
PYX Reference Manual
Release 0.10

Jörg Lehmann, André Wobst

2007/10/03

http://pyx.sourceforge.net/

ii

Abstract

PYX is a Python package for the creation of PostScript and PDF files. It combines an abstraction of the PostScript
drawing model with a TeX/LaTeX interface. Complex tasks like 2d and 3d plots in publication-ready quality are
built out of these primitives.

CONTENTS

1 Introduction 1
1.1 Organisation of the PYX package. 1

2 Basic graphics 3
2.1 Introduction . 3
2.2 Path operations. 5
2.3 Attributes: Styles and Decorations. 7
2.4 Modulepath . 9
2.5 Moduledeformer . 14
2.6 Modulecanvas . 16
2.7 Moduledocument . 18

3 Module text : TeX/LaTeX interface 19
3.1 Basic functionality. 19
3.2 TeX/LaTeX instances: thetexrunner class. 19
3.3 TeX/LaTeX attributes . 21
3.4 Using the graphics-bundle with LaTeX. 23
3.5 TeX message parsers. 24
3.6 Thedefaulttexrunner instance . 25
3.7 Some internals on temporary files etc.. 25

4 Graphs 27
4.1 Introduction . 27
4.2 Component architecture. 28
4.3 Modulegraph.graph : Graphs . 29
4.4 Modulegraph.data : Data . 32
4.5 Modulegraph.style : Styles . 35
4.6 Modulegraph.key : Keys . 39

5 Axes 41
5.1 Component architecture. 41
5.2 Modulegraph.axis.axis : Axes . 42
5.3 Modulegraph.axis.tick : Ticks . 44
5.4 Modulegraph.axis.parter : Partitioners . 44
5.5 Modulegraph.axis.texter : Texter . 46
5.6 Modulegraph.axis.painter : Painter. 47
5.7 Modulegraph.axis.rater : Rater . 49
5.8 Modulegraph.axis.positioner : Positioners . 50

6 Module box: convex box handling 51
6.1 Polygon. 51
6.2 Functions working on a box list. 52
6.3 Rectangular boxes. 52

i

7 Module connector 53
7.1 Classline . 53
7.2 Classarc . 53
7.3 Classcurve . 53
7.4 Classtwolines . 54

8 Module epsfile: EPS file inclusion 55

9 Bitmaps 57
9.1 Introduction . 57
9.2 Bitmap module. 58

10 Module bbox 59
10.1 bbox constructor. 59
10.2 bbox methods. 59

11 Module color 61
11.1 Color models. 61
11.2 Example . 61
11.3 Color gradients. 61
11.4 Transparency. 62

12 Modulepattern 63
12.1 Classpattern . 63

13 Module unit 65
13.1 Class length . 65
13.2 Predefined length instances. 66
13.3 Conversion functions. 66

14 Module trafo: linear transformations 67
14.1 Class trafo . 67
14.2 Subclasses of trafo. 67

A Named colors 69

B Module style 71

C Arrows in deco module 73

Index 75

ii

CHAPTER

ONE

Introduction

PYX is a Python package for the creation of vector graphics. As such it readily allows one to generate encapsulated
PostScript files by providing an abstraction of the PostScript graphics model. Based on this layer and in combina-
tion with the full power of the Python language itself, the user can just code any complexity of the figure wanted.
PYX distinguishes itself from other similar solutions by its TEX/LATEX interface that enables one to make direct use
of the famous high quality typesetting of these programs.

A major part of PYX on top of the already described basis is the provision of high level functionality for complex
tasks like 2d plots in publication-ready quality.

1.1 Organisation of the PYX package

The PYX package is split in several modules, which can be categorised in the following groups

Functionality Modules
basic graphics functionality canvas , path , deco , style , color , andconnector
text output via TEX/LATEX text andbox
linear transformations and unitstrafo andunit
graph plotting functionality graph (including submodules) andgraph.axis (including submodules)
EPS file inclusion epsfile

These modules (and some other less import ones) are imported into the module namespace by using

from pyx import *

at the beginning of the Python program. However, in order to prevent namespace pollution, you may also simply
use ‘import pyx ’. Throughout this manual, we shall always assume the presence of the above given import
line.a

1

2

CHAPTER

TWO

Basic graphics

2.1 Introduction

The path module allows one to construct PostScript-likepaths, which are one of the main building blocks for the
generation of drawings. A PostScript path is an arbitrary shape consisting of straight lines, arc segments and cubic
Bézier curves. Such a path does not have to be connected but may also comprise several disconnected segments,
which will be calledsubpathsin the following.

XXX example for paths and subpaths (figure)

Usually, a path is constructed by passing a list of the path primitivesmoveto , lineto , curveto , etc., to the
constructor of thepath class. The following code snippet, for instance, defines a pathp that consists of a straight
line from the point(0, 0) to the point(1, 1)

from pyx import *
p = path.path(path.moveto(0, 0), path.lineto(1, 1))

Equivalently, one can also use the predefinedpath subclassline and write

p = path.line(0, 0, 1, 1)

While already some geometrical operations can be performed with this path (see next section), another PYX object
is needed in order to actually being able to draw the path, namely an instance of thecanvas class. By convention,
we use the namec for this instance:

c = canvas.canvas()

In order to draw the path on the canvas, we use thestroke() method of thecanvas class, i.e.,

c.stroke(p)
c.writeEPSfile("line")

To complete the example, we have added awriteEPSfile() call, which writes the contents of the canvas to
the file ‘line.eps’. Note that an extension ‘.eps’ is added automatically, if not already present in the given filename.
Similarly, if you want to generate a PDF file instead, use

c.writePDFfile("line")

As a second example, let us define a path which consists of more than one subpath:

3

(a) (b) (c) (d)

Figure 2.1: Rectangle consisting of (a) four separate lines, (b) one open path, and (c) one closed path. (d) Filling
a path always closes it automatically.

cross = path.path(path.moveto(0, 0), path.rlineto(1, 1),
path.moveto(1, 0), path.rlineto(-1, 1))

The first subpath is again a straight line from(0, 0) to (1, 1), with the only difference that we now have used the
rlineto class, whose arguments count relative from the last point in the path. The secondmoveto instance
opens a new subpath starting at the point(1, 0) and ending at(0, 1). Note that although both lines intersect at
the point(1/2, 1/2), they count as disconnected subpaths. The general rule is that each occurrence of amoveto
instance opens a new subpath. This means that if one wants to draw a rectangle, one should not use

rect1 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.moveto(0, 1), path.lineto(1, 1),
path.moveto(1, 1), path.lineto(1, 0),
path.moveto(1, 0), path.lineto(0, 0))

which would construct a rectangle out of four disconnected subpaths (see Fig. 2.1a). In a better solution (see
Fig. 2.1b), the pen is not lifted between the first and the last point:

rect2 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.lineto(1, 1), path.lineto(1, 0),
path.lineto(0, 0))

However, as one can see in the lower left corner of Fig. 2.1b, the rectangle is still incomplete. It needs to be closed,
which can be done explicitly by using for the last straight line of the rectangle (from the point(0, 1) back to the
origin at(0, 0)) theclosepath directive:

rect3 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.lineto(1, 1), path.lineto(1, 0),
path.closepath())

Theclosepath directive adds a straight line from the current point to the first point of the current subpath and
furthermoreclosesthe sub path, i.e., it joins the beginning and the end of the line segment. This results in the
intended rectangle shown in Fig. 2.1c. Note that filling the path implicitly closes every open subpath, as is shown
for a single subpath in Fig. 2.1d), which results from

c.stroke(rect2, [deco.filled([color.grey(0.95)])])

Here, we supply as second argument of thestroke() method a list which in the present case only consists of a
single element, namely the so called decoratordeco.filled . As it name says, this decorator specifies that the
path is not only being stroked but also filled with the given color. More information about decorators, styles and
other attributes which can be passed as elements of the list can be found in Sect. 2.3. More details on the available
path elements can be found in Sect. 2.4.2.

To conclude this section, we should not forget to mention that rectangles are, of course, predefined in PYX, so

4 Contents

Figure 2.2: Example: Intersection of circle with line yielding two radii.

above we could have as well written

rect2 = path.rect(0, 0, 1, 1)

Here, the first two arguments specify the origin of the rectangle while the second two arguments define its width
and height, respectively. For more details on the predefined paths, we refer the reader to Sect. 2.4.5.

2.2 Path operations

Often, one wants to perform geometrical operations with a path before placing it on a canvas by stroking or filling
it. For instance, one might want to intersect one path with another one, split the paths at the intersection points,
and then join the segments together in a new way. PYX supports such tasks by means of a number of path methods,
which we will introduce in the following.

Suppose you want to draw the radii to the intersection points of a circle with a straight line. This task can be done
using the following code which results in Fig. 2.2

from pyx import *

c = canvas.canvas()

circle = path.circle(0, 0, 2)
line = path.line(-3, 1, 3, 2)
c.stroke(circle, [style.linewidth.Thick])
c.stroke(line, [style.linewidth.Thick])

isects_circle, isects_line = circle.intersect(line)
for isect in isects_circle:

isectx, isecty = circle.at(isect)
c.stroke(path.line(0, 0, isectx, isecty))

c.writeEPSfile("radii")
c.writePDFfile("radii")

Here, the basic elements, a circle around the point(0, 0) with radius2 and a straight line, are defined. Then,
passing theline, to theintersect() method ofcircle, we obtain a tuple of parameter values of the intersection
points. The first element of the tuple is a list of parameter values for the path whoseintersect() method has
been called, the second element is the corresponding list for the path passed as argument to this method. In the
present example, we only need one list of parameter values, namelyisects_circle. Using theat() path method
to obtain the point corresponding to the parameter value, we draw the radii for the different intersection points.

Another powerful feature of PYX is its ability to split paths at a given set of parameters. For instance, in order to
fill in the previous example the segment of the circle delimited by the straight line (cf. Fig. 2.3), one first has to
construct a path corresponding to the outline of this segment. The following code snippet yields thissegment

Contents 5

Figure 2.3: Example: Intersection of circle with line yielding radii and circle segment.

arc1, arc2 = circle.split(isects_circle)
if arc1.arclen() < arc2.arclen():

arc = arc1
else:

arc = arc2

isects_line.sort()
line1, line2, line3 = line.split(isects_line)

segment = line2 << arc

Here, we first split the circle using thesplit() method passing the list of parameters obtained above. Since the
circle is closed, this yields two arc segments. We then use thearclen() , which returns the arc length of the
path, to find the shorter of the two arcs. Before splitting the line, we have to take into account that thesplit()
method only accepts a sorted list of parameters. Finally, we join the straight line and the arc segment. For this,
we make use of the<< operator, which not only adds the paths (which could be done using ‘line2 + arc ’),
but also joins the last subpath ofline2and the first one ofarc. Thus,segmentconsists of only a single subpath and
filling works as expected.

An important issue when operating on paths is the parametrisation used. Internally, PYX uses a parametrisation
which uses an interval of length1 for each path element of a path. For instance, for a simple straight line, the
possible parameter values range from0 to 1, corresponding to the first and last point, respectively, of the line.
Appending another straight line, would extend this range to a maximal value of2.

However, the situation becomes more complicated if more complex objects like a circle are involved. Then, one
could be tempted to assume that again the parameter value ranges from0 to 1, because the predefined circle
consists just of onearc together with aclosepath element. However, this is not the case: the actual range is
much larger. The reason for this behaviour lies in the internal path handling of PYX: Before performing any non-
trivial geometrical operation with a path, it will automatically be converted into an instance of thenormpath
class (see also Sect. 2.4.3). These so generated paths are already separated in their subpaths and only contain
straight lines and Bézier curve segments. Thus, as is easily imaginable, they are much simpler to deal with.

XXX explain normpathparams and things like p.begin(), p.end()-1,

A more geometrical way of accessing a point on the path is to use the arc length of the path segment from the first
point of the path to the given point. Thus, all PYX path methods that accept a parameter value also allow the user
to pass an arc length. For instance,

from math import pi

r = 2
pt1 = path.circle(0, 0, r).at(r*pi)
pt2 = path.circle(0, 0, r).at(r*3*pi/2)

c.stroke(path.path(path.moveto(*pt1), path.lineto(*pt2)))

6 Contents

will draw a straight line from a point at angle180 degrees (in radiansπ) to another point at angle270 degrees
(in radians3π/2) on a circle with radiusr = 2. Note however, that the mapping arc length→ point is in general
discontinuous at the begin and the end of a subpath, and thus PYX does not guarantee any particular result for this
boundary case.

More information on the available path methods can be found in Sect. 2.4.1.

2.3 Attributes: Styles and Decorations

Attributes define properties of a given object when it is being used. Typically, there are different kind of attributes
which are usually orthogonal to each other, while for one type of attribute, several choices are possible. An
example is the stroking of a path. There, linewidth and linestyle are different kind of attributes. The linewidth
might be normal, thin, thick, etc, and the linestyle might be solid, dashed etc.

Attributes always occur in lists passed as an optional keyword argument to a method or a function. Usually,
attributes are the first keyword argument, so one can just pass the list without specifying the keyword. Again, for
the path example, a typical call looks like

c.stroke(path, [style.linewidth.Thick, style.linestyle.dashed])

Here, we also encounter another feature of PYX’s attribute system. For many attributes useful default values are
stored as member variables of the actual attribute. For instance,style.linewidth.Thick is equivalent
to style.linewidth(0.04, type="w", unit="cm") , that is0.04 width cm (see Sect. 13 for more
information about PYX’s unit system).

Another important feature of PYX attributes is what is call attributed merging. A trivial example is the following:

the following two lines are equivalent
c.stroke(path, [style.linewidth.Thick, style.linewidth.thin])
c.stroke(path, [style.linewidth.thin])

Here, thestyle.linewidth.thin attribute overrides the precedingstyle.linewidth.Thick declara-
tion. This is especially important in more complex cases where PYXdefines default attributes for a certain operation.
When calling the corresponding methods with an attribute list, this list is appended to the list of defaults. This
way, the user can easily override certain defaults, while leaving the other default values intact. In addition, every
attribute kind defines a special clear attribute, which allows to selectively delete a default value. For path stroking
this looks like

the following two lines are equivalent
c.stroke(path, [style.linewidth.Thick, style.linewidth.clear])
c.stroke(path)

The clear attribute is also provided by the base classes of the various styles. For instance,
style.strokestyle.clear clears all strokestyle subclasses and thusstyle.linewidth and
style.linestyle . Since all attributes derive fromattr.attr , you can remove all defaults using
attr.clear . An overview over the most important attribute typesprovided by PyX is given in the following
table.

Contents 7

Attribute category description examples
deco.deco decorator specifying the way the path is drawndeco.stroked

deco.filled
deco.arrow

style.strokestyle style used for path stroking style.linecap
style.linejoin
style.miterlimit
style.dash
style.linestyle
style.linewidth
color.color

style.fillstyle style used for path filling color.color
pattern.pattern

deformer.deformer operations changing the shape of the path deformer.cycloid
deformer.smoothed

text.textattr attributes used for typesetting text.halign
text.valign
text.mathmode
text.phantom
text.size
text.parbox

trafo.trafo transformations applied when drawing object trafo.mirror
trafo.rotate
trafo.scale
trafo.slant
trafo.translate

XXX specify which classes in the table are in fact instances

Note that operations usually allow for certain attribute categories only. For example when stroking a path, text
attributes are not allowed, while stroke attributes and decorators are. Some attributes might belong to several
attribute categories like colours, which are both, stroke and fill attributes.

Last, we discuss another important feature of PYX’s attribute system. In order to allow the easy customisation
of predefined attributes, it is possible to create a modified attribute by calling of an attribute instance, thereby
specifying new parameters. A typical example is to modify the way a path is stroked or filled by constructing
appropriatedeco.stroked or deco.filled instances. For instance, the code

c.stroke(path, [deco.filled([color.rgb.green])])

draws a path filled in green with a black outline. Here,deco.filled is already an instance which is modified
to fill with the given color. Note that an equivalent version would be

c.draw(path, [deco.stroked, deco.filled([color.rgb.green])])

In particular, you can see thatdeco.stroked is already an attribute instance, since otherwise you were not
allowed to pass it as a parameter to the draw method. Another example where the modification of a decorator is
useful are arrows. For instance, the following code draws an arrow head with a more acute angle (compared to the
default value of45 degrees):

c.stroke(path, [deco.earrow(angle=30)])

XXX changeable attributes

8 Contents

2.4 Module path

Thepath module defines several important classes which are documented in the present section.

2.4.1 Class path — PostScript-like paths

classpath (*pathitems)
This class represents a PostScript like path consisting of the path elementspathitems.

All possible path items are described in Sect. 2.4.2. Note that there are restrictions on the first path element
and likewise on each path element after aclosepath directive. In both cases, no current point is defined
and the path element has to be an instance of one of the following classes:moveto , arc , andarcn .

