous you can say:

set x[0,10] = y

instead of

5 you can often do better with a ?: or SET WORD[expr] = expr command
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set i = 0, 10
set x[i] = y

As a bonus the vector x will be extended as needed to accomodate the new elements. This

means that

set x = x CONCAT y

is equivalent to

set x[dimen(x), dimen(x) + dimen(y) - 1] = y

If you have pre-allocated x to be large enough, the latter is (maybe much) more efficient.

This also provides a way to generate a vector initialised to a desired value:

set x[0, 100] = 10

SET IMAGE[ix,iy] is used to set elements of an image to the specified values. The image must

exist (see Chapter 22 [Image], page 116), and the vectors ix and iy are interpreted as integer

subscripts into the image (0-indexed, of course). This is the inverse of the SET z=image[ix, iy]

and isn’t quite the same as the SET z=IMAGE(x,y) command, as x and y are interpreted with

using the (optional) xmin, xmax, ymin, and ymax values. In the old days, this command was set

image(ix,ix) = ..., but this was confusing and is now deprecated.

SET HELP sets the help string for a vector; the rest of the line is read, and will be returned in

response to a HELP WORD request. It can also be used in the string-valued expression HELP(name),

for example YLABEL $(HELP(yvec)).

SET RANDOM number sets the seed of the random number generator used by the RANDOM

operator; if you don’t set it yourself it’ll be set to some value based on the time since 1970.

Let’s look at some examples.

SET y = $v1 + 5.0 * x

This sets each element of the vector y to be the value of the scalar $v1 plus 5.0 times the corre-

sponding element of the vector x (assuming that x has been defined previously)

SET data_set_1 = lg(x) IF ( lg(x) > 0)

This sets the elements of the vector data_set_1 to be the (common) logarithm of the corresponding

element of the vector x, if that logarithm is > 0. Thus data_set_1 will in general be of smaller size

than x.

SET data = (lg(x) > 0) ? lg(x) : 0

In this case, data_set_1 will be the same size as x, and any elements of data_set_1 where the

corresponding element of x is less than or equal to 1, will be set to 0.

SET vec = 4*{ 1 1.5 2 2.5 3 }

SET
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will define a vector vec, with 5 elements, with the values given by four times those in the list.

SET vec = 1,12,2

an alternative way of defining the same values.

SET i = { 2 3 }
SET x = vec[i]

will set the vector x to have be 8 10 (i.e. vec[2] and vec[3]).

MACRO pow 2 { SET $0 = $1 ** $2 }
SET vec = pow(vec , 3)

cube the vector vec.

SET vec[0] = 2*pi

Change your mind about the first element of vec.

SET HELP pam Wichita, Kansas, July 7, 1953

will set the help string for vector pam to be the string Wichita, Kansas, July 7, 1953, so when

you type HELP pam, this string will be printed out.

SET rhl=Robert

defines a string vector with one element.

SET DIMEN(rhl) = 10.s

defines a string vector with ten elements (all blank), while

SET rhl={Robert Horace Lupton}

defines a string vector with initialised elements, and

SET rhl[1]=Hugh

corrects it.

See the CURSOR command for defining a pair of vectors using the cursor to mark the points,

and SPLINE for how to fit splines to pairs of vectors.

Syntax: SHADE INTEGER pexpr pexpr
SHADE HISTOGRAM INTEGER pexpr pexpr

(‘Pexpr’ is the name of a vector, or an expression in parentheses, e.g. SHADE 1000 x (sqrt(y))).

Shade ‘inside’ a curve defined by the expressions. The shading is rotated through the current

value of ANGLE, and lines are spaced INTEGER apart (screen coordinates, so the full screen is 32768

across). If INTEGER is 0, the lines will be drawn as close together as the device allows, simulating an

SHADE
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area fill. This is a very inefficient way to fill areas, made only slightly better by specifying a large

LWEIGHT on devices that support such things in hardware (you’ll also get slightly jagged edges).

The meaning of ‘inside’ is that as the shading is done, from left to right taking the value of

ANGLE into account, lines are drawn from every odd to every even crossing of the curve. The curve

is considered as being closed by joining the first to the last point. If a shading line just touches

the curve the algorithm may be confused, change INTEGER slightly, or adding 180 to ANGLE.

Sometimes joining the ends of the curve may not be what you want, try using CONCAT to add points

on the end yourself. For example,

SET x=0,10 SET y=x**2 LIMITS x y SHADE 1000 x y

looks like a new moon, but

SHADE 1000 (x CONCAT 10) (y concat -1e10)

shades beneath the curve, for ANGLE 0 that is. You could also try the macros scribble and shading

in demos, e.g. type load demos scribble.

SHADE HISTOGRAM is similar, but it shades the histogram that would be drawn by HISTOGRAM

from the same set of points. In this case the area to be shaded lies between the histogram and the

line y=0. If this offends you, offset the whole graph and lie about the axes.

Syntax: SHOW

List the values of some of the internal variables, including current location and plot region limits

in user and device coordinates, the value of the expansion and angle variables, the line type and

weight, and the physical limits. Show is actually a macro, so you could modify it to your own ends,

for example listing the current data file too.

Syntax: SORT { vector_list }
SORT < vector_list >
SET vec = SORT ( expr )

Sort the first vector in the list into increasing numerical order, and rearrange the others in the

same way. The maximum number of vectors that can be sorted is 10. For example, following the

commands

SET e = { 2 7 1 8 2 8 1 8 2 } SET p = { 3 1 4 1 5 9 2 6 5 }
SORT { e p }

the vectors e and p would be 1 1 2 2 2 7 8 8 8 and 4 2 3 5 5 1 1 9 6 . The order within the p

vector is not defined when the e values are identical.

Any mixture of string- integral- and arithmetic-valued vectors is allowed.

You can also use SORT to sort a single expression, returning an expression; e.g.

SORT
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SET x=0,10 SET y = SORT(FLOAT(x)) + SORT(SIN(pi*DO(0,1,0.1)))

(actually, you don’t need the FLOAT, but you’ll get a warning if VERBOSE is 2 or more).

Syntax: SPLINE x1 y1 x2 y2

Fit a natural cubic spline through the points specified by vectors x1 and y1. The dimensions

of x1 and y1 must be the same and must exceed 2, x1 must be monotonic increasing (use SORT if

necessary). When the spline has been fit, take the points specified in vector x2, and fill the (new)

vector y2 with the corresponding values. Linear interpolation is used beyond the ends of x1.

Strings

SM supports a number of string operations on vectors and scalars. In the following descriptions

expr is a expression and vector the name of a vector.

Unary:

ATOF(expr)

The value of expr converted to a floating point number. If an element of the expression

cannot be so interpreted (i.e. it doesn’t start with an optional sign followed by a digit),

the value returned will be 0.

CTYPE(STRING)

Return a vector with the names of all currently defined colours; there is also CTYPE()

to recover their values (see Chapter 22 [Arithmetic], page 86).

HELP(name)

The help string associated with vector name (set with SET HELP)

LENGTH(expr)

The length (SCREEN units) that a string would have if plotted

STRLEN(expr)

The number of characters in a string

STRING(expr)

Convert a number to a string. You might prefer to use sprintf(’%t’,expr) instead, as it

gives you more control.

STRING<WORD>

Convert a string to a string, quoting ”. You don’t usually need to use this (simple

write ’my string’), but if your string already contains quotes this doesn’t work.

( expr ) Raise precedence

Binary:

STRINGS
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expr + expr

Add; concatenate element by element

expr CONCAT expr

Concatenate the two vectors

INDEX(expr_1,expr_2)

Return the starting index of expr 2 in expr 1, or -1 if not found.

SPRINTF(expr_1,expr_2)

Format expr 2 using the standard C format string expr 1. The additional format %t

or %T is identical to %e, but formats the string as a power of 10 in TeX format. Note

that only one expr may be formatted, but that you can say sprintf(expr,expr) +

sprint(expr,expr) . . . to work around this restriction.

vector[expr]

The elements of vector given by expr.

Ternary:

SUBSTR(expr_1,expr_2,expr_3)

Return the substring of expr 1 that starts at expr 2 and is expr 3 characters long. If

expr 2 is negative, count from the end of the string; if expr 3 is 0 return the rest of

the string. For example, ’Dr. ’ + substr(’Ralph Monger’,-6,0) would return ’Dr.

Monger’.

expr1 ? expr2 : expr3

expr2 if expr1 is true, else expr3

Node that this is similar to the corresponding SET command, but it needs parentheses if used as

an expression.

All indices, as elsewhere in SM, start at 0; e.g. substr(’Algonquin’,0,1) is A.

The expression VECTOR[expr] results in a vector of the same dimension as the expr, with

elements taken from VECTOR (i.e. VECTOR[INT(expr_i)]).

You can also use WORD([ expr [ , . . . ]]) as part of an expression, where WORD is a macro taking

zero or more arguments. The arguments are restricted to be either the names of vectors or numbers;

sorry.

You can use the usual logical operators (see Chapter 22 [Logical], page 123) with string-valued

vectors ; there’s a discussion in that section of the confusions that people conjure up about when

they need to use ’’.

The HELP(name) string operator is often useful in labels, for example

SET HELP size "r_e"
. . .
XLABEL $(HELP(size))

STRINGS



146 SM

The precedences are what you’d expect, with + being higher than CONCAT. The logical operators

have even lower precedence than CONCAT.

Syntax: SURFACE type z1 z2
or SURFACE type z1 z2 WORD WORD

Draw a wire-frame surface of the current IMAGE from the point defined by VIEWPOINT. If the

WORDs are omitted a line in the surface will be drawn for each row and column of the image; if

the WORDs are present they will be taken to be the x- and y- coordinates of the desired lines, and

SM will interpolate in the image to determine the corresponding values (see also the hundreds digit

of type, below).

The command VIEWPOINT specifies the position of the observer and the type of projection used

(see Chapter 22 [Viewpoint], page 153).

The last digit of TYPE is used to determine which surface to draw:

0 no hidden line removal
1 draw top surface
2 draw bottom surface
3 draw both top and bottom surfaces

If type’s tens digit is set, SURFACE will use the current limits (as set with LIMITS) rather than

autoscaling them from the data.

If type’s hundreds digit is set, the two WORDs are taken to be the x- and y- coordinates cor-

responding to the rows and columns of the IMAGE, but no interpolation is done. For example,

after

IMAGE (11,11)
SET ix=0,10
set xs=0,10,2
do y=0,10 {

SET IMAGE(ix,$y) = cos(0.2*ix)*sin(0.4*$y)
}
VIEWPOINT 30 -10 -1
SURFACE 3 -1.1 1.1 xs xs

will draw a 2-sided surface, drawing 21 lines in each direction on the surface. If, on the other hand,

the data were really only known on at irregular set of x- and y-values, you could say something like

IMAGE (11,11)
SET ix=0,10
SET x = { 0 1.3 2.4 3 4 4.5 4.6 6.7 8.2 9.6 10 }
SET y = { 0 0.4 0.9 1.2 2.718 3.14 4.2 5.4 6.667 9.1 10 }
do i=0,10 {

SET IMAGE(ix,$i) = cos(0.2*x)*sin(0.4*y[$i])
}

SURFACE
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CTYPE cyan
SURFACE 103 -1.1 1.1 x y
CTYPE default

to draw the same surface.

If TYPE’s thousands digit is set, the surface is not clipped to the z-axis limits z1 and z2.

z1 and z2 are the limits used for the z-axis; you might want to set them with MINMAX. The

surface drawn will be truncated at z1 and z2 unless you are using an axonometric projection (see

Chapter 22 [Viewpoint], page 153).

There are some useful macros in the file ‘surfaces’; say load surfaces to read them. If

VERBOSE is one or more, a helpful header will be printed when you load the file.

Syntax: TABLE [subtable] [’format’] file
TABLE subtable \n
READ TABLE { WORD [WORD . . .] }
READ TABLE ’format’ { WORD [WORD . . .] }
READ TABLE ’byname’ { WORD [WORD . . .] }
READ TABLE ’bycolumn’ { WORD id [WORD id . . .] }
LIST TABLE

SM is able to read a wide range of table formats, using tricks similar to those used for the

IMAGE command. The variable table_type is used to specify which you want (and may be set

in your ‘.sm’ file). Common values are bintable and ctable.

TABLE [...] file is the equivalent of the DATA command, and sets file file to be the source

of data read with the READ TABLE command; if the file can’t be opened for read, you will be

warned. If the subtable argument is provided, it specifies which table in a TABLE file is to be

read; this is only currently supported for FITS tables ($table_type is bintable or a type derived

therefrom; for such tables you probably want to use a subtable of 1). The format, if provided,

specifies the types of the columns in the table; some tables may provide this either in the table

header (e.g. FITS binary tables) or in the filecap file, as the FM quantity. Allowable format strings

are specified at the end of this file. This format applies to READ TABLE commands for this table,

unless specifically overridden.

The range of lines specified by LINES is reset; the LINES command may be used to select

portions of TABLEs to read.

If you don’t specify the filename, and if SM knows how to skip tables, it will skip over HDUs that

it has already read, provided that the SM variable save_read_ptr is set (which it is by default;

see Chapter 22 [Read], page 134).

The READ TABLE command is used to read data from a table. If you specify a format string

and a list of names, a vector will be read from each column specified in the format and assigned
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to the corresponding vector (for example, READ TABLE ’x16if2’ { i x y } will skip 16 bytes at the

start of the row, then read an integer into i, and two columns of floats into x and y). Format

strings are described at the end of this section.

If you specify the format as ’byname’, the names of the vectors will be taken to be the names

of columns in the file, and the corresponding columns will be read. If the column name, say RDL,

specifies an array, the vector will be filled from column RDL[0]; as an alternative to this you can

specify the name as (e.g.) RDL[2] in which case vector RDL2 will be created from column RDL[2].

You can also say RDL[0-2] to read vectors RDL0, RDL1, and RDL2. Byname access is only currently

supported for FITS binary tables (as a special case, you can specify byname as the format in a

filecap file).

The name that you give will be used as the name of the vector, but the matching with the

binary table is done without regard to case, so

read table ’byname’ { AlGoNqUiN }

and

read table ’byname’ { Algonquin }

will read the same column of the table into two different vectors, AlGoNqUiN and Algonquin.

For tables where byname formats are acceptable, you can list the available column names with

LIST TABLE.

If you specify the format as ’bycolumn’, the list is expected to be a list of pairs of values (similar

to the regular READ { x 1 y 2 ... } command). The first element of each pair is the name of a

vector, the second may be either a number or a column name (if supported). The number gives

the desired column with respect to the current format string. For example,

TABLE ’d*’ file
READ TABLE ’bycolumn’ { x 1 y 2 }

will read x and y from the first two columns of the file, whereas

TABLE ’x8d*’ file
READ TABLE ’bycolumn’ { x 1 y 2 }

will read x and y from the second and third columns of the file, assuming that a double (the d) is

eight bytes wide.

Instead of a number, you may be able to specify a column name, for example

READ TABLE ’bycolumn’ { x_u rowc[0] x_g rowc[2] }

but this depends on your chosen $table_type having support for byname access. In general you

will not be able to mix name- and column- orientated access (for example, we do not support

column orientated access to FITS binary tables unless you provide a format).
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TABLE’s formats are strings (i.e. they must be enclosed with ”). consisting of a set of types

followed by optional repeat counts, for example ’x12f5d*’ would specify a table, each of whose

rows had 12 unwanted bytes, 5 floats, and the rest integers. Format letters are:

a A 1-byte ascii string

c A 1-byte char

d An 8-byte double

f A 4-byte float

i A 4-byte int

l A long int (may be 8 bytes on some machines)

s A 2-byte int

x 1 byte to skip (a space may be used instead of an x)

and each may be followed by a repeat count (default: 1), or a *, meaning to repeat as many

times as fits into a row. In all cases except a, the repeat count refers to how many columns there

are (so d4 means 4 doubles); for a it refers to the length of the string (so a4 is one 4-byte string).

Note that the maximum length of an a table is the length of an element of a string-valued vector

(usually 40, but configurable by whoever built your copy of SM).

Header keywords may be available with the DEFINE name IMAGE command.

Syntax: TERMTYPE word [ INTEGER ]

Set the terminal type to be WORD. This has nothing to do with graphics, but is to do with

the history and macro editors. WORD is case-sensitive. With two exceptions, the properties of the

terminal will be read from the termcap file (see Section A.17 [Termcap], page 197). If WORD is dumb

SM tries to support editing on a (very) stupid terminal. If this isn’t what you want, for example

you are running SM from within emacs TERMTYPE none is equivalent to starting SM with the -s flag

and entirely disables input line editing (although commands are still remembered so commands like

playback and hcopy will still work). You can turn editing back on by issuing a TERMTYPE command

with a valid terminal name.

For most purposes you don’t even need to use this command, as when SM starts up it reads the

value of the environment variable TERM (under Unix) or logical variable (under VMS) it effectively

issues a TERMTYPE command with its value as argument. If you have a term entry in your ‘.sm’

file this takes precedence over any TERM variable. For example, a term entry of selanar -21 is

equivalent to the command TERMTYPE selanar -21.

You also should not have to use the optional INTEGER argument, which specifies the number of

lines that will appear at a time when LISTing things, as this information is usually derived from
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termcap. If you are using a window system, then termcap may be wrong and this argument may

be useful. Another exception occurs when you wish to disable cursor motion to avoid having your

graphs scrolling off the screen. If this concerns you see Section A.17 [Termcap], page 197.

Syntax: TICKSIZE SMALLX BIGX SMALLY BIGY

Determine tick intervals for BOX. SMALLX refers to the interval between small tick marks on the

x axis, BIGX refers to the interval between large ticks and so forth. If BIG is 0, the axis routine will

supply its own intervals according to the label limits. If SMALL < 0, the axis will have logarithmic

tick spacing and BOX assumes that the limits are logarithms, e.g. -2 and 2 refers to limits of 0.01

and 100. If both BIG and SMALL are 0, you’ll get SM’s default behaviour.

Negative values of SMALL and BIG are interpreted as specifying the tickspacing in the decade

1:10, and are scaled to fit the decades actually plotted. For instance, if you say

LIMITS 0 1 3 4
TICKSIZE -1 10 -0.1 1 BOX

then the x-axis will have small ticks at 2, 3, . . ., 9 and big ticks at 1 and 10, while the y axis will

have small ticks at 1100, 1200, 1300, . . . and big ticks at 1000, 2000, 3000, . . . (You might want

to use NOTATION to stop SM using exponential notation for the 10000 label). The most usual

TICKSIZE is probably -1 10, and this may be written -1 0 for backwards compatibility.

Occasionally you may want to use the same tickspacing in all decades of your plot. To do this

make BIG negative also in which case the spacing used for the first decade plotted will be used for

all decades. (Note that this means that if the axis is plotted backwards then the value from the

largest decade will be used):

LIMITS 1.9 2.1 2.1 1.9
TICKSIZE -0.1 -1 -0.1 -1 BOX

this is a good way to make an axis very crowded!

If you really cannot use TICKSIZE to accomplish your needs, you can use AXIS and provide

vectors specifying the positions of the big and little ticks, and even the axis labels.

