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Physics 108 Assignment # 1 SOLUTIONS:

THERMAL PHYSICS

Wed. 05 Jan. 2005 — finish by Wed. 12 Jan.

1. “STAT - EC”: Consider the following simplified model of a sort of stock market: A given stock S has a total of N shares on
the market for a fixed price ε. At a given time, n of these shares are bought and the remaining N − n are unwanted. Thus the net
investment in S is U = nε. [Here ε and U are measured in monetary units, say dollars; I have used the same notation as for energy
for reasons that will soon become evident.] To keep things simple, we shall assume that the price ε of a given stock does not change.
Further, let’s make the outrageous assumption that the stock market as a whole is a priori equally likely to be found in any one of the
fully specified states accessible to it — i.e. that a given amount of capital is equally likely to be distributed amongst the various stocks
in any of the possible ways that give the same total.1

(a) Invent a general definition for an economic analogue of temperature τ [measured in monetary units] that has the desired
predictive power: that (given our starting assumptions) capital will tend to flow spontaneously from stocks with higher τ into
others with lower τ and will stop flowing between two stocks only when they are in “economic equilibrium” — i.e. when they
have the same “economic temperature” τ .

ANSWER: This can be copied right off the handout; I just wanted you to give some thought to the implications. If
Ω(U) ≡ Ω(n,N) is the number of different ways the total capital investment U = nε in stock S can be redistributed among the
N shares available (N > n) of that stock, then the entropy of stock S is σ = ln Ω. We even have a formula for Ω(n,N) given
the above specifications, namely the binomial distribution, but this part of the question is completely general and you need not

work out the actual specific result, just define the inverse economic temperature as
1

τ
≡ ∂σ

∂U
, in terms of which the

above-mentioned predictive power comes automatically!

Just for fun, I will go ahead and derive the explicit U -dependence of τ for the binomial distribution: Ω(n,N) =
N !

n!(N − n)!

or Ω(U) =
(2Û/ε)!

(U/ε)![(2Û − U)/ε]!
where Û ≡ 1

2
Nε is the energy giving the largest possible Ω. For large N this can be approx-

imated by a gaussian distribution: Ω(U) ≈ Ω(Û) exp
[
−2(U − Û)2/Nε2

]
, giving σ(U) ≡ ln Ω(U) = c − (U − Û)2/Ûε. Thus

1

τ
=
∂σ

∂U
= −2

(U − Û)

Ûε
= 2

1− U/Û
ε

or τ =
ε

2(1− U/Û)
. Note that τ has the same dimensions as ε, as expected. For your own

amusement, consider how the economic temperature of stock S behaves when half or more of its available shares are sold!

(b) Now assume that the entire market is in “economic equilibrium” and is so much larger than any of its parts that we may treat it
as a “capital reservoir” R at an “economic temperature” of τ =$100. Consider one share of one stock, valued at ε1 =$200: What
is the probability that it will be bought at any given time?

ANSWER: Again, this is right out of the handout: we have now the analogue of the canonical ensemble, in which the
probability of one fully specified state of a “microsystem” (in this case a single share of a given stock) follows the Boltzmann

distribution: Pα ∝ e−εα/τ . In order to convert the ∝ symbol into an = sign, we need to normalize the probability distribution:
all the possibilities together must add up to a probability of unity. In this case there are only two possibilities: either the
stock is bought (investment ε, probability Pb = Ce−ε/τ ) or it is not bought (investment 0, probability Pnb = Ce−0/τ = C),
where the constant of proportionality C must be adjusted to make the total come out to 1 = Pb + Pnb = C(1 + e−ε/τ ). Thus

C = 1/(1 + e−ε/τ ) and we have Pb =
e−ε/τ

1 + e−ε/τ
=

1

e+ε/τ + 1
, in this case Pb =

1

e$200/$100 + 1
=

1

e2 + 1
= 0.1192.

(c) Assuming that R is also huge compared to the entire offering of N1 = 1000 shares of stock S1 valued at ε1 =$200, what is the
expected total investment U1 in S1 when τ =$100?

ANSWER: If the probability of any one share of S being bought is Pb = 1/(e2 +1), then the expected average total investment

U in S is 〈U〉 = NPbε = 1000× 1

e2 + 1
× $200 or 〈U〉 = $23, 841.

(d) If the economic temperature drops to τ =$50, which stock will be likely to have the most capital U invested in it, S1 with
N1 = 1000 shares at ε1 =$200 per share or S2 with N2 = 1000 shares at ε2 =$100 per share?