Instances of the classpath provide the following methods (in alphabetic order):

append (pathitem)
Appends apathitemto the end of the path.

arclen ()
Returns the total arc length of the path.†

arclentoparam (lengths)
Returns the parameter value(s) corresponding to the arc length(s)lengths.†

at (params)
Returns the coordinates (as 2-tuple) of the path point(s) corresponding to the parameter value(s)params.‡ †

atbegin ()
Returns the coordinates (as 2-tuple) of the first point of the path.†

atend ()
Returns the coordinates (as 2-tuple) of the end point of the path.†

bbox ()
Returns the bounding box of the path. Note that this returned bounding box may be too large, if the path
contains anycurveto elements, since for these the control box, i.e., the bounding box enclosing the
control points of the Bézier curve is returned.

begin ()
Returns the parameter value (anormpathparam instance) of the first point in the path.

curveradius (param=None, arclen=None)
Returns the curvature radius/radii (or None if infinite) at parameter value(s) params.‡ This is the inverse of
the curvature at this parameter. Note that this radius can be negative or positive, depending on the sign of
the curvature.†

end ()
Returns the parameter value (anormpathparam instance) of the last point in the path.

extend (pathitems)
Appends the listpathitemsto the end of the path.

intersect (opath)
Returns a tuple consisting of two lists of parameter values corresponding to the intersection points of the
path with the other pathopath, respectively.† For intersection points which are not farther apart thenepsilon
points, only one is returned.

joined (opath)
Appendsopathto the end of the path, thereby merging the last subpath (which must not be closed) of the
path with the first sub path ofopathand returns the resulting new path.†

normpath (epsilon=None)
Returns the equivalentnormpath . For the conversion and for later calculations with thisnormpath and
accuracy ofepsilonpoints is used. Ifepsilonis None, the globalepsilonof thepath module is used.

paramtoarclen (params)

Contents 9

Returns the arc length(s) corresponding to the parameter value(s)params.‡ †

range ()
Returns the maximal parameter valueparamthat is allowed in the path methods.

reversed ()
Returns the reversed path.†

rotation (params)
Returns (a) rotations(s) which (each), which rotate the x-direction to the tangent and the y-direction to the
normal at that param.†

split (params)
Splits the path at the parameter valuesparams, which have to be sorted in ascending order, and returns a
corresponding list ofnormpath instances.†

tangent (params, length=1)
Return (a)line instance(s) corresponding to the tangent vector(s) to the path at the parameter value(s)
params.‡ The tangent vector will be scaled to the lengthlength.†

trafo (params)
Returns (a) trafo(s) which (each) translate to a point on the path corresponding to the param, rotate the
x-direction to the tangent and the y-direction to the normal in that point.†

transformed (trafo)
Returns the path transformed according to the linear transformationtrafo. Here,trafo must be an instance
of thetrafo.trafo class.†

Some notes on the above:

• The† denotes methods which require a prior conversion of the path into anormpath instance. This is done
automatically (using the precisionepsilonset globally usingpath.set). If you need a differentepsilon
for a normpath, you also can perform the conversion manually.

• Instead of using thejoined() method, you can also join two paths together with help of the<< operator,
for instance ‘p = p1 « p2 ’.

• ‡ In these methods,paramsmay either be a single value or a list. In the latter case, the result of the method
will be a list consisting of the results for every parameter. The parameter itself may either be a length (or
a number which is then interpreted as a user length) or an instance of the classnormpathparam . In the
former case, the length refers to the arc length along the path.

2.4.2 Path elements

The classpathitem is the superclass of all PostScript path construction primitives. It is never used directly, but
only by instantiating its subclasses, which correspond one by one to the PostScript primitives.

Except for the path elements ending in_pt , all coordinates passed to the path elements can be given as number
(in which case they are interpreted as user units with the currently set default type) or in PYX lengths.

The following operation move the current point and open a new subpath:

classmoveto (x, y)
Path element which sets the current point to the absolute coordinates (x, y). This operation opens a new
subpath.

classrmoveto (dx, dy)
Path element which moves the current point by (dx, dy). This operation opens a new subpath.

Drawing a straight line can be accomplished using:

classlineto (x, y)
Path element which appends a straight line from the current point to the point with absolute coordinates (x,
y), which becomes the new current point.

10 Contents

classrlineto (dx, dy)
Path element which appends a straight line from the current point to the a point with relative coordinates
(dx, dy), which becomes the new current point.

For the construction of arc segments, the following three operations are available:

classarc (x, y, r, angle1, angle2)
Path element which appends an arc segment in counterclockwise direction with absolute coordinates (x, y)
of the center and radiusr from angle1to angle2(in degrees). If before the operation, the current point is
defined, a straight line is from the current point to the beginning of the arc segment is prepended. Otherwise,
a subpath, which thus is the first one in the path, is opened. After the operation, the current point is at the
end of the arc segment.

classarcn (x, y, r, angle1, angle2)
Path element which appends an arc segment in clockwise direction with absolute coordinates (x, y) of the
center and radiusr from angle1to angle2(in degrees). If before the operation, the current point is defined,
a straight line is from the current point to the beginning of the arc segment is prepended. Otherwise, a
subpath, which thus is the first one in the path, is opened. After the operation, the current point is at the end
of the arc segment.

classarct (x1, y1, x2, y2, r)
Path element which appends an arc segment of radiusr connecting between (x1, y1) and (x2, y2).

Bézier curves can be constructed using:

classcurveto (x1, y1, x2, y2, x3, y3)
Path element which appends a Bézier curve with the current point as first control point and the other control
points (x1, y1), (x2, y2), and (x3, y3).

classrcurveto (dx1, dy1, dx2, dy2, dx3, dy3)
Path element which appends a Bézier curve with the current point as first control point and the other control
points defined relative to the current point by the coordinates (dx1, dy1), (dx2, dy2), and (dx3, dy3).

Note that when calculating the bounding box (see Sect. 10) of Bézier curves, PYX uses for performance reasons the
so-called control box, i.e., the smallest rectangle enclosing the four control points of the Bézier curve. In general,
this is not the smallest rectangle enclosing the Bézier curve.

Finally, an open subpath can be closed using:

classclosepath ()
Path element which closes the current subpath.

For performance reasons, two non-PostScript path elements are defined, which perform multiple identical opera-
tions:

classmultilineto_pt (points_pt)
Path element which appends straight line segments starting from the current point and going through the list
of points given in thepoints_ptargument. All coordinates have to be given in PostScript points.

classmulticurveto_pt (points_pt)
Path element which appends Bézier curve segments starting from the current point and going through the
list of each three control points given in thepoints_ptargument.

2.4.3 Class normpath

The normpath class is used internally for all non-trivial path operations, i.e. the ones marked by a† in the
description of thepath above. It represents a path as a list of subpaths, which are instances of the class
normsubpath . Thesenormsubpath s themselves consist of a list ofnormsubpathitems which are ei-
ther straight lines (normline) or Bézier curves (normcurve).

A given path can easily be converted to the correspondingnormpath using the method with this name:

Contents 11

np = p.normpath()

Additionally, you can specify the accuracy (in points) which is used in allnormpath calculations by means of the
argumentepsilon, which defaults to to10−5 points. This default value can be changed using the module function
path.set .

To construct anormpath from a list ofnormsubpath instances, you pass them to thenormpath constructor:

classnormpath (normsubpaths=[])
Construct anormpath consisting ofsubnormpaths, which is a list ofsubnormpath instances.

Instances ofnormpath offers all methods of regularpath s, which also have the same semantics. An exception
are the methodsappend and extend . While they allow for adding of instances ofsubnormpath to the
normpath instance, they also keep the functionality of a regular path and allow for regular path elements to be
appended. The later are converted to the proper normpath representation during addition.

In addition to thepath methods, anormpath instance also offers the following methods, which operate on the
instance itself, i.e., modify it in place.

join (other)
Joinother, which has to be apath instance, to thenormpath instance.

reverse ()
Reverses thenormpath instance.

transform (trafo)
Transforms thenormpath instance according to the linear transformationtrafo.

Finally, we remark that the sum of anormpath and apath always yields anormpath .

2.4.4 Class normsubpath

classnormsubpath (normsubpathitems=[], closed=0, epsilon=1e-5)
Construct anormsubpath consisting ofnormsubpathitems, which is a list ofnormsubpathitem in-
stances. Ifclosedis set, thenormsubpath will be closed, thereby appending a straight line segment from
the first to the last point, if it is not already present. All calculations with thenormsubpath are performed
with an accuracy ofepsilon.

Most normsubpath methods behave like the ones of apath .

Exceptions are:

append (anormsubpathitem)
Append theanormsubpathitemto the end of thenormsubpath instance. This is only possible if the
normsubpath is not closed, otherwise an exception is raised.

extend (normsubpathitems)
Extend thenormsubpath instances bynormsubpathitems, which has to be a list ofnormsubpathitem
instances. This is only possible if thenormsubpath is not closed, otherwise an exception is raised.

close ()
Close thenormsubpath instance, thereby appending a straight line segment from the first to the last point,
if it is not already present.

2.4.5 Predefined paths

For convenience, some oft-used paths are already predefined. All of them are subclasses of thepath class.

classline (x0, y0, x1, y1)
A straight line from the point (x0, y0) to the point (x1, y1).

classcurve (x0, y0, x1, y1, x2, y2, x3, y3)
A Bézier curve with control points (x0, y0), . . ., (x3, y3).

12 Contents

classrect (x, y, w, h)
A closed rectangle with lower left point (x, y), width w, and heighth.

classcircle (x, y, r)
A closed circle with center (x, y) and radiusr.

Contents 13

2.5 Module deformer

Thedeformer module provides techniques to generate modulated paths. All classes in thedeformer module
can be used as attributes when drawing/stroking paths onto a canvas, but also independently for manipulating
previously created paths. The difference to the classes in thedeco module is that here, a totally new path is
constructed.

All classes of thedeformer module provide the following methods:

__call__ ((specific parameters for the class))
Returns a deformer with modified parameters

deform (path)
Returns the deformed normpath on the basis of thepath. This method allows using the deformers outside
of a drawing call.

The deformer classes are the following:

classcycloid (radius, halfloops=10, skipfirst=1*unit.t_cm, skiplast=1*unit.t_cm, curvesperhloop=3, sign=1,
turnangle=45)

This deformer creates a cycloid around a path. The outcome looks similar to a 3D spring stretched along
the original path.

radius: the radius of the cycloid (this is the radius of the 3D spring)

halfloops: the number of half-loops of the cycloid

skipfirstandskiplast: the lengths on the original path not to be bent to a cycloid

curvesperhloop: the number of Bezier curves to approximate a half-loop

sign: with sign>=0 starts the cycloid to the left of the path,sign<0 to the right.

turnangle: the angle of perspective on the 3D spring. Atturnangle=0 one sees a sinusoidal curve, at
turnangle=90 one essentially sees a circle.

classsmoothed (radius, softness=1, obeycurv=0, relskipthres=0.01)
This deformer creates a smoothed variant of the original path. The smoothing is done on the basis of the
corners of the original path, not on a global skope! Therefore, the result might not be what one would draw
by hand. At each corner (or wherever two path elements meet) a piece of length2×radiusis taken out of the
original path and replaced by a curve. This curve is determined by the tangent directions and the curvatures
at its endpoints. Both are given from the original path, and therefore, the new curve fits into the gap in a
geometrically smoothway. Path elements that are shorter thanradius×relskipthresare ignored.

The new curve smoothing the corner consists either of one or of two Bezier curves, depending on the
surrounding path elements. If there are straight lines before and after the new curve, then two Bezier curves
are used. This optimises the bending of curves in rectangular boxes or polygons. Here, the curves have an
additional degree of freedom that can be set withsoftness∈ (0, 1]. If one of the concerned path elements is
curved, only one Bezier curve is used that is (not always uniquely) determined by its geometrical constraints.
There are, nevertheless, somecaveats:

A curve that strictly obeys the sign and magnitude of the curvature might not look very smooth in some
cases. Especially when connecting a curved with a straight piece, the smoothed path contains unwanted
overshootings. To prevent this, the parameter defaultobeycurv=0releases the curvature constraints a little:
The curvature may then change its sign (still looks smooth for human eyes) or, in more extreme cases, even
its magnitude (does not look so smooth). If you really need a geometrically smooth path on the basis of
Bezier curves, then setobeycurv=1.

classparallel (distance, relerr=0.05, sharpoutercorners=0, dointersection=1, checkdistanceparams=[0.5],
lookforcurvatures=11)

This deformer creates a parallel curve to a given path. The result is similar to what is usually referred to as
theset with constant distanceto the set of points on the path. It differs in one important respect, because
thedistanceparameter in the deformer is a signed distance. The resulting parallel normpath is constructed
on the level of the original pathitems. For each of them a parallel pathitem is constructed. Then, they are
connected by circular arcs (or by sharp edges) around the corners of the original path. Later, everything that
is nearer to the original path than distance is cut away.

There are some caveats:

14 Contents

•When the original path is too curved then the parallel path would contain points with infinte curvature.
The resulting path stops at such points and leaves the too strongly curved piece out.

•When the original path contains self-intersection, then the resulting parallel path is not continuous in
the parameterisation of the original path. It may first take a piece that corresponds to “later” parameter
values and then continue with an “earlier” one. Please don’t get confused.

The parameters are the following:

distanceis the minimal (signed) distance between the original and the parallel paths.

relerr is the allowed error in the distance is given bydistance*relerr .

sharpoutercornersconnects the parallel pathitems by wegde build of straight lines, instead of taking circular
arcs. This preserves the angle of the original corners.

dointersectionis a boolean for performing the last step, the intersection step, in the path construction.
Setting this to 0 gives the full parallel path, which can be favourable for self-intersecting paths.

checkdistanceparamsis a list of parameter values in the interval (0,1) where the distance is checked on each
parallel pathitem

lookforcurvaturesis the number of points per normpathitem where its curvature is checked for critical values

Contents 15

2.6 Module canvas

One of the central modules for the PostScript access in PYX is namedcanvas . Besides providing the class
canvas , which presents a collection of visual elements like paths, other canvases, TEX or LATEX elements, it
contains the classcanvas.clip which allows clipping of the output.

A canvas may also be embedded in another one using itsinsert method. This may be useful when you want to
apply a transformation on a whole set of operations..

2.6.1 Class canvas

This is the basic class of the canvas module, which serves to collect various graphical and text elements you want
to write eventually to an (E)PS file.

classcanvas (attrs=[], texrunner=None)
Construct a new canvas, applying the givenattrs, which can be instances oftrafo.trafo ,
canvas.clip , style.strokestyle or style.fillstyle . Thetexrunnerargument can be used
to specify the texrunner instance used for thetext() method of the canvas. If not specified, it defaults to
text.defaulttexrunner.

Paths can be drawn on the canvas using one of the following methods:

draw (path, attrs)
Drawspathon the canvas applying the givenattrs.

fill (path, attrs=[])
Fills the givenpathon the canvas applying the givenattrs.

stroke (path, attrs=[])
Strokes the givenpathon the canvas applying the givenattrs.

Arbitrary allowed elements like othercanvas instances can be inserted in the canvas using

insert (item, attrs=[])
Inserts an instance ofbase.canvasitem into the canvas. Ifattrs are present,item is inserted into a new
canvas instance withattrsas arguments passed to its constructor is created. Then thiscanvas instance is
inserted itself into the canvas.

Text output on the canvas is possible using

text (x, y, text, attrs=[])
Inserts text at position (x, y) into the canvas applyingattrs. This is a shortcut for
insert(texrunner.text(x, y, text, attrs))).

Thecanvas class provides access to the total geometrical size of its element:

bbox ()
Returns the bounding box enclosing all elements of the canvas.

A canvas also allows one to set its TeX runner:

settexrunner (texrunner)
Sets a newtexrunnerfor the canvas.

The contents of the canvas can be written using the following two convenience methods, which wrap the canvas
into a single page document.

writeEPSfile (file, *args, **kwargs)
Writes the canvas tofile using the EPS format.file either has to provide a write method or it is used as
a string containing the filename (the extension.eps is appended automatically, if it is not present). This
method constructs a single page document, passingargsandkwargsto thedocument.page constructor
and the calls thewriteEPSfile method of thisdocument.document instance passing thefile.

writePSfile (file, *args, **kwargs)
Similar towriteEPSfile but using the PS format.