Syntax: USER ABORT [ string ]
USER integer string

The first form, USER ABORT, is used to generate a syntax error, and return to the prompt

(with a traceback if you’ve requested one with the traceback variable). The command reported

as the offender is string if provided, otherwise USER ABORT.

If you want to catch these errors you can define a macro abort_handler which will be called

with the message as all of its arguments instead of causing SM to return to the command prompt.

For example, I use
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abort_handler 111 # catch USER ABORT
echo Caught user abort: $1
#

Note that the argument extends to the end of the line — this is important! If abort_handler

took a single argument, what would the command USER ABORT good bye world do? First the

handler would be called as abort_handler good bye world. It’d pull off the first argument good

and print it and SM would continue to process bye as a command. It’s neither a command nor a

macro, so the default macro_error_handler executes USER ABORT bye is not a macro; aborting.

Rest of line: world. The abort handler pulls of the bye, and tries to execute is — and we have

an infinite recursion that is broken only by a ^C or by reaching the maximum depth to which SM

will nest abort handlers.

The other, with an integer, calls a function called ‘userfn’, passing the integer and the string

as arguments, both are passed by address as if SM were written in fortran (string is passed as a

NUL terminated C string, though).

This function is provided to allow users without C compilers to make additions to the main

grammar, but whether it is really useful is a different matter. Currently, if integer is non-zero

then both integer and string are printed unless integer is 1, in which case the command USER

1 r 1.23 is equivalent to SET r=1.23 (only constants are allowed).

If string is dump you’ll get a macro stack trace, and if it’s segv you’ll get a segmentation

violation (on purpose). If you really want some new functionality, send us mail.

Syntax: VERBOSE INTEGER

Make SM produce output on what it is doing if INTEGER is > 0. Setting VERBOSE to 0 is a

way of only listing ‘important’ (non-system) macros, and generally getting a little peace and quiet.

It has the considerable disadvantage that you can think that you are reading data from files, while

actually something is wrong. For this reason the default value is 1. A value of 2 or more is basically

useful for debugging. If you get some nondescript syntax error and don’t know where it is coming

from, VERBOSE of 3 or 4 will trace your programme, and should help find the problem. The

original error message will tell you which macro SM thinks it is processing when the error occurred

but it will be wrong if the macro had been fully scanned when the error is detected. In this case it

will report a parent of the current macro. The reason for this behaviour is related to why RETURN

can return from the wrong place (see Section A.1.5 [Command Internals], page 162).

If you want to know the current value of VERBOSE you can use the SHOW command (actually

a macro), or try

DEFINE verbose DELETE echo Verbose: $verbose

which is (of course) what SHOW does anyway.
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If verbose is one or more SM will:

• Complain about things like division by zero, and logs of negative numbers the first time that

they occur in a given expression

• Correct you when you use the wrong format to print a vector

• Identify the X11 device that you switch to with -dev [+-]

• Include all macros in macro listings, even those starting ##

• Indicate line where arithmetical errors occur

• List all non-printing key-bindings with LIST EDIT

• Note more than 40 curve crossings in SHADE

• Notify user when a CONTROL-C stopped the production of a hardcopy

• Output a little extra about RESTORE and SAVE

• Print lines beginning # while reading macro files

• Provide some context with APROPOS on help files

• Realise that a WINDOW number is out of range

• Report which lines are read from a file using READ

• Remind you that mixing LOCATION with WINDOW confuses people

• Say something about format and size of IMAGE files

• Suggest that you change LOCATION to make room for axis labels

• Tell you what keys to use with the cursor

• Warn about zero-length vectors

• Whinge about missing fields with DEFINE var READ # #

• Write a note when it finds out-of-range values while contouring IMAGE files

if INTEGER is two or greater, then also :

• Announce when the do, foreach, input, or macro stacks are extended

• Complain if an environment or SM variable is not defined

• Echo lines in data files that start with #

• Include ‘internal’ variables in LIST DEFINE output

• Inform you when it seeks to a line in a data file

• List all key-bindings with LIST EDIT

• Note attempts to ‘unput’ off bottoms of buffers (this is related to the implementation of macros

and variables)

• Point out attempts to delete local variables and vectors

• Print the fraction of axes covered by the tick labels

• Prompt for variables, even if they are on the macro buffer
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• Protest if you reference an undefined history number

• Remark if a variable is referenced in a graphcap SY string, but not provided

• Remind you that only a finite number of KEY commands can be processed

• Repeat complaint about things like division by zero, and logs of negative numbers every time

that they occur

• Report vectors of different lengths in PRINT

• Say when a vector is used as a scalar.

• Tell you when vectors are redefined.

• Write a note when it finds out-of-range values while contouring IMAGE files.

if INTEGER is three or greater, then also :

• List each macro name just prior to expansion.

if INTEGER is four or greater, then also :

• Print each token as it is recognised along with its text. The number in

• column 1 is the value of ‘noexpand’, the level of nesting of {} loops.

• Show expansions of variables.

if INTEGER is five or greater, then also :

• Print the contents of DO, FOREACH, IF, and MACRO command lists.

• Prompt for DEFINEing variables and the values of multi-word variables.

If you set a negative verbosity, then if the parser was compiled with DEBUG defined, you’ll get

a veritable torrent of debugging information. Use another negative VERBOSE command to turn

it off again.

Syntax: VERSION

Return a string identifying the version of SM in use. If you have any reason to communicate

with SM’s authors, we’ll want to know which version you are running. As a matter of fact, version

is a macro to print $version.

Syntax: VIEWPOINT theta phi l

Surfaces are drawn from a direction (THETA,PHI), and projected onto a surface passing through

the origin. The projection is from a point L away from the nearest corner of the cube containing

the image. If L is positive a perspective projection is used; if it is 0 the viewpoint is taken to
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be infinitely far from the surface, and if it is negative an axonometric projection is used (i.e. the

surface is projected from infinity onto the x-z plane).

The coordinate system is such that the z-axis is THETA=90, the x-axis is (THETA,PHI) = (0,0),

and the coordinate system is right handed. Angles are taken to be in degrees, with theta lying in

[-90,90] and phi lies in [-180,180]. The nearest corner of the cube containing the surface is projected

onto the point (0,0).

There are some useful macros in the file ‘surfaces’; say load surfaces to read them. If

VERBOSE is one or more, a helpful header will be printed when you load the file.

Syntax: Whatis ( expr )

WHATIS(something) has a value depending on what something is:

a number: 0
not a number: set 01 bit (bit 0)
a macro: set 02 bit (bit 1)
a variable: set 04 bit (bit 2)
a vector: set 010 bit (bit 3)

a float vector: set 040 bit (bit 5)
a string vector: set 0100 bit (bit 6)
a long vector: set 0200 bit (bit 7)

a keyword: set 020 bit (bit 4)

So if “aa” is the name of a string vector, WHATIS(aa) has the octal value 0111, or 73, whereas

WHATIS(HELP) has the value 021, or 17, and WHATIS(1) is 0. There is a macro in ‘utils’ called

is_set that tests if WHATIS sets a particular bit, for example

if(is_set(kkk,3)) { echo kkk is a vector }

tests if bit 3 (vector) is set for “kkk” and prints its findings; it’s easier to say

if(is_vector(kkk)) { echo kkk is a vector }

which does the test for you.

Syntax: WINDOW nx ny x y

WINDOW makes the current plot location the window at (x,y), where there are nx windows

across and ny windows up and down. WINDOW 1 1 1 1 resets the plot location to the entire

plot area. The size and placement of the windows is decided by the value of EXPAND when the

WINDOW commands are issued, so be sure that EXPAND has the same value for every window

in a set. (It’s used to figure out the axis labels, and spacings between boxes). While plotting to a

given window you can of course change EXPAND to your heart’s content.
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If the number of windows in either the x or y direction is negative no space is left between the

boxes in that direction (try DO i=1,3 { WINDOW 1 -3 1 $i BOX }). It’s possible to overload

‘window’ and ‘box’ to only label external axes in blocks of touching boxes.

If either x or y is specified as, e.g. 2:4, the window is set to cover the range 2-4 (i.e. the part of

the screen covered by windows 2, 3, and 4). Note that this feature can be used to split the screen

in arbitrary ways, e.g.

window -1 -6 1 1:5 box
window -1 -6 1 6 box

(or you could say window -20 -20 15:19 15:19 as an alternative to a LOCATION command).

If you don’t want boxes that touch, but you don’t like the gaps left between boxes by the WINDOW

command, you can now do something about it legally, without lying to SM. After we calculate the

widths of the ‘gutters’ between the windows that we think that you need, they are multiplied by

the values of the SM variables x_gutter and y_gutter, so if you think that the spacing is too large

in the x direction you can say

define x_gutter 0.5
window 2 2 1 1 box
window 2 2 1 2 box

to make things look better. Within a macro it can be convenient to say local define x_gutter

0.5, as then the gutter value softly and suddenly vanishes at the end of the macro.

It’s confusing to change LOCATIONs while using WINDOWs; you probably want to say WIN-

DOW 1 1 1 1 first.

Syntax: WHILE { expr } { commands }

Repeat the commands while the expr is true. You can break out of the loop early with the

BREAK command (see Chapter 22 [Break], page 90).

There is further discussion in section See Chapter 10 [Loops and If], page 37.

For example,

define i 0
while{$i < 10} {

echo Hi $i
define i ($i+1)

}

is equivalent to either

do i=0,9 {
echo Hi $i

}
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and

set i=0
while{i != 100} {

if(i == 10) { break }
echo Hi $(i)
set i=i+1

}

except in so much as which variables and vectors are defined at the end.

Syntax: WRITE STANDARD string
WRITE [+] WORD string
WRITE HISTORY WORD

WRITE STANDARD writes a string, followed by a newline, to the standard output. The string

is taken to be the rest of the line up to a carriage return (which may be written explicitly as \n).

The macro echo is usually used as an abbreviation for this command. WRITE WORD is similar,

except that the string is written to file WORD. If the filename is the same as the previous WRITE,

or if you preface the filename with a +, the string is appended, otherwise the file is overwritten.

WRITE HISTORY WORD, writes macro WORD onto the end of the history list.

For MACRO WRITE, see under macros.

Syntax: XLABEL str

Write the label str centered under the x axis made by BOX. The string is taken to be the rest

of the line up to a carriage return (which may be written explicitly as \n). If you think that the

label is badly positioned you can say things like

XLABEL \raise-500My X-axis Label

(providing that you use TeX-style fonts, of course)

If the label is too tall it may overlap with the numerical tickmark labels. If VERBOSE is one

or more, you’ll be warned about this, and a suggested change to the plot LOCATION will be

suggested. This moves the entire plot; it is your responsibility to reset it later if appropriate.

If ANGLE is non-zero, it will be used to determine the direction of the label, otherwise it is

parallel to the x axis.

See Chapter 14 [Labels], page 51, for a description of how to enter a label with funny characters,

sub- and super-scripts, and so forth.

If EXPAND is set to exactly 1, and ANGLE is exactly 0, then SM will use hardware fonts, when

available, in writing labels. This is faster, but if you don’t like it say “EXPAND 1.00001”, or start

the string with a \0 which does nothing, but forces the software character set.
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Syntax: YLABEL str

Write the label str centered to the left of the yaxis made by BOX. The string is taken to be

the rest of the line up to a carriage return (which may be written explicitly as \n). If you think

that the label is badly positioned you can say things like

YLABEL \raise500My Y-axis Label

(providing that you use TeX-style fonts, of course)

If the label is too tall it may overlap with the numerical tickmark labels. If VERBOSE is one

or more, you’ll be warned about this, and a suggested change to the plot LOCATION will be

suggested. This moves the entire plot; it is your responsibility to reset it later if appropriate.

If ANGLE is non-zero, it will be used to determine the direction of the label, otherwise it is

parallel to the y axis (ANGLE 360 will achieve horizontal labels).

See Chapter 14 [Labels], page 51, for a description of how to enter a label with funny characters,

sub- and super-scripts, and so forth.

If EXPAND is set to exactly 1, and ANGLE is exactly 0, then SM will use hardware fonts, when

available, in writing labels. This is faster, but if you don’t like it say “EXPAND 1.00001”, or start

the string with a \0 which does nothing, but forces the software character set.
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Appendix A Appendices

A.1 The Command Interpreter

The basis around which the command interpreter is written is a grammar which is passed a set

of tokens ( analogous to words in English ) which it parses, given a set of grammatical rules. As it

recognises each rule, it executes the code associated with that rule. See Section A.14 [Grammar],

page 190.

An example would be:

aa : BB CC
{

printf(‘‘Rule BB CC found\n’’);
}

which specifies that the rule aa consists of the token BB followed by CC, and that if rule aa is

recognised the programme should print that fact out. Conventionally, uppercase names are reserved

for ‘terminal symbols’, and lowercase for ‘non-terminal symbols’ where terminal symbols are those

that are passed to the parser ( analogous to words ), and non-terminal symbols are tokens that the

parser has constructed out of terminal symbols (analogous to phrases). The right hand side of a

rule may contain a mixture and non-terminal symbols, and symbols may be assigned a value1.

A.1.1 Token Generation

SM generates tokens for the grammar roughly as follows: When characters are typed at the

keyboard, they are read by a routine which runs in CBREAK mode (PASSALL for VMS), and

receives each character as it is typed. It is this routine that handles command line editing, the

history system, and key bindings.2 Following a carriage return, it passes the whole line to the

lexical analyser, which divides the input stream into integers, floats, strings, or words. In addition

it recognises ${}^ as having special meanings (see below under variables ($) and history (^)). As

in C, the escape sequence ‘\n’ is replaced by a newline, which means that commands which read to

the end of the line may be fooled into thinking that they have found it; see the examples at the end

of the section. A { sets the flag ‘noexpand’, which turns off the interpretation of all special symbols,

1 The grammar is actually specified using YACC, see S.C. Johnson YACC: Yet Another Compiler

Compiler, Computing Science Technical Report No. 32, 1975, AT&T Bell laboratories, Murray

Hill, NJ07974. This report is reprinted in section 2b of the UNIX manual, and is rather difficult

reading at first. We do not in fact use the AT&T code, which is proprietary, but rather a public

domain compiler-compiler called Bison written by the Free Software Foundation.
2 Specifying -s on the command line bypasses all of this, and makes SM read input one line at a

time.
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and causes all tokens to be returned as WORD. The matching } unsets this flag. This mechanism is

used in defining macros and various lists. A word is anything which is not otherwise recognised,

so for example ‘hello there.c’ or ‘1.2e’ would be considered words. Symbols are separated by white

space, taken to be spaces tabs or newlines, or the characters !, {, }, +, -, *, /, =, ?, !, ,, <, >, (,

or ). This behaviour can be modified by enclosing a string in double quotes, when no characters

(except ^) are special, and tokens are delimited only by the end of the line, or some character after

the closing quote. Enclosing in quotes is rather similar to enclosing in {}, except that quotes have

no grammatical significance. A string in double quotes is always treated as a word, but the quotes

must not have been discarded by the time that the lexical analysis occurs. For example, "2.80" is

a float, as SM will have digested the " before looking at the string. You can fool it with "2.80 ".

A string begins with a ’ and continues to the next ’: they are used in certain contexts where SM

needs to know if a WORD or STRING is involved, for example in a PRINT command. It’s worth noting

that the ’...’ are stripped when the string is recognised – if you need to preserve them make sure

that noexpand is set (e.g. SET s={ ’a’ ’b’ ’c’} ).

The output from this programme is passed to a second stage of lexical analysis. This passes

integers and floats through unaltered, while words are passed through a filter to see if they are

external tokens3 from the grammar (such as CONNECT). If a word is recognised as being a token

then that token is returned, otherwise the token WORD is passed, and the text of the word is stored.

Tokens may be written in either lower or upper case, but for clarity they are written in upper case

in this document. The overloading of lowercase tokens is achieved at this stage by simply refusing

to recognise them as keywords.

The input stream is now fully analysed into tokens and is passed to the parser, which is written

in YACC. If the sequence of tokens seen corresponds to a grammar rule, the parser executes the

appropriate section of code, which is written in C. If the parser doesn’t understand, it tells you

that you have a syntax error and prints the last logical line that it was processing, with the error

underlined. If you can’t figure out which command it really failed on, try setting the VERBOSE flag

to be 4 or more. This produces a voluminous output, which will stop suddenly when the error

re-occurs. One simple rule in the grammar is that a WORD should be treated as a possible macro.

A.1.2 Peculiarities of the Grammar

If the command interpreter is faced with a pair of grammar rules such as

AA BB CC
and

AA BB

it may not know whether to treat the tokens AA BB as the first part of AA BB CC or as the complete

command AA BB followed by the token CC beginning the next command without examining the next

3 i.e. tokens that have been recognised, typically keywords
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token. This ambiguity only arises if a command can begin CC, and may be dealt with by defining

the second rule as

AA BB \n

This should be borne in mind whenever SM complains about a syntax error in an apparently valid

command (such as LIST MACRO HELP, intended as first LIST MACRO and then the valid command

HELP). The presence of a required carriage return also sometimes requires that macros be spread

over a number of lines rather than as one long list of commands, although a carriage return may

always be written as ‘\n’, which makes SM think that it has found a carriage return. There is a

also requirement that an ELSEless IF statement should end with a newline; this is produced by a

subtlety of the way that IF’s are processed and is discussed under IF.

SM places a restriction upon commands such as RELOCATEwhich expect more than one argument,

which is that the arguments must be numbers rather than (scalar) expressions. This is required

by the unary minus, as if the grammar sees expr1 - expr2 it cannot know whether this is the

two expressions expr1 and -expr2, or the single expression expr1-expr2. Unless the grammar is

changed, for instance by using commas to separate arguments, this restriction cannot be lifted; it

can, however, frequently be circumvented using macros such as rel discussed under ‘Useful Macros’.

As an alternative, in almost all cases the expression can be enclosed in parentheses, for example

connect (lg(x)) (-lg(rho)).

A.1.3 The Macro Processor

Executing a macro consists of substituting the text of the macro for its name. In order to

understand how SM does this you have to know a bit more about how it processes input characters.

We said above that it ‘passed the whole line’ to the lexical analyser. What it actually does is to

pass a pointer to the line, and starts reading from the beginning of the line. Now if you execute a

macro, all that is done is that we now pass a pointer to the text of the macro, and start reading

from it instead. The old pointer is pushed onto the top of a stack. When SM comes to the ‘\0’

at the end of the macro text, the stack is popped and input continues as if the macro had never

been seen. When we come to the end of the ‘whole line’ pushed at the top of this paragraph, it

is popped, and SM gives you a prompt for more input. Of course, if a macro had been seen while

the first macro was being executed, the first one would get pushed onto the stack, and attention

transferred to the the new one. If a macro has any arguments, their definitions are pushed onto

an argument stack which is popped at the proper times. To jump ahead a little, variables are

implemented in a very similar way, being pushed onto the stack, as are DO and FOREACH loops, and

perhaps more surprisingly IF statements.

