

Physics 108 Assignment #9 SOLUTIONS:

INDUCTANCE & CIRCUITS

Wed. 9 Mar. 2005 — finish by Wed. 16 Mar.

1. **Solenoid as an RL Circuit:** A long wire with net resistance $R = 120 \Omega$ is wound onto a nonmagnetic spindle to make a solenoid whose cross-sectional area is $A = 0.02 \text{ m}^2$ and whose effective length is $\ell = 0.5 \text{ m}$. (Treat the coil as an ideal, long solenoid.) Using a battery with a $1 \text{ M}\Omega$ internal resistance, a magnetic field of $B_0 = 0.6 \text{ T}$ has been built up inside the solenoid. At $t = 0$ the battery is shorted out and then disconnected so that the current begins to be dissipated by the coil's resistance R . We find that after 3.6 ms the field in the coil has fallen to 0.1 T.

(a) How many joules of energy are stored in the coil at $t = 0$? **ANSWER:** The energy density in a magnetic field is given in general by $\frac{U}{V} = \frac{1}{2\mu_0} B^2$, so the total stored energy is $U = \frac{\ell A}{2\mu_0} B^2$, in this case $U_0 = \frac{0.5 \times 0.02 \times (0.6)^2}{2 \times 4\pi \times 10^{-7}}$, or $U_0 = 1432.4 \text{ J}$.

(b) How long does it take for the stored energy to fall to half its initial value? **ANSWER:** Since $U \propto B^2$, $U \rightarrow \frac{1}{2}U_0$ when $B \rightarrow \frac{1}{\sqrt{2}}B_0$ and since $B \propto I$, this occurs when $I \rightarrow \frac{1}{\sqrt{2}}I_0$. We know that the current in an RL circuit decays exponentially, so $I(t) = I_0 \exp(-t/\tau)$. We are therefore looking for the time when $I/I_0 = 1/\sqrt{2} = \exp(-t_f/\tau)$, or $t_f = \tau \ln(\sqrt{2})$. We can determine the time constant τ from the given fact that $B/B_0 = 0.1/0.6 = \exp(-3.6 \times 10^{-3}/\tau)$ or $\tau = 3.6 \times 10^{-3}/\ln 6 = 2.01 \times 10^{-3} \text{ s}$. This then gives $t_f = 0.696 \times 10^{-3} \text{ s}$.

(c) What is the total number of turns in the coil? **ANSWER:** The time constant is $\tau = L/R$. With $R = 120 \Omega$ this gives $L = 0.241 \text{ H}$ (Henries). It is also true that a solenoid of this form has $L = \mu_0 n^2 A \ell = \mu_0 N^2 A / \ell$, giving $N^2 = \frac{\ell L}{\mu_0 A} = \frac{0.5 \times 0.241}{4\pi \times 10^{-7} \times 0.02} = 4.80 \times 10^6$ or $N = 2190 \text{ turns}$.

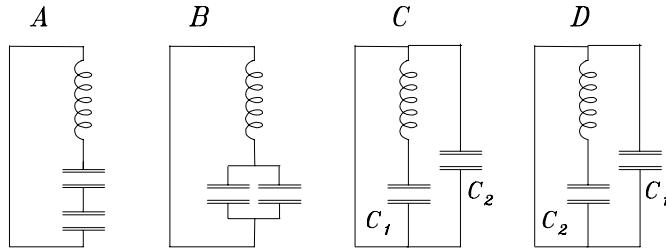
2. **LC Circuit Time-Dependence:** In an LC circuit with $C = 90 \mu\text{F}$ the current is given as a function of time by $I = 3.4 \cos(1800t + 1.25)$, where t is in seconds and I is in amperes.

(a) How soon after $t = 0$ will the current reach its maximum value? **ANSWER:** The phase of the oscillation is $\theta = \omega t + \phi$. By inspection, $\omega = 1800 \text{ s}^{-1}$ and $\phi = 1.25 \text{ rad}$. Thus $\cos \theta$ will reach its maximum *amplitude* at $\theta = \pi$, for which $t = (\pi - 1.25)/1800$ or $t = 1.05 \text{ ms}$. However, since this gives a maximum *negative* current, one might argue that the *maximum* (positive) current will first occur when $\theta = 2\pi$ or for $t = (2\pi - 1.25)/1800$ or $t = 2.80 \text{ ms}$. Either answer is acceptable.