16 Contents

writePDFfile (file, *args, **kwargs)
Similar towriteEPSfile but using the PDF format.

writetofile (filename, *args, **kwargs)
Determine the file type (EPS, PS, or PDF) from the file extension offilenameand call the corresponding
write method with the given argumentsarg andkwargs.

pipeGS (filename="-", device=None, resolution=100, gscommand="gs", gsoptions="", textalphabits=4, graph-
icsalphabits=4, **kwargs)

This method pipes the content of a canvas to the ghostscript interpreter directly to generate other output
formats. At leastfilenameor devicemust be set.filenamespecifies the name of the output file. No file
extension will be added to that name in any case. When nofilenameis specified, the output is written to
stdout.devicespecifies a ghostscript output device by a string. Depending on your ghostscript configuration
"png16" , "png16m" , "png256" , "png48" , "pngalpha" , "pnggray" , "pngmono" , "jpeg" ,
and "jpeggray" might be available among others. See the output ofgs -help and the ghostscript
documentation for more information. Whenfilenameis specified but the device is not set,"png16m" is
used when the filename ends in.eps and"jpeg" is used when the filename ends in.jpg .

resolutionspecifies the resolution in dpi (dots per inch).gscmdis the command to be used to invoke
ghostscript.gsoptionsare an option string passed to the ghostscript interpreter.textalphabitsaregraphic-
salphabitsare conventient parameters to set theTextAlphaBits andGraphicsAlphaBits options
of ghostscript. You can skip the addition of those option by set their value toNone.

kwargsare passed to thewriteEPSfile method (not counting thefile parameter), which is used to
generate the input for ghostscript. By that you gain access to thedocument.page constructor arguments.

For more information about the possible arguments of thedocument.page constructor, we refer to Sect. 2.7.

Contents 17

2.7 Module document

The document module contains two classes:document andpage . A document consists of one or several
page s.

2.7.1 Class page

A page is a thin wrapper around acanvas , which defines some additional properties of the page.

classpage (canvas, pagename=None, paperformat=paperformat.A4, rotated=0, centered=1, fittosize=0, mar-
gin=1 * unit.t_cm, bboxenlarge=1 * unit.t_pt, bbox=None)

Construct a newpage from the givencanvas instance. A stringpagenameand thepaperformatcan be
defined. See below, for a list of known paper formats. Ifrotatedis set, the output is rotated by 90 degrees on
the page. Ifcenteredis set, the output is centered on the given paperformat. Iffittosizeis set, the output is
scaled to fill the full page except for a givenmargin. Normally, the bounding box of the canvas is calculated
automatically from the bounding box of its elements. Alternatively, you may specify thebboxmanually. In
any case, the bounding box is enlarged on all sides bybboxenlarge.

2.7.2 Class document

classdocument (pages=[])
Construct adocument consisting of a given list ofpages.

A document can be written to a file using one of the following methods:

writeEPSfile (file, *args, **kwargs)
Write a single pagedocument to an EPS file, passingargsandkwargsto theepswriter instance created
for writing.

writePSfile (file, *args, **kwargs)
Write document to a PS file, passingargsandkwargsto thepswriter instance created for writing.

writePDFfile (file, *args, **kwargs)
Write document to a PDF file, passingargsandkwargsto thepdfwriter instance created for writing.

writetofile (filename, *args, **kwargs)
Determine the file type (EPS, PS, or PDF) from the file extension offilenameand call the corresponding
write method with the given argumentsarg andkwargs.

2.7.3 Class paperformat

classpaperformat (width, height, name=None)
Define apaperformat with the givenwidthandheightand the optionalname.

Predefined paperformats are listed in the following table

instance name width height
document.paperformat.A0 A0 840 mm 1188 mm
document.paperformat.A0b 910 mm 1370 mm
document.paperformat.A1 A1 594 mm 840 mm
document.paperformat.A2 A2 420 mm 594 mm
document.paperformat.A3 A3 297 mm 420 mm
document.paperformat.A4 A4 210 mm 297 mm
document.paperformat.Letter Letter 8.5 inch 11 inch
document.paperformat.Legal Legal 8.5 inch 14 inch

18 Contents

CHAPTER

THREE

Module text : TEX/LATEX interface

3.1 Basic functionality

The text module seamlessly integrates Donald E. Knuths famous TEX typesetting engine into PYX. The basic
procedure is:

• start a TEX/LATEX instance as soon as a TEX/LATEX preamble setting or a text creation is requested

• create boxes containing the requested text and shipout those boxes to the dvi file

• immediately analyse the TEX/LATEX output for errors; the box extents are also contained in the TEX/LATEX
output and thus become available immediately

• when your TeX installation supports theipc mode and PYX is configured to use it, the dvi output is also
analysed immediately; alternatively PYX quits the TEX/LATEX instance to read the dvi file once the output
needs to be generated or marker positions are accessed

• Type1 fonts are used for the PostScript generation

Note that for using Type1 fonts an appropriate font mapping file has to be provided. When your TEX installation
is configured to use Type1 fonts by default, thepsfonts.map will contain entries for the standard TEX fonts
already. Alternatively, you may either look forupdmap used by many TEX distributions to create an appropri-
ate font mapping file. You may also specify one or several alternative font mapping files likepsfonts.cmz
in the globalpyxrc or your local.pyxrc . Finally you can also use thefontmapskeyword argument of the
texrunner constructor or itsset() method.

3.2 TEX/LATEX instances: the texrunner class

Instances of the classtexrunner are responsible for executing and controling a TEX/LATEX instance.

classtexrunner (mode="tex", lfs="10pt", docclass="article", docopt=None, usefiles=[],
fontmaps=config.get("text", "fontmaps", "psfonts.map"), waitfortex=config.getint("text",
"waitfortex", 60), showwaitfortex=config.getint("text", "showwaitfortex", 5), tex-
ipc=config.getboolean("text", "texipc", 0), texdebug=None, dvidebug=0, errordebug=1,
pyxgraphics=1, texmessagesstart=[], texmessagesdocclass=[], texmessagesbegindoc=[],
texmessagesend=[], texmessagesdefaultpreamble=[], texmessagesdefaultrun=[])

modeshould the string ‘tex ’ or ‘ latex ’ and defines whether TEX or LATEX will be used. lfs specifies an
lfs file to simulate LATEX font size selection macros in plain TEX. PYX comes with a set oflfs files and a
LATEX script to generate those files. Forlfs beingNone andmodeequals ‘tex ’ a list of installedlfs files
is shown.

docclassis the document class to be used in LATEX mode anddocoptare the options to be passed to the
document class.

usefilesis a list of TEX/LATEX jobname files. PYX will take care of the creation and storing of the correspond-
ing temporary files. A typical use-case would beusefiles=["spam.aux"], but you can also use it to access
TEXs log and dvi file.

19

fontmapsis a string containing whitespace separated names of font mapping files.waitfortex is a number
of seconds PYX should wait for TEX/LATEX to process a request. While waiting for TEX/LATEX a PYX pro-
cess might seem to do not perform any work anymore. To give some feedback to the user, a messages is
issued eachwaitfortexseconds. Thetexipc flag indicates whether PYX should use the-ipc option of
TEX/LATEX for immediate dvi file access to increase the execution speed of certain operations. See the output
of tex -help whether the option is available at your TEX installation.

texdebugcan be set to a filename to store the commands passed to TEX/LATEX for debugging. The flag
dvidebugenables debugging output in the dvi parser similar todvitype . errordebugcontrols the amount
of information returned, when an texmessage parser raises an error. Valid values are0, 1, and2.

pyxgraphicsallows use LATEXs graphics package without further configuration ofpyx.def .

The TEX message parsers verify whether TEX/LATEX could properly process its input. By the pa-
rameterstexmessagesstart, texmessagesdocclass, texmessagesbegindoc, and texmessagesendyou can
set TEX message parsers to be used then TEX/LATEX is started, when thedocumentclass
command is issued (LATEX only), when the \begin{document} is sent, and when the
TEX/LATEX is stopped, respectively. The lists of TEX message parsers are merged with the
following defaults: [texmessage.start] for texmessagesstart, [texmessage.load] for
texmessagesdocclass, [texmessage.load, texmessage.noaux] for texmessagesbegindoc, and
[texmessage.texend, texmessage.fontwarning] for texmessagesend.

Similarily texmessagesdefaultpreambleand texmessagesdefaultruntake TEX message parser to be
merged to the TEX message parsers given in thepreamble() and text() methods. Thetexmes-
sagesdefaultpreambleand texmessagesdefaultrunare merged with [texmessage.load] and
[texmessage.loaddef, texmessage.graphicsload, texmessage.fontwarning,
texmessage.boxwarning] , respectively.

texrunner instances provides several methods to be called by the user:

set (**kwargs)
This method takes the same keyword arguments as thetexrunner constructor. Its purpose is to reconfig-
ure an already constructedtexrunner instance. The most prominent use-case is to alter the configuration
of the defaulttexrunner instancedefaulttexrunner which is created at the time of loading of the
text module.

Theset method fails, when a modification cannot be applied anymore (e.g. TEX/LATEX has already been
started).

preamble (expr, texmessages=[])
Thepreamble() can be called prior to thetext() method only or after reseting a texrunner instance by
reset() . Theexpr is passed to the TEX/LATEX instance not encapsulated in a group. It should not generate
any output to the dvi file. In LATEX preamble expressions are inserted prior to the\begin{document} and
a typical use-case is to load packages by\usepackage . Note, that you may use\AtBeginDocument
to postpone the immediate evaluation.

texmessagesare TEX message parsers to handle the output of TEX/LATEX. They are merged with the default
TEX message parsers for thepreamble() method. See the constructur description for details on the
default TEX message parsers.

text (x, y, expr, textattrs=[], texmessages=[])
x andy are the position where a text should be typeset andexpr is the TEX/LATEX expression to be passed to
TEX/LATEX.

textattrs is a list of TEX/LATEX settings as described below, PYX transformations, and PYX fill styles (like
colors).

texmessagesare TEX message parsers to handle the output of TEX/LATEX. They are merged with the default
TEX message parsers for thetext() method. See the constructur description for details on the default TEX
message parsers.

Thetext() method returns atextbox instance, which is a specialcanvas instance. It has the methods
width() , height() , anddepth() to access the size of the text. Additionally themarker() method,
which takes a strings, returns a position in the text, where the expression\PyXMarker{ s} is contained in
expr. You should not use@within your stringss to prevent prevent name clashes with PYX internal macros
(although we don’t the marker feature internally right now).

20 Contents

Note that for the outout generation and the marker access the TEX/LATEX instance must be terminated except when
texipc is turned on. However, after such a termination a new TEX/LATEX instance is started when thetext()
method is called again.

reset (reinit=0)
This method can be used to manually force a restart of TEX/LATEX. The flag reinit will initialize the
TEX/LATEX by repeating thepreamble() calls. Newset() andpreamble() calls are allowed when
reinit was not set only.

3.3 TEX/LATEX attributes

TEX/LATEX attributes are instances to be passed to atexrunner s text() method. They stand for TEX/LATEX
expression fragments and handle dependencies by proper ordering.

classhalign (boxhalign, flushhalign)
Instances of this class set the horizontal alignment of a text box and the contents of a text box to be left,
center and right forboxhalignand flushhalignbeing 0, 0.5 , and1. Other values are allowed as well,
although such an alignment seems quite unusual.

Note that there are two separate classesboxhalign and flushhalign to set the alignment of the box and
its contents independently, but those helper classes can’t be cleared independently from each other. Some handy
instances available as class members:

boxleft
Left alignment of the text box,i.e. setsboxhalignto 0 and doesn’t setflushhalign.

boxcenter
Center alignment of the text box,i.e. setsboxhalignto 0.5 and doesn’t setflushhalign.

boxright
Right alignment of the text box,i.e. setsboxhalignto 1 and doesn’t setflushhalign.

flushleft
Left alignment of the content of the text box in a multiline box,i.e. setsflushhalignto 0 and doesn’t set
boxhalign.

raggedright
Identical toflushleft .

flushcenter
Center alignment of the content of the text box in a multiline box,i.e. setsflushhalignto 0.5 and doesn’t
setboxhalign.

raggedcenter
Identical toflushcenter .

flushright
Right alignment of the content of the text box in a multiline box,i.e. setsflushhalignto 1 and doesn’t set
boxhalign.

raggedleft
Identical toflushright .

left
Combinesboxleft andflushleft , i.e. halign(0, 0) .

center
Combinesboxcenter andflushcenter , i.e. halign(0.5, 0.5) .

right
Combinesboxright andflushright , i.e. halign(1, 1) .

classvalign (valign)
Instances of this class set the vertical alignment of a text box to be top, center and bottom forvalign being
0, 0.5 , and1. Other values are allowed as well, although such an alignment seems quite unusual. See the

Contents 21

spam &

eggs

valign.top

valign.middle

valign.bottom

parbox.top

parbox.middle

parbox.bottom

Figure 3.1: valign example

left side of figure 3.1 for an example.

Some handy instances available as class members:

top
valign(0)

middle
valign(0.5)

bottom
valign(1)

baseline
Identical to clearing the vertical alignment byclear to emphasise that a baseline alignment is not a box-
related alignment. Baseline alignment is the default,i.e. no valign is set by default.

classparbox (width, baseline=top)
Instances of this class create a box with a finite width, where the typesetter creates multiple lines in. Note,
that you can’t create multiple lines in TEX/LATEX without specifying a box width. Since PYX doesn’t know a
box width, it uses TEXs LR-mode by default, which will always put everything into a single line. Since in
a vertical box there are several baselines, you can specify the baseline to be used by the optionalbaseline
argument. You can set it to the symbolic namestop , parbox.middle , andparbox.bottom only,
which are members ofvalign . See the right side of figure 3.1 for an example.

Since you need to specify a box width no predefined instances are available as class members.

classvshift (lowerratio, heightstr="0")
Instances of this class lower the output bylowerratioof the height of the stringheigthstring. Note, that you
can apply several shifts to sum up the shift result. However, there is still aclear class member to remove
all vertical shifts.

Some handy instances available as class members:

bottomzero
vshift(0) (this doesn’t shift at all)

middlezero
vshift(0.5)

topzero
vshift(1)

mathaxis
This is a special vertical shift to lower the output by the height of the mathematical axis. The mathematical
axis is used by TEX for the vertical alignment in mathematical expressions and is often usefull for vertical
alignment. The corresponding vertical shift is less thanmiddlezero and usually fits the height of the
minus sign. (It is the height of the minus sign in mathematical mode, since that’s that the mathematical axis
is all about.)

22 Contents

There is a TEX/LATEX attribute to switch to TEXs math mode. The appropriate instancesmathmode and
clearmathmode (to clear the math mode attribute) are available at module level.

mathmode
Enables TEXs mathematical mode in display style.

Thesize class creates TEX/LATEX attributes for changing the font size.

classsize (sizeindex=None, sizename=None, sizelist=defaultsizelist)
LATEX knows several commands to change the font size. The command names are stored in thesizelist, which
defaults to ["normalsize", "large", "Large", "LARGE", "huge", "Huge", None,
"tiny", "scriptsize", "footnotesize", "small"] .

You can either provide an indexsizeindexto access an item insizelistor set the command name bysizename.

Instances for the LATEXs default size change commands are available as class members:

tiny
size(-4)

scriptsize
size(-3)

footnotesize
size(-2)

small
size(-1)

normalsize
size(0)

large
size(1)

Large
size(2)

LARGE
size(3)

huge
size(4)

Huge
size(5)

There is a TEX/LATEX attribute to create empty text boxes with the size of the material passed in. The appropriate
instancesphantom andclearphantom (to clear the phantom attribute) are available at module level.

phantom
Skip the text in the box, but keep its size.

3.4 Using the graphics-bundle with LATEX

The packages in the LATEX graphics bundle (color.sty , graphics.sty , graphicx.sty , . . .) make ex-
tensive use of\special commands. PYX defines a clean set of such commands to fit the needs of the LATEX
graphics bundle. This is done via thepyx.def driver file, which tells the graphics bundle about the syntax
of the \special commands as expected by PYX. You can install the driver filepyx.def into your LATEX
search path and add the content of both filescolor.cfg and graphics.cfg to your personal configura-
tion files.1 After you have installed thecfg files, please use thetext module with unsetpyxgraphics
keyword argument which will switch off a convenience hack for less experienced LATEX users. You can then
import the LATEX graphics bundle packages and related packages (e.g.rotating , . . .) with the optionpyx ,

1If you do not know what this is all about, you can just ignore this paragraph. But be sure that thepyxgraphicskeyword argument is always
set!

Contents 23

e.g.\usepackage[pyx]{color,graphicx} . Note that the optionpyx is only available with unsetpyx-
graphicskeyword argument and a properly installed driver file. Otherwise, omit the specification of a driver when
loading the packages.

When you define colors in LATEX via one of the color modelsgray , cmyk, rgb , RGB, hsb , then PYX will use
the corresponding values (one to four real numbers). In case you use any of thenamed colors in LATEX, PYX
will use the corresponding predefined color (see modulecolor and the color table at the end of the manual).
The additional LATEX color modelpyx allows to use a PyX color expression, such ascolor.cmyk(0,0,0,0)
directly in LaTeX. It is passed to PyX.

When importing Encapsulated PostScript files (eps files) PYX will rotate, scale and clip your file like you expect
it. Other graphic formats can not be imported via the graphics package at the moment.