The strange behaviour of RETURN at the end of macros comes about because when the input

routine is reading the RETURN it has to read one character beyond it, so as to know that it isn’t

dealing with, say, RETURN_OF_THE_NATIVE. But in looking for the next character it has to pop the

macro off the stack, so when the RETURN is acted upon we have already returned from where we
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wanted to return from, and we now RETURN from the wrong place. In a similar way, an IF at the

end of a macro will cause the parser to look for an ELSE, thereby popping the macro stack if there

isn’t one. If the IF test was true, and contained references to macro arguments, there will be a

problem as either there will be no macros defined, or the arguments to the previous macro on the

stack will be supplied.

This behaviour is changed in SM2.4.3 and above; an automatic space or newline is added at the

end of every macro, avoiding this problem.

Macro definitions are currently stored in the form of a weight-balanced tree (actually a BB(1−√
2/2) tree). This means that the access time for a given macro only grows as the logarithm of

the total number defined. In the future it may be possible to choose the weights depending on the

access probability for a given macro, but this is not currently possible. Definitions of variables and

vectors are stored in the same way.

A.1.4 The DO, FOREACH, and IF commands

It seems worth discussing the implementation of these commands. Both loops consist of a

definition of a variable, together with instructions about what to do with it, followed by a list of

commands within a set of {}, while IF just has the command list. It is not possible for the main

grammar to execute commands or macros, as the YACC implementation is non-reentrant, so the

best that it can do is to push the commands onto the input stack as a sort of temporary macro,

after defining the initial value of the loop parameter. When the ‘\0’ at the end of the loop appears,

instead of popping the macro stack we simply define the loop parameter to have its next value, and

jump back to the beginning. This means that you can’t change the value of a loop parameter, as

it’ll be reset anyway, but you can use it as a sort of local variable.

IF statements are similar, in that we read the entire list before executing it. Once more, a

temporary buffer is pushed onto the stack, with instructions to delete it after use. The reason that

a newline is required after an ELSEless IF is that the grammar will have already read the next

token to see if it was ELSE. If it wasn’t, then it will seem to have been typed before the body of

the IF. For example, IF( test ) { echo Hello } PROMPT : will be parsed as IF( test ) { PROMPT

echo Hello } : if test is true, but correctly as IF( test ) { echo Hello } PROMPT : if it is false.

Because an extra \n does no harm, we demand it.

A.1.5 Examples of How SM Parses Input

If you want to watch SM thinking about these examples, the command VERBOSE 4 will make

it print out in detail each token as it reads it, and each macro or variable as it expands it. To

turn this off, use VERBOSE 0 or VERBOSE 1. To really see the parser at work, try a negative value

of verbosity. This will report every step that the parser takes, providing that it was compiled with

DEBUG defined. A second negative value will turn the information off again.
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PROMPT @ PROMPT is an external token, so PROMPT is passed to the grammar which recognises the

rule PROMPT WORD, and sets the prompt to be ‘@’. When it has finished, control is passed

back to the input routine.

MACRO p { PROMPT }

This is a simple macro defining p to be PROMPT

p @ The lex analyser doesn’t recognise p as a keyword, so it returns WORD and as the

grammar has no other interpretation of a WORD in this context, it passes p to the macro

interpreter, which replaces it by PROMPT (i.e. pushes PROMPT onto the input stack). SM

now thinks that you have just typed PROMPT @, and behaves as described in the first

example.

MACRO pp 1 { PROMPT $1 }

The macro pp is declared to have one argument, which is referred to as $1. After pp

is invoked it reads the next (whitespace delimited) word from the input stream, and

replaces $1 by that word.

pp @ Just like the first example, the prompt is set to @.

pp You are prompted for the missing argument to PROMPT.

PRMPT As PRMPT isn’t an external token, it is a WORD, so SM tries to execute it as a macro and

complains if it isn’t defined.

DEFINE Hi Hello

The variable Hi is defined to have the value Hello.

WRITE STANDARD $Hi Gentle User

When it has read $Hi SM pushes the value of the variable Hi onto the stack and then

reads it, popping it off again when it has finished. The WRITE STANDARD command

writes Hello Gentle Reader (i.e. up to the end of the line) to the terminal.

WRITE STANDARD $Hi Gentle User \n pp "SM>"

As above, the rest of the line is written to the terminal (up to the carriage return ‘\n’),

then the prompt is changed yet again.

A.2 The Stdgraph Graphics Kernel

SM can use a single set of subroutine calls to plot on almost any terminal, and on many printers.

The routines that it uses, called stdgraph, were originally taken from the IRAF GIO package written

at Kitt Peak by Doug Tody4 and converted to C and partially re-written to be integrated into SM.

Despite our extensive rewrite, these routines should probably still be considered to be in the public

domain.

4 Graphics I/O Design, Doug Tody, March 1985. NOAO (Kitt Peak)
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A.3 The Graphcap File

Stdgraph uses a file called a graphcap file to specify the properties of terminals, in a way that

is similar to the termcap facility of Unix. You don’t have to know anything about termcap to read

this section; you don’t have to read this section unless you want to change the graphcap file to add

a new device, to fix a bug, or to change the way that SM treats your plotting device. The name of

the graphcap file is given by the variable graphcap in the environment file.

A list of files to be searched in order may be given instead of a single graphcap file (up to a

current maximum of three). The usual way to accomplish this is to add an entry

+graphcap /u/rhl/sm/graphcap

above any other graphcap entries in your ‘.sm’ file, which instructs SM to put ‘/u/rhl/sm/graphcap’

first in the list of files, followed by any others that might appear, either in your file or in some

other that the system provides (ask the person who installed SM where the default ‘.sm’ file is;

usually something like ‘/usr/local/lib/.sm’).

A graphcap file is a way of describing a terminal in a concise way, so a programme can discover

which idiosyncrasies a terminal has without having to be recompiled. A graphcap file consists of a

number of entries, one for each device supported, and to add a new terminal all that one has to do

is to add another entry. It is also possible to define variables in graphcap files, which are used in

SY entries. You can compile selected entries in the graphcap file, so as to improve access time for

popular terminals. If this has been done, changing the graphcap file for one of these terminals will

have no effect until it is recompiled, see Section A.11 [Compiling], page 180 for details.

For a list of all the capabilities that SM uses see the index to graphcap at the end of this

appendix.

Some devices are not supported through stdgraph (graphics drawn to a SunView window would

be an example), but they still appear in graphcap with a special entry (DV) giving the name of the

appropriate hard-coded device driver.

Each entry consists of a name for the device, followed by a list of aliases, followed by a list of

fields, separated by colons. A \ may be used to continue an entry onto the next line, and lines

starting with a # are comments (comment lines are permitted both between and within entries).

As a rather complex example, the graphcap entry for a Tektronix 4012 reads:

tek4010|tek4012|TEK4010|TEK4012|Tektronix 4010/2:\
:ch#.0294:cw#.0125:co#80:li#35:xr#1024:yr#800:\
:MC=^M:CL=^[^L:CN#6:GD=^X:GE=^[1^]:\
:ML=^[(1$0)‘($1)a($2)c($3)d($4)b($$:lt=01234:\
:OW=^]^_:RC=^[^Z:SC=(,!3, & *, &+!1, & *, &+!2:\
:TB=^]%t^_:VS=^]:\
:xr#1024:XY=%t:yr#780:
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This is one of the longest entries in the graphcap file - all of the terminals which are Tektronix

emulators explicitly include this entry, so they only need provide the capabilities that are different

from the Tektronix. As an example, the entry for a Pericom reads

pericom|Pericom:\
:GE=^]:TB=^](2#7-!2)%t^_:\
:tc=tek4012:

The | separate the aliases, and the final field tc=tek4012 tells stdgraph to take all other fields

from the entry for tek4012, given above. If you have specified a list of graphcap files, each will be

searched in order for each :tc= continuation. If you don’t want the search to begin again use TC,

e.g.

graphon|Graphon which claims to support lw:\
:LW=:TC=graphon:

if you had used :tc=graphon: this would have been recursive and illegal, but as TC doesn’t restart

the search it merely has the effect of adding (or in general, replacing) an capability in a preexisting

graphcap entry.

Control characters are entered as ^A, ^B, and so on (those are two characters, ‘^’ and ‘A’).

‘Escape’ may be represented as ^[, \E, or in octal as \033. Because the normal way of handling

strings in C treats \0 as meaning ‘end of string’ you can’t simply put a \000 into a graphcap entry,

instead write \377 and SM’ll interpret it as \0. (If you need a real \377 enter \377\377). If a delay

of so many milliseconds is required before the transmission of a string, it is given first (followed by a

* if it is to be applied to each line affected). This leads to problems with graphcap entries that start

with numbers, you must precede them with a space or (if the string is run through the encoder)

insert a no-op e.g. :CP=()1000:. Numerical values are preceded by a #, so :co#80: means that

co (the number of columns displayed) is 80, while :MC=^M: means that MC (the cursor delimiter)

consists of the character ^M. This could just as well have been written :MC=\010:. If the first

character of a capability is ‘@’, it specifies that that capability is not present for that terminal (e.g.

:lt@=1234: specifies that lt is not defined). A field may simply not be provided if it is irrelevant,

although in this case it may be supplied by a tc or TC continuation. A common set of graphcap

entries to ‘comment out’ are TB and TE, which deal with hardware character sets. If you don’t want

your plotter to use it’s internal fonts simply insert ‘@’ before the ‘=’. By inserting their private file

before the system one in the list of graphcap files, users can tailor the entries to their liking.

We use a subset of the graphcap capabilities defined by the IRAF group, and the distinction

between upper and lower case parameters comes from them. In a few cases our usage is different

from theirs, in these cases we have specified our own capabilities (CD→ MC, DD→ SY, LT→ ML, and

TS → TB. We have also added the lt, BP, BR, CO, CS, CT, DC, DT, DV, EP, ER, and TC. capabilities.).

First the lower case, which specify mostly dimensions:

ch Height of a character, relative to the screen height being 1.0.

co Number of columns displayable, with characters of width cw.
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cw Width of a character, relative to the screen width being 1.0.

li Number of lines displayable, with characters of height ch.

lt Which linetypes are supported in hardware.

pc Pad character for delays (use NUL if not supplied).

xr x dimension of plotting device. This may be specified as an argument from the

DEVICE line. E.g. for DEVICE example 1200 1400, :xr=$1:yr=$2: is equivalent to

:xr#1200:yr#1400:

yr y dimension of plotting device. See the previous entry for an example.

Of these, co and li are not currently used.

The capitalised capabilities mostly tell the stdgraph routines how to plot lines, clear the screen

and so forth. Some of these are no more than character strings to send to the terminal, (e.g. CL to

clear a screen), but some use the graphcap entries to programme a sort of RPN calculator, which

computes the bit-patterns that the terminals demand. This calculator is usually referred to as the

‘encoder’. We’ll first list all the capabilities in a reasonably ordered way, then describe the encoder

and what it can do, and then go through a number of examples.

First the fields which are simple character strings to be written to the terminal. The second

column is an attempt to explain the etymology of the two character name.

CL (CLear)

Clear the screen, possibly also the text screen.

CW (Close Workstation)

Close terminal, expect no more graphics.

DS (Draw Start)

Prepare the terminal to draw a line.

DE (Draw End)

Finish a line.

FD (Fill Draw)

Draw a side of a filled polygon.

FE (Fill End)

Finish drawing a filled region.

FS (Fill Start)

Start drawing a filled region.

GD (Graphics Disable)

Return the terminal to a character mode.

GE (Graphics Enable)

Set the terminal to graphics mode.
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IF (Initialisation File)

Used to supplement OW if sequence is too long.

LR (Load Registers)

(Used by the RPN encoder, see ‘binary encoding’).

ME (Mark End)

Finish a series of dots movements.

MS (Mark Start)

Start a sequence of dots movements.

OW (Open Workstation)

Prepare a terminal to produce plots.

OX (Open workstation)

(a continuation of OW).

OY (Open workstation)

(a continuation of OX).

OZ (Open workstation)

(a continuation of OY).

PG (PaGe) Start a new page.

VE (? End)

Finish a series of pen (beam) movements.

VS (? Start)

Start a sequence of pen movements.

For hardcopy devices PG should start a new page. The GD and GE are used by terminals which

spend some of their time being graphics terminals, and some being regular text terminals. The

various “... Start” and “... End” capabilities assume that the points in question are specified by

the XY entry (except for FS/FE where FD is used instead). Typically, the ‘start’ is used to put the

device into (e.g.) line-drawing mode, then the line is drawn with a sequence of XY’s, then it is

taken out of (e.g.) line mode with the ‘end’. The support for filling areas assumes that a region is

specified by drawing a line around it; if this isn’t so, you’ll have to omit area fill from graphcap,

and rely on SM emulating it for you. An example would be a Graphon GO-250, which has an area

fill where you fill rectangular areas by specifying opposing corners; this is not acceptable to SM.

Some operations require an argument, for instance setting the hardware line type, specifying

which cursor to read5, or specifying coordinates. In the following properties, the expected param-

eters are listed after the field names, the first to go into register 1, the second into register 2, and

so on. If you haven’t skipped forward to the section on the encoder this will seem obscure, but all

will become clearer.

5 Actually, SM always uses cursor 1



168 SM

CO(r,g,b) (COlour)

Set next colour to (r,g,b).

CS(n) (Colour Start)

Start defining n colours.

CT(i) (Colour Type)

Set a colour.

DC (Default Colour)

Set default colour.

LW(f) (Line Weight)

Set the lineweight to f.

MC(i,x,y) (sM Cursor)

Decode a cursor response.

ML(i) (sM Line)

Set the linetype to i.

RC(c) (Read Cursor)

Read the cursor. ‘c’ is for compatibility.

SC (Scan Cursor)

Decode the cursor reply following a RC.

TB(x,y) (Text Begin)

Start writing text at (x,y).

TE (Text End)

Stop interpreting characters as text.

XY(x,y) (X Y)

Encode the coordinate pair (x,y).

Some of the above comments are a little cryptic, but we return to the various graphcap param-

eters that take arguments as examples after describing the encoder. Note that it isn’t sufficient

to change the ML entry — for a linetype to be supported in hardware it must also be included in

the lt list, e.g. lt=01234. Similarly, for hardware fonts you must include ch and cw, and TB must

be present even if it does nothing. Note that LW is passed a floating point number, and that the

special case 0 is special, meaning choose the most efficient line thickness for the device.

The following capabilities have to do with rasterising and are discussed in their own section near

the bottom of this appendix:

BP (Bit Pattern)

Bit patterns for rastered data.

BR(i) (Begin Row)

Begin row of rastered data.
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EP (Empty Pattern)

Bit pattern for rastered empty pixel.

ER (End Row)

End of a row in rastered data.

ll (lINE lENGTH)

Length of a row for DR=hex.

MR (Many Rows)

Number of rows output at once.

nb (nUM bYTES)

Number of bytes to process at once for MR.

RA (RAster)

(RA is no longer supported – see DV).

RD (Raster Device)

Type of device if not generic.

Raster devices also make use of xr, yr, CW, OW, OX, OY, OZ, OF, and SY which are also used by

stdgraph itself.

Finally there are some capabilities that are designed for driving hardcopy devices and devices

that may not use stdgraph at all:

DT (Device Type)

Type of device in use.

DV (DriVer)

Name of hard-coded driver.

OF (Out File)

The file to direct output to.

RT (Record Terminator)

(RT is no longer supported).

SY (SYstem)

The action to be taken upon closing the OF file.

The OF file may be specified with the last characters being ‘XXXXXX’, in this case the Xs are

replaced by a random characters, to make a unique filename. If the variable temp_dir is defined

in the environment file, then OF is created in that directory, otherwise it is put in the current

directory. The DT string, if present, specifies the type of device in use. Currently the values are

only used under VMS, where they are used to decide how to open files. The recognised values are

“qms” and “imagen”. In general DT should be omitted, as it requires programming support, but

it can help stdgraph to deal with hostile operating systems. For a discussion of the DV entry, See

Section A.18.2 [New Devices], page 204.
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The SY string is passed to the operating system after graphcap variables have been expanded

(they are similar to macros in Unix’s make). A variable is defined with a line like:

name = value

where name must start in the first column. Any white space surrounding the equals sign is removed,

as are any trailing blanks. If value starts with a $ it is taken to be a regular SM variable. Variables

may be defined in any of the graphcap files in the search path, and if a name appears more than

once the first value found will be used (if you change graphcap without leaving SM the variables are

re-read). There is no guarantee that all the graphcap files in the path will be read but this is unlikely

to be a problem. The major use for graphcap variables is probably for encoding rasterise’s full

name:

BIN = /usr/local/bin
device|some device:\

:DV=raster:OF=tst_XXXXXX:\
. . .

:SY=${BIN}/rasterise -r $0 $F $1:

Variables are written as ${name} not $name, which means that they will not (usually) conflict

with the operating system’s uses for dollar signs. The graphcap variable F is special, as it always

expands to the filename specified as OF. As a concession to history it may be written as $F

instead of ${F}. Also special are $"prompt", which is replaced by a string read from the keyboard

(you are prompted with prompt), and $n which is replaced by the n’th argument to the DEVICE

command. For example, if the DEVICE command were DEVICE qms lca0 Hello (or DEVICE 1 qms

lca0 Hello), then the device name qms would be $0, lca0 would be $1 and Hello $2. If a ‘$’ is

found under other circumstances it is simply treated as a dollar sign, but if you wish you can escape

it with a \ (but remember that the \ must itself be escaped so to explicitly escape a dollar in an

SY string you must type \\$). This means that (under Unix) you can access environment variables

from SY strings, e.g. :SY=mv ${F} $HOME:. If a variable is referenced but no value is provided when

the device is opened a warning message is printed; this message can be suppressed by referring to

the variable as (e.g.) $%1.

The SY string is only used if an OF file has been specified. There is no guarantee that SY is

supported by all operating systems, but it is certainly available under Unix and VMS (SY requires

the C call ‘system()’, as defined for Unix. We have provided one for VMS, and any serious SM

implementation would have to have one too.) A trivial example of SY in use on an Unix system

would be:

:SY=cat $F ; rm $F:OF=out_XXXXXX:

(cat prints a file, ; separates multiple commands on a line, rm deletes a file). Because not all

operating systems can support multiple commands on one line, you can use \n within a SY string

to separate commands. For example, under VMS that SY string could have been written

:SY=type $F. \n delete $F..*:OF=out_XXXXXX:
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(Type adds a ‘.lis’ unless explicitly given a closing ‘.’, delete requires a version number, hence the

$F. and $F..*.) An example of the use of $"" would be

:SY=mv $F $"Output filename? ":

which renames the OF file to whatever you want.

The RT capability has been deleted in version 2.0, in favour of using DT; The RA capability has

been replaced in version 2.1 by :DV=raster:.

A.4 Stdgraph’s Binary Encoder

Different terminals have very different ways of doing the same thing. For example to move the

beam to (200,200), a vt240 in REGIS mode needs to be told ‘[200,259]’, while a Tektronix 4010

needs ‘&h&H’. In order to cope with this much diversity, stdgraph has a binary encoder with a 50

element stack, 10 registers and about a dozen operators. The encoder communicates with the rest

of the world through its registers - for example in encoding a coordinate pair it expects to find x

in register 1, and y in register 2. When reading a graphcap string, initially stdgraph simply copies

the input characters to an output string, which is then written to the terminal. This is exactly

what it does when it interprets the OW string for a Tektronix, OW=^]^_. However, in addition to

characters such as ^ being special, it also recognises the following as being special:

’ escape special meaning of next character

% Begin a format string

( Switch from copy into encode mode.

