Exponential

GROWTH and DECAY
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Finite vs. Infinitesimal Differences

* Let B be the balance in your savings account.

* Let ¢ be the elapsed time in years.

e Let the function B(7) be the recipe for how B changes with 7:
e After At =1vyear, B(t + At)= B(t)+0.1 B(t) = B(t)+AB

e Thus AB/At=0.1RB

e What if this were still trueas At —->0? dB/dr=0.18

 Or, more generally, dB/dt=kB where k is ininverse time units.
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What is this simpler function?

dB/dr=B (i.e. k=1)
(B is its own derivative!)

Then it’s also its own second derivative...
and third derivative... and nth derivative:

d?B/dt? = d3B/d¢3 = d"B/di" = B

Can we express B(t) as a simple polynomial?

B(t) = a0 + ait + axt?2 + azt3 + ...

Let’'s check!
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Hypothesis: B(t) = ao + a1t + a2 + as3 + ...

Defining Condition: dB/dt= B
(B is its own derivative)

Initial Condition: B=1 at r=0 = aqo=1

Differentiate: dB/dt = 0 + a; + 2a>t + 3a362 + ...
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Natural Logarithm (n(x):

The Inverse of the Exponential Function

(the power to which one must raise ¢ to obtain x)

etnx) = y

By the same token,

tn(e*) = x

if y(x)= {n (x), dy/dx=1/x = x-1

Soif y(x)= 1/x = x| / y(x)dr = €n(x;/xo)

L0
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Applications of the Exponential Function
ek and its siblings e~ & {(n(x):

Growth of savings vs. decay of value of $1 [inflation]:
k = interest rate (e.g. k=0.1 for10%); 1=k

Propagation of a pandemic: k= Ro/Tincub.
Radioactive decay: A=1/t=(n2/Tw ({n2=0.6931478...)

Complex exponentials: if x=-y+iw,

erxt = et (cos wt +1isin wt) [damped oscillations]
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