For reference purpose, the following specials can be handled by PYX at the moment:

PyX:color_begin (model) (spec) starts a color. (model) is one of gray , cmyk, rgb , hsb ,
texnamed , or pyxcolor . (spec) depends on the model: a name or some numbers

PyX:color_end ends a color.

PyX:epsinclude file= llx= lly= urx= ury= width= height= clip=0/1 includes an En-
capsulated PostScript file (eps files). The values ofllx to ury are in the files’ coordinate system and
specify the part of the graphics that should become the specifiedwidth andheight in the outcome. The
graphics may be clipped. The last three parameters are optional.

PyX:scale_begin (x) (y) begins scaling from the current point.

PyX:scale_end ends scaling.

PyX:rotate_begin (angle) begins rotation around the current point.

PyX:rotate_end ends rotation.

3.5 TEX message parsers

Message parsers are used to scan the output of TEX/LATEX. The output is analysed by a sequence of TEX message
parsers. Each message parser analyses the output and removes those parts of the output, it feels responsible for. If
there is nothing left in the end, the message got validated, otherwise an exception is raised reporting the problem.
A message parser might issue a warning when removing some output to give some feedback to the user.

classtexmessage ()
This class acts as a container for TEX message parsers instances, which are all instances of classes derived
from texmessage .

The following TEX message parser instances are available:

start
Check for TEX/LATEX startup message including scrollmode test.

noaux
Ignore LATEXs no-aux-file warning.

end
Check for proper TEX/LATEX tear down message.

load
Accepts arbitrary loading of files without checking for details,i.e. accept(file ...) wherefile is an
readable file.

loaddef
Accepts arbitrary loading offd files, i.e. accept(file .def) and (file .fd) wherefile .def or
file .fd is an readable file, respectively.

graphicsload
Accepts arbitrary loading ofeps files, i.e. accept(file .eps) wherefile .eps is an readable file.

24 Contents

ignore
Ignores everything (this is probably a bad idea, but sometimes you might just want to ignore everything).

allwarning
Ignores everything but issues a warning.

fontwarning
Issues a warning about font substitutions of the LATEXs NFSS.

boxwarning
Issues a warning on under- and overfull horizontal and vertical boxes.

classtexmessagepattern (pattern, warning=None)
This is a derived class oftexmessage . It can be used to construct simple TEX message parsers, which
validate a TEX message matching a certain regular expression patternpattern. Whenwarning is set, a
warning message is issued. Several of the TEX message parsers described above are implemented using this
class.

3.6 The defaulttexrunner instance

defaulttexrunner
Thedefaulttexrunner is an instance oftexrunner . It is created when thetext module is loaded
and it is used as the default texrunner instance by allcanvas instances to implement itstext() method.

preamble (...)
defaulttexrunner.preamble

text (...)
defaulttexrunner.text

set (...)
defaulttexrunner.set

reset (...)
defaulttexrunner.reset

3.7 Some internals on temporary files etc.

It is not totally obvious how TEX processes are supervised by PYX and why it’s done that way. However there are
good reasons for it and the following description is intended for people wanting and/or needing to understand how
temporary files are used by PYX. All others don’t need to care.

Each time PYX needs to start a new TEX process, it creates a base file name for temporary files associated with
this process. This file name is used as\jobname by TEX. Since TEX does not handle directory names as part of
\jobname , the temporary files will be created in the current directory. The PYX developers decided to not change
the current directory at all, avoiding all kind of issues with accessing files in the local directory, like for loading
graph data, LATEX style files etc.

PYX creates a TEX file containing \relax only. It’s only use is to set TEXs \jobname . Immediately after
processing\relax TEX falls back to stdin to read more commands. PYX than usesstdin andstdout to avoid
various buffering issues which would occur when using files (or named pipes). By that PYX can fetch TEX errors as
soon as they occur while keeping the TEX process running (i.e. in a waiting state) for further input. The size of the
TEX output is also availble immediately without fetching thedvi file created by TEX, since PYX uses some TEX
macros to output the extents of the boxes created for the requested texts tostdout immediately. There is a TeX
hack--ipc which PYX knows to take advantage of to fetch informations from thedvi file immediately as well,
but it’s not available on all TEXinstallations. Thus this feature is disabled by default and fetching informations
from thedvi is tried to be limited to those cases, where no other option exists. By that TEX usually doesn’t need
to be started several times.

By default PYX will clean up all temporary files after TEX was stopped. However theusefiles list allows for a
renaming of the files from (and to, if existing) the temporary\jobname (+ suffix) handled by PYX. Additionally,

Contents 25

since PYX does not write a useful TEX input file in a file and thus ausefiles=["example.tex"] would not
contain the code actually passed to TEX, the texdebug feature of the texrunner can be used instead to get a the
full input passed to TEX.

In case you need to control the position where the temporary files are created (say, you’re working on a read-only
directory), the suggested solution is to switch the current directory before starting with text processing in PYX (i.e.
anos.chdir at the beginning of your script will do fine). You than just need to take care of specifying full paths
when accessing data from your original working directory, but that’s intended and necessary for that case.

26 Contents

CHAPTER

FOUR

Graphs

4.1 Introduction

PYX can be used for data and function plotting. At present x-y-graphs and x-y-z-graphs are supported only.
However, the component architecture of the graph system described in section 4.2 allows for additional graph
geometries while reusing most of the existing components.

Creating a graph splits into two basic steps. First you have to create a graph instance. The most simple form would
look like:

from pyx import *
g = graph.graphxy(width=8)

The graph instanceg created in this example can then be used to actually plot something into the graph. Suppose
you have some data in a file ‘graph.dat’ you want to plot. The content of the file could look like:

1 2
2 3
3 8
4 13
5 18
6 21

To plot these data into the graphg you must perform:

g.plot(graph.data.file("graph.dat", x=1, y=2))

The methodplot() takes the data to be plotted and optionally a list of graph styles to be used to plot the data.
When no styles are provided, a default style defined by the data instance is used. For data read from a file by an
instance ofgraph.data.file , the default are symbols. When instantiatinggraph.data.file , you not
only specify the file name, but also a mapping from columns to axis names and other information the styles might
make use of (e.g.data for error bars to be used by the errorbar style).

While the graph is already created by that, we still need to perform a write of the result into a file. Since the graph
instance is a canvas, we can just call itswriteEPSfile() method.

g.writeEPSfile("graph")

The result ‘graph.eps’ is shown in figure 4.1.

Instead of plotting data from a file, other data source are available as well. For example function data is created
and placed intoplot() by the following line:

27

1 2 3 4 5 6

0

5

10

15

20

25

Figure 4.1: A minimalistic plot for the data from file ‘graph.dat’.

g.plot(graph.data.function("y(x)=x**2"))

You can plot different data in a single graph by callingplot() several times beforewriteEPSfile() or
writePDFfile() . Note that a callingplot() will fail once a graph was forced to “finish” itself. This
happens automatically, when the graph is written to a file. Thus it is not an option to callplot() after
writeEPSfile() or writePDFfile() . The topic of the finalization of a graph is addressed in more detail
in section 4.3. As you can see in figure 4.2, a function is plotted as a line by default.

1 2 3 4 5 6

0

10

20

30

40

Figure 4.2: Plotting data from a file together with a function.

While the axes ranges got adjusted automatically in the previous example, they might be fixed by keyword options
in axes constructors. Plotting only a function will need such a setting at least in the variable coordinate. The
following code also shows how to set a logathmic axis in y-direction:

from pyx import *
g = graph.graphxy(width=8, x=graph.axis.linear(min=-5, max=5),

y=graph.axis.logarithmic())
g.plot(graph.data.function("y(x)=exp(x)"))
g.writeEPSfile("graph3")
g.writePDFfile("graph3")

The result is shown in figure 4.3.

4.2 Component architecture

28 Contents

0.001

0.01

0.1

1

10

100

1000

−4 −2 0 2 4

Figure 4.3: Plotting a function for a given axis range and use a logarithmic y-axis.

Creating a graph involves a variety of tasks, which thus can be separated into components without significant
additional costs. This structure manifests itself also in the PYX source, where there are different modules for the
different tasks. They interact by some well-defined interfaces. They certainly have to be completed and stabilized
in their details, but the basic structure came up in the continuous development quite clearly. The basic parts of a
graph are:

graph
Defines the geometry of the graph by means of graph coordinates with range [0:1]. Keeps lists of plotted
data, axesetc.

data
Produces or prepares data to be plotted in graphs.

style
Performs the plotting of the data into the graph. It gets data, converts them via the axes into graph coordi-
nates and uses the graph to finally plot the data with respect to the graph geometry methods.

key
Responsible for the graph keys.

axis
Creates axes for the graph, which take care of the mapping from data values to graph coordinates. Because
axes are also responsible for creating ticks and labels, showing up in the graph themselves and other things,
this task is splitted into several independent subtasks. Axes are discussed separately in chapter 5.

4.3 Module graph.graph : Graphs

The classesgraphxy andgraphxyz are part of the modulegraph.graph . However, there are shortcuts to
access the classes viagraph.graphxy andgraph.graphxyz , respectively.

classgraphxy (xpos=0, ypos=0, width=None, height=None, ratio=goldenmean, key=None, backgroundat-
trs=None, axesdist=0.8*unit.v_cm, xaxisat=None, yaxisat=None, **axes)

This class provides an x-y-graph. A graph instance is also a fully functional canvas.

The position of the graph on its own canvas is specified byxposandypos. The size of the graph is specified
by width, height, andratio. These parameters define the size of the graph area not taking into account the
additional space needed for the axes. Note that you have to specify at leastwidth or height. ratio will be
used as the ratio betweenwidthandheightwhen only one of these is provided.

keycan be set to agraph.key.key instance to create an automatic graph key.None omits the graph key.

backgroundattrsis a list of attributes for drawing the background of the graph. Allowed are decorators,
strokestyles, and fillstyles.None disables background drawing.

Contents 29

axisdistis the distance between axes drawn at the same side of a graph.

xaxisatandyaxisatspecify a value at the y and x axis, where the corresponding axis should be moved to.
It’s a shortcut for corresonding calls ofaxisatv() described below. Moving an axis byxaxisator yaxisat
disables the automatic creation of a linked axis at the opposite side of the graph.

**axes receives axes instances. Allowed keywords (axes names) arex , x2 , x3 , etc. andy , y2 , y3 , etc.
When not providing anx or y axis, linear axes instances will be used automatically. When not providing a
x2 or y2 axis, linked axes to thex andy axes are created automatically andvice versa. As an exception, a
linked axis is not created automatically when the axis is placed at a specific position byxaxisator yaxisat.
You can disable the automatic creation of axes by setting the linked axes toNone. The even numbered axes
are plotted at the top (x axes) and right (y axes) while the others are plotted at the bottom (x axes) and left
(y axes) in ascending order each.

Some instance attributes might be useful for outside read-access. Those are:

axes
A dictionary mapping axes names to theanchoredaxis instances.

To actually plot something into the graph, the following instance methodplot() is provided:

plot (data, styles=None)
Addsdatato the list of data to be plotted. Setsstylesto be used for plotting the data. Whenstylesis None,
the default styles for the data as provided bydata is used.

datashould be an instance of any of the data described in section 4.4.

When the same combination of styles (i.e. the same references) are used several times within the same graph
instance, the styles are kindly asked by the graph to iterate their appearance. Its up to the styles how this is
performed.

Instead of calling the plot method several times with differentdatabut the same style, you can use a list (or
something iterateable) fordata.

While a graph instance only collects data initially, at a certain point it must create the whole plot. Once this is done,
further calls ofplot() will fail. Usually you do not need to take care about the finalization of the graph, because
it happens automatically once you write the plot into a file. However, sometimes position methods (described
below) are nice to be accessible. For that, at least the layout of the graph must have been finished. By calling the
do-methods yourself you can also alter the order in which the graph components are plotted. Multiple calls to
any of thedo-methods have no effect (only the first call counts). The orginal order in which thedo-methods are
called is:

dolayout ()
Fixes the layout of the graph. As part of this work, the ranges of the axes are fitted to the data when the axes
ranges are allowed to adjust themselves to the data ranges. The otherdo-methods ensure, that this method
is always called first.

dobackground ()
Draws the background.

doaxes ()
Inserts the axes.

doplot (plotitem)
Plots the plotitem as returned by the graphs plot method.

dodata ()
Plots the data.

dokey ()
Inserts the graph key.

finish ()
Finishes the graph by calling all pendingdo-methods. This is done automatically, when the output is
created.

The graph provides some methods to access its geometry:

pos (x, y, xaxis=None, yaxis=None)

30 Contents

Returns the given point atx andy as a tuple(xpos, ypos) at the graph canvas.x andy are anchoredaxis
instances for the two axesxaxisandyaxis. Whenxaxisor yaxisareNone, the axes with namesx andy are
used. This method fails if called beforedolayout() .

vpos (vx, vy)
Returns the given point atvx andvy as a tuple(xpos, ypos) at the graph canvas.vx andvy are graph
coordinates with range [0:1].

vgeodesic (vx1, vy1, vx2, vy2)
Returns the geodesic between pointsvx1, vy1andvx2, vy2as a path. All parameters are in graph coordinates
with range [0:1]. Forgraphxy this is a straight line.

vgeodesic_el (vx1, vy1, vx2, vy2)
Like vgeodesic() but this method returns the path element to connect the two points.

Further geometry information is available by theaxes instance variable, with is a dictionary mapping axis
names toanchoredaxis instances. Shortcuts to the anchoredaxis positioner methods for thex - and y -
axis become available afterdolayout() asgraphxy methodsXbasepath , Xvbasepath , Xgridpath ,
Xvgridpath , Xtickpoint , Xvtickpoint , Xtickdirection , andXvtickdirection where the pre-
fix X stands forx andy .

axistrafo (axis, t)
This method can be used to apply a transformationt to ananchoredaxis instanceaxis to modify the
axis position and the like. This method fails when called on a not yet finished axis, i.e. it should be used
afterdolayout() .

axisatv (axis, v)
This method callsaxistrafo() with a transformation to move the axisaxis to a graph positionv (in
graph coordinates).

The classgraphxyz is very similar to thegraphxy class, except for its additional dimension. In the following
documentation only the differences to thegraphxy class are described.

classgraphxyz (xpos=0, ypos=0, size=None, xscale=1, yscale=1, zscale=1/goldenmean, projec-
tor=central(10, -30, 30), key=None, **axes)

This class provides an x-y-z-graph.

The position of the graph on its own canvas is specified byxposandypos. The size of the graph is specified
by sizeand the length factorsxscale, yscale, andzscale. The final size of the graph depends on the projector
projector, which is called withx , y , andz values up toxscale, yscale, andzscalerespectively and scaling
the result bysize. For a parallel projector changingsizeis thus identical to changingxscale, yscale, and
zscaleby the same factor. For the central projector the projectors internal distance would also need to be
changed by this factor. Thussizechanges the size of the whole graph without changing the projection.

projectordefines the conversion of 3d coordinates to 2d coordinates. It can be an instance ofcentral or
parallel described below.

**axes receives axes instances as forgraphxyz . The graphxyz allows for 4 axes per graph dimensionx ,
x2 , x3 , x4 , y , y2 , y3 , y4 , z , z2 , z3 , andz4 . The x-y-plane is the horizontal plane at the bottom and the
x , x2 , y , andy2 axes are placed at the boundary of this plane withx andy always being in front.x3 , x4 ,
y3 , andy4 are handled similar, but for the top plane of the graph. Thez axis is placed at the origin of the
x andy dimension, whereasz2 is placed at the final point of thex dimension,z3 at the final point of they
dimension andz4 at the final point of thex andy dimension together.

central
The central attribute of the graphxyz is thecentral class. See the class description below.

parallel
The parallel attribute of the graphxyz is theparallel class. See the class description below.

Regarding the 3d to 2d transformation the methodspos , vpos , vgeodesic , andvgeodesic_el are available
as for classgraphxy and just take an additional argument for the dimension. Note that a similar transformation
method (3d to 2d) is available as part of the projector as well already, but only the graph acknowledges its size,
the scaling and the internal tranformation of the graph coordinates to the scaled coordinates. As the projector also
implements azindex and aangle method, those are also available at the graph level in the graph coordinate
variant (i.e. having an additional v in its name and using values from 0 to 1 per dimension).

Contents 31

vzindex (vx, vy, vz)
The depths of the point defined byvx, vy, andvzscaled to a range [-1:1] where 1 in closed to the viewer. All
arguments passed to the method are in graph coordinates with range [0:1].

vangle (vx1, vy1, vz1, vx2, vy2, vz2, vx3, vy3, vz3)
The cosine of the angle of the view ray thru point(vx1, vy1, vz1) and the plane defined by the
points(vx1, vy1, vz1) , (vx2, vy2, vz2) , and(vx3, vy3, vz3) . All arguments passed to
the method are in graph coordinates with range [0:1].