When in ‘encode’ mode, the following operators are available:

’ Escape next character (recognised everywhere)

% Formatted output, e.g. %d, %g, or %t

) Revert to copy mode

#nnn Push signed decimal number nnn onto the stack

$ Part of a switch statement

. Pop a number from the stack, and put it in the output string

, Get next number from input string, and push it onto the stack

‘str‘ Prompt with str, then read a character and push it onto the stack

& Modulus operator (similar to an AND of the low order bits)

+ Add (similar to OR)
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- Subtract (similar to AND)

* Multiply (a left shift if number is a power of 2)

/ Divide (a right shift if number is a power of 2)

< Less than (0:false, 1:true)

> Greater than (0:false, 1:true)

= Equals (0:false, 1:true)

; Branch, <boolean><offset>; (; is at 0 offset)

0-9 Push register 0-9 onto the stack

!N Pop the top of the stack into register N.

!! Pop the stack, and delay that many milliseconds.

| Convert the top of the stack from float to int (it is rounded rather than truncated).

Unless otherwise specified the stack is taken to be integer-valued, although in fact it can support

either integer or floating point values. There is no type checking – if you ask the encoder to print

the top of the stack as a float, but you stored an int, you can expect trouble. If it is needed we

might add more floating point support; apart from printing the top of the stack, the only floating

point operation supported is ‘|’ which rounds the top of the stack (taken to be a float), converting

it to an integer (so, for example, 1|1! converts the contents of register 1 from float to int).

All the binary operators operate on the top 2 elements of the stack, and push the answer onto

the top. Any other character is interpreted as an integer, and pushed onto the stack - for instance,

‘́is the same as ‘#64’, octal 100. A blank is the octal constant 040.

The % command means, ‘format the top of the stack, and write it to the output string’. The

format string may be any printf format specifier (printf is the C formatted i/o function. In practice,

the only formats that you are likely to need are %c, %d, %g and %t – and %t isn’t even in C! %c means

‘write the integer as a character’, %d means ‘format the number as a decimal integer’, %6d means

‘and make it fill 6 characters’, and %g means format a floating point number. If you should need

to know more, look at any book on C.) The special format %t means ‘take x and y from registers 1

and 2, and format them for a Tektronix’. As we shall see below, you can programme the encoder

to do this, but Tektronix emulators are so common that %t is provided for efficiency’s sake. In fact

there are two Tektronics formats, %t for 10 bit addresses, and %T for 12 bit addresses. The switch

and branch instructions are discussed below, while examining specimen ML and SC strings.

A.5 Examples of Graphcap Entries

As a simple example, the ANSI command to set a non-graphics cursor to a given line and column

is
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^[[ line ; column H

Assuming that the x and y coordinates are in registers 1 and 2 respectively, the corresponding

graphcap string would be

"^[[(2)%d;(1)%dH"

(where the quotes are not part of the format.) What if line and column coordinates start at 1, but

the terminal wants them starting at 0? then the format would be

"^[[(2#1-)%d;(1#1-)%dH"

You could write those #1’s as ^A which would be slightly faster, but why bother?

As promised above, it is also possible to encode Tektronix-type coordinates. The desired bit

format for a 10-bit address is

0 1 ya y9 y8 y7 y6
1 1 y5 y4 y3 y2 y1
0 1 xa x9 x8 x7 x6
1 0 x5 x4 x3 x2 x1

where x1 is the least significant bit in x, and ya is the tenth bit in y. If x and y are in registers 1

and 2, the simplest XY (move/draw to (x,y)) string is

"%t"

but if this weren’t available the following string would work:

"(2 / +.2 &‘+.1 / +.1 &@+."

(as before, the double quotes don’t belong to the format). To understand this, First look up the

octal values of ‘ ’ (040), “’ (0140), and ‘@’ (0100). Then the first ‘(’ puts the encoder into encode

mode. ‘2 /’ pushes the Y value onto the stack, and right shifts it by 5 bits (‘ ’ is 100000 in binary).

The next ‘ +.’ adds the resulting bit pattern ‘0 0 ya y9 y8 y7 y6’ to 0100000 and transfers it to

the output string, and we have produced the desired first byte. The other bytes are produced in a

similar fashion.

As another example consider an AED512, which is reputed to desire the bit sequence

xa x9 x8 yb ya y9 y8
x7 x6 x5 x4 x3 x2 x1
y7 y6 y5 y4 y3 y2 y1

The graphcap string

"(#128!919/^N*29/+.19&.29&."

will accomplish this. We could further optimise this by loading the value ‘#128’ into register 9

once and for all with the LR capability, so a part of the graphcap entry would appear as

":LR=#128!9:XY=(19/^N*29/+.19&.29&.:"
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I’ve never seen an AED512, but this should work anyway.

The switch instruction has the form

$i . . . $j-k . . . $l . . . $D . . . $$

where i, j, k, and l are integers. The encoder pops the top value off the stack adds ‘0’ to make it

a character, and scans forward looking for a $ followed by that character. $2-5 would match the

characters ‘2’, ‘3’, ‘4’, or ‘5’. When it has met its match, it executes the instructions that it meets

until it reaches the next $ in execute mode. The encoder then skips forward until just after the

$$, and resumes scanning. If the character from the stack is not matched by any of the cases, the

encoder will use the $D (i.e. default) case, if present.

As an example, consider how stdgraph sets the type of line to draw. SM expects linetype 0 to

be solid, 1 to be dotted, and so on. We expect a linetype in register 1 and have to do something

with it.

For a Tektronix, the linetypes are set by an ML entry:

ML=^[(1$0)‘($1)a($2)c($3)d($4)b($$

What does this do? The ^[ is simple, it is executed in copy mode, and writes the character ^[ to

the output string. The (1 enters encode mode, and places the contents of register 1, the desired

linetype, on the stack. Then begins the switch. If the linetype is 0, then the encoder scans past

the $0 and starts reading the string again with )‘. The ) takes the encoder back to copy mode, so

it copies ‘ to the output string, and encounters a ($ which puts it back into encode mode. Once

in encode mode it recognises the $ as the end-of-case, and scans forward until it reaches $$, where

it stops. We deduce that the set-linetype-0 escape sequence is ^[‘. If register 1 had contained a 2,

after entering the switch the encoder would have scanned forward to $2 (ignoring all characters as

it went), and copied c to the output string.

If you want to support erasing of individual lines (LTYPE ERASE or LTYPE 10) you’ll have to

include a $\: case in your switch (as : follows 9 in the ascii character set, and an un-escaped :

would end the graphcap entry). You’ll have to escape the : in the lt list as well. When leaving

erase mode, by specifying any other line type, the device will first be set to LTYPE 11 (i.e. ML’ll get

a ;) before it’s set to the desired LTYPE; this gives the driver a chance to reset itself. It’s wise to

also turn off erase mode when closing the device. An example of an entry supporting erasing lines

is a graphon, which includes

:lt=01234\:;:CW=^[1^]^[^A^[2\
:ML=^_^[(1$0)‘($1)a($2)c($3)d($4)b($\:)‘^[^P($;)^[^A($$:

as ^[^P puts a graphon into erase mode, and ^[^A takes it out. Note that in erase mode the

linetype is set to solid (^[‘), so as to erase all types of lines.

There is also a branch instruction, which has syntax

<boolean><offset>;
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If the boolean is true (non-zero), then skip (offset - 1) characters in the programme string. The

offset may be either positive or negative, and the ‘;’ is at offset 0. For example,

(0#15;)Goodbye(#1#8;)Hello()\n

will print ‘Goodbye\n’ if register 0 contains zero, or ‘Hello\n’ otherwise. As an example of the use

of ‘;’, consider using the encoder to decode a string. Remember that ‘,’ meant ‘read a character

onto the stack’, and that there was a graphcap capability SC to decode cursor responses. Suppose

that we are dealing with a vt240 in REGIS mode, then a cursor read will return a string of the

form ‘k[nnn,mmm]’ where ‘k’ is the character you hit, and (nnn,mmm) is the cursor position. We

want to put k into register 3, and (x,y) into registers 1 and 2. This is a little messy, as we’ll have

to convert the ascii positions into integers. The desired graphcap entry is

SC=(#0!1#0!2,!3,#0!8,#48-!99$0-91#10*9+!1#1!8$$8#1=#-39;\
0!8,#48-!99$0-92#10*9+!2#1!8$$8#1=#-39;62-!2):

The first part is simple enough, store 0 in registers 1 and 2, store the first character in reg-

ister 3, read a character (the [), and store 0 in register 8. Then we come to ,#48-!99$0-

91#10*9+!1#1!8$$8#1=#-39;. The ,#48- reads a character and converts it to an digit (48 is

the decimal code for ‘0’), then stores it in register 9. The switch then checks if we do have a digit,

if so we multiply register 1 by 10 and add the new digit. We then set register 8 to 1 and finish the

switch which is here being used as an if statement. The 8#1=#-39; tests register 8 against 1 (i.e.

checks if we found a digit), and if we did it jumps back 39 characters, to read the next character6.

So we are accumulating the integer nnn in register 1, just as we needed to. The rest of the string

deals with decoding the y coordinate.

Sometimes you don’t want to read from the input string, but from the keyboard instead. In this

case use ‘str‘, e.g. (‘Hello\: ‘#48-$0)False($D)True($$)\n: will prompt you with Hello: ,

then read a character from the keyboard. If you enter a ‘0’ it’ll print False, otherwise it’ll print

True. Of course, in reality you’d want to do something more useful (such as erasing the screen).

A.6 Using Cursors with Graphcap

We have just been through a long explanation of how to decode a cursor string, but how did

stdgraph know what to read in the first place? After receiving the RC string, the terminal will send

back a sequence of bytes, and the format of these bytes must be specified in graphcap.7 There are

two ways to do this, either by specifying a sequence of characters which ‘end’ the response string

6 In counting characters for jumps, the ; is at character 0 and combinations such as ^N count as

one character
7 If the RC string is given as prompt, then you will be prompted for the key you would have hit,

and the (x,y) position the cursor would have been at, if the terminal that you were using could

support a cursor.
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along with a minimum number of characters to read, or by specifying a pattern that the terminal

response is to match. A typical example of the former is a Tektronix whose cursor response may

be chosen to be CONTROL-M (this is called the GIN response, and can usually be set in the terminal

setup). We know that the terminal will also send 5 other bytes (the key struck and the encoded

x,y coordinates so we would specify

:MC=^M:CN=6:

On the other hand, a REGIS terminal sends ‘k[nnn,mmm]’. This can be specified as

:MC=?[#*,#*]:CN=-6:

where the negative value of CN means that we are providing a pattern not just a terminator (as

before, the absolute value of CN is the minimum number of bytes in a cursor response). In MC

strings, but nowhere else, the characters ?, #, and * are special (although their special meanings

may be escaped with a \). ? will match any character, # any digit, and * means ‘match zero or

more of the preceding characters’. So a MC string of a#*?ba will match ‘aaa1111bbaa’ at the third

character. (Incidently, a#*?a would match at the first). Because this special character syntax is

different from that used in standard graphcap files for IRAF, the name of this graphcap parameter

has been changed from CD to MC.

If your cursor is attached to a mouse, if possible the buttons should be set up to generate ‘e’,

‘p’, and ‘q’ from left to right (if you have that many buttons). If you have only one button, ‘p’ is

probably the best choice.

A.7 Using Colours with Graphcap

The number passed to CT are the same as those specified with the CTYPE INTEGER command,

so initially they specify default, white, black, blue, red, green, magenta, yellow, and cyan (white is

1). These are the colours corresponding to turning one, zero, two, or three of the primary colours

on. The default colour to use for a device is specified by the DC capability, e.g. :DC="red":.

The CS and CO capabilities are used to support the CTYPE = expr command. First CS is used

to tell the device how many colours to expect, then CO is used for each number, with red, green,

and blue as its arguments. In this case CT passes an index into the set of CO values. If you want to

get an index, but don’t need CS and CO, you must still provide them; just provide a no-op such as

:CS=():.

A.8 How to Modify a Graphcap Entry

You might think that all that you have to do to modify a graphcap entry is to start up your

favourite editor, and start typing. You could do that, many people have, but it isn’t recommended
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because you’ll have to do it again when a new release of SM comes along. It’s better to use SM’s

graphcap search path (see Section A.3 [Graphcap File], page 164) as follows:

Let us assume that you want to modify the xterm entry to print something every-time that is

changes from graphics to alpha mode or vice versa (why? so as to fix a problem with excessive

screen switching). First set up the system ‘.sm’ file to look like:

+graphcap /my/private/graphcap
graphcap /usr/local/lib/sm/graphcap

which tells SM to first search ‘/my/private/graphcap’ then ‘/usr/local/lib/sm/graphcap’ (the

graphcap file that we provide) for graphcap entries. Then edit ‘/my/private/graphcap’ and add

the entry

xterm|an xterm with noisy mode flipping:\
:GE=\nE\n^[[?38h:GD=^[^C\nD\n:TC=xterm:

Note the use of :TC=xterm: which says that SM should skip this file when looking for the definition

of xterm, thus avoiding an infinite loop.

When a new version of SM is released your new definition will continue to work (unless we

change the definition of xterm in which case you’ll have some work to do anyway). You can use

this technique to change entries or add your own new ones without modifying the system file; all

of your changes are in ‘/my/private/graphcap’.

A.9 Writing a New Graphcap Entry

So, if you’re faced with a new piece of hardware what should you do? First of all, don’t panic –

writing entries is quite simple. Second, see if your device is basically the same as one that already

exists in graphcap, for example the entry for ‘graphon’ uses the ‘selanar’ entry, and it in turn uses

‘tek4010’. You might be able to get away with using tc to satisfy most of your device’s needs.

Before writing your new entry please read the previous section to learn the recommended strategy

for modifying graphcap files.

Let’s assume that you are faced with a totally new type of device and really do have to start

from scratch. First find out how large your device is, and fill in the xr and yr entries. If you are

going to use hardware character sets you also need ch and cw. Next decide on the string to initialise

the device – does it need to be set into some weird mode – and put it into OW. Put the string to

reset it into CW. Now, if the initialised device needs to be put into a special graphics mode put it

into GE and its inverse into GD. Next, you need to tell SM how to draw a line and move the plot

pointer. So enter the DS, XY, DE, VS, and VE capabilities. Of course, if one isn’t required, don’t

put it in. If you have some sort of printer you probably want to store all the commands in a file

(OF=), and to plot them (SY=). You should now be ready to make your first test, so plot a box. If

it doesn’t look right, fix it. Or you might like to try printing the cover (load cover cover).
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When all is well, you can begin looking into options that might make your graphcap entry more

efficient. Look through this appendix to see what is available. Does your device support line types?

Add ML and lt. Heavy lines? LW. Coloured lines or a cursor? See Section A.7 [Graphcap Colours],

page 176. Filled polygons? FS, FD, and FE. Dots? MS ME. Hardware characters? TS TE. If your

device produces hardcopy you should arrange to start a new page with PG (the PAGE command).

When you have finished please send us your new entry.

A.10 Support for Raster Devices

Stdgraph can only handle devices that can plot vectors specified by their endpoints; unfortu-

nately some devices (such as most line printers) can only plot graphs when they have been reduced

to rows of ‘on’ and ‘off’ pixels. SM supports such devices through DEVICE raster and a separate

programme called rasterise. You specify that a device in a graphcap file is a raster device by

using DV: :DV=raster: (The old form :RA: is no longer supported). It communicates with the

rasteriser through graphcap, so the whole process is user transparent. A separate rasterising pro-

gramme was written so as to allow the plot to be produced in the background while you do more

productive things, and to allow the rasterising to be done on a remote machine.

DEVICE raster produces a file, whose name is specified as usual by the OF field in graphcap,

containing the vectors to be plotted (as groups of four short integers) in device coordinates, where

the size of the device is taken from xr and yr. When the device is closed, the command specified by

SY are executed, and these will usually be of the form rasterise -r $0 $F outfile\n print_it

outfile\n delete outfile where print_it is the proper way of actually getting a plot. Un-

der Unix, the command might well be something like (rasterise -r $0 $F - | lpr -v -r -P$1)&

dispensing with the temporary outfile.

What do these rasterise commands do? The command syntax is rasterise [-flags] device

infile outfile, where the infile may be specified as ‘-’ to use standard input (sys$input to VMS),

where the outfile may be specified as ‘-’ to use standard output (sys$output to VMS). Possible flags

are r to remove the infile after use, R to rotate the plot through 90 degrees, and v for more verbose

operation. Rasterise then reads the data in the infile, and produces a rasterised version, row by

row, on the outfile. In order to do this, it looks in graphcap for an entry for device, and uses the

xr, yr, OW (and O[XYZ]), and CW fields as usual.8

Let’s first consider a simple, one-line-at-a-time device such as a line printer. Before writing each

row to outfile, rasterise encodes the BR (Begin Row) capability, using the current row number as

an argument, and encodes ER (End Row) at the end of the line. By default, it assumes that the

raster device simply wants bits turned on where a dot is required, but this can be overridden using

the BP and EP capabilities. EP (Empty Pixel) specifies the bit pattern for a character to represent

8 In looking for the graphcap file, any environment file or search path specified on the SM command

line with a -f or -u flag is ignored.
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white space. In the simple case mentioned a moment ago, this would be simply NUL, with no

bits on, but sometimes this doesn’t suffice (see examples below). BP (Bit Pattern) is a string,

giving the bit patterns required to turn on the various pixels. In the default case, BP could be

specified as BP=\001\002\004\010\020\040\100\200, so \001 would turn on the first (rightmost)

dot. Because there are eight characters given in the string, raster assumes that it can fit eight

pixels into a single character. If you don’t specify a BP this is what will be used. Some devices desire

or require that the data be sent as hexadecimal numbers rather than as binary; see the RD=hex

graphcap entry.

Some other devices (e.g. Epson printers) choose to print several lines at a time, so a single byte

transmitted to the device might print 8 lines, but only the first pixel of each line. Such devices

are described to graphcap by being given the MR (Many Rows) capability and a number nb which

describes how many bytes deep the printing band is (if omitted nb defaults to 1). In this case, BP

is used to describe which bits are turned on vertically rather than horizontally but everything is

otherwise the same as for the simple case.

As an example, consider the HP laserjet. You’d specify it as DEVICE laserjet, and its Unix

graphcap entry reads:

laserjet|HP laserjet (high resolution):\
:DV=raster:xr#1280:yr#640:CW=^[*rB:OW=^[*r1280^[*rA:BR=^[*b160W:\
:OF=hp_XXXXXX:\
:SY=/usr/local/sm/rasterise -r $0 $F - > /dev/hp&:

On opening the device, it gets the string ^[*r1280^[*rA, setting the resolution and raster mode.

Then, at the beginning of each rastered line it gets ^[*b160W specifying that 160 bytes are coming

its way, then finally ^[*rB to restore it to alpha mode. (It doesn’t need to know which row it is on,

so the BR string doesn’t tell it, and the default BP and EP are fine). After the input file is read it

is deleted, and the output file is sent to the standard output, whence it is redirected to the proper

device, in this case directly rather than through a spooler.