(b) Calculate the inductance. **ANSWER:** Since $\omega = 1/\sqrt{LC} = 1800 \text{ s}^{-1}$, $L \times (90 \times 10^{-6} \text{ F}) = 1/(1800)^2$, giving $L = 3.43 \times 10^{-3} \text{ H}$.

(c) Find the total energy in the circuit. **ANSWER:** When $i = i_{\max} = 3.4 \text{ A}$, all the energy is in the inductance L . Later on this gets shared back and forth with the capacitance, but the total energy never changes. Thus $U = \frac{1}{2}Li_{\max}^2 = \frac{1}{2} \times 3.43 \times 10^{-3} \times (3.4)^2$ or $U = 0.0198 \text{ J}$.

3. **Build Your Own Circuit:** You are given a 12 mH inductor and two capacitors of 7.0 and 3.0 μF capacitance. List all the resonant frequencies that can be produced by connecting these circuit elements in various combinations.



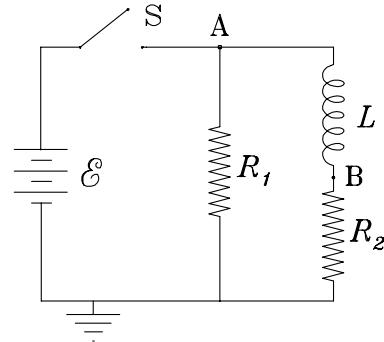
ANSWER: Generally only the loops with *both* an L and a C can resonate. Any “external” C is just a “spectator” (consider $\sum \Delta\mathcal{E} = 0$ on the outermost loop in C or D). Thus

$$\omega_A = \left[L \left(\frac{1}{C_1} + \frac{1}{C_2} \right)^{-1} \right]^{-\frac{1}{2}} = 6299 \text{ s}^{-1}; \quad \omega_C = [LC_1]^{-\frac{1}{2}} = 3450 \text{ s}^{-1}$$

$$\omega_B = [L(C_1 + C_2)]^{-\frac{1}{2}} = 2887 \text{ s}^{-1}; \quad \omega_D = [LC_2]^{-\frac{1}{2}} = 5270 \text{ s}^{-1}$$

46.316 0-20.57 0+12

4. **LRR Circuit Time-Dependence:** In the circuit shown, the $\mathcal{E} = 12 \text{ V}$ battery has negligible internal resistance, the inductance of the coil is $L = 0.12 \text{ H}$ and the resistances are $R_1 = 120 \Omega$ and $R_2 = 70 \Omega$. The switch **S** is closed for several seconds, then opened. Make a quantitatively labelled graph with an abscissa of time (in milliseconds) showing the *potential* of point **A** with respect to ground, just before and then for 10 ms after the opening of the switch. Show also the variation of the potential at point **B** over the same time period.



ANSWER: After S has been closed for a long time, $dI/dt = 0$ and L acts like a plain wire. Then both resistors have the same potential drop as the battery: $\mathcal{E} = I_1 R_1 = I_2 R_2$, giving

$I_1 = 12 \text{ V}/120 \Omega = 0.1 \text{ A}$ and $I_2 = 12 \text{ V}/70 \Omega = 0.1714 \text{ A}$. Also at that time $\mathcal{E}_A = \mathcal{E}_B = \mathcal{E} = 12 \text{ V}$. When the switch opens at $t = 0$, the isolated right loop is just an LR circuit with $L = 0.12 \text{ H}$ and $R = R_1 + R_2 = 190 \Omega$. The current $I_2 = 0.1714 \text{ A}$ flowing through L cannot change suddenly but that through R_1 immediately reverses direction and is thereafter equal to $I_2 = I_{2E}$. Subsequently $I(t) = [0.1714 \text{ A}]e^{-t/\tau}$ where $\tau = L/R = 0.12/190 = 4 \times 10^{-4} \text{ s}$. Point **A** is at a voltage $\mathcal{E}_A = -IR_1$ with respect to ground and point **B** is at a voltage $\mathcal{E}_B = +IR_2$ with respect to ground. These have initial values $\mathcal{E}_A(0) = 0 \text{ V}$ and $\mathcal{E}_B(0) = 0 \text{ V}$ and both decay exponentially toward zero with time constant τ .