There are two projector classescentral andparallel :

classcentral (distance, phi, theta, anglefactor=math.pi/180)
Instances of this class implement a central projection for the given parameters.

distanceis the distance of the viewer from the origin. Note that thegraphxyz class uses the range
-xscale to xscale , -yscale to yscale , and-zscale to zscale for the coordinatesx , y , and
z . As those scales are of the order of one (by default), the distance should be of the order of 10 to give
nice results. Smaller distances increase the central projection character while for huge distances the central
projection becomes identical to the parallel projection.

phi is the angle of the viewer in the x-y-plane andtheta is the angle of the viewer to the x-y-plane.
The standard notation for spheric coordinates are used. The angles are multiplied byanglefactorwhich is
initialized to do a degree in radiant transformation such that you can specifyphi and theta in degree
while the internal computation is always done in radiants.

classparallel (phi, theta, anglefactor=math.pi/180)
Instances of this class implement a parallel projection for the given parameters. There is no distance for
that transformation (compared to the central projection). All other parameters are identical to thecentral
class.

4.4 Module graph.data : Data

The following classes provide data for theplot() method of a graph. The classes are implemented in
graph.data .

classfile (filename, commentpattern=defaultcommentpattern, columnpattern=defaultcolumnpattern, string-
pattern=defaultstringpattern, skiphead=0, skiptail=0, every=1, title=notitle, context={}, copy=1,
replacedollar=1, columncallback="__column__", **columns)

This class reads data from a file and makes them available to the graph system.filenameis the name of the
file to be read. The data should be organized in columns.

The argumentscommentpattern, columnpattern, andstringpatternare responsible for identifying the data
in each line of the file. Lines matchingcommentpatternare ignored except for the column name search of
the last non-empty comment line before the data. By default a line starting with one of the characters ‘#’,
‘%’, or ‘ ! ’ as well as an empty line is treated as a comment.

A non-comment line is analysed by repeatedly matchingstringpatternand, whenever the stringpattern does
not match, bycolumnpattern. When thestringpatternmatches, the result is taken as the value for the next
column without further transformations. Whencolumnpatternmatches, it is tried to convert the result to a
float. When this fails the result is taken as a string as well. By default, you can write strings with spaces
surrounded by ‘" ’ immediately surrounded by spaces or begin/end of line in the data file. Otherwise ‘" ’ is
not taken to be special.

skipheadandskiptailare numbers of data lines to be ignored at the beginning and end of the file whileevery
selects only everyeveryline from the data.

title is the title of the data to be used in the graph key. A default title is constructed out offilenameand
**columns. You may settitle to None to disable the title.

Finally, columnsdefine columns out of the existing columns from the file by a column number or a mathe-
matical expression (see below). Whencopyis set the names of the columns in the file (file column names)
and the freshly created columns having the names of the dictionary key (data column names) are passed as
data to the graph styles. The data columns may hide file columns when names are equal. For unsetcopythe
file columns are not available to the graph styles.

32 Contents

File column names occur when the data file contains a comment line immediately in front of the data (except
for empty or empty comment lines). This line will be parsed skipping the matched comment identifier as if
the line would be regular data, but it will not be converted to floats even if it would be possible to convert
the items. The result is taken as file column names,i.e. a string representation for the columns in the file.

The values of**columnscan refer to column numbers in the file starting at1. The column0 is also available
and contains the line number starting from1 not counting comment lines, but lines skipped byskiphead,
skiptail, andevery. Furthermore values of**columnscan be strings: file column names or complex math-
ematical expressions. To refer to columns within mathematical expressions you can also use file column
names when they are valid variable identifiers. Equal named items in context will then be hidden. Alterna-
tively columns can be access by the syntax$<number> whenreplacedollaris set. They will be translated
into function calls tocolumncallback, which is a function to access column data by index or name.

contextallows for accessing external variables and functions when evaluating mathematical expressions for
columns. Additionally to the identifiers incontext, the file column names, thecolumncallbackfunction and
the functions shown in the table “builtins in math expressions” at the end of the section are available.

Example:

graph.data.file("test.dat", a=1, b="B", c="2*B+$3")

with ‘ test.dat’ looking like:

A B C
1.234 1 2
5.678 3 4

The columns with name"a" , "b" , "c" will become "[1.234, 5.678]" , "[1.0, 3.0]" , and
"[4.0, 10.0]" , respectively. The columns"A" , "B" , "C" will be available as well, sincecopy is
enabled by default.

When creating several data instances accessing the same file, the file is read only once. There is an inherent
caching of the file contents.

For the sake of completeness we list the default patterns:

defaultcommentpattern
re.compile(r"(#+|!+|%+)\s*")

defaultcolumnpattern
re.compile(r"\"(.*?)\"(\s+|$)")

defaultstringpattern
re.compile(r"(.*?)(\s+|$)")

classfunction (expression, title=notitle, min=None, max=None, points=100, context={})
This class creates graph data from a function.expressionis the mathematical expression of the function. It
must also contain the result variable name including the variable the function depends on by assignment. A
typical example looks like"y(x)=sin(x)" .

title is the title of the data to be used in the graph key. By defaultexpressionis used. You may settitle to
None to disable the title.

min andmaxgive the range of the variable. If not set, the range spans the whole axis range. The axis range
might be set explicitly or implicitly by ranges of other data.points is the number of points for which the
function is calculated. The points are choosen linearly in terms of graph coordinates.

contextallows for accessing external variables and functions. Additionally to the identifiers incontext, the
variable name and the functions shown in the table “builtins in math expressions” at the end of the section
are available.

classparamfunction (varname, min, max, expression, title=notitle, points=100, context={})
This class creates graph data from a parametric function.varnameis the parameter of the function.minand
maxgive the range for that variable.pointsis the number of points for which the function is calculated. The
points are choosen lineary in terms of the parameter.

Contents 33

expressionis the mathematical expression for the parametric function. It contains an assignment of a tuple
of functions to a tuple of variables. A typical example looks like"x, y = cos(k), sin(k)" .

title is the title of the data to be used in the graph key. By defaultexpressionis used. You may settitle to
None to disable the title.

contextallows for accessing external variables and functions. Additionally to the identifiers incontext,
varnameand the functions shown in the table “builtins in math expressions” at the end of the section are
available.

classvalues (title="user provided values", **columns)
This class creates graph data from externally provided data. Each column is a list of values to be used for
that column.

title is the title of the data to be used in the graph key.

classpoints (data, title="user provided points", addlinenumbers=1, **columns)
This class creates graph data from externally provided data.data is a list of lines, where each line is a list
of data values for the columns.

title is the title of the data to be used in the graph key.

The keywords of**columnsbecome the data column names. The values are the column numbers starting
from one, whenaddlinenumbersis turned on (the zeroth column is added to contain a line number in that
case), while the column numbers starts from zero, whenaddlinenumbersis switched off.

classdata (data, title=notitle, context=, copy=1, replacedollar=1, columncallback="__column__",
**columns)

This class provides graph data out of other graph data.data is the source of the data. All other parameters
work like the equally called parameters ingraph.data.file . Indeed, the latter is built on top of this
class by reading the file and caching its contents in agraph.data.list instance.

classconffile (filename, title=notitle, context=, copy=1, replacedollar=1, columncallback="__column__",
**columns)

This class reads data from a config file with the file namefilename. The format of a config file is described
within the documentation of theConfigParser module of the Python Standard Library.

Each section of the config file becomes a data line. The options in a section are the columns. The name
of the options will be used as file column names. All other parameters work as ingraph.data.fileand
graph.data.datasince they all use the same code.

classcbdfile (filename, minrank=None, maxrank=None, title=notitle, context=, copy=1, replacedollar=1,
columncallback="__column__", **columns)

This is an experimental class to read map data from cbd-files. See
http://sepwww.stanford.edu/ftp/World_Map/ for some world-map data.

The builtins in math expressions are listed in the following table:

34 Contents

name value
neg lambda x: -x
abs lambda x: x < 0 and -x or x
sgn lambda x: x < 0 and -1 or 1
sqrt math.sqrt
exp math.exp
log math.log
sin math.sin
cos math.cos
tan math.tan
asin math.asin
acos math.acos
atan math.atan
sind lambda x: math.sin(math.pi/180*x)
cosd lambda x: math.cos(math.pi/180*x)
tand lambda x: math.tan(math.pi/180*x)
asind lambda x: 180/math.pi*math.asin(x)
acosd lambda x: 180/math.pi*math.acos(x)
atand lambda x: 180/math.pi*math.atan(x)
norm lambda x, y: math.hypot(x, y)
splitatvalue see thesplitatvalue description below
pi math.pi
e math.e

math refers to Pythonsmath module. Thesplitatvalue function is defined as:

splitatvalue (value, *splitpoints)
This method returns a tuple(section, value) . The section is calculated by comparingvaluewith the
values of splitpoints. Ifsplitpointscontains only a single item,section is 0 when value is lower or equal
this item and1 else. For multiple splitpoints,section is 0 when its lower or equal the first item,None
when its bigger than the first item but lower or equal the second item,1 when its even bigger the second
item, but lower or equal the third item. It continues to alter betweenNone and2, 3, etc.

4.5 Module graph.style : Styles

Please note that we are talking about graph styles here. Those are responsible for plotting symbols, lines, bars
and whatever else into a graph. Do not mix it up with path styles like the line width, the line style (solid, dashed,
dottedetc.) and others.

The following classes provide styles to be used at theplot() method of a graph. The plot method accepts a list
of styles. By that you can combine several styles at the very same time.

Some of the styles below are hidden styles. Those do not create any output, but they perform internal data handling
and thus help on modularization of the styles. Usually, a visible style will depend on data provided by one or more
hidden styles but most of the time it is not necessary to specify the hidden styles manually. The hidden styles
register themself to be the default for providing certain internal data.

classpos (epsilon=1e-10)
This class is a hidden style providing a position in the graph. It needs a data column for each graph dimen-
sion. For that the column names need to be equal to an axis name. Data points are considered to be out of
graph when their position in graph coordinates exceeds the range [0:1] by more thanepsilon.

classrange (usenames=, epsilon=1e-10)
This class is a hidden style providing an errorbar range. It needs data column names constructed out of a
axis nameX for each dimension errorbar data should be provided as follows:

Contents 35

data name description
Xmin minimal value
Xmax maximal value
dX minimal and maximal delta
dXmin minimal delta
dXmax maximal delta

When delta data are provided the style will also read column data for the axis nameX itself. usenames
allows to insert a translation dictionary from axis names to the identifiersX.

epsilonis a comparison precision when checking for invalid errorbar ranges.

classsymbol (symbol=changecross, size=0.2*unit.v_cm, symbolattrs=[])
This class is a style for plotting symbols in a graph.symbolrefers to a (changeable) symbol function with
the prototypesymbol(c, x_pt, y_pt, size_pt, attrs) and draws the symbol into the canvas
c at the position(x_pt, y_pt) with sizesize_pt and attributesattrs . Some predefined symbols
are available in member variables listed below. The symbol is drawn at sizesizeusingsymbolattrs. symbo-
lattrs is merged withdefaultsymbolattrs which is a list containing the decoratordeco.stroked .
An instance ofsymbol is the default style for all graph data classes described in section 4.4 except for
function andparamfunction .

The classsymbol provides some symbol functions as member variables, namely:

cross
A cross. Should be used for stroking only.

plus
A plus. Should be used for stroking only.

square
A square. Might be stroked or filled or both.

triangle
A triangle. Might be stroked or filled or both.

circle
A circle. Might be stroked or filled or both.

diamond
A diamond. Might be stroked or filled or both.

symbol provides some changeable symbol functions as member variables, namely:

changecross
attr.changelist([cross, plus, square, triangle, circle, diamond])

changeplus
attr.changelist([plus, square, triangle, circle, diamond, cross])

changesquare
attr.changelist([square, triangle, circle, diamond, cross, plus])

changetriangle
attr.changelist([triangle, circle, diamond, cross, plus, square])

changecircle
attr.changelist([circle, diamond, cross, plus, square, triangle])

changediamond
attr.changelist([diamond, cross, plus, square, triangle, circle])

changesquaretwice
attr.changelist([square, square, triangle, triangle, circle, circle, diamond, diamond])

changetriangletwice
attr.changelist([triangle, triangle, circle, circle, diamond, diamond, square, square])

changecircletwice
attr.changelist([circle, circle, diamond, diamond, square, square, triangle, triangle])

36 Contents

changediamondtwice
attr.changelist([diamond, diamond, square, square, triangle, triangle, circle, circle])

The classsymbol provides two changeable decorators for alternated filling and stroking. Those are especially
useful in combination with thechange -twice -symbol methods above. They are:

changestrokedfilled
attr.changelist([deco.stroked, deco.filled])

changefilledstroked
attr.changelist([deco.filled, deco.stroked])

classline (lineattrs=[])
This class is a style to stroke lines in a graph.lineattrs is merged withdefaultlineattrs which is a
list containing the member variablechangelinestyle as described below. An instance ofline is the
default style of the graph data classesfunction andparamfunction described in section 4.4.

The classline provides a changeable line style. Its definition is:

changelinestyle
attr.changelist([style.linestyle.solid, style.linestyle.dashed, style.linestyle.dotted,
style.linestyle.dashdotted])

classimpulses (lineattrs=[], fromvalue=0, frompathattrs=[], valueaxisindex=1)
This class is a style to plot impulses.lineattrs is merged withdefaultlineattrs which is a list con-
taining the member variablechangelinestyle of theline class.fromvalueis the baseline value of the
impulses. When set toNone, the impulses will start at the baseline. When fromvalue is set,frompathattrs
are the stroke attributes used to show the impulses baseline path.

classerrorbar (size=0.1*unit.v_cm, errorbarattrs=[], epsilon=1e-10)
This class is a style to stroke errorbars in a graph.sizeis the size of the caps of the errorbars anderrorbarattrs
are the stroke attributes. Errorbars and error caps are considered to be out of the graph when their position
in graph coordinates exceeds the range [0:1] by more thatepsilon. Out of graph caps are omitted and the
errorbars are cut to the valid graph range.

classtext (textname="text", dxname=None, dyname=None, dxunit=0.3*unit.v_cm, dyunit=0.3*unit.v_cm,
textdx=0*unit.v_cm, textdy=0.3*unit.v_cm, textattrs=[])

This class is a style to stroke text in a graph. The text to be written has to be provided in the data column
namedtextname . textdxandtextdyare the position of the text with respect to the position in the graph.
Alternatively you can specify adxname and adyname and provide appropriate data in those columns
to be taken in units ofdxunit anddyunit to specify the position of the text for each point separately.tex-
tattrs are text attributes for the output of the text. Those attributes are merged with the default attributes
textmodule.halign.center andtextmodule.vshift.mathaxis .

classarrow (linelength=0.25*unit.v_cm, arrowsize=0.15*unit.v_cm, lineattrs=[], arrowattrs=[], arrow-
pos=0.5, epsilon=1e-10)

This class is a style to plot short lines with arrows into a two-dimensional graph to a given graph position.
The arrow parameters are defined by two additional data columns namedsize andangle define the size
and angle for each arrow.size is taken as a factor toarrowsizeandlinelength, the size of the arrow and the
length of the line the arrow is plotted at.angle is the angle the arrow points to with respect to a horizontal
line. Theangle is taken in degrees and used in mathematically positive sense.lineattrsandarrowattrsare
styles for the arrow line and arrow head, respectively.arrowposdefines the position of the arrow line with
respect to the position at the graph. The default0.5 means centered at the graph position, whereas0 and
1 creates the arrows to start or end at the graph position, respectively.epsilonis used as a cutoff for short
arrows in order to prevent numerical instabilities.

classrect (gradient=color.gradient.Grey)
This class is a style to plot colored rectangles into a two-dimensional graph. The size of the rectangles is
taken from the data provided by therange style. The additional data column namedcolor specifies the
color of the rectangle defined bygradient. The valid color range is [0:1].

Note: Although this style can be used for plotting colored surfaces, it will lead to a huge memory footprint
of PYX together with a long running time and large outputs. Improved support for colored surfaces is planned
for the future.

Contents 37

classhistogram (lineattrs=[], steps=0, fromvalue=0, frompathattrs=[], fillable=0, rectkey=0, autohistogra-
maxisindex=0, autohistogrampointpos=0.5, epsilon=1e-10)

This class is a style to plot histograms.lineattrs is merged withdefaultlineattrs which is
[deco.stroked] . Whenstepsis set, the histrogram is plotted as steps instead of the default being a
boxed histogram.fromvalueis the baseline value of the histogram. When set toNone, the histogram
will start at the baseline. When fromvalue is set,frompathattrsare the stroke attributes used to show the
histogram baseline path.

Thefillable flag changes the stoke line of the histogram to make it fillable properly. This is important on
non-steped histograms or on histograms, which hit the graph boundary.rectkeycan be set to generate a
rectanglar area instead of a line in the graph key.