A more complex example is a printronix printer, which encodes 6 pixels in each byte, and

requires that bit 7 be turned on. It also needs an escape sequence at the end of each line. The

corresponding graphcap entry is

printronix|DEC printronix printer:\
:DV=raster:xr#792:yr#792:CW=^L:OW=^L:BR=ER=^E^J:\
:BP=\001\002\004\010\020\040:EP=\100:\
:OF=pr_XXXXXX:\
:SY=(/usr/local/sm/rasterise -r $0 $F - | rsh wombat lpr)&:

We use EP to turn on the seventh bit everywhere, as required, and specify only 6 values for BP, so

only 6 dots will be packed into each character. The BR entry is empty, and ER provides the needed

escape sequences at ends of lines. In this case SY sends the plot over a network to machine wombat.

Some devices are not able to simply accept a string of bytes with an occasional escape sequence.

For example, a versatec needs to have the bit order changed, or a simple screen plotter might want
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to write a * if a bit is set and a space otherwise. If this is the extent of your pathology, you can

deal with it via the provided capabilities. (Fortunately adding a * onto a space makes a *, so you

can use :EP= :BP=*: for the latter.) If you have a really bad device, it is possible to add new coded

device drivers to rasterise. For the convenience of such devices there is a graphcap capability RD

which specifies the name of a type of raster device. If rasterise recognises the device it it calls

a different set of routines to deal with the rows of data. Otherwise it proceeds as discussed in the

previous paragraph. This behaviour is similar to that of the DEVICE command in using stdgraph if

it doesn’t recognise a device name.

If you find that you do need to write routines for some device, don’t be too disheartened.

Rasterise will still do the book-keeping and rasterising for you, your work will be limited to a

couple of output routines. If you need to know more, see the source for rasterise. The only time

that I used this capability came about two years after rasterise was written, and was RD=hex which

specifies that lines be written as hexadecimal numbers rather than as 8-bit characters (e.g. write

the two characters FF instead of the single character ‘\377’). The line length is given as ll.

A.11 Compiling Graphcap

(This section is really for someone maintaining SM.) Rather than have stdgraph read the graph-

cap every time that it opens a devices, it is possible to compile the capabilities of the more popular

devices into the executable. This is done by preparing an include file which initialises the appropri-

ate arrays, using the programme ‘compile g’ in the main directory. After this file (called cacheg.dat)

has been prepared, files depending on it must be recompiled and SM must be relinked. The use of

compile g is pretty much self-explanatory, you give it a list of the devices you want and it produces

the cacheg.dat file. Problems arise, however, if you don’t have a valid cacheg.dat file, as then you

can’t compile compile g in the first case. Fortunately, it is possible to bootstrap a cacheg.dat file

(by defining BOOTSTRAP to the C-preprocessor), and proceed from there.

When stdgraph attempts to use the compiled capabilities, it checks that the current graphcap

file has exactly the same name as the one that cacheg.dat was compiled from, if it isn’t then it reads

the graphcap file anyway. This provides a mechanism for those without C compilers to change the

graphcap entries of pre-compiled devices. If you have a list of graphcap files, the name of the first

is checked against the name in the ‘cacheg.dat’ file.
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A.13 Calling SM from Programmes

A.13.1 Introduction to Callable SM

The SM callable interface is different from that of Mongo and corresponds directly to the in-

teractive version. Almost all of the commands available in SM can be called from either for-

tran or C, the exceptions being those concerned with the macro processor, variables, history,

and vector manipulations. We assume that if you want to call graphics routines directly, then

you are prepared to take responsibility for such things. In C (and probably pascal, modula, or

ADA), the calls have the same names as the commands with the prefix sm_, so to set the lim-

its say sm_limits(0.0,1.0,0.0,1.0);. On VMS, and with some unix systems (notably HPUX

and AIX), if you are writing fortran, you must prepend an ‘f’ to the command - call fsm_

limits(0.0,1.0,0.0,1.0). If you forget this ‘f’, your programmes will compile, but they ‘won’t’

work. (They’ll give segmentation violations, most likely. Why? Because you will be calling the

C functions directly, not the Fortran interface functions, and the languages have different ways of

passing arguments, so e.g. you will pass the address of the variable from your Fortran program to

a C function that expects to get the value of the variable. This translation is precisely what the

interface functions are set up to do for you).9 If your fortran compiler cannot find the function

names, you might have to read the section on how SM chooses function names (see Section A.13.7

[Fortran Names], page 190).

So how are you supposed to know what to call the functions? Well, our best suggestion is to ask

the person who build SM on your system; the second best suggestion is to look in ‘libplotsub.a’

(or ‘libplotsub.olb’ on VMS systems), and see what the names of the functions are. On VMS,

try this:

lib/list/names libplotsub/lib

and look at the names it lists under module INTERFACE. On a unix system you can use nm (or,

if desperate strings). The output is quite long, so I’d filter the output, e.g.:

nm libplotsub.a | grep errorbar

If you see things in the output like fsm_errorbar, then you know this is one of those machines

where you have to prepend the ‘f’ for the fortran interface functions.

9 Under Unix the loader can often distinguish fortran from C, so you may not need the ‘f’ – call

sm_limits(0.0,1.0,0.0,1.0)
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If you used an ANSI compiler to link SM (or your guru did) then you should provide prototypes

for the SM functions that you call if you use the C interface (Fortran knows nothing of such things).

This can be done by including the file ‘sm_declare.h’.

In what follows, we will assume that you are not writing fortran under VMS, so we will omit

the leading effs.

To use SM functions, you must link with appropriate libraries. You will always need to link with

the three SM libraries, libplotsub, libdevices, and libutils in that order. Specifically, under

Unix, you’ll need to include the files ‘libplotsub.a’, ‘libdevices.a’, and ‘libutils.a’ when you

link (it’s probably easier to use -lplotsub -ldevices -lutils, along with a -Ldir if needed). and

under VMS you’ll need ‘libplotsub.olb/lib’, ‘libdevices.olb/lib’, and ‘libutils.olb/lib’.

I can’t tell you where they’ll be on your system. In addition, you may need to link (after utils)

any libraries used by the devices that have been compiled into your version of SM. For example, if

you use the X-windows driver, you’ll need to link with the X-library (-lX). Consult a local guru

in case of any trouble - the person who installed SM has had to work this out already.

A.13.2 Example of Calling SM Functions

A list of functions giving the calling sequence for all the available functions follows, but first

an example. Note especially the use of graphics and alpha to set the terminal to graphics mode,

and return to a normal terminal afterwards. We would recommend always calling these, if they

do nothing (e.g. on a laser printer) they’ll do no harm. A related function is gflush() which will

update graphics on the screen, for instance with stdgraph where output is usually buffered.

Some devices (such as GL on an SGI, or X-windows on machines without backing store such as

RS/6000’s) need some help from you to redraw the screen. You do this by calling redraw whenever

you are waiting for input, passing it ‘0’ (the file descriptor of standard input, for those of you

familiar with C). When input is ready, redraw will return and your application can proceed. It

should do no harm on systems where it does no good.

If you don’t want to be bothered with calling sm_alpha, sm_graphics, sm_gflush, and sm_

redraw, see Section A.13.6 [Why call sm˙alpha?], page 189.

There are examples of programmes (in both C and fortran) calling SM in the directory

sm/callable; you might want to look at them before starting your own project.

integer NXY
parameter (NXY=20)
integer sm_device
integer i
real x(NXY),y(NXY)

c
do 1 i=1,NXY

x(i) = i
y(i) = i*i
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1 continue
c

if(sm_device(’hirez’) .lt. 0) then
print *,’Can’’t open hirez’
stop

endif
call sm_graphics
call sm_defvar("TeX_strings","1")
call sm_limits(-1.,22.,0.,500.)
call sm_ctype(’red’)
call sm_box(1,2,0,0)
call sm_ptype(40.,1)
call sm_points(x,y,NXY)
call sm_xlabel(’X axis’)
call sm_ylabel(’Not x axis’)
call sm_alpha
print *,’hit any key to exit’
call sm_redraw(0)
read(5,*) i
end

Remember, if you were running VMS, HPUX, or AIX then all those calls would start ‘f’ - call

fsm_graphics and so forth. Note that sm_box takes all of its four possible arguments, and that

commands such as sm_points add an argument to specify the number of points to plot. You must,

of course, ensure that you use the correct type of variables, passing integers or reals as required

(and as listed below). If you are using C, you must carefully distinguish between passing by value,

and passing by address (which we only use when an array is expected, and for returning a cursor

position).

A.13.3 Function Definitions: 1-D

The functions are as follows. For fuller definitions of the arguments look at the main description

of the command. The only ones that are different are sm_curs, sm_defvar, and sm_plotsym

because they don’t quite correspond to any interactive commands. A common source of trouble is

not noticing that the sm_ptype call is the vector form of the command, so to set a ptype of ‘4 1’

you must say sm_ptype(41.0,1).

The arguments are declared in fortran in this list. real x(n) means that x is an array of size

n. ‘Real’ means single precision. (So in C, character→ char *; integer → int; real → float;

real()→ float *. We deal with converting the calling conventions from one language to another,

but note comments at the bottom of this table.)

sm_alpha Set terminal back to a normal state

sm_angle(a)

Set angle to a (real a)
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sm_axis(a1,a2,as,ab,ax,ay,al,il,ic)

Draw an axis. (real a1,a2,as,ab; integer ax,ay,al,il,ic)

sm_box(x1,y1,x2,y2)

Draw a box - note 4 args. (integer x1,y2,x2,y2)

sm_connect(x,y,n)

Connect a line. (real x(n),y(n); integer n)

sm_conn(x,y,n)

Equivalent to sm connect

sm_ctype(c)

Set colour to c (character c)

sm_ctype_i(i)

Set colour to i (integer i)

sm_curs(x,y,k)

Return position of cursor (real x,y; integer k)

sm_defvar(str1,str2)

Select variable str1 to str2 (character str1, str2)

sm_device(str)

Select device str (character str); return integer

sm_dot Draw a dot

sm_draw(x,y)

Draw to (x,y) in user coords (real x,y)

sm_erase Erase screen

sm_errorbar(x,y,e,k,n)

Draw error bars (real x(n),y(n),e(n); integer k,n)

sm_expand(e)

Set expand to e (real e)

sm_format(xf,yf)

Set format strings to xf and yf (character xf,yf)

sm_get_variable(name) (character name)

Return the value of the variable name, if it’s a special variable

sm_gflush

Flush graphics output

sm_graphics

Set terminal into plotting mode

sm_grelocate(x,y)

Relocate in screen coordinates (integer x,y)
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sm_grid(i)

Draw a grid (integer i)

sm_hardcopy

Close current device, if appropriate make hardcopy

sm_histogram(x,y,n)

Draw a histogram (real x(n),y(n); integer n)

sm_identification(str)

Identification string (character str)

sm_label(str)

Draw a string (character str)

sm_limits(x1,x2,y1,y2)

Set limits (real x1,x2,y1,y2)

sm_location(x1,x2,y1,y2)

Set location (integer x1,x2,y1,y2)

sm_ltype(lt)

Set ltype (integer lt)

sm_lweight(lw)

Set lweight (real lw)

sm_notation(xl,xh,yl,yh)

Set axis format defaults (real xl,xh,yl,yh)

sm_page()

Equivalent to PAGE interactively

sm_plotsym(x,y,n,sym,ns)

Draw user points (real x(n),y(n); integer n,sym(3*ns),ns)

sm_points(x,y,n)

Draw points (real x(n),y(n); integer n)

sm_ptype(pp,n)

Set point type - vector form (real pp(n); integer n)

sm_putlabel(i,str)

Position a label (integer i; character str)

sm_redraw(i)

Wait for input on file descriptor i (integer i).

sm_relocate(x,y)

Relocate in user coords (real x,y)

sm_set_ctype(cols,n)

Set SM’s permitted colours to cols (real cols; integer n)

sm_shade(delta,x,y,n,type)

Shade a region (integer delta; real x(n),y(n); integer n,type)
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sm_ticksize(xs,xb,ys,yb)

Set ticksize (real xs,xb,ys,yb)

sm_window(nx,ny,x,y,x2,y2)

Select a window (integer nx,ny,x,y,x2,y2)

sm_toscreen(ux,uy,sx,sy)

Convert to screen coordinates (real ux,uy, integer sx,sy)

sm_xlabel(str)

Draw x-axis label (character str)

sm_ylabel(str)

Draw y-axis label (character str)

sm_device returns 0 if it opens the requested device, or -1 if it fails. You must declare sm_device

as returning integer, of course. sm_curs returns after you hit any key, returning the coordinates of

the point, and the key struck as an integer (e.g. ‘a’ as 97 in ascii). In C, all three arguments are

pointers, two to float and one to int. sm_defvar defines a variable, it is identical to the interactive

command DEFINE name value. It is only used to certain define variables that are significant to SM,

currently file_type, graphcap, TeX_strings, x_gutter, and y_gutter. Fortran users might or

might not need to double \s in TEX labels, depending on the foibles of your compilers (you are

more likely to need the doubled \\ under unix).

sm_plotsym is like first using the PTYPE { ... } command to define sym, and then POINTS to

plot x against y. The sym array consists of triples of integers, (move x y) where move is 1 to move

the plot pointer, 0 otherwise. This is not quite the same as the interactive command, but doesn’t

involve any characters. The move integer may not be omitted. The ‘file descriptor’ that sm_redraw

demands will almost always be 0 (standard input) on unix boxes; if it is needed by VMS or other

operating systems I will add a note here when I write the device driver. sm_shade shades the inside

of the curve specified by x and y if type is 1, or the area below a histogram specified by x and y

if type is 2. The line spacing in screen coordinates is delta. You can use sm_toscreen to convert

from user to screen coordinates (which run from 0 to 32767, and are used by sm_grelocate). The

second pair of arguments should be pointers to int if called from C.

sm_window takes an extra two arguments over the interactive version; they are the values that

you’d specify using the #:# form of window specification; for example, WINDOW 4 5 1 2:3 corre-

sponds to the call sm_window(4,5,1,2,1,3).

The colour functions are sm_ctype and sm_ctype_i, equivalent to CTYPE name and CTYPE

integer respectively, and sm_set_ctype, equivalent to the numerical form of CTYPE = expr.

You can get at most of SM’s ‘special’ variables (e.g. expand) directly by looking at C globals

(these may look like common blocks to fortran, it depends on your compiler); look in the file

‘src/plotsub/set.c’ for details. Alternatively (and less involved in SM’s insides, if a bit slower),

you can use sm_get_variable, which will return values as floating point numbers.
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The functions to manipulate 2-dimensional data are described in the next section.

A.13.4 Function Definitions: 2-D

The use of the 2-D functions may require a little more explanation. If you want to use SM to read

your data, producing contour plots is very similar to doing so interactively, with the difference that

instead of defining the variable file_type, you must call the function sm_filetypewith the desired

value as the argument before reading the data. This is equivalent to calling sm_defvar to define

the variable file_type, and is only supported for backwards compatibility. As an alternative, you

can fill your own data array, and pass it to SM to be contoured with sm_defimage.

Please note: the image data that you provide to SM should be 4-byte floats even if you are built

SM to use 8-byte (double) floating point numbers.

The function calls follow (again in fortran), followed by some explanation.

sm_contour

Contour current 2-D image

sm_defimage(arr,x1,x2,y1,y2,nx,ny)

Define an image (real arr(nx,ny),x1,x2,y1,y2; integer nx,ny)

sm_delimage

delete current 2-D image

sm_filetype(type)

Set 2-D filetype (character type)

sm_levels(l,n)

Set levels for contour (real l(n); integer n)

sm_minmax(x,y)

Get minimum and maximum of image (real x,y)

sm_readimage(file,x1,x2,y1,y2)

Read a 2-D image (character file; real x1,x2,y1,y2)

The translation to other languages is not quite as simple as above. In C, sm_minmax expects

to be passed pointers to floats, and the first argument to sm_defimage is not a 2-D array, but an

array of pointers to the rows of the image. x1, x2, y1, y2 specify the limits as in the interactive

IMAGE command; if they are set to be 0.0 then the dimensions of the array will be used. As an

example, again in non-VMS fortran:

integer NXY
parameter (NXY=20)
integer sm_device
integer i,j
real z(NXY,NXY),lev(NXY)
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c
do 2 i=1,NXY

do 1 i=1,NXY
x(i,j) = (i-NXY/2)**2 + (j-1)**2

1 continue
2 continue
c

if(sm_device(’postscript latypus’) .ne. 0) then
print *,’Can’’t open printer’
stop

endif
call sm_graphics
call sm_limits(-1.,21.,-1.,21.)
call sm_box(1,2,0,0)
call sm_defimage(z,0.,20.,0.,20.,NXY,NXY)
call sm_minmax(amin,amax)
do i=1,NXY

lev(i)=amin + (i - 1.)/(NXY - 1)*(amax - amin)
3 continue

call sm_levels(lev,NXY)
call sm_contour
call sm_hardcopy
call sm_alpha
end

A.13.5 Calling the SM interactive Parser from Programmes

It is also possible to call the SM parser directly from your own programmes. This is usually

done by people who have large data arrays that they want to plot, so we have also provided a call

to define your arrays as SM vectors. To use this, your SM guru must build an extra library, (called

‘libparser.a’ on unix systems). This is done with the command

make Parser

in the top level SM source directory. If this has been done, you can link the parser into your

code by including the flag -lparser before the other SM libraries (but after any -L flags). The

programmes ‘interp’ and ‘finterp’ in the ‘callable’ directory provide examples of calling SM’s

parser; ‘finterp.f’ looks like:

real a(10)
integer i

do 1 i=1,10
a(i) = i

1 continue
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call sm_array_to_vector(a,10,’xyz’)
print *,’Calling SM parser...’
call sm_parser(’-q’)
print *,’Exited parser’
end

Here the array a (with 10 elements) is to be called xyz in SM, and SM is to be invoked with the

command line options -q. You can of course define as many vectors as you feel like, but using

DELETE to delete them from the parser is a serious error (i.e. don’t!).

sm_array_to_vector(arr,n,name)

Define an SM vector called name to have the values of the array arr. (real arr(n); int

n; character name).

sm_parser(args)

Start up the SM command parser as if you had started SM interactively with command

line arguments args, but with some vectors predefined (those that you defined using

array_to_vector) (character args).

A.13.6 Why do I have to call sm_alpha, sm_graphics, sm_gflush, and sm_

redraw?

The question sometimes comes up, ‘Why do I have to bother with these calls sm_alpha, sm_

graphics, sm_gflush, and sm_redraw? After all, other graphics libraries don’t require them.’

The answer is that it all depends on how sophisticated and device dependent you want to be.

If you are using something like an xterm to plot to, then yes, you do need to explicitly switch

between graphics and alpha screens – or else you’ll get gibberish on the text screen (something

like ‘?_"s#M"s>H"s#M#b#M!s#F!s#F0"s$X") and no graphics on the graphics screen, or else your

graphs and your input commands (and some gibberish to handle the screen editor) mixed together

on the graphics screen. Of course the SM routines could have done the switches for you, but if

the mode were changed everytime that it might need switching, you’d get an immense amount of

mode switching. Why would that matter? Try running the code on a terminal like a vt240 that

physically has only one screen.