ANSWER: As in the previous part, 〈U1〉 = N1 ×
1

e200/50 + 1
× ε1 = 1000× 1

e4 + 1
× $200 = $3, 597 whereas

〈U2〉 = N2 ×
1

e100/50 + 1
× ε2 = 1000× 1

e2 + 1
× $100 = $11, 920. Thus the stock selling for the lower price will tend to attract

the larger net investment for the same number of shares, even though each share is sold for less, as long as both are expensive

— i.e. selling for well above the market’s economic temperature τ . (If ε < τ then almost half the shares of the stock will be
sold and the stock with the larger price per share will attract a larger net investment. Notice how important it is to be aware of

1This is not consistent with current economic theory, which focusses on “rational agents.” Here we assume totally mindless,
random investment decisions.
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the market’s “temperature.”) Of course, all this is founded on several assumptions — totally mindless investment decisions and
the consequent lack of “feedback” affecting the prices of stocks — which cannot possibly describe the behaviour of a real stock
market . . . can they? Note also that because there is a limit on how much money can be spent on a given stock (namely when all
shares are sold, a state of zero entropy) we can have all the peculiar effects of negative “economic temperature” — but for τ > 0
the maximum fraction of shares sold will be 50%.

2. MARS-EQUIVALENT ATMOSPHERIC PRESSURE: The composition of Mars’ atmosphere is nominally 95.3% CO2, 2.7%
N2, 1.6% Ar, 0.15% O2 and 0.03% H2O. Mean atmospheric pressure at the surface of Mars is 1-9 millibar, depending on altitude; the
average is about 7 mb, compared to 1000 mb at sea level on Earth. At what altitude here on Earth would the atmospheric pressure be
the same as that at the surface of Mars? (Assume an isothermal Earth atmosphere at 300 K. Are any other assumptions needed?)

ANSWER: As we have seen, molecules of mass M in an isothermal atmosphere have a relative probability P(h) ∝ exp(−Mgh/kT )
of being found at altitude h. (Here k is Boltzmann’s constant.) Thus the ratio of the atmospheric pressure at height h to that at
zero height (i.e. sea level) is just exp(−Mgh/kT ), so to drop the pressure by a ratio 7/1000 = 0.007 we must go to a height h where
exp(−Mgh/kT ) = 0.007 or Mgh/kT = − ln 0.007 = 4.96 or h = 4.96kT/Mg. We know k = 1.38× 10−23 J/K so kT = 4.142× 10−21 J,
and g = 9.81 m/s2, but now we do have to make an additional assumption: namely, that our atmosphere is “mostly nitrogen” where
in fact it is about 79% N2, 20% O2 and 1% other gases. The partial pressure of heavier gases (mainly oxygen) will drop off faster with
altitude, giving a net pressure that does not have a perfectly exponential h-dependence; but the isothermal assumption is much worse,
so we can use the M of N2 (about 28× 1.67× 10−27 kg) to get h = 4.96× 4.142× 10−21/28× 1.67× 10−27 × 9.81 = 44685 m. That is

h = 44.7 km .

3. ORTHO- vs. PARA-HYDROGEN: Molecular hydrogen, H2, consisting of two protons bound together with two electrons, can
form in either the “singlet” state called parahydrogen, in which the total spin (intrinsic angular momentum) of the molecule is zero, or
in any one of three “triplet” states of orthohydrogen, in which the proton spins combine to make a total spin of 1h̄ (the fundamental
unit of angular momentum). For this problem, all you need to know is that the three triplet states are degenerate — i.e. they all have
the same energy relative to the singlet state, namely ε3 = 2.375× 10−21 J. (The energy ε1 of the singlet state can be taken to be zero,
for reference.) Assume that the spin degrees of freedom of the H2 molecules are unaffected by, but are in thermal equilibrium with,
all their other degrees of freedom (like translational, rotational or vibrational). In this case, what fraction f3 of H2 molecules will be
found (on average) in ortho states

(a) at room temperature (300 K)?

ANSWER: As in the earlier example, the probability of a state |α〉 of energy εα being occupied in thermal equilibrium at

temperature τ is given by the Boltzmann distribution, Pα = Ce−εα/τ , where the constant of proportionality C is to be determined
by normalization.2 There are three states of energy ε3 and one of zero energy, so for normalization we must have 1 = C + 3Ce−ε3/τ

or C =
1

1 + 3e−ε3/τ
. The fraction of H2 molecules in all three triplet states combined is the sum of the three (equal) probabilities

of any given molecule being in any of these three degenerate states: f3 = 3Ce−ε3/τ =
3e−ε3/τ

1 + 3e−ε3/τ
=

3

eε3/τ + 3
. For τ = 300kB =

4.142× 10−21 J, ε3/τ = 0.5734 and eε3/τ = 1.774, giving f3 =
3

1.774 + 3
= 0.628

(b) at the boiling point of liquid nitrogen at atmospheric pressure (77 K)?

ANSWER: The same formula applies here, with τ = 77kB = 1.063 × 10−21 J, ε3/τ = 2.234 and eε3/τ = 9.337, giving

f3 =
3

9.337 + 3
= 0.243

(c) at the freezing point of molecular hydrogen at atmospheric pressure (14 K)?

ANSWER: . . . and again here, with τ = 14kB = 1.933 × 10−22 J, ε3/τ = 12.29 and eε3/τ = 2.168× 105, giving

f3 =
3

2.168× 105 + 3
= 1.384× 10−5

2In this case, of course, ε is an actual energy and τ is a normal temperature measured in regular energy units. (Back to the
“real world” of thermal physics.)