Usually, a histogram wants a range specification (like for an errorbar) in one graph dimension and a value
for the other graph dimension. By that, the widths of the histogram boxes might be variable. But a typical
use case is, that you just provide graph positions for both graph dimensions. Thenautohistogramaxisindex
defines the graph dimension where the histogram should be plotted on top of it. (0 thus means a histogram
at the x axes and1 for the y axes.) The style will then demand equal spaced values on this axis. The
histogram boxes are usually centered on those values forautohistogrampointposequals0.5 , but they can
also be aligned at the right side or left side of this value forautohistogrampointposbeing0 or 1.

Positions of the histograms are considered to be out of graph when they exceed the graph coordinate range
[0:1] by more thanepsilon.

classbarpos (fromvalue=None, frompathattrs=[], epsilon=1e-10)
This class is a hidden style providing position information in a bar graph. Those graphs need to contain a
specialized axis, namely a bar axis. The data column for this bar axis is namedXnamewhereX is an axis
name. In the other graph dimension the data column name must be equal to an axis name. To plot several
bars in a single graph side by side, you need to have a nested bar axis and provide a tuple as data for nested
bar axis.

The bars start atfromvaluewhen provided. Thefromvalueis marked by a gridline stroked usingfrompathat-
trs. Thus this hidden style might actually create some output. The value of a bar axis is considered to be out
of graph when its position in graph coordinates exceeds the range [0:1] by more thanepsilon.

classstackedbarpos (stackname, addontop=0, epsilon=1e-10)
This class is a hidden style providing position information in a bar graph by stacking a new bar on top of
another bar. The value of the new bar is taken from the data column namedstackname. Whenaddontopis
set, the values is taken relative to the previous top of the bar.

classbar (barattrs=[])
This class draws bars in a bar graph. The bars are filled usingbarattrs. barattrs is
merged with defaultbarattrs which is a list containing [color.gradient.Rainbow,
deco.stroked([color.grey.black])] .

classchangebar (barattrs=[])
This style works like thebar style, but instead of thebarattrs to be changed on subsequent data instances
thebarattrsare changed for each value within a single data instance. In the result the style can’t be applied
to several data instances. The style raises an error instead.

classgridpos (index1=0, index2=1, gridlines1=1, gridlines2=1, gridattrs=[], epsilon=1e-10)
This class is a hidden style providing rectangular grid information out of graph positions for graph dimen-
sionsindex1and index2. Data points are considered to be out of graph when their position in graph coor-
dinates exceeds the range [0:1] by more thanepsilon. Data points are merged to a single graph coordinate
value when their difference in graph coordinates is belowepsilon.

classgrid (gridlines1=1, gridlines2=1, gridattrs=[])
Strokes a rectangular grid in the first grid direction, whengridlines1is set and in the second grid direction,
when gridlines2 is set. gridattrs is merged withdefaultgridattrs which is a list containing the
member variablechangelinestyle of the line class.

classsurface (colorname="color", gradient=color.gradient.Grey, mincolor=None, maxcolor=None, grid-
lines1=0.05, gridlines2=0.05, gridcolor=None, backcolor=color.gray.black)

Draws a surface of a rectangular grid. Each rectangle is divided into 4 triangles.

The grid can be colored using values provided by the data column namedcolumnname. The values are
rescaled to the range [0:1] using mincolor and maxcolor (which are taken from the minimal and maximal

38 Contents

values, but larger bounds could be set).

If no columnnamecolumn exists, the surface style falls back to a lightning coloring taking into account
the angle between the view ray and the triangle and the distance between viewer and triangle. The precise
conversion is defined in thelightning method.

If a gridcolor is set, the rectangular grid is marked by small stripes of the relative (compared to each
rectangle) size ofgridlines1andgridlines2for the first and second grid direction, respectively.

backcolor is used to fill triangles shown from the back. Ifbackcolor is set toNone, back sides are not
drawn differently from the front sides.

The surface is encoded using a single mesh. While this is quite space efficient, it has the following implica-
tions:

•All colors must use the same color space.

•HSB colors are not allowed, whereas Gray, RGB, and CMYK are allowed. You can convert HSB
colors into a different color space before passing them to the surface.

•The grid itself is also constructed out of triangles. The grid is transformed along with the triangles
thus looking quite different from a stroked grid (as done by the grid style).

•Occlusion is handled by proper painting order.

•Color changes are continuous (in the selected color space) for each triangle.

4.6 Module graph.key : Keys

The following class provides a key, whose instances can be passed to the constructor keyword argumentkey of a
graph. The class is implemented ingraph.key .

classkey (dist=0.2*unit.v_cm, pos="tr", hpos=None, vpos=None, hinside=1, vinside=1, hdist=0.6*unit.v_cm,
vdist=0.4*unit.v_cm, symbolwidth=0.5*unit.v_cm, symbolheight=0.25*unit.v_cm, symbol-
space=0.2*unit.v_cm, textattrs=[], columns=1, columndist=0.5*unit.v_cm, border=0.3*unit.v_cm,
keyattrs=None)

This class writes the title of the data in a plot together with a small illustration of the style. The style is
responsible for its illustration.

dist is a visual length and a distance between the key entries.posis the position of the key with respect to
the graph. Allowed values are combinations of"t" (top),"m" (middle) and"b" (bottom) with"l" (left),
"c" (center) and"r" (right). Alternatively, you may usehposandvposto specify the relative position
using the range [0:1].hdistandvdistare the distances from the specified corner of the graph.hinsideand
vinsideare numbers to be set to 0 or 1 to define whether the key should be placed horizontally and vertically
inside of the graph or not.

symbolwidthandsymbolheightare passed to the style to control the size of the style illustration.symbolspace
is the space between the illustration and the text.textattrsare attributes for the text creation. They are merged
with [text.vshift.mathaxis] .

columnsis a number of columns of the graph key andcolumndistis the distance between those columns.

Whenkeyattrsis set to contain some draw attributes, the graph key is enlarged byborderand the key area
is drawn usingkeyattrs.

Contents 39

40

CHAPTER

FIVE

Axes

5.1 Component architecture

Axes are a fundamental component of graphs although there might be applications outside of the graph system.
Internally axes are constructed out of components, which handle different tasks axes need to fulfill:

axis
Implements the conversion of a data value to a graph coordinate of range [0:1]. It does also handle the
proper usage of the components in complicated tasks (i.e. combine the partitioner, texter, painter and rater
to find the best partitioning).

An anchoredaxis is a container to combine an axis with an positioner and provide a storage area for all kind
of axis data. That way axis instances are reusable (they do not store any data locally). The anchoredaxis
and the positioner are created by a graph corresponding to its geometry.

tick
Ticks are plotted along the axis. They might be labeled with text as well.

partitioner, we use “parter” as a short form
Creates one or several choices of tick lists suitable to a certain axis range.

texter
Creates labels for ticks when they are not set manually.

painter
Responsible for painting the axis.

rater
Calculate ratings, which can be used to select the best suitable partitioning.

positioner
Defines the position of an axis.

The names above map directly to modules which are provided in the directory ‘graph/axis’ except for the an-
choredaxis, which is part of the axis module as well. Sometimes it might be convenient to import the axis directory
directly rather than to access iit through the graph. This would look like:

from pyx import *
graph.axis.painter() # and the like

from pyx.graph import axis
axis.painter() # this is shorter ...

In most cases different implementations are available through different classes, which can be combined in various
ways. There are various axis examples distributed with PYX, where you can see some of the features of the axis
with a few lines of code each. Hence we can here directly come to the reference of the available components.

41

5.2 Module graph.axis.axis : Axes

The following classes are part of the modulegraph.axis.axis . However, there is a shortcut to access those
classes viagraph.axis directly.

Instances of the following classes can be passed to the**axes keyword arguments of a graph. Those instances
should only be used once.

classlinear (min=None, max=None, reverse=0, divisor=None, title=None, parter=parter.autolinear(),
manualticks=[], density=1, maxworse=2, rater=rater.linear(), texter=texter.mixed(),
painter=painter.regular(), linkpainter=painter.linked())

This class provides a linear axis.min and max define the axis range. When not set, they are adjusted
automatically by the data to be plotted in the graph. Note, that some data might want to access the range of
an axis (e.g. the function class when no range was provided there) or you need to specify a range when
using the axis without plugging it into a graph (e.g.when drawing an axis along a path).

reversecan be set to indicate a reversed axis starting with bigger values first. Alternatively you can fix the
axis range bymin andmaxaccordingly. When divisor is set, it is taken to divide all data range and position
informations while creating ticks. You can create ticks not taking into account a factor by that.title is the
title of the axis.

parter is a partitioner instance, which creates suitable ticks for the axis range. Those ticks are merged with
ticks manually given bymanualticksbefore proceeding with rating, paintingetc. Manually placed ticks
win against those created by the partitioner. For automatic partitioners, which are able to calculate several
possible tick lists for a given axis range, thedensityis a (linear) factor to favour more or less ticks. It should
not be stressed to much (its likely, that the result would be unappropriate or not at all valid in terms of rating
label distances). But within a range of say 0.5 to 2 (even bigger for large graphs) it can help to get less or
more ticks than the default would lead to.maxworseis the number of trials with more and less ticks when
a better rating was already found.rater is a rater instance, which rates the ticks and the label distances for
being best suitable. It also takes into accountdensity. The rater is only needed, when the partitioner creates
several tick lists.

texteris a texter instance. It creates labels for those ticks, which claim to have a label, but do not have a label
string set already. Ticks created by partitioners typically receive their label strings by texters. Thepainter
is finally used to construct the output. Note, that usually several output constructions are needed, since the
rater is also used to rate the distances between the labels for an optimum. Thelinkedpainteris used as the
axis painter, when automatic link axes are created by thecreatelinked() method.

classlin (...)
This class is an abbreviation oflinear described above.

classlogarithmic (min=None, max=None, reverse=0, divisor=None, title=None,
parter=parter.autologarithmic(), manualticks=[], density=1, maxworse=2,
rater=rater.logarithmic(), texter=texter.mixed(), painter=painter.regular(),
linkpainter=painter.linked())

This class provides a logarithmic axis. All parameters work likelinear . Only two parameters have a
different default:parter andrater. Furthermore and most importantly, the mapping between data and graph
coordinates is logarithmic.

classlog (...)
This class is an abbreviation oflogarithmic described above.

classbar (subaxes=None, defaultsubaxis=linear(painter=None, linkpainter=None, parter=None, tex-
ter=None), dist=0.5, firstdist=None, lastdist=None, title=None, reverse=0, painter=painter.bar(),
linkpainter=painter.linkedbar())

This class provides an axis suitable for a bar style. It handles a discrete set of values and maps them to
distinct ranges in graph coordinates. For that, the axis gets a tuple of two values.

The first item is taken to be one of the discrete values valid on this axis. The discrete values can be any
hashable type and the order of the subaxes is defined by the order the data is received or the inverse of that
whenreverseis set.

The second item is passed to the corresponding subaxis. The result of the conversion done by the subaxis
is mapped to the graph coordinate range reserved for this subaxis. This range is defined by a size attribute
of the subaxis, which can be added to any axis. (see the sized linear axes described below for some axes

42 Contents

already having a size argument). When no size information is available for a subaxis, a size value of 1 is
used. The baraxis itself calculates its size by suming up the sizes of its subaxes plusfirstdist, lastdistand
dist times the number of subaxes minus 1.

subaxesshould be a list or a dictionary mapping a discrete value of the bar axis to the corresponding subaxis.
When no subaxes are set or data is received for an unknown discrete axis value, instances of defaultsubaxis
are used as the subaxis for this discrete value.

dist is used as the spacing between the ranges for each distinct value. It is measured in the same units as the
subaxis results, thus the default value of0.5 means half the width between the distinct values as the width
for each distinct value.firstdist and lastdistare used before the first and after the last value. When set to
None, half of dist is used.

title is the title of the split axes andpainter is a specialized painter for an bar axis andlinkpainter is used as
the painter, when automatic link axes are created by thecreatelinked() method.

classnestedbar (subaxes=None, defaultsubaxis=bar(dist=0, painter=None, linkpainter=None),
dist=0.5, firstdist=None, lastdist=None, title=None, reverse=0, painter=painter.bar(),
linkpainter=painter.linkedbar())

This class is identical to the bar axis except for the different default value for defaultsubaxis.

classsplit (subaxes=None, defaultsubaxis=linear(), dist=0.5, firstdist=0, lastdist=0, title=None, reverse=0,
painter=painter.split(), linkpainter=painter.linkedsplit())

This class is identical to the bar axis except for the different default value for defaultsubaxis, firstdist,
lastdist, painter, and linkedpainter.

Sometimes you want to alter the default size of 1 of the subaxes. For that you have to add a size attribute to the
axis data. The two classessizedlinear andautosizedlinear do that for linear axes. Their short names
aresizedlin andautosizedlin . sizedlinear extends the usual linear axis by an first argumentsize.
autosizedlinear creates the size out of its data range automatically but sets anautolinear parter with
extendtickbeingNone in order to disable automatic range modifications while painting the axis.

The axis module also contains classes implementing so called anchored axes, which combine an axis with an
positioner and a storage place for axis related data. Since these features are not interesting for the average PYX
user, we’ll not go into all the details of their parameters and except for some handy axis position methods:

basepath (x1=None, x2=None)
Returns a path instance for the base path.x1 and x2 define the axis range, the base path should cover.
For None the beginning and end of the path is taken, which might cover a longer range, when the axis is
embedded as a subaxis. For that case, aNone value extends the range to the point of the middle between
two subaxes or the beginning or end of the whole axis, when the subaxis is the first or last of the subaxes.

vbasepath (v1=None, v2=None)
Like basepath but in graph coordinates.

gridpath (x)
Returns a path instance for the grid path at positionx. Might returnNone when no grid path is available.

vgridpath (v)
Like gridpath but in graph coordinates.

tickpoint (x)
Returns the position ofx as a tuple ‘(x, y) ’.

vtickpoint (v)
Like tickpoint but in graph coordinates.

tickdirection (x)
Returns the direction of a tick atx as a tuple ‘(dx, dy) ’. The tick direction points inside of the graph.

vtickdirection (v)
Like tickdirection but in graph coordinates.

vtickdirection (v)
Like tickdirection but in graph coordinates.

However, there are two anchored axes implementationslinkedaxis andanchoredpathaxis which are
available to the user to create special forms of anchored axes.

Contents 43

classlinkedaxis (linkedaxis=None, errorname="manual-linked", painter=_marker)
This class implements an anchored axis to be passed to a graph constructor to manually link the axis to
another anchored axis instancelinkedaxis. Note that you can skip setting the value oflinkedaxisin the
constructor, but set it later on by thesetlinkedaxis method described below.errornameis printed
within error messages when the data is used and some problem occurs.painter is used for painting the
linked axis instead of thelinkedpainterprovided by thelinkedaxis.

setlinkedaxis (linkedaxis)
This method can be used to set thelinkedaxisafter constructing the axis. By that you can create several
graph instances with cycled linked axes.

classanchoredpathaxis (path, axis, direction=1)
This class implements an anchored axis the pathpath. directiondefines the direction of the ticks. Allowed
values are1 (left) and-1 (right).

The anchoredpathaxis contains as any anchored axis after calling itscreate method the painted axis in
thecanvas member attribute. The functionpathaxis has the same signature like theanchoredpathaxis
class, but immediately creates the axis and returns the painted axis.

5.3 Module graph.axis.tick : Ticks

The following classes are part of the modulegraph.axis.tick .

classrational (x, power=1, floatprecision=10)
This class implements a rational number with infinite precision. For that it stores two integers, the numerator
num and a denominatordenom. Note that the implementation of rational number arithmetics is not at all
complete and designed for its special use case of axis partitioning in PYX preventing any roundoff errors.

x is the value of the rational created by a conversion from one of the following input values:

•A float. It is converted to a rational with finite precision determined byfloatprecision.

•A string, which is parsed to a rational number with full precision. It is also allowed to provide a
fraction like"1/3" .

•A sequence of two integers. Those integers are taken as numerator and denominator of the rational.

•An instance defining instance variablesnumanddenom like rational itself.

poweris an integer to calculatex** power. This is useful at certain places in partitioners.

classtick (x, ticklevel=0, labellevel=0, label=None, labelattrs=[], power=1, floatprecision=10)
This class implements ticks based on rational numbers. Instances of this class can be passed to the
manualticks parameter of a regular axis.

The parametersx, power, andfloatprecisionshare its meaning withrational .

A tick has a tick level (i.e. markers at the axis path) and a label lavel (e.i. place text at the axis path),
ticklevelandlabellevel. These are non-negative integers orNone. A value of0 means a regular tick or label,
1 stands for a subtick or sublabel,2 for subsubtick or subsublabel and so on.None means omitting the tick
or label. label is the text of the label. When not set, it can be created automatically by a texter.labelattrs
are the attributes for the labels.