If you didn’t care about devices like xterm and were determined to only use devices like x11 or

sgi or postscript you wouldn’t have to worry about any of this.

Next to gflush. For efficiency, SM doesn’t guarantee that every write request is actually written

to the screen when received, so at the end of a function call there could be lines or points that haven’t

yet reached the screen. gflush deals with this by flushing the graphics buffers, thus ensuring that

all pending writes to the screen are completed. If you don’t care about possible missing points,

don’t worry about it.
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Finally redraw. On a traditional terminal such as an I^2S or a tektronics 4010, there was no

need to worry about other windows appearing on top of your beautiful graphics window and erasing

what was there; for some devices such as xterm there is no problem as the terminal emulator is

always looking at the screen, like a faithful dog, waiting for you to type something or for one of its

screens to get corrupted. In the old days of sunview, Sun had hacked the lowest level system calls

(read etc.) to allow an application programme to call the equivalent of redraw automatically (well,

under a reasonably common set of conditions). But if you are running on something like an X11

display or a GL display on an SGI, there is no-one looking out for events that erase your window,

and you have to do it yourself. If you don’t care about refreshing the screen when raised to the top

of the window stack, there’s no need to worry about redraw.

So all these complications with alpha, redraw, and friends are due to SM being designed to

handle all the possible nasty cases. If you use SM interactively, it is all done for you, but if you

want to call SM functions you have to decide how much responsibility you want to take.

Of course, you can write a trivial wrapper about each SM primitive that calls sm_graphics

before calling (e.g.) sm_points, then sm_gflush and sm_alpha just before returning. In a similar

way, you could write a general i/o function that calls sm_gflush then sm_alpha, then prompts you,

then calls sm_redraw, then reads the reply, then calls sm_graphics. But I don’t think that the SM

primitives should do it for you.

A.13.7 How to Choose the Name for Fortran Subroutines

As discussed above, the names used for SM callable functions from fortran are, in general,

different from those used in (almost?) all other languages, as fortran’s calling conventions are

different, so we have to provide interface code (in the file ‘sm/src/plotsub/interface.c’). The

SM function sm_func may be called as AAAsm_funcBBB where AAA and BBB are the values of the

C-preprocessor macros FORTRAN_PREPEND and FORTRAN_APPEND respectively; their default values

are nothing and _. If you want to change this, edit sm/src/options.h and define the values that

you desire. Note: with C compilers that don’t adhere to the C89 ansi standard, you are restricted

to the values f and _ for PRE- and APPEND.

After changing options.h (or options.skl if you want your changes to survive the running of

‘set_opts’), rebuild SM and you should be in business.

A.14 The SM Grammar

Previous editions of this manual included a printed copy of the SM grammar, prepared directly

from the source code using the get_grammar utility. This was helpful in understanding otherwise

bizarre objections to your favoured command, as it specified exactly what SM would accept, but

used a lot of paper. We have therefore omitted it from this edition, but you are welcome to make

yourself a copy.
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A.15 Two-Dimensional Graphics

There is limited support for 2-dimensional graphics in SM, and we do not expect to make many

extensions in this area. Currently it is possible to read an unformatted image, to draw contours,

to generate a Floyd-Steinberg dithered image, to extract values from the image into vectors, and

to obtain image values with a cursor. Previous editions of this manual (prior to version 2.3) have

traditionally said: ‘We expect to support half-tone imaging in the nearish future’; as of this release

there is a macro (called greyscale and written by Gabor Toth here at Princeton) that draws

reasonably efficient grey scale images on any supported output device.

The problem of specifying data formats for images is difficult, and we have adopted an approach

of using a ‘filecap’ file to describe the unformatted files. This allows the user to write the file using

C or Fortran (or, presumably, lisp) and then use SM to read the data. The name of the entry in

the filecap file is given by the variable file_type, which may be given in your ‘.sm’ file if you

use the standard startup macro. The format of data on disk is first the x- and y- dimensions

of the image, then the data in row-ascending order. The exact statements used to write the data

may depend on the chosen value of file_type (or vice-versa). A description of the filecap fields

comes at the end of this appendix; most users should never have to change this file.

It is also possible to read data from a formatted file and create an image inside SM, for example

if x and y are integers in the range 0-9:

IMAGE (10,10) # declare a 10*10 array
READ { x 1 y 2 vals 3 } # read some data
SET IMAGE(x,y) = vals # and put it into the image

The command used to read an image is IMAGE, and you may optionally specify the x and

y range covered by the data (e.g. IMAGE datafile xmin xmax ymin ymax; this also works with

declarations like the one in the previous paragraph). Only the region of the image lying within the

current limits is plotted when contouring - just like any other graphics operation in SM. Images may

be deleted with the DELETE IMAGE command. To extract values from an image, use the special

expression IMAGE(vec_x,vec_y) which has the value of the image at the points (vec x,vec y).

You can extract variables from the image’s header using the command DEFINE name IMAGE. See

the discussion of filecap if you need to know what variables can be retrieved this way.

If you want to use non-interactive SM (i.e. write your own command interpreter), there is a call

(defimage) to define your data array to the contouring package, but this is of course not available

interactively.

A.15.1 Filecap

Filecap is similar in graphcap or the Unix termcap, and in fact the ‘filecap’ entries may be

physically in the same file as graphcap (i.e. added as if they were graphcap entries; of course an
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attempt to say device fits will lead to confusion...). Filecap can be specified as a list of files to

be searched in order. The fields in filecap are used to specify the data type of the file, the record

format of the file (record-length, inter-record gaps, etc.) and the header used (length of header,

offset of desired items). Note that these are ‘unformatted’ files, as written by C write() or fortran

write(num) statements.

The current filecap is as follows:

#
# Filecap describes unformatted file formats to SM. The syntax is
# identical to termcap or graphcap files.
#
c|C|C files:\

:HS#8:nx#0:ny#4:
ch|CH|C files with headers:\

:HS#24:nx#0:ny#4:x0#8:x1#12:y0#16:y1#20:
fits|cfits|FITS|CFITS|C FITS files:\

:DA=fits:RL=2880:
no_header|Files with no header, will prompt for nx, ny:\

:HS#0:
unix|UNIX|Fortran unformatted files under Unix on a Vax:\

:HS#-1:nx#0:ny#4:RS#4:RL#-1:RE#4:
unix_int|UNIX_INT|Like unix, but integer*4:\

:DA=int:tc=unix:
unix_short|UNIX_SHORT|Like unix, but integer*2:\

:DA=short:tc=unix:
vms_var|VMS_VAR|Fortran unformatted under VMS, recordtype=variable:\

:HS#8:nx#0:ny#4:
vms_fixed|VMS_FIXED|Fortran unformatted under VMS, recordtype=fixed:\

:HS#-1:RS#0:RL#-1:REnx#0:ny#4:
# This seems to be correct, based on one example
vms_direct:VMS_DIRECT|Fortran unformatted, direct access, under vms:\

:HS#8:RS#0:RE#0:nx#0:nx#4:

Comment lines start with a #, continuation lines start with white space (a tab or a space) and \

may be used to continue an entry on to the next line. The first few fields in an entry are separated

by |, and are alternative names for the same entry. For example, fortran unformatted files under

Unix may be referred to as unix or UNIX. Fields are separated by colons, and are of the form

:CC#nnn: for numbers, and :SS=str: for strings. Omitted fields may be specified as :CC@nnn:, or

simply omitted. Filecap capabilities currently used are:

DA (DAta type)

Type of data in file (string)

FS (File Start)

Unwanted bytes at start of file

HS (Header Size)

Size of header
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RE (Record End)

Unwanted bytes at end of record

NS (No Swap)

Don’t swap bytes for FITS files

RL (Record Length)

Number of useful bytes per record

RS (Record Start)

Unwanted bytes at start of record

SW (SWap) Byte swap 2 by integer data, and byte-and-word swap 4 by integers.

nx (Number X)

Offset in file of X size of data

ny (Number Y)

Offset in file of Y size of data

x0 (X 0) Coordinate at start of X axis

x1 (X 1) Coordinate at end of X axis

y0 (Y 0) Coordinate at start of Y axis

y1 (Y 1) Coordinate at end of Y axis

In addition, HH is supported as an archaic form of HS.

In terms of these quantities a file will look like this:

FS HS RS RL RE RS RL RE ...

The distinction between single and double lines is purely visual. As mentioned below, HS can

be negative and is then taken as the record length of the header RL_H, in which case the file will

be like:

FS RS RLH RE RS RL RE RS ...

Note that the first real data record begins with an RS – this means that if you are writing fortran

you must write the header in a different write statement than the one that you use to write the

data (i.e. write(fd) nx,ny,arr will not work).

Most parameters are optional, and will default to 0. If RE or RS is specified, you must give RL

as well. If you specify it as negative, then we’ll look for it from the operating system. You must

provide a value for HS (or HH if you’re old fashioned), if it is negative we’ll assume that even the

header has a record structure, with RS and RE just like any other record. Its record length will

be taken to be RL, if RL is positive, otherwise we’ll find it from the operating system. If HS and

RL are both negative there is no reason why the record length of the header should be the same

as that of the data.
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If neither nx nor ny are present in the graphcap entry you will be prompted10 for the x and y

dimensions of the file, otherwise they must both be present. If they are negative they are taken to

be the negation of the true dimension (so a filecap entry :ny#-6: specifies that the y-dimension of

the data is 6), but usually they are taken as the offsets of the values of the x and y dimensions in

the file, relative to the start of the header (if you set HS to be zero you can specify nx and ny on

the command line, but they must be on a separate line, either a real separate line, or following a

\n). Note that HS excludes FS, so HS will usually be 2*sizeof(int) irrespective of the value of FS,

and nx will usually be 0. If HS is negative, then the nx and ny offsets also ignore RS, i.e. nx is still

usually 0.

As an alternative to specifying the actual file sizes as negative integer values of nx or ny (e.g.

:nx#-10:) you can simply specify them as positive string values: :nx=10:. Note how this differs

from :nx#6:.

Possibilities for DA are char, float (default), int, long, and short, all as in C, and also fits

for FITS format data. (If you don’t know what FITS format is, don’t worry about it. It’s a style of

header and record structure used for data transport in astronomy11. If you do know about FITS,

then we assume that each record is 2880 by long, although possibly with RS and RE non-zero. The

header is processed for the size of the file and the value of BITPIX. If the file is not SIMPLE, it

is taken to be 4 by floating point data. CRPIX, CRVAL, and CDELT are interpreted correctly, as

are BZERO and BSCALE. X0, x1, y0, and y1 are specified as the keywords X0, X1, Y0, and Y1

respectively, and take preference over CRPIX etc. FITS files on a machine with vax byte order are

supposed to be byte swapped, but you can override this by specifying the NS capability which stops

SM from doing any byte swapping). If you specify SW it takes preference over any other instructions

about byte swapping and forces byte-swapping for 2 byte (short) data, and byte-and-word swapping

for 4 byte (int) data. If x0 and x1, or y0 and y1 are omitted, the range of values on the appropriate

axis is taken to be 0 to nx-1 (or ny-1). You can override these values with the IMAGE command.

The values of X0 (and so on) can be obtained directly using DEFINE X0 IMAGE; Other values can be

specified in ‘filecap’, for example a filecap entry :aa#24: specifies that DEFINE aa IMAGE should

recover the (floating-point) number stored at byte offset 24. Because of the way that filecap files

work, you are restricted to two-character names. If you are using FITS files, all the keywords from

the header are available, but you should remember that SM is case sensitive.

For example, suppose I wrote a file using the Unix f77 compiler, with some code that looked

like:

integer *4 nx,ny,arr(10,20)

10 in fact they will be read from a macro or the command line without prompting if they are

available; try define file_type no_header image file \n 10 20
11 The usual reference is Wells, D.C., et al. Astron. Astroph. Suppl, 44 363 (1981), although

FITS is in fact becoming a national standard in the US
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c
nx = 10
ny = 20
write(8) nx,ny
write(8) arr

(Omitting opening unit 8 as an unformatted file, and filling the array with data). Then I could read

it in SM by defining file_type to be unix int. The filecap entry indicates that the length of the

header is to be obtained from unix (in fact from the file, it’ll be the record length of the header), as

is the record length. Both the start-of-record (RS) and end-of-record (RE) gaps are 4 by long (they

in fact contain the record length, but you needn’t know that). The number of x-records is at zero

offset in the file, and y-records is at offset 4. In other words, allowing for FS being 0 and RS being

4, nx occupies bytes 4-7 in the file, and ny 8-11. The data is taken to be 4-byte integers (integer*4

to fortran). In fact, the first record consists of only the values of nx and ny, so the record length of

the first record is 8 by, and part of an equivalent filecap entry would be

:FS#4:HS#12:

where I have interpreted RS as FS, and added the RE onto the end of the header length HS. If

I had written the data out line-by-line in a do loop, the file type would still be unix int, but the

record length actually used by SM in reading the file would be different (see Chapter 22 [Image],

page 116).

As another example, I use an image processing system called Wolf that used to use files with the

arcane structure of 200 bytes of header, then the x- and y-size of the file, given as ints, then more

header up to a total offset of 1024 bytes from the start of the file, then the data written as short

integers. I could write a header with code that looked somewhat like (omitting all error checking):

int fd,i;
int xs = 20,ys = 10;
short arr[10][20];
. . .
lseek(fd,200L,0);
write(fd,(char *)&xs,sizeof(int);
write(fd,(char *)&ys,sizeof(int);
lseek(fd,1024L,0);
for(i = 0;i < ys;i++) write(fd,(char *)arr[i],xs*sizeof(short));

The corresponding filecap entry is

wolf|Wolf-IfA files:\
:HS#1024:nx#200:ny#204:DA=short:

which is pretty simple really.
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A.16 Reading and writing tables

SM is able to read a variety of table formats, but the only one of practical interest appears to

be FITS binary tables. If you disagree with this statement and either have problems or a section

to contribute to this appendix, please send RHL mail.

The relevant commands are given in the sections on the TABLE (see Chapter 22 [Table], page 147)

and WRITE (see Chapter 22 [Write], page 156) commands.

A.16.1 How to read tables

If you want to read variables from the header, you can use the define var image command; so

to read both data and variables you’d say something like:

table 0 table-file.fit
read table { x y }
table 4
local define RDL image
echo RDL = $RDL ($(dimen(x)) point)

This reads x and y from the primary data unit (PDU; that’s what the 0 means), and then the

variable RDL from the fourth data unit. If you omit the 0 it’ll be assumed, unless the PDU is

empty in which case SM’ll read the first real table instead.

A.16.2 How to write tables

Writing tables is basically pretty simple, e.g.

local define tab "table.fits"
local set x = 1,10 local set y=sin(x)
!rm -f $tab
write table $tab { x y }

set x = x concat 15 + x set y = y concat -y
local set z = 10*x
write table + $tab { x y z }

If you don’t define the variable noclobber, you don’t need to explicitly delete the file before

writing your first sert of data.

If you want to put variables into the headers, and care about which data unit they go in, things

look more complicated (but they really aren’t too bad):

local define tab "table.fits"
local set x = 1,10 local set y=sin(x)
table delete
define RDL local
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image define RDL "Rowan"
!rm -f $tab
write table $tab {}
table delete

write table + $tab { x y }
table delete

set x = x concat 15 + x set y = y concat -y
local set z = 10*x
define LML local
image define LML "Mummy"
write table + $tab { x y z }

Here the table delete commands are being used to undefine IMAGE variables. Note that I

explicitly wrote an empty primary data unit (PDU), whose only interesting content is the variable

RDL

A.17 Termcap – A Terminal Database

Termcap is a Unix idea, that makes it possible to write software that runs on a wide range of

different terminals. The implementation that SM uses contains no Unix source code. The idea

is similar to graphcap or filecap – each property of the terminal is given as a field in a file. For

example, the string to clear to end of line is called ce, and for ansi terminals is given as ce=CONTROL-

[[K. The format for termcap files is described under ‘graphcap’, which is identical. Our termcap

is identical to the Unix one, so for details see section 5 of the Unix manual. The file to use as

a termcap file is specified as termcap in your ‘.sm’ file, or as the environment variable TERMCAP

(logical variable to VMS). If SM can’t open TERMCAP as a file, it is taken to be the value of the entry

for your terminal. If it doesn’t begin with a colon, it is treated like a termcap file, and searched for

the desired terminal. If it does begin with a colon, it is simply taken to be the termcap entry to

use. A TERMCAP variable takes precedence over an entry in your ‘.sm’ file. As for graphcap, a list

of termcap files can be specified, to be searched in order.

A full termcap entry can be pretty long, but fortunately SM only uses a small subset. (The rest

are needed by full scale screen editors, but we haven’t written one.) In particular we use:

ce (Clear End)

Delete to end of line

ch (Cursor Horizontal)

Move cursor within line

cm (Cursor Movement)

Move cursor around screen

cn (ColumNs)

Number of columns on screen
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dc (Delete Character)

Delete character under cursor

is (InitialiSe)

Initialise terminal

ks (Keypad Start)

Initialise Keypad

ks (Keypad End)

Undo Keypad Initialisation

kd (Kursor Down)

Move cursor down one character

kl (Kursor Left)

Move cursor left one character

kr (Kursor Right)

Move cursor right one character

ku (Kursor Up)

Move cursor up one character

k1 (Key 1)

Key sequence emitted by PF1 key (also k2, k3, and k4)

li (Lines)

Number of lines on screen

pc (Pad Character)

Pad character, if not NIL

All of these are strings except co and li which expect numbers, and pc which expects a single

character. The editor uses all of these except co, although the k ones are only provided as a

convenience to you, mapping the arrow keys. In fact, these arrow keys may supersede desired

bindings such as CONTROL-K to delete to end of line (e.g. on a televideo 912). If this happens, use

the EDIT or READ EDIT commands to fix things up.

The cursor addressing strings ch and cm use a variant of the C printf %. Consider the string as

a function, with a stack on which are pushed first the desired column, and then the desired line (so

the line is on top). The possible % formats operate on the stack, and pop it after output.

d As in printf, zero origin

2 Like %2d

3 Like %3d

. Like %c

+x Add x to value, then ‘%.’
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>xy If value > x add y (no output)

r Interchange line and column (no output)

i Increment line and column by 1 (no output)

% Output a single %

We do not support %n, %B, or %D out of pure laziness. A couple of examples might help. To

go to (5,60) a vt100 expects to receive the string CONTROL-[[5;60H, so the termcap entry reads

:cm=\E[%i%d;%dH:. We need the %i to go to one-indexed coordinates, and the escape is written

\E. The :’s delimit the termcap entry. A Televideo 912 expects to be given first CONTROL-[=, then

the coordinates as characters, where ‘ ’ is 0, ‘!’ is 1, and so forth through the ascii character set.

To convert a given number to this form we add ‘ ’, so the termcap entry is :cm=\E=%+ %+ :.

