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Projecting the Wheel

«

Picture a wheel spinning at
constant angular velocity W.

Now picture the motion of
the shadow of a pin on the
rim of the wheel (at high
noon on the Equator).

This is called (reasonably) the
projected motion of the pin.

X=r cosO
0 =wt
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smal For 6 <1, cos(f) 6

~ 1 — %
Angles: and sin(f) = #.

Taylor Series Expansions for Exponential & Sinusoidal Functions:
exp(z) = 1 42 +322 +52° +521 +---
_ 1.2 1.4
cos(z) = 1 -2 +52° —--

sin(z) = z — R
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Derivatives of the Cosine Function
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X =r cos(wt + )
Note:
v = dx/dt = —wr sin(wt + @)

d2x/dt2 = -w? x

a = d2x/dt? = -w?r cos(wt + )



The Spring Pendulum

L L S S




F = ma

The Spring Pendulum

L L S S




ﬁ

=
Q

Hooke’s Law

F=-kx

The Spring Pendulum

L L S S




ﬁ
[l

Hooke’s Law

md

F=-kx

The Spring Pendulum

L L S S




The Spring Pendulum

L L S S

.,.,
|

=

Q

Hooke’s Law
F=-kx

So a=dx/d2=-wx i w=k/m o w=+k/m



The Spring Pendulum

L L S S

.,.,
|

=

Q

Hooke’s Law
F=-kx

so a=dx/d2=-wx i w2=k/m o @ w=+k/m



Our old friend, the Exponential:



Our old friend, the Exponential:

Remember dx/dt=-kx < x(t)=xy exp(-kt) ?



Our old friend, the Exponential:

Remember dx/dt=-kx < x(t)=xy exp(-kt) ?

The second derivative would be dx/dt2=k2x,  right?



Our old friend, the Exponential:

Remember dx/dt=-kx < x(t)=xy exp(-kt) ?

The second derivative would be dx/dt2=k2x,  right?

Well, now we have a new equation d2x/dt2 = - w?x, which means the

exponential function would be a solution if only we could have k2= - w?.



Our old friend, the Exponential:

Remember dx/dt=-kx < x(t)=xy exp(-kt) ?

The second derivative would be dx/dt2=k2x,  right?

Well, now we have a new equation d2x/dt2 = - w?x, which means the

exponential function would be a solution if only we could have k2= - w?.

Of course this is impossible. No real number is negative when squared.



Our old friend, the Exponential:

Remember dx/dt=-kx < x(t)=xy exp(-kt) ?

The second derivative would be dx/dt2=k2x,  right?

Well, now we have a new equation d2x/dt2 = - w?x, which means the

exponential function would be a solution if only we could have k2= - w?.

Of course this is impossible. No real number is negative when squared.

But what if there were such a number? Use your imagination! i = /-1



Our old friend, the Exponential:

Remember dx/dt=-kx < x(t)=xy exp(-kt) ?

The second derivative would be dx/dt2=k2x,  right?

Well, now we have a new equation d2x/dt2 = - w?x, which means the

exponential function would be a solution if only we could have k2= - w?.

Of course this is impossible. No real number is negative when squared.
But what if there were such a number? Use your imagination! i = /-1

Then we could solve our differential equation in one step:

x(t) = xo exp(i wt)



Our old friend, the Exponential:

Remember dx/dt=-kx < x(t)=xy exp(-kt) ?

The second derivative would be dx/dt2=k2x,  right?

Well, now we have a new equation d2x/dt2 = - w?x, which means the

exponential function would be a solution if only we could have k2= - w?.

Of course this is impossible. No real number is negative when squared.
But what if there were such a number? Use your imagination! i = /-1

Then we could solve our differential equation in one step:

x(t) = xo exp(i wt) — but what does this mean?



Complex Exponentials



Complex Exponentials

Taylor Series Expansions for Exponential & Sinusoidal Functions:
exp(2) = 1 42z +322 +%23 +32* +--.
Recall cos(z) = 1 —32° +L2t -

sin(z) = 2 —=2 I



Complex Exponentials

Taylor Series Expansions for Exponential & Sinusoidal Functions:

exp(2) = 1 42z +322 +%23 +32* +--.

Recall  cos(z)= 1 -3 37 T Whatif z=i6 7

sin(z) = 2 —2i2 +- -



Complex Exponentials

Taylor Series Expansions for Exponential & Sinusoidal Functions:

exp(2) = 1 42z +322 +%23 +32* +--.

Recall  cos(z)= 1 -3 37 T Whatif z=i6 7

sin(z) = 2 — 32" .-

exp(iB)=1 + i6 1202 -153i0° + ¥VaB* + ..



Complex Exponentials

Taylor Series Expansions for Exponential & Sinusoidal Functions:

exp(2) = 1 42z +322 +%23 +32* +--.

Recall  cos(z)= 1 -3 37 T Whatif z=i6 7

sin(z) = 2 — 32" .-

exp(iB)=1 + i6 1202 -153i0° + ¥VaB* + ..

cos(B) = 1 ~12102 + Va0t + ...



Complex Exponentials

Taylor Series Expansions for Exponential & Sinusoidal Functions:

exp(z) = 1 +z +322

Recall cos(z) = 1
sin(z) =
exp(iB) =1 +
cos(0) =1

i sin(B) =
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Complex Exponentials

Taylor Series Expansions for Exponential & Sinusoidal Functions:

exp(2) = 1 42z +322 +%23 +32* +--.

Recall  cos(z)= 1 -3 37 T Whatif z=i6 7

sin(z) = 2 —2i2 +- -

exp(i®)=1 + i6 =102 -153i63 + 1a6* + ...
cos(B) = 1 ~12102 + Va0t + ...

i sin(B) = i0 —14, 163 R

This means ei® =cosO +isinB
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Simple Harmonic Motion

Linear Restoring Force
(Hooke’s Law)

F=-kx

)

Quadratic Potential Minimum

U="Y2k x?
blus

Inertial Factor m

SHM
X WX
dtz
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Viscous damping:
d2x/dt2 = -k dx/dt & v(t) = vy exp(-kt)
With a linear restoring force and viscous damping, the equation is
d2x/dt2 = - k dx/dt - w2 x
which still might be satisfied by  x(t) = xg exp(Qt) with some Q.

Let’s try! Plug this x(t) back into the equation, giving

Q’x=-kQx-w2x or Q*+kQ+w2=0

which has the solution 2Q =-k + +/ k2 - 4w?

Again, what does this mean ?
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Ihe End

for now