5.4 Module graph.axis.parter : Partitioners

The following classes are part of the modulegraph.axis.parter . Instances of the classes can be passed to
the parter keyword argument of regular axes.

classlinear (tickdists=None, labeldists=None, extendtick=0, extendlabel=None, epsilon=1e-10)
Instances of this class creates equally spaced tick lists. The distances between the ticks, subticks, sub-
subticksetc. starting from a tick at zero are given as first, second, thirdetc. item of the list tickdists.
For a tick position, the lowest level wins,i.e. for [2, 1] even numbers will have ticks whereas subticks

44 Contents

are placed at odd integer. The items oftickdistsmight be strings, floats or tuples as described for thepos
parameter of classtick .

labeldistsworks equally for placing labels. Whenlabeldistsis keptNone, labels will be placed at each tick
position, but sublabelsetc. will not be used. This copy behaviour is also availablevice versaand can be
disabled by an empty list.

extendtickcan be set to a tick level for including the next tick of that level when the data exceeds the range
covered by the ticks by more thanepsilon. epsilonis taken relative to the axis range.extendtickis disabled
when set toNone or for fixed range axes.extendlabelworks similar toextendtickbut for labels.

classlin (...)
This class is an abbreviation oflinear described above.

classautolinear (variants=defaultvariants, extendtick=0, epsilon=1e-10)
Instances of this class creates equally spaced tick lists, where the distance between the ticks is adjusted to
the range of the axis automatically. Variants are a list of possible choices fortickdistsof linear . Further
variants are build out of these by multiplying or dividing all the values by multiples of10 . variantsshould
be ordered that way, that the number of ticks for a given range will decrease, hence the distances between the
ticks should increase within thevariantslist. extendtickandepsilonhave the same meaning as inlinear .

defaultvariants
[[tick.rational((1, 1)), tick.rational((1, 2))], [tick.rational((2,
1)), tick.rational((1, 1))], [tick.rational((5, 2)), tick.rational((5,
4))], [tick.rational((5, 1)), tick.rational((5, 2))]]

classautolin (...)
This class is an abbreviation ofautolinear described above.

classpreexp (pres, exp)
This is a storage class defining positions of ticks on a logarithmic scale. It contains a listpresof positions
pi andexp, a multiplicatorm. Valid tick positions are defined bypimn for any integern.

classlogarithmic (tickpreexps=None, labelpreexps=None, extendtick=0, extendlabel=None, epsilon=1e-
10)

Instances of this class creates tick lists suitable to logarithmic axes. The positions of the ticks, subticks,
subsubticksetc.are defined by the first, second, thirdetc. item of the listtickpreexps, which are allpreexp
instances.

labelpreexpsworks equally for placing labels. Whenlabelpreexpsis keptNone, labels will be placed at
each tick position, but sublabelsetc. will not be used. This copy behaviour is also availablevice versaand
can be disabled by an empty list.

extendtick, extendlabelandepsilonhave the same meaning as inlinear .

Somepreexp instances for the use inlogarithmic are available as instance variables (should be used read-
only):

pre1exp5
preexp([tick.rational((1, 1))], 100000)

pre1exp4
preexp([tick.rational((1, 1))], 10000)

pre1exp3
preexp([tick.rational((1, 1))], 1000)

pre1exp2
preexp([tick.rational((1, 1))], 100)

pre1exp
preexp([tick.rational((1, 1))], 10)

pre125exp
preexp([tick.rational((1, 1)), tick.rational((2, 1)), tick.rational((5,
1))], 10)

pre1to9exp
preexp([tick.rational((1, 1)) for x in range(1, 10)], 10)

Contents 45

classlog (...)
This class is an abbreviation oflogarithmic described above.

classautologarithmic (variants=defaultvariants, extendtick=0, extendlabel=None, epsilon=1e-10)
Instances of this class creates tick lists suitable to logarithmic axes, where the distance between the ticks
is adjusted to the range of the axis automatically. Variants are a list of tuples with possible choices for
tickpreexpsand labelpreexpsof logarithmic . variantsshould be ordered that way, that the number of
ticks for a given range will decrease within thevariantslist.

extendtick, extendlabelandepsilonhave the same meaning as inlinear .

defaultvariants
[([log.pre1exp, log.pre1to9exp], [log.pre1exp, log.pre125exp]),
([log.pre1exp, log.pre1to9exp], None), ([log.pre1exp2, log.pre1exp],
None), ([log.pre1exp3, log.pre1exp], None), ([log.pre1exp4,
log.pre1exp], None), ([log.pre1exp5, log.pre1exp], None)]

classautolog (...)
This class is an abbreviation ofautologarithmic described above.

5.5 Module graph.axis.texter : Texter

The following classes are part of the modulegraph.axis.texter . Instances of the classes can be passed to
the texter keyword argument of regular axes. Texters are used to define the label text for ticks, which request to
have a label, but for which no label text has been specified so far. A typical case are ticks created by partitioners
described above.

classdecimal (prefix="", infix="", suffix="", equalprecision=0, decimalsep=".", thousandsep="", thousandth-
partsep="", plus="", minus="-", period=r"\overline{%s}", labelattrs=[text.mathmode])

Instances of this class create decimal formatted labels.

The stringsprefix, infix, andsuffixare added to the label at the beginning, immediately after the plus or
minus, and at the end, respectively.decimalsep, thousandsep, andthousandthpartsepare strings used to
separate integer from fractional part and three-digit groups in the integer and fractional part. The stringsplus
andminusare inserted in front of the unsigned value for non-negative and negative numbers, respectively.

The format stringperiod should generate a period. It must contain one string insert operators%s for the
period.

labelattrs is a list of attributes to be added to the label attributes given in the painter. It should be used to
setup TEX features liketext.mathmode . Text format options liketext.size should instead be set at
the painter.

classexponential (plus="", minus="-", mantissaexp=r"{{%s}\cdot10^{%s}}", skipexp0=r"{%s}", skip-
exp1=None, nomantissaexp=r"{10^{%s}}", minusnomantissaexp=r"{-10^{%s}}", man-
tissamin=tick.rational((1, 1)), mantissamax=tick.rational((10L, 1)), skipmantissa1=0,
skipallmantissa1=1, mantissatexter=decimal())

Instances of this class create decimal formatted labels with an exponential.

The stringsplusandminusare inserted in front of the unsigned value of the exponent.

The format stringmantissaexpshould generate the exponent. It must contain two string insert operators%s,
the first for the mantissa and the second for the exponent. An alternative to the default isr"{{%s}{\rm
e}{%s}}" .

The format stringskipexp0is used to skip exponent0 and must contain one string insert operator%s for
the mantissa.None turns off the special handling of exponent0. The format stringskipexp1is similar to
skipexp0, but for exponent1.

The format stringnomantissaexpis used to skip the mantissa1 and must contain one string insert operator
%sfor the exponent.None turns off the special handling of mantissa1. The format stringminusnomantis-
saexpis similar tonomantissaexp, but for mantissa-1 .

The tick.rational instancesmantissamin<mantissamaxare minimum (including) and maximum (ex-
cluding) of the mantissa.

46 Contents

The booleanskipmantissa1enables the skipping of any mantissa equals1 and -1 , whenminusnoman-
tissaexpis set. When the booleanskipallmantissa1is set, a mantissa equals1 is skipped only, when all
mantissa values are1. Skipping of a mantissa is stronger than the skipping of an exponent.

mantissatexteris a texter instance for the mantissa.

classmixed (smallestdecimal=tick.rational((1, 1000)), biggestdecimal=tick.rational((9999, 1)), equaldeci-
sion=1, decimal=decimal(), exponential=exponential())

Instances of this class create decimal formatted labels with an exponential, when the unsigned values are
small or large compared to1.

The rational instancessmallestdecimaland biggestdecimalare the smallest and biggest decimal values,
where the decimal texter should be used. The sign of the value is ignored here. For a tick at zero the
decimal texter is considered best as well.equaldecisionis a boolean to indicate whether the decision for the
decimal or exponential texter should be done globally for all ticks.

decimalandexponentialare a decimal and an exponential texter instance, respectively.

classrational (prefix="", infix="", suffix="", numprefix="", numinfix="", numsuffix="", denomprefix="",
denominfix="", denomsuffix="", plus="", minus="-", minuspos=0, over=r"%s\over%s",
equaldenom=0, skip1=1, skipnum0=1, skipnum1=1, skipdenom1=1, labelat-
trs=[text.mathmode])

Instances of this class create labels formated as fractions.

The stringsprefix, infix, andsuffixare added to the label at the beginning, immediately after the plus or
minus, and at the end, respectively. The stringsnumprefix, numinfix, andnumsuffixare added to the labels
numerator accordingly whereasdenomprefix, denominfix, anddenomsuffixdo the same for the denominator.

The stringsplusandminusare inserted in front of the unsigned value. The position of the sign is defined by
minusposwith values1 (at the numerator),0 (in front of the fraction), and-1 (at the denominator).

The format stringovershould generate the fraction. It must contain two string insert operators%s, the first
for the numerator and the second for the denominator. An alternative to the default is"{{%s}/{%s}}" .

Usually, the numerator and denominator are canceled, while, whenequaldenomis set, the least common
multiple of all denominators is used.

The booleanskip1indicates, that only the prefix, plus or minus, the infix and the suffix should be printed,
when the value is1 or -1 and at least one ofprefix, infix andsuffixis present.

The booleanskipnum0indicates, that only a0 is printed when the numerator is zero.

skipnum1is like skip1but for the numerator.

skipdenom1skips the denominator, when it is1 taking into accountdenomprefix, denominfix, denomsuffix
minusposand the sign of the number.

labelattrshas the same meaning as fordecimal.

5.6 Module graph.axis.painter : Painter

The following classes are part of the modulegraph.axis.painter . Instances of the painter classes can be
passed to the painter keyword argument of regular axes.

classrotatetext (direction, epsilon=1e-10)
This helper class is used in direction arguments of the painters below to prevent axis labels and titles being
written upside down. In those cases the text will be rotated by 180 degrees.direction is an angle to be used
relative to the tick direction.epsilonis the value by which 90 degrees can be exceeded before an 180 degree
rotation is performed.

The following two class variables are initialized for the most common applications:

parallel
rotatetext(90)

orthogonal
rotatetext(180)

Contents 47

classticklength (initial, factor)
This helper class provides changeable PYX lengths starting from an initial valueinitial multiplied by factor
again and again. The resulting lengths are thus a geometric series.

There are some class variables initialized with suitable values for tick stroking. They are named
ticklength.SHORT , ticklength.SHORt , . . . , ticklength.short , ticklength.normal ,
ticklength.long , . . . , ticklength.LONG . ticklength.normal is initialized with a length of0.12
and the reciprocal of the golden mean asfactor whereas the others have a modified initial value obtained by
multiplication with or division by appropriate multiples of

√
2.

classregular (innerticklength=ticklength.normal, outerticklength=None, tickattrs=[], gridattrs=None,
basepathattrs=[], labeldist="0.3 cm", labelattrs=[], labeldirection=None, labelhequal-
ize=0, labelvequalize=1, titledist="0.3 cm", titleattrs=[], titledirection=rotatetext.parallel,
titlepos=0.5, texrunner=None)

Instances of this class are painters for regular axes like linear and logarithmic axes.

innerticklengthandouterticklengthare visual PYX lengths of the ticks, subticks, subsubticksetc. plotted
along the axis inside and outside of the graph. Provide changeable attributes to modify the lengths of ticks
compared to subticksetc.None turns off the ticks inside and outside the graph, respectively.

tickattrsandgridattrs are changeable stroke attributes for the ticks and the grid, whereNone turns off the
feature.basepathattrsare stroke attributes for the axis orNone to turn it off. basepathattrsis merged with
[style.linecap.square] .

labeldistis the distance of the labels from the axis base path as a visual PYX length. labelattrsis a list of text
attributes for the labels. It is merged with[text.halign.center, text.vshift.mathaxis] .
labeldirectionis an instance ofrotatetextto rotate the labels relative to the axis tick direction orNone.

The boolean valueslabelhequalizeand labelvequalizeforce an equal alignment of all labels for straight
vertical and horizontal axes, respectively.

titledist is the distance of the title from the rest of the axis as a visual PYX length. titleattrs is a list of text
attributes for the title. It is merged with[text.halign.center, text.vshift.mathaxis] .
titledirectionis an instance ofrotatetextto rotate the title relative to the axis tick direction orNone. titlepos
is the position of the title in graph coordinates.

texrunneris the texrunner instance to create axis text like the axis title or labels. When not set the texrunner
of the graph instance is taken to create the text.

classlinked (innerticklength=ticklength.short, outerticklength=None, tickattrs=[], gridattrs=None, basepa-
thattrs=[], labeldist="0.3 cm", labelattrs=None, labeldirection=None, labelhequalize=0, la-
belvequalize=1, titledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, title-
pos=0.5, texrunner=None)

This class is identical toregular up to the default values oflabelattrsandtitleattrs. By turning off those
features, this painter is suitable for linked axes.

classbar (innerticklength=None, outerticklength=None, tickattrs=[], basepathattrs=[], namedist="0.3 cm",
nameattrs=[], namedirection=None, namepos=0.5, namehequalize=0, namevequalize=1, ti-
tledist="0.3 cm", titleattrs=[], titledirection=rotatetext.parallel, titlepos=0.5, texrunner=None)

Instances of this class are suitable painters for bar axes.

innerticklengthandouterticklengthare visual PYX lengths to mark the different bar regions along the axis
inside and outside of the graph.None turns off the ticks inside and outside the graph, respectively.tickattrs
are stroke attributes for the ticks orNone to turn all ticks off.

The parameters with prefixnameare identical to theirlabelcounterparts inregular . All other parameters
have the same meaning as inregular .

classlinkedbar (innerticklength=None, outerticklength=None, tickattrs=[], basepathattrs=[], namedist="0.3
cm", nameattrs=None, namedirection=None, namepos=0.5, namehequalize=0, namevequal-
ize=1, titledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, titlepos=0.5,
texrunner=None)

This class is identical tobar up to the default values ofnameattrsand titleattrs. By turning off those
features, this painter is suitable for linked bar axes.

classsplit (breaklinesdist="0.05 cm", breaklineslength="0.5 cm", breaklinesangle=-60, titledist="0.3 cm", ti-
tleattrs=[], titledirection=rotatetext.parallel, titlepos=0.5, texrunner=None)

Instances of this class are suitable painters for split axes.

48 Contents

breaklinesdistand breaklineslengthare the distance between axes break markers in visual PYX lengths.
breaklinesangleis the angle of the axis break marker with respect to the base path of the axis. All other
parameters have the same meaning as inregular .

classlinkedsplit (breaklinesdist="0.05 cm", breaklineslength="0.5 cm", breaklinesangle=-60, ti-
tledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, titlepos=0.5,
texrunner=None)

This class is identical tosplit up to the default value oftitleattrs. By turning off this feature, this painter
is suitable for linked split axes.

5.7 Module graph.axis.rater : Rater

The rating of axes is implemented ingraph.axis.rater . When an axis partitioning scheme returns several
partitioning possibilities, the partitions need to be rated by a positive number. The axis partitioning rated lowest is
considered best.

The rating consists of two steps. The first takes into account only the number of ticks, subticks, labels and so on
in comparison to optimal numbers. Additionally, the extension of the axis range by ticks and labels is taken into
account. This rating leads to a preselection of possible partitions. In the second step, after the layout of preferred
partitionings has been calculated, the distance of the labels in a partition is taken into account as well at a smaller
weight factor by default. Thereby partitions with overlapping labels will be rejected completely. Exceptionally
sparse or dense labels will receive a bad rating as well.

classcube (opt, left=None, right=None, weight=1)
Instances of this class provide a number rater.opt is the optimal value. When not provided,left is set to0
andright is set to3* opt. Weight is a multiplicator to the result.

The rater calculateswidth*((x- opt)/(other- opt))**3 to rate the valuex , whereother is left
(x<opt) or right (x>opt).

classdistance (opt, weight=0.1)
Instances of this class provide a rater for a list of numbers. The purpose is to rate the distance between label
boxes.opt is the optimal value.

The rater calculates the sum ofweight*(opt/x-1) (x<opt) or weight*(x/ opt-1) (x>opt) for all elements
x of the list. It returns this value divided by the number of elements in the list.

classrater (ticks, labels, range, distance)
Instances of this class are raters for axes partitionings.

ticks and labelsare both lists of number rater instances, where the first items are used for the number of
ticks and labels, the second items are used for the number of subticks (including the ticks) and sublabels
(including the labels) and so on until the end of the list is reached or no corresponding ticks are available.

rangeis a number rater instance which rates the range of the ticks relative to the range of the data.

distanceis an distance rater instance.

classlinear (ticks=[cube(4), cube(10, weight=0.5)], labels=[cube(4)], range=cube(1, weight=2), dis-
tance=distance("1 cm"))

This class is suitable to rate partitionings of linear axes. It is equal torater but defines predefined values
for the arguments.

classlin (...)
This class is an abbreviation oflinear described above.

classlogarithmic (ticks=[cube(5, right=20), cube(20, right=100, weight=0.5)], labels=[cube(5, right=20),
cube(5, right=20, weight=0.5)], range=cube(1, weight=2), distance=distance("1 cm"))

This class is suitable to rate partitionings of logarithmic axes. It is equal torater but defines predefined
values for the arguments.

classlog (...)
This class is an abbreviation oflogarithmic described above.