If an entry begins with a number, it gives the number of milliseconds of padding that the terminal

requires (it is optionally followed by an *, which we can and do ignore). If the terminal requires a

pad character that is not simply ascii NIL it should be given as pc, so to use ‘a’ as a pad character

specify :pc#97:. The baudrate is taken to be 9600, unless you specify it as the ttybaud variable in

your ‘.sm’ file. We have never yet seen SM have any trouble with padding, so we wouldn’t worry

about any of this if we were you.

You might wonder why we need both ch and cm. The simple answer is that we don’t, but that

we do want one of them. Because cm moves the cursor to a specific line, its use requires that SM

remember which line you are on which can be tough what with switching to and from graphics

mode. We therefore assume that you are on the last line of the terminal, as set by li or explicitly

by the TERMTYPE command. If you provided ch this problem wouldn’t arise but many terminals

don’t support such a capability and we have to code around this deficiency. To summarise: use ch

if you can, failing that use cm.

There is a problem with using the last line of the screen as the SM command line, and this is

that some terminals use the same screen for graphics as for text, and your graph will merrily scroll

away as you type. The graphcap GD (Graphics Disable) command can be set to take you to the top

of the screen, but cm won’t keep you there. Your only chance is to disable cursor motion, either

by setting ch to ‘disabled’, or by specifying a negative screen size to TERMTYPE which has the same

effect. You can still use the editor, but it’ll be slower. If you still have trouble, try TERMTYPE dumb,

which really is a bit brain damaged, or TERMTYPE none which disables the editor entirely.

A.18 New Devices and New Machines

A.18.1 Adding New Devices

As we have discussed extensively (see Section A.2 [Graphcap], page 163), most plotting devices

can be accommodated within the framework of stdgraph/graphcap without writing a line of C;



Appendix A: Appendices 201

raster devices can use the raster device driver. Sometimes, however, this is not possible and you

must write a real driver. An example would be making SM run native under X11; running under

a terminal emulator can be done with graphcap.

If you do make any changes, write any new drivers, or modify graphcap (except trivially) please

send us copies of your modifications.

Let us assume that you really do need a new driver, how do you go about it? SM communicates

with devices solely through a graphcap entry, some external variables (defined in sm.h) and a

structure called DEVICES which is defined in devices.h and declared in plotsub/devices.c.

When you issue a DEVICE devname args command, the stdgraph driver is called with the string

devname args, and it opens the graphcap entry for devname. If it finds an entry of the form

:DV=driver: it tries to find a hardcoded device driver called "driver" (you’ll see in a moment

where the names come from). If it can find such a driver it calls its setup function (to be defined in

a moment) with args as an argument.12 Your device driver is now in charge, and no more stdgraph

routines are called until your device is closed; after you return from your close function stdgraph’s

close function is called to close the graphcap descriptor. What do you have to remember from this

paragraph? That you need a graphcap entry, if only a trivial one along the lines of

my_device|all_mine:DV=my_driver:

which associates the driver my_driver with the device referred to as either my_device or all_

mine. Because stdgraph’s stg_open and stg_close functions are called around your device code

the standard graphcap support for OW, IF, DC, OF, SY, and CW is automatically provided if you want

it; see the imagen driver and graphcap entries for an example. You might also want to remember

that you can directly access any graphcap entry for your device from within your driver, using the

functions ttygets, ttygetr, ttygeti, and ttygetb.

The current definition of DEVICES looks like this:

12 If the DV entry contains an embedded space, only the first word is used to choose a device; the

rest is treated as if it was typed as part of a DEVICE command. For example, if the graphcap

file contains the entry svga4|svgalib, mode 4:DV=svgalib -m 4:, the command DEVICE svga4

is equivalent to DEVICE svga -m 4.
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typedef struct { /* output device dependent functions */
char d_name[40]; /* name of device */
int (*dev_setup)(); /* initialisation */
void (*dev_enable)(), /* enable graphics */
void (*dev_line)(), /* draw a line from x1, y1 to x2, y2 */
void (*dev_reloc)(), /* relocate current position */
void (*dev_draw)(), /* draw a line from current pos to x,y */
int (*dev_char)(), /* hardware characters */
int (*dev_ltype)(), /* hardware line type */
int (*dev_lweight)(), /* hardware line weight */
void (*dev_erase)(), /* erase graphics screen */
void (*dev_idle)(), /* switch from graph to alpha mode */
int (*dev_cursor)(), /* cursor display */
void (*dev_close)(), /* close device */
int (*dev_dot)(), /* draw a single pixel dot */
int (*dev_fill_pt)(), /* draw a filled point */
int (*dev_fill_polygon)(), /* draw a filled polygon */
void (*dev_ctype)(), /* set colour of line */
int (*dev_set_ctype)(), /* set possible colours of lines */
void (*dev_gflush)(); /* flush graphics */
void (*dev_page)(); /* start a new page */
void (*dev_redraw)(); /* redraw the screen, if need be */

} DEVICES;

Note that this is the DEVICES structure at the time of writing; be sure to see that it is still

correct when you write your driver! To add a new device to SM, all you have to do is to write

functions to fill as many of the slots in DEVICES as possible, add their definitions to ‘sm_declare.h’,

then add an element to the array devices[] in devices.c. After recompiling, SM will recognise your

device by the name d_name that you gave it in devices[]. Traditionally the functions have the same

name as those given above with the dev replaced by some mnemonic for your new device. You

should surround both your driver and the entry in devices[] with #ifdef’s so that all I have to do to

totally lose your device is to not #define it to the compiler. In writing your device you may want

to use graphcap to give it various pieces of information. This can be done; see the imagen driver

for an example.

You should include the file ‘sm_declare.h’ (which automatically includes ‘options.h’) which

provides declarations for all SM functions (including prototypes if the compiler supports them),

and you should add your own declarations to this file.

If you don’t provide some of the functions, SM will try to emulate them in its software. For

example, of your ltype function returns -1, then we will chop your lines for you. There are a set

of functions for nodevice that have the correct types, you can use them for functions that you

don’t want to provide (e.g. if you don’t support dev_ltype you can use no_ltype). Some of

the routines, e.g. dev char are sometimes passed NULL arguments to inquire if they can provide

particular capabilities. In the following paragraphs we discuss all the functions, their arguments,

what they do, and what they return.
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All coordinates are given in screen units, where the device is 32768 pixels along a side.

dev_setup(str) (char *str;)

Open the plotting device. Str contains the rest of the command line, so if the DEVICE

command was DEVICE newdev abcde zyxwvut, setup will be passed abcde zyxwvut. If

the device can’t be opened for some reason setup should return -1, otherwise 0. Setup

has a number of book-keeping responsibilities: setting the value of termout to 1 if the

device is a terminal, otherwise 0; setting the value of ldef to the maximum spacing be-

tween lines if they are to appear as one thick line rather than a set of parallel ones, (used

if we have to emulate LWEIGHT); setting the variables xscreen to pix and yscreen to pix

to give the conversion from SCREEN to device coordinates; calling default ctype with

the name of the default colour for lines (e.g. default_ctype("white")). There is no

need to look in the ‘.sm’ file for a foreground entry, this is done for you (by set dev())

after dev setup returns, but you should deal with any background entry if you feel so

inclined. There is a function parse color that converts a colour name into r, g, and b

values (see the sunwindows setup function for an example of its use) that may help.

Note that you should not call stg_setup – this was done for you automatically before

your setup function was called. No return value.

dev_enable()

Enable plotting on the device. For a graphics terminal this means switching from alpha

to graphics mode, but may well not be required for other devices. No arguments, no

return value.

dev_line(x1,y1,x2,y2) (int x1, y1, x2, y2;)

Draw a line from (x1,y1) to (x2,y2). No return value.

dev_reloc(x,y) (int x,y;)

Move the plot marker to (x,y). No return value.

dev_draw(x,y) (int x,y;)

Draw a line from the current plot marker to (x,y) which becomes the new plot marker.

No return value.

dev_char(str,x,y) (char *str; int x,y;)

Write the string at the position (x,y). The position given is just to the left of the first

character, at about the height of the centre of a capital letter. Return 0 if you support

hardware characters, otherwise -1 in which case we’ll use the software character set

instead. If str is NULL, this is just an enquiry as to whether the device supports a

hardware character set. Char is also called (with NULL) whenever the value of expand

or angle is changed, to allow you to adjust the sizes of cheight and cwidth (the height

and width of a character in SCREEN units) for a hardware character set, as the sizes of

hardware sets can be very different from the SM fonts. You should only change cheight

and cwidth if we are really going to use your hardware characters (expand == 1, angle

== 0).
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dev_ltype(i) (int i;)

Set the LTYPE to be i, as in the interactive command. Return 0 if you support the ltype

asked for, otherwise -1. If you can’t support a linetype, make sure that you are drawing

solid lines, so that SM can emulate it for you. LTYPE 10 is special, it is generated by

the LTYPE ERASE command, and asks you to delete lines as they are drawn, LTYPE 11

is used to indicate the end of LTYPE ERASE mode.

dev_lweight(lw) (real lw;)

Set the LWEIGHT to be lw, as in the interactive command. Lines with lweight 0 should

be the natural thickness of a line on your device, higher lweight lines are usually drawn

with a thickness of LDEF*lweight in SCREEN coordinates. Return 0 if you support

the lweight asked for, otherwise -1.

dev_erase()

Erase the screen. No return value.

dev_idle()

Return to alpha mode, the opposite of dev enable(). No return value.

dev_cursor(x,y) (int *x,*y)

Find the current position of the cursor, if there is one. If there is, the return value is

the character struck by the user, otherwise return -1. If your device has a mouse, you

should try to make the buttons correspond to ‘e’, ‘p’, and ‘q’ from left to right. If you

only have one button, ‘p’ is probably the best choice.

dev_close()

Close the device, the opposite of dev open(). Note that you should not call stg_close

– this is done for you automatically. No return value.

dev_dot(x,y) (int x,y)

Draw a dot at (x,y), (i.e. a real dot, not like the DOT command). You’ll have to do the

move to (x,y) yourself. Return 0 if you can draw dots, otherwise -1.

dev_fill_pt(n) (int n;)

Draw a filled point at the current position. This is the routine that draws PTYPE n 3

points. Remember to allow for EXPAND and ANGLE. Return 0 if you can draw the point,

otherwise -1;

dev_fill_polygon(n) (int style; float *x, *y; int n;)

Draw a filled polygon defined by x and y (a total of n) points) in the style style (0:

filled; all other values are currently undefined). Return 0 if you can fill polygons in the

desired style, otherwise -1. You may get queries with on style with n == 0.

dev_ctype(r,g,b) (int r,g,b;)

Set the current line colour. The interpretation of (r,g,b) depends on whether you have

a dev set ctype function. If you don’t, then r, g, and b are the red, green, and blue

intensities in the range 0-255. If you do, then r is an index into the array defined by

set ctype and g and b are irrelevant. No return value.
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dev_set_ctype(col,n) (COLOR *col; int n;)

Define a set of colours to be accessed by set ctype. Col is an array of n elements, each

of which consists of 3 unsigned chars (COLOR is defined in sm.h) corresponding to red,

green, and blue in the range 0-255. Ctype will be used to access this array to change

colours. Return 0 if you do support set ctype, otherwise -1. If col is NULL this is just

an enquiry. If you are asked for more colours than you are prepared to support, you

should scale the request in a user transparent way (e.g. if she wants 256 colours, and

you are only giving her 128, you should arrange that dev ctype divides her requests by

2 so it looks as if she got all 256).

dev_gflush()

Flush graphics, update graphics on screen. No return value.

dev_page()

Start a new page. If your device produces hardcopy you should print the current page

and start a new one; if you are writing a window system driver you probably should

simply raise the window so that it is visible. No return value.

dev_redraw(fildes) (int fd)

Redraw the screen, but only if it needs it. This function is called by get1char() before

it tries to read a character from SM’s standard input (file descriptor fd). It is intended

for the use of drivers that need to keep an eye on ‘their’ window. For example, the

Silicon Graphics driver needs to redraw a window every time that it is moved. Such

device drivers will probably want to poll fildes (e.g. using select()) to see that there

really is input before returning; look at the sgi or x11 driver if you want an example.

No return value.

If you are still confused, look at some of the hardware drivers that are already available.

A.18.2 Porting to New Machines

Porting to new Unix machines should be relatively simple. If the machine runs BSD Unix the

only changes that should be necessary are to the exception handler routines in main.c, to reflect the

error conditions signalled by your new machine. For a Sys V Unix, you’ll have to edit ‘options.h’

to define SYS_V. Otherwise, your only problems should be hidden bugs which flourish in new

architectures.

Otherwise there isn’t all that much that I can tell you. SM runs on Unix (BSD and SysV) and

VMS machines, and the places where the code is #ifdef’d for those operating systems is your best

bet for places where there are machine dependencies. That said, there are a few obvious problem

areas.

First consider get1char, which is the routine that reads terminal input. It has to be able to get

one character a time from the terminal, and not interpret control characters. This is obviously op-

erating system dependent (CBREAK under 4.3BSD, PASSALL under VMS, ...). Get1char expects
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to be passed CONTROL-A to start operations, and EOF to end them. Anything else means ‘return

a character please’. The terminal output functions used by stdgraph are also machine dependent,

for example they use QIO calls under VMS.

As mentioned above, the exception handlers try to interpret the exceptions that they receive

and this may require a little modification in main.c.

Hardcopy devices need the system() system call to send commands to the operating system, and

if you don’t have one you are in trouble.

In a few places SM needs to make assumptions about how file names are put together, and these

will need changing. On a similar note, some operating systems (e.g. VMS) are very picky about

opening files and you may have to be careful. Note the use of the DT graphcap capability to signal

particular requirements to the programme.

A machine that didn’t use ascii would be rather a nuisance as makeyyl assumes that the char-

acters for A-Z are contiguous, and although this could be easily fixed I am not sure that other

problems wouldn’t arise.

A final rather horrifying thought is that Bison might not compile on a machine that doesn’t

have YACC as an alternative. I don’t know how to fix that, you’d just have to hope for the best,

or else run Bison/YACC on a different machine and copy over control.c.

A.19 The System Macro Libraries

This appendix describes the collection of useful macros, written by a variety of people, that are

to be found in the default macro directory, i.e. the directory pointed to by the macro entry in your

‘.sm’ file. If ever you write a useful (or simply clever) macro, why not send it to us for inclusion in

the next version of SM?

The macros are arranged in a number of files which may be read using the load macro. For

example, to load the file fonts type load fonts. To forget a set of definitions, use unload. Under

Unix, there is a macro lsm that can be used to list the contents of macro libraries, e.g. lsm utils.

It is more-or-less complete depending on the value of VERBOSE, just like LIST MACRO.

The list that follows gives the name and a one-line synopsis of all the macros in the default

files as of the date of this manual. The full text of any macro may be examined via the help

<macroname> command in SM; the default files may be printed for those who desire a hardcopy.

file ‘abbrev’ in directory ‘macro’

(This is a file of all unambiguous abbreviations of keywords. It is created using the shell

script ‘abbrev’ in the main SM directory. Its use may interfere with cunning macros, and is

not recommended).
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file ‘cover’ in directory ‘macro’

cover # draw the cover

file ‘default’ in directory ‘macro’

batch ## run the history buffer, but don’t delete from history list
bell ## ring terminal bell
calc ## evaluate an expression
cd ## change directories
compatible ## define macros to be compatible with Mongo
declare ## declare a vector $1: declare name size
del ## delete last command from history list
del1 ## don’t put command on history list
echo ## write to terminal
ed ## edit a macro, or the previous one if no argument
edit_all ## edit history buffer
emacs_all ## edit the history list using an external editor.
emacs_hist ## edit the history list using an external editor.
error_handler ## Handle CONTROL-C interrupts
execute # read and execute an SM file of commands (1 per line)
extend_history # Extend history buffer to be of size $1
for ## Repeat a macro while a condition is true, like C’s for(;;). See also while
gripe ## complain to Robert (Unix only)
h ## get help
head ## print the top of the current data (or other) file
hm ## help with the last macro edited
hv ## help with variable
insert ## insert text after line $1
load ## load macros in default directory
load2 ## load macros in (second) default directory
ls ## list macros
lsm ## list macros in a file in default macro directory
lsv ## list variables
q ## check, then quit
re ## macro read
reset_ctype # Reset the default ctypes (except "default")
sav ## save to a file $1, don’t save from files ‘$mfiles’
show ## show current values of various things
startup ## macro invoked upon startup
undef ## undefine a variable
undo ## undo [macro] : undo (i.e. erase lines drawn by) macro $1
unload ## forget macros from a file
unset # delete a vector
v ## set verbosity
wr ## macro write
xtcolours #adds extra colors to the default set

file ‘demos’ in directory ‘macro’

square # sum the Fourier series for a square wave, using $1 terms
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colours # draw a circle in a number of colours until ^C stops it
crings # draw a set of coloured circles
crings2 # draw a set of coloured circles using 256 shades of yellow
gauss_convolve # convolve 2 Gaussians with sigmas $1 and $2
grey_sincos # draw a grey scale image of a sin(x)cos(y) surface
scribble # use cursor to draw a line, and then shade the interior
shading # draw an ammonite
sundial # draw a sundial, allowing for the analemma

file ‘fonts’ in directory ‘macro’

fonts # draw the font table
TeX_defs # draw the ‘‘TeX’’ definitions
make_char # help create a new character

file ‘fourier’ in directory ‘macro’

#
# Macros to make dealing with complex numbers for FFT’s easier
# Assumes that complex vector ‘name’ is represented by two vectors
# called name_r and name_i
#
fft # Direct FFT: fft name name
ifft # Inverse FFT: ifft name name
cadd # Add complex numbers: $1 = $2 + $3
cdiv # Divide complex numbers: $1 = $2/$3
cmod # Modulus: $1 = |$2|
cmult # Multiply complex numbers: $1 = $2*$3
csub # Subtract complex numbers: $1 = $2 - $3
imag # Imaginary part: $1 = Im($2)
real # Real part: $1 = Re($2)
vcentre # shift a vector so that its 0th element appears in the middle
vcenter # an alias for vcentre

file ‘images’ in directory ‘macro’

entropy # Find entropy of an image
hist_equalise # Histogram equalise an image
gamma # Gamma correct an image

file ‘irregular’ in directory ‘macro’

