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Physics 108 Assignment # 2 SOLUTIONS:

KINETIC THEORY OF GASES

Wed. 12 Jan. 2005 — finish by Wed. 19 Jan.

1. Quantum Tension in a String

A single electron is confined to a single-walled carbon nanotube (SWNT) of length L = 1 µm but is free to move
up and down the length of the SWNT. (Since the SWNT is only about 1.2 nm in diameter, you may think of it as
a long string). If this system is cooled to nearly 0 K so that the electron is in its lowest possible energy state (the
“ground state”), what is the tension in the SWNT “string” due to the electron’s confinement?

Hint: Use de Broglie’s hypothesis (λ = h/p) and think in terms of standing waves. Then use a classical picture of
a particle of momentum p = mv bouncing back and forth off the ends of the string. . . .

ANSWER: The longest wavelength (ground) state of a particle in a one-dimensional (1D) “box” has λ = 2L and
therefore (by de Broglie’s hypothesis) momentum p = h/2L. For a “1D box” this large the electron will be
nonrelativistic (you can check this), so we can set p = mv and thus v = 2L/T = p/m = h/2Lm where T is the time
for the electron to make a round trip to the other end and back. Thus the electron transfers momentum 2p = h/L (by
reversing its direction) to one end of the “string” every T = 4L2m/h, generating an average force
F = 2p/T = h2/4mL3. Then we just plug in L = 10−6 m, m = 9.11× 10−31 kg and h = 6.63× 10−34 J-s to get

F = 6.63×6.63×10−68

4×9.11×10−31×10−18 or F = 1.206× 10−19 N . Since each end of the SWNT is being pushed “out” by this

force, it is the same as the tension in the SWNT.1

2. One-Dimensional Ideal Gas

Making use of the Equipartition Theorem, derive an equation analogous to the familiar 3D Ideal Gas Law
(pV = Nτ) for an ideal gas confined to a one-dimensional “box” of length L. (Some examples would be N
electrons moving freely along a single DNA molecule, a trans-polyacetylene chain, a SWNT or a “nanowire” made
from GaAs/AlGaAs structures.)

ANSWER: The arguments developed for the time-averaged force exerted on one wall of a cubical 3D container
apply equally well for the force acting on the boundary of a 1D “box” — namely, for a single particle bouncing back
and forth, 〈F1〉 = m〈v2

x〉/L, where L is the length of the “box”. In this case there is only one direction of motion
(degree of freedom) so we can drop the x subscript on vx. The Equipartition Theorem says that the thermal
average of the kinetic energy E1 = 1

2mv
2 associated with this translational degree of freedom is 〈E1〉 ≡ 1

2m〈v2〉 = 1
2τ ,

giving m〈v2〉 = τ . If we substitute this back into the formula for 〈F1〉 we get 〈F1〉 = τ/L. For N particles all doing
this at the same time, we just multiply by N , giving 〈F 〉 = Nτ/L or (ignoring the fact that the actual force F at any

instant fluctuates minutely about the average force 〈F 〉) FL = Nτ . This is the 1D equivalent of the Ideal Gas
Law. Note that the only difference between this derivation and the one for a 3D box is that here we didn’t have to
introduce the notion of pressure as the force per unit area. This is simpler!

1This may not sound like much, but if you divide by the cross-sectional area of the SWNT (1.13 × 10−18 m2) the equivalent
pressure is 0.107 Pascal [N/m2]. OK, still not much. But make the SWNT 10 times shorter and you will get 1000 times more
tension!
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3. One-Dimensional Maxwellian Speed Distribution

(a) What is the thermal speed distribution D(v) [in the textbook’s notation, N(v)/N , as in Eq. (22-14) on
p. 503] for an ideal gas confined to a one-dimensional “box”? It would be nice if you could find the right
leading factors (involving temperature and various constants) to normalize the distribution so that

∫ ∞

0

D(v) dv = 1 ,

but I am mainly looking for its dependence on the speed v.

Hint: Again, use de Broglie’s hypothesis and think of standing waves.

ANSWER: Again the 1D case is much simpler than the 3D case because we don’t have to worry about
composing v2 out of v2

x + v2
y + v2

z (or ~k out of kx, ky and kz). There is just one direction, just one velocity
component, one momentum component and one wavelength to worry about making commensurate with the
length of the “box”. Thus the requirement that an integer n half-wavelengths fit evenly into ` gives λn = 2`/n
and so pn = h/λn = nh/2` = mvn or vn = n(h/2m`). Thus the possible values of the speed v are evenly
spaced every (h/2m`) and the distribution of speeds varies only as the Boltzmann factor exp(− 1

2mv
2/τ). This

gives immediately D1D(v) = Ae−mv
2/2τ where A is a normalization constant that does not depend on v. You

get full credit for this result, but here’s how to get A: Let y ≡ mv2/2τ where τ is treated as a constant. Now,
v2 = (2τ/m)y or v =

√
2τ/m y1/2 so dv = 1

2

√
2τ/m y−1/2dy and we have∫ ∞

0

D(v) dv = 1 = A

√
τ

2m

∫ ∞

0

y−1/2 e−y dy . You can look up the definite integral; its value is
√
π, giving

A =
√

2m/πτ .

(b) Sketch this distribution for a given temperature and compare its shape with that shown in the Figures on
p. 503 of the textbook. ANSWER: See below.

3D: 1D:

(c) What can you say about the most probable speed vp in the two different cases?

ANSWER: As stated in the textbook, the most probable speed for an ideal gas molecule in 3D is

v3D
p =

√
2τ/m (i.e. when mv2/2τ = 1). For the 1D gas, however, D1D(v) is missing that extra factor of v2

that forces its value to zero at v = 0, so the resultant speed distribution has its maximum at v = 0:

v1D
p = 0 .