Contents 49

5.8 Module graph.axis.positioner : Positioners

The position of an axis is defined by an instance of a class providing the following methods:

vbasepath (v1=None, v2=None)
Returns a path instance for the base path.v1andv2define the axis range in graph coordinates the base path
should cover.

vgridpath (v)
Returns a path instance for the grid path at positionv in graph coordinates. The method might returnNone
when no grid path is available (for an axis along a path for example).

vtickpoint_pt (v)
Returns the position ofv in graph coordinates as a tuple(x, y) in points.

vtickdirection (v)
Returns the direction of a tick atv in graph coordinates as a tuple(dx, dy) . The tick direction points
inside of the graph.

The module contains several implementations of those positioners, but since the positioner instances are created
by graphs etc. as needed, the details are not interesting for the average PYX user.

50 Contents

CHAPTER

SIX

Module box: convex box handling

This module has a quite internal character, but might still be useful from the users point of view. It might also get
further enhanced to cover a broader range of standard arranging problems.

In the context of this module a box is a convex polygon having optionally a center coordinate, which plays an
important role for the box alignment. The center might not at all be central, but it should be within the box.
The convexity is necessary in order to keep the problems to be solved by this module quite a bit easier and
unambiguous.

Directions (for the alignment etc.) are usually provided as pairs (dx, dy) within this module. It is required, that at
least one of these two numbers is unequal to zero. No further assumptions are taken.

6.1 Polygon

A polygon is the most general case of a box. It is an instance of the classpolygon . The constructor takes a
list of points (which are (x, y) tuples) in the keyword argumentcorners and optionally another (x, y) tuple as
the keyword argumentcenter . The corners have to be ordered counterclockwise. In the following list some
methods of thispolygon class are explained:

path(centerradius=None, bezierradius=None, beziersoftness=1) : returns a path of the
box; the center might be marked by a small circle of radiuscenterradius ; the corners might be
rounded using the parametersbezierradius andbeziersoftness . For each corner of the box
there may be one value for beziersoftness and two bezierradii. For convenience, it is not necessary to
specify the whole list (for beziersoftness) and the whole list of lists (bezierradius) here. You may give a
single value and/or a 2-tuple instead.

transform(*trafos) : performs a list of transformations to the box

reltransform(*trafos) : performs a list of transformations to the box relative to the box center

circlealignvector(a, dx, dy) : returns a vector (a tuple (x, y)) to align the box at a circle with radius
a in the direction (dx , dy); see figure 6.1

linealignvector(a, dx, dy) : as above, but align at a line with distancea

circlealign(a, dx, dy) : as circlealignvector, but perform the alignment instead of returning the vector

circle align line align

Figure 6.1: circle and line alignment examples (equal direction and distance)

51

linealign(a, dx, dy) : as linealignvector, but perform the alignment instead of returning the vector

extent(dx, dy) : extent of the box in the direction (dx , dy)

pointdistance(x, y) : distance of the point (x , y) to the box; the point must be outside of the box

boxdistance(other) : distance of the box to the boxother ; when the boxes are overlapping,
BoxCrossError is raised

bbox() : returns a bounding box instance appropriate to the box

6.2 Functions working on a box list

circlealignequal(boxes, a, dx, dy) : Performs a circle alignment of the boxesboxes using the
parametersa, dx , anddy as in thecirclealign method. For the length of the alignment vector its
largest value is taken for all cases.

linealignequal(boxes, a, dx, dy) : as above, but performing a line alignment

tile(boxes, a, dx, dy) : tiles the boxesboxes with a distancea between the boxes (in addition the
maximal box extent in the given direction (dx , dy) is taken into account)

6.3 Rectangular boxes

For easier creation of rectangular boxes, the module provides the specialized classrect . Its constructor first
takes four parameters, namely the x, y position and the box width and height. Additionally, for the definition
of the position of the center, two keyword arguments are available. The parameterrelcenter takes a tuple
containing a relative x, y position of the center (they are relative to the box extent, thus values between0 and1
should be used). The parameterabscenter takes a tuple containing the x and y position of the center. This
values are measured with respect to the lower left corner of the box. By default, the center of the rectangular box
is set to this lower left corner.

52 Contents

CHAPTER

SEVEN

Module connector

This module provides classes for connecting twobox -instances with lines, arcs or curves. All constructors of
the following connector-classes take twobox -instances as the two first arguments. They return a connecting path
from the first to the second box. The overall geometry of the path is such that is starts/ends at the boxes’ centers.
It is then cut by the boxes’ outlines. The resultingconnector will additionally be shortened by lengths given in
theboxdists -keyword (a list of two lengths, default[0,0]).

Angle keywords can be either absolute or relative. The absolute angles refer to the angle between x-axis and the
running tangent of the connector, while the relative angles are between the direct connecting line of the box-centers
and the running tangent (see figure. 7.1).

The bulge-keywords parameterize the deviation of the connector from the connecting line. It has different mean-
ings for different connectors (see figure. 7.1).

7.1 Class line

The constructor of theline class accepts only boxes and theboxdists -keyword.

7.2 Class arc

The constructor takes either therelangle -keyword or a combination ofrelbulge and absbulge . The
“bulge” is meant to be a hint for the greatest distance between the connecting arc and the straight connection
between the box-centers. (Default:relangle=45 , relbulge=None , absbulge=None)

Note that the bulge-keywords override the angle-keyword.

If both relbulge andabsbulge are given, they will be added.

7.3 Class curve

The constructor takes both angle- and bulge-keywords. Here, the bulges are used as distances between the control
points of the cubic Beziér-curve. For the signs of the angle- and bulge-keywords refer to figure 7.1.

absangle1 or relangle1
absangle2 or relangle2 , where the absolute angle overrides the relative if both are given. (Default:
relangle1=45 , relangle2=45 , absangle1=None , absangle2=None)

absbulge andrelbulge , where they will be added if both are given.
(Default: absbulge=None , relbulge=0.39 ; these default values produce output similar to the defaults of
arc .)

53

relangle

(rel)bulge

relangle1

absangle1

relangle2

(rel)bulge

(rel)bulge

Figure 7.1: The angle-parameters of the connector.arc (left panel) and the connector.curve (right panel) classes.

7.4 Class twolines

This class returns two connected straight lines. There is a vast variety of combinations for angle- and length-
keywords. The user has to make sure to provide a non-ambiguous set of keywords:

absangle1 or relangle1 for the first angle,
relangleM for the middle angle and
absangle2 or relangle2 for the ending angle. Again, the absolute angle overrides the relative if both are
given. (Default: all five angles areNone)

length1 andlength2 for the lengths of the connecting lines. (Default:None)

54 Contents

CHAPTER

EIGHT

Module epsfile: EPS file inclusion

With the help of theepsfile.epsfile class, you can easily embed another EPS file in your canvas, thereby
scaling, aligning the content at discretion. The most simple example looks like

from pyx import *
c = canvas.canvas()
c.insert(epsfile.epsfile(0, 0, "file.eps"))
c.writeEPSfile("output")

All relevant parameters are passed to theepsfile.epsfile constructor. They are summarized in the following
table:

argument name description
x x-coordinate of position.
y y-coordinate of position.
filename Name of the EPS file (including a possible extension).
width=None Desired width of EPS graphics orNone for original width. Cannot be combined

with scale specification.
height=None Desired height of EPS graphics orNone for original height. Cannot be combined

with scale specification.
scale=None Scaling factor for EPS graphics orNone for no scaling. Cannot be combined with

width or height specification.
align="bl" Alignment of EPS graphics. The first character specifies the vertical alignment:b

for bottom,c for center, andt for top. The second character fixes the horizontal
alignment:l for left, c for centerr for right.

clip=1 Clip to bounding box of EPS file?
translatebbox=1 Use lower left corner of bounding box of EPS file? Set to0 with care.
bbox=None If given, usebbox instance instead of bounding box of EPS file.
kpsearch=0 Search for file using the kpathsea library.

55

56

CHAPTER

NINE

Bitmaps

9.1 Introduction

PYX focuses on the creation of scaleable vector graphics. However, PYX also allows for the output of bitmap
images. Still, the support for creation and handling of bitmap images is quite limited. On the other hand the
interfaces are built that way, that its trivial to combine PYX with the “Python Image Library”, also known as “PIL”.

The creation of a bitmap can be performed out of some unpacked binary data by first creating image instances:

from pyx import *
image_bw = bitmap.image(2, 2, "L", "\0\377\377\0")
image_rgb = bitmap.image(3, 2, "RGB", "\77\77\77\177\177\177\277\277\277"

"\377\0\0\0\377\0\0\0\377")

Now image_bw is a 2 × 2 grayscale image. The bitmap data is provided by a string, which contains two
black ("\0" == chr(0)) and two white ("\377" == chr(255)) pixels. Currently the values per (colour)
channel is fixed to 8 bits. The coloured imageimage_rgb has3× 2 pixels containing a row of 3 different gray
values and a row of the three colours red, green, and blue.

The images can then be wrapped intobitmap instances by:

bitmap_bw = bitmap.bitmap(0, 1, image_bw, height=0.8)
bitmap_rgb = bitmap.bitmap(0, 0, image_rgb, height=0.8)

When constructing abitmap instance you have to specify a certain position by the first two arguments fixing the
bitmaps lower left corner. Some optional arguments control further properties. Since in this example there is no
information about the dpi-value of the images, we have to specify at least awidth or aheight of the bitmap.

The bitmaps are now to be inserted into a canvas:

c = canvas.canvas()
c.insert(bitmap_bw)
c.insert(bitmap_rgb)
c.writeEPSfile("bitmap")

Figure 9.1 shows the resulting output.

Figure 9.1: An introductory bitmap example.

57

9.2 Bitmap module

classimage (width, height, mode, data, compressed=None)
This class is a container for image data.width andheightare the size of the image in pixel.modeis one
of "L" , "RGB" or "CMYK" for grayscale, rgb, or cmyk colours, respectively.data is the bitmap data as
a string, where each single character represents a colour value with ordinal range0 to 255 . Each pixel is
described by the appropriate number of colour components according tomode. The pixels are listed row by
row one after the other starting at the upper left corner of the image.

compressedmight be set to"Flate" or "DCT" to provide already compressed data. Note that those data
will be passed to PostScript without further checks,i.e. this option is for experts only.

classjpegimage (file)
This class is specialized to read data from a JPEG/JFIF-file.file is either an open file handle (it only has
to provide aread() method; the file should be opened in binary mode) or a string. In the latter case
jpegimage will try to open a file named likefile for reading.

The contents of the file is checked for some JPEG/JFIF format markers in order to identify the size and
dpi resolution of the image for further usage. These checks will typically fail for invalid data. The data
are not uncompressed, but directly inserted into the output stream (for invalid data the result will be invalid
PostScript). Thus there is no quality loss by recompressing the data as it would occur when recompressing
the uncompressed stream with the lossy jpeg compression method.

classbitmap (xpos, ypos, image, width=None, height=None, ratio=None, storedata=0, maxstrlen=4093, com-
pressmode="Flate", flatecompresslevel=6, dctquality=75, dctoptimize=1, dctprogression=0)

xposandyposare the position of the lower left corner of the image. This position might be modified by
some additional transformations when inserting the bitmap into a canvas.imageis an instance ofimage or
jpegimage but it can also be an image instance from the “Python Image Library”.

width, height, andratio adjust the size of the image. At leastwidthor heightneeds to be given, when no dpi
information is available fromimage.

storedatais a flag indicating, that the (still compressed) image data should be put into the printers mem-
ory instead of writing it as a stream into the PostScript file. While this feature consumes memory of the
PostScript interpreter, it allows for multiple usage of the image without including the image data several
times in the PostScript file.

maxstrlendefines a maximal string length whenstoredatais enabled. Since the data must be kept in the
PostScript interpreters memory, it is stored in strings. While most interpreters do not allow for an arbitrary
string length (a common limit is 65535 characters), a limit for the string length is set. When more data need
to be stored, a list of strings will be used. Note that lists are also subject to some implementation limits.
Since a typical value is 65535 entries, in combination a huge amount of memory can be used.

Valid values forcompressmodecurrently are"Flate" (zlib compression),"DCT" (jpeg compression),
or None (disabling the compression). The zlib compression makes use of the zlib module as it is part of
the standard Python distribution. The jpeg compression is available for thoseimageinstances only, which
support the creation of a jpeg-compressed stream,e.g. images from the “Python Image Library” with jpeg
support installed. The compression must be disabled when the image data is already compressed.

flatecompresslevelis a parameter of the zlib compression.dctquality, dctoptimize, anddctprogressionare
parameters of the jpeg compression. Note, that the progression feature of the jpeg compression should be
turned off in order to produce valid PostScript. Also the optimization feature is known to produce errors on
certain printers.

58 Contents

CHAPTER

TEN

Module bbox

Thebbox module contains the definition of thebbox class representing bounding boxes of graphical elements
like paths, canvases, etc. used in PYX. Usually, you obtainbbox instances as return values of the corresponding
bbox()) method, but you may also construct a bounding box by yourself.

10.1 bbox constructor

Thebbox constructor accepts the following keyword arguments

keyword description
llx None (default) for−∞ or x-position of the lower left corner of the bbox (in user units)
lly None (default) for−∞ or y-position of the lower left corner of the bbox (in user units)
urx None (default) for∞ or x-position of the upper right corner of the bbox (in user units)
ury None (default) for∞ or y-position of the upper right corner of the bbox (in user units)

10.2 bbox methods

bbox method function
intersects(other) returns1 if the bbox instance andother intersect with

each other.
transformed(self, trafo) returnsself transformed by transformationtrafo .
enlarged(all=0, bottom=None,

left=None, top=None,
right=None)

return the bounding box enlarged by the given amount (in
visual units).all is the default for all other directions,
which is used wheneverNone is given for the corresponding
direction.

path() or rect() return thepath corresponding to the bounding box
rectangle.

height() returns the height of the bounding box (in PYX lengths).
width() returns the width of the bounding box (in PYX lengths).
top() returns they-position of the top of the bounding box (in PYX

lengths).
bottom() returns they-position of the bottom of the bounding box (in

PYX lengths).
left() returns thex-position of the left side of the bounding box (in

PYX lengths).
right() returns thex-position of the right side of the bounding box

(in PYX lengths).

Furthermore, two bounding boxes can be added (giving the bounding box enclosing both) and multiplied (giving
the intersection of both bounding boxes).

59

60

CHAPTER

ELEVEN

Module color

11.1 Color models

PostScript provides different color models. They are available to PYX by different color classes, which just pass
the colors down to the PostScript level. This implies, that there are no conversion routines between different color
models available. However, some color model conversion routines are included in Python’s standard library in the
modulecolorsym . Furthermore also the comparison of colors within a color model is not supported, but might
be added in future versions at least for checking color identity and for ordering gray colors.

There is a class for each of the supported color models, namelygray , rgb , cmyk, andhsb . The constructors
take variables appropriate for the color model. Additionally, a list of named colors is given in appendix A.

11.2 Example

from pyx import *

c = canvas.canvas()

c.fill(path.rect(0, 0, 7, 3), [color.gray(0.8)])
c.fill(path.rect(1, 1, 1, 1), [color.rgb.red])
c.fill(path.rect(3, 1, 1, 1), [color.rgb.green])
c.fill(path.rect(5, 1, 1, 1), [color.rgb.blue])

c.writeEPSfile("color")

The filecolor.eps is created and looks like:

11.3 Color gradients

The color module provides a classgradient for continous transitions between colors. A list of named gradients
is available in appendix??.

61

classgradient (min=0, max=1)
This class provides the methods for thegradient . Different initializations can be found in
lineargradient andfunctiongradient .

minandmaxprovide the valid range of the arguments forgetcolor .

getcolor (parameter)
Returns the color that corresponds toparameter(must be betweenminandmax).

select (index, n_indices)
When a total number ofn_indicesdifferent colors is needed from the gradient, this method returns the
index-th color.

classlineargradient (startcolor, endcolor, min=0, max=1)
This class provides a linear transition between two given colors. The linear interpolation is performed on
the color components of the specific color model.

startcolorandendcolormust be colors of the same color model.

classfunctiongradient (functions, type, min=0, max=1)
This class provides an arbitray transition between colors of the same color model.

typeis a string indicating the color model (one of"cmyk" , "rgb" , "hsb" , "grey")

functionsis a dictionary that maps the color components onto given functions. E.g. fortype="rgb" this
dictionary must have the keys"r" , "g" , and"