These macros were written by Gabor Toth, to whom many thanks. They enable you to define

an SM IMAGE from 3 vectors, (x,y) and the value z

irregular_image # Set IMAGE from 3 vectors (x,y) and z
trigrid # Interpolate to the regular grid
trigridtry # Demonstrate the use of trigrid

file ‘math’ in directory ‘macro’
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#
# Written by Daniel Pfenniger (PFENNIGER@obs.unige.ch)
# ‘A&S’ is Abramowitz & Stegun
#
J0 # Bessel func. J0(|x|), A&S, 9.4.1,.3
Y0 # Bessel func. Y0(|x|), |x|>0, A&S, 9.4.2-3
J1 # Bessel func. J1(|x|), A&S, 9.4.4,.6
Y1 # Bessel func. Y1(|x|), |x|>0, A&S, 9.4.5-6
I0 # Modified Bessel func. I0(|x|), A&S, 9.8.1-2
I1 # Modified Bessel func. I1(|x|), A&S, 9.8.3-4
K0 # Modified Bessel func. K0(|x|), |x|>0, A&S, 9.8.5-6
K1 # Modified Bessel func. K1(|x|), |x|>0, A&S, 9.8.7-8
K # Complete elliptic integral K(m), 0<=m<1, A&S 17.3.34
E # Complete elliptic integral E(m), 0<=m<=1, A&S 17.3.36
fresnel # Calculate the Fresnel integrals C, S, and F

file ‘matrix’ in directory ‘macro’

matrix # Introduction to matrix utilities
mdeclare # declare $1 to be a $2x$2 square matrix
mdimen # print matrix $1’s dimension
mprint # print the matrix $1 (given as $1_0 $1_1 etc -- see minv)
madd # set matrix $1 equal to $2+$3
minv # Quick matrix inversion, done in place.
mset # set matrix $1 equal to $2
mmult # set matrix $1 equal to $2*$3
mmult_c # set matrix $1 equal to $2*$3 where $3 is a scalar
mmult_v # set vector $1 equal to $2*$3 where $3 is a vector
mmult_vT # set vector $1 equal to $2^T*$3 where $2 is a vector
mtrans # set matrix $1 equal to $2^T
mprint # print the vector $1

file ‘mongo’ in directory ‘macro’

(omitting those that are simply abbreviations, like ang)

da ## set data file
dev ## set device
dra ## draw, accepting expressions
ecolumn ## define vector error_col as error vector
end ## quit, not on history
era ## erase screen, not on history
lis ## list history, not on history
hard ## make a hardcopy of what you type (or get by history)
hardcopy ## close the old device and set dev type to 0
hcopy ## hcopy [printer] [l1] [l2]: Make hardcopy of playback buffer
hmacro ## hmacro [macro] [printer]: make hardcopy of ‘macro’ on ‘printer’
identification ## write an id to the top right hand corner of screen
input ## execute an Mongo file
mongo # make SM resemble Mongo as closely as possible
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pcolumn ## set point column (Mongo)
playback ## define "all" from buffer, and run it
read_all ## read a macro file, putting ‘all’ onto the history buffer
read_hist ## read history from a file
read_old ## read an Mongo file onto the history buffer
rel ## relocate, accepting expressions
save_all ## write the playback list to a file (use sav instead)
terminal ## device
toplabel ## put label at top of plot
xcolumn ## read a column into vector x (Mongo)
xlogarithm ## take log of vector x (Mongo)
ycolumn ## read a column into y
ylogarithm ## take log of y

file ‘project’ in directory ‘macro’

Miscellaneous projections (e.g. equal area). Contributed by Michael Strauss.

aitoff #convert l and b to x y in Aitoff coordinates
aitoff1 # Convert l and b to x y in reverse Aitoff coordinates
aitoffdec # Draw a line of constant declination in an Aitoff plot
aitoffdec1 # Draw a line of constant declination in a reverse Aitoff plot
aitoffgrid # Put up equal area grid in Aitoff
aitoffgrid1 # Puts up equal area grid in Aitoff. Reverse sense
calc_lb # Calculates r, l and b given x, y, and z
circle_exclude # After circleplot, draws regions excluded in latitude
circlelabel # Draw axes for a redshift circleplot
circleplot # Plot redshift points; requires circlelabel
eqgal # Usage: ra dec l b; Convert (ra, dec) to (l,b).
galeq # Usage: galeq l b ra dec. Convert (l,b) to (ra, dec)
galgrid # Puts up equal area grid
galplot # Usage: galplot ra dec l b
galpoints # Plot points on an equal area grid; galpoints l b
gstrans # Convert supergalactic to galactic coordinates
hemiconvert # Convert from l b to x y for hemisphere plotting
hemidec # Draw a line of constant declination on a pair of
hemiplot # Sky plot in two hemispheres, equal area
invaitoff # Convert x y in Aitoff coordinates to l, b
pielabel # Draw axes for a redshift pieplot
pieplot # Plot redshift points; requires pielabel
radtick # Put tick marks on a radial axis
sgtrans # Convert galactic to supergalactic coordinates

file ‘stats’ in directory ‘macro’

cgauss # evaluate a cumulated Gaussian distribution : N($mean,$sig)
cuniform # evaluate a cumulated uniform distribution, $mean,$sig
chisq # Return chi^2 distribution of vector $1 with $2 dof
draw_KS # Draw a cumulated curve, for looking at KS statistics
erfc # calculate complementary error function erfc($1)
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factorial # Use Stirling’s formula to calculate a factorial ($1)!
gauss # evaluate a Gaussian : N($mean,$sig)
gaussdev # return a N(0,1) random vector
linfit # linear least squares fit for any number of parameters
log_fac # Use Stirling’s formula to calculate a log factorial.
lsq # do a least squares fit to a set of vectors
lsq2 # do a least squares fit to a set of vectors, errors in x and y
prob_chisq # probability of getting a given value of chi^2
prob_KS # probability of getting a given value of the K-S statistic
prob_wilc # return probability in $$2 that x exceeds $1 from Wilcoxon
rxy # find Pearson Correlation Coefficient for two vectors
smirnov1 # calculate 1 sided Kolmogorov-Smirnov statistic for vector
smirnov2 # calculate 2 sided Kolmogorov-Smirnov statistic for vectors
spear # calculate Spearman rank correlation coefficient for 2 vectors
stats # stats vector mean sigma kurtosis : calculate $mean $sigma etc
stats2 # stats vector weights mean sigma kurtosis
stats_med # stats_med vector median SIQR : calc $median $SIQR from vector
wilcoxon # calculate Wilcoxon statistic for 2 vectors
wlsq # do a weighted least squares fit to a set of vectors

file ‘trigd’ in directory ‘macro’

Equivalents for all SM trig functions, taking degree arguments. Names add an extra ‘d’ (e.g.

sind)

file ‘utils’ in directory ‘macro’

alpha_poi # alpha_poi x y z. Like poi x y, but use z as labels for points
arc # the arclength along the curve ($1,$2), e.g. set v=arc(x,y)
arrow # use the cursor to define an arrow.
barhist # draw a bar histogram
boxit # use the cursor to define a box, and draw it
circle # draw a circle, centre ($1,$2) radius $3
cumulate # find the cumulative distribution of $1 in $2
draw_arrow # draw an arrow from ($1,$2) to ($3,$4)
draw_box # draw a box, defined by two corners
error_x # draw x-error bars: error x y size
error_y # draw y-error bars: error x y size
get_hist # get_hist input output-x output-y base top width
gauss # evaluate a Gaussian : N($mean,$sig)
get # syntax: get i j. Read a column from a file
glevels # Set grey levels. Usage: glevels expr
greyscale # Draw a grey-scale image.

# Usage: greyscale [npx npy maxweight dmargin]
info # Get help about a command from SM’s info files
interp # Linearily interpolate $3 into ($1,$2), giving $4
interp2 # Linearily interpolate $3 into ($1,$2), giving $4
is_file # Return true if file $1 exists
is_macro # Return true if $1 is a macro
is_set # define variable $$1 if the $3’rd bit is set in $2
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is_vector # Return true if $1 is a vector
logerr # syntax: logerr x y error, where y is logged, and error isn’t
mconcat # Concatenate 2 macros, optionally renaming result
number # convert a string vector to an arithmetic one
pairs # pairs x1 y1 x2 y2. connect (x1,y1) to (x2,y2)
polar # draw a circle as an ‘axis’ for polar coordinates
pmatrix # print the matrix $1
puts # Draw a line of text, then move to the start of the next line
qminv # Quick matrix inversion, done in place
repeated # Return an array that is true for repeated elements in $1
reverse # reverse the order of a vector
save_vec # put the definition of a vector onto the history list
set_window # cycle through all available windows
shade_box # shade a box, spacing $1, defined by two corners
shed # shade region between x y and x2 y2 with n lines
simp # Simpson’s rule integration: simp answer x y
smooth # boxcar smooth a vector
smooth2 # smooth a vector with a given filter
smooth3 # smooth a vector with a given filter omitting points
2dhistogram # convert the current image to a 2-d histogram
thin # create a "thinned" version of a vector for plotting points
thin2 # "thin" the end of a vector
thin3 # "thin" the central portion of a vector
uniq # Remove duplicate elements of $1, e.g. u = uniq(x)
upper # define a variable giving an ‘upper limit’ symbol
vecminmax # find the minimum and maximum of a vector
vfield # plot a vector field: vfield x y len angle
vfield2 # plot a vector field, vfield x y len angle (len in x-axis units)
vfield3 # plot a vector field: vfield x y len angle (len in y-axis units)
vfield4 # Vector field at points x, y; components vx vy
vfield5 # Vector field at points x, y; components vx vy scaled by f

A.20 Tips for Mongo Users

A.20.1 Differences from Mongo

SM differs in a number of ways from Mongo, and these fall into three groups: those which are

enhancements, those which are generalisations, and those which are simply incompatibilities. We

do not feel that there is a fourth group for degradations. For those users of Mongo intimidated

by change, we note that in most cases it is possible to ignore the enhancements by using a macro

presented in the next section. This macro redefines commands to reproduce the old syntax; for

example limits is defined to mean LIMITS x y. It is also possible to read Mongo files using the

READ OLD command, and the macros input and read_old based upon it. The following list of

enhancements in not complete; See the distribution notes from the current release of SM.

Enhancements:
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Any number of vectors may be defined.
Vectors may be manipulated arithmetically.
Vectors are named.
Vectors may be defined from the keyboard using DO loops or expressions.
Vectors may be defined using the cursor.
Any vector may be used for plotting.
Any vector may be used for the PTYPE or ERRORBAR commands.
A history feature is implemented.
The playback buffer may be edited.
Macros may be defined from the keyboard, and edited.
A DO construct is available.
A FOREACH construct is available.
Character strings may be read from a file and used freely as labels or names.
Data may be read from rows as well as columns in files.
Only those parts of a vector satisfying a logical condition need be plotted.
Vectors may be sorted or fit with splines.
Macros exist for doing least square fit to sets of points,constructing
cumulative distributions and histograms, drawing circles, and shading regions.
All devices have the same range of device coordinates, 0-32767.
The entire SM environment may be saved for later resumption with SAVE
and RESTORE.
The special variable $date expands to the current date and time.
You can define private point types.

There are also a few incompatibilities:

DEFINE is used to define variables; macros are defined
using MACRO.
Macro arguments must be declared, and are referred to as $n,
not &n.
The form LIMITS is not supported (it’s meaningless); use
LIMITS x y, or the macro lim, mentioned above.
(But note that READ OLD allows for these, and makes suitable changes.)
WINDOW now takes 4 arguments.

A.20.2 The READ OLD command

READ OLD reads a Mongo file, converts its contents to a form acceptable to SM, and defines them

as a macro. Any macro definition (i.e. from a line beginning def to a line beginning end) is con-

verted to the SM form (i.e. ‘$s’ not ‘&s’) and defined. The commands CONNECT, HISTOGRAM,

LIMITS, and POINTS are converted to LIMITS x y, and so forth. ERRORBAR, ECOLUMN,

and WINDOWS are also converted. READ OLD will fail if the Mongo file contains abbreviations

such as xc for XCOLUMN, then your only hope is to define the same abbreviations. In many cases

this will have already been done, for instance xc expands to read x . Comments (beginning !) are

optionally converted to standard SM # comments (depending on how the file ‘read_old.c’ was

compiled.)
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Note that it is advisable to convert these old Mongo macro files to SM macros, to enable you to

take advantage of SM’s features. You can do this by simply using READ OLD to read them into

SM, and then MACRO WRITE or SAVE to write the converted macro out to disk.

There is also a macro equivalent of the old INPUT command.

input 1 ## read and execute a Mongo (not SM) file
READ OLD _temp $1
_temp
MACRO _temp DELETE

A.20.3 The compatibility macro

This version of compatibility is more complete than in pre-version 2 SM, it also conflicts more

strongly with normal SM operations.

The macro compatibility defines mimics for the Mongo commands which assume that the only

vectors are x and y. We strongly recommend that you do not use this macro! If you want to use

it anyway, commands like limits alpha beta will give syntax errors. You can turn compatibility

mode off again with compatibility 0. The macro itself is a little complicated, it turns off the

special meaning of (e.g.) limits, and replaces it with a macro that reproduces the old behaviour,

in this case LIMITS x y. The new definitions are in the file ‘compatible’ in the default macro

directory, as specified in your ‘.sm’ file. At the time of writing, the commands connect, errorbar,

histogram, limits, list, points, read, and window are redefined to reproduce the old syntax.

In addition, help is defined to not appear on your history buffer, and define is defined to create

macros interactively. You might also be interested in other redefinitions of commands (e.g. list

to mean list the playback buffer), if so look at ‘overloading’ in the index. It should be clear that

this set of definitions could thoroughly confuse SM if you try to take advantage of its features; in

the realm of compatibility mode, it is strictly caveat emptor.
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compatible 11 ## define macros to be compatible with Mongo
# If the argument is non-zero or omitted,
# compatibility mode is turned on.
# note that some of these make it hard to use regular SM!
if($?1 == 0) {

compatible 1
RETURN

}
if($1 == 0) {

MACRO DELETE "$!macro"compatible
}
FOREACH w { connect define errorbar help histogram limits \

list points read window write } {
OVERLOAD $w $1

}
if($1) {

MACRO READ "$!macro"compatible
}
# So newline will end IF statement

A.21 SM’s Fonts

These are a sub-set of the well-known Hershey fonts13 and the available characters are listed in

the following table, which were generated from within SM by saying load fonts fonts.

For details on SM’s implementation of TEX and the ‘traditional’ style see the section in the main

body of this manual (see Chapter 14 [Labels], page 51).

The characters in a font are specified using a programme read_fonts which you can use to make

binary font files from the list of Hershey characters, using an index file to specify what character

should go where. The binary fonts file also specifies which TEX ‘definitions’ are available (e.g.

\alpha). The first 4 bytes of the file are an integer (in binary) that specifies the format of the file;

when the format is changed in an incompatible way this number if changed and you will have to

rebuild your font files (‘make fonts’).

The default font table is illustrated at the end of this appendix. Which font file you want to use

is specified as the fonts entry in your ‘.sm’ file.14. The fonts.bin fonts have been cleaned up a bit

13 created by Dr. A. V. Hershey at the U. S. National Bureau of Standards and illustrated in

National Bureau of Standards publication NBS SP-24. The format used in the hershey oc.dat

file was originally due to James Hurt at Cognition, Inc., 900 Technology Park Drive, Billerica,

MA 01821. It may be converted to any format except the format distributed by the U. S. NTIS

(whatever it may be). We have to tell you all this for copyright reasons, but as distributed the

fonts are in the public domain.
14 It’s possible to resurrect the font table used by pre-2.0 versions of SM, using the index file

‘old_font_index’
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for version 2.0 of SM, although the order of characters in the greek and roman fonts is unchanged.

There is a new font, ‘Old English’ or \o or \oe, and a good number of new characters are provided.

Neither of these fonts supports the ‘private’ fonts, that is there in case users desperately need

something, when they can make their own binary font file. For example, there is a set of Hershey

oriental fonts that can be used to help SM write Japanese (see Section A.22 [Japanese], page 218).

The complete list of (occidental) Hershey characters is given in a file called hershey_oc.dat,

and is in the public domain. Each character is specified by a number in the first 5 columns, then

a number of strokes in the next 3, then pairs of letters in the remaining columns up to 72, and in

as many 72 character lines as are needed. (Annoyingly, if a line consists of exactly 72 characters,

the next must be left blank). Each pair of characters consists of a coordinate, with the origin at

(R,R), and the y axis pointing down. A ‘ ’ indicates that the next point is a move, otherwise just

connect the dots. The very first pair is different, as it specifies the left and right spacing for the

character. If this isn’t clear, try drawing a few characters on graph paper, character 2001 (roman

A) for example. There are a few characters that have traditionally been available in Mongo that

are not in the Hershey set, these have been added to the end of the ‘hershey_oc.dat’ file, plus a

few that we thought deserved adding.

If you want to create your own characters, the macro make_char in ‘fonts’ (i.e. load fonts

make_char) might help. It uses the cursor to make a string that is (nearly) in the correct form for

inclusion in ‘hershey_oc.dat’

The programme read_fonts reads this file, an ‘index’ file that specifies the characters to be

put into the fonts, and a list of TEX definitions. The index file consists of character numbers, or

ranges consisting of two numbers separated by a minus sign. Comments go from the character #

to end of line. Each font consists of 96 characters in ascii order, and fonts appear in the index in

the order rm, gr, sc, ti, oe, and then the various private fonts (privateA, privateB, . . ., privateG.).

You can also use cat_fonts to concatenate binary font files prepared with read_fonts.

The format of the TEX definition file is that each definition has a line to itself, lines starting

with a # are comments. A line consists of a name, some whitespace, the number of arguments

(optional, defaults to zero), the name of the font to use, a single white-space character, and the

value of the definition to the end of the line; you can continue onto another line by putting a \ at

the end of the line. You can use any of the normal font specifications, or cu which means use the

current font.

For example

alpha gr a
alsoalpha 0 cu \gr a
alphatoo 1 gr \#1a

defines \alpha the conventional way as the character a in the greek font, then defines alsoalpha in

a less efficient way (by specifying the current font, then explicitly switching to greek), then defines
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alphatoo as a large α , used as \alphatoo5. There’s no reason why your definitions can’t be

reasonably complicated, see for example the definition of \TeX.

If the number of arguments is given as -1 the TEX symbol will be interpreted as an alias for the

specified font, for example the TEX definition file begins

katakana -1 privateA
hiragana -1 privateB

to make \katakana change to the privateA font.

The main Makefile prepares your binary font file for you. There is also a programme cat_fonts

that can be used to concatenate two or more binary fonts files; an example is given in the section

on Japanese fonts (Section A.22 [Japanese], page 218).
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‘ ’

Select a device and say ‘load fonts TeX defs’ to make this page
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‘ ’

Select a device and say ‘load fonts fonts’ to make this page

It is also possible to build SM fonts for other languages:

A.22 Using SM to write Japanese

SM is currently able to use either katakana or hiragana fonts, but no kanji are yet supported.

The order of characters in the fonts is likely to change, based on the desires of the users. Please let

me know what you want.

As distributed, the Japanese font tables aren’t built. To make them, say make jfonts.bin

in the toplevel SM directory, and ensure that your ‘.sm’ file sets fonts correctly. The Japanese

characters are available as \hiragana and \katakana. You can list the characters available with

load fonts jTeX_fonts.

One question is whether \katakana 2 should print an Arabic (western) or a Japanese two; I am

open to suggestions.

There are a variety of kanji characters present, but no easy way to select them. If someone

would like to donate a table of the correspondence between some accepted ascii encoding and the

available characters, I will ensure that the character encoded as AB os available as (say) \kanjiAB,

and provide a programme to generate such codes from the output of at least one popular word

processor, expecting the user to cut-and-paste the result. Of course, it’d be quicker if you did it

for me!
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General Index

There is a separate index for graphcap capabilities, see Section A.12 [Graphcap Index], page 181.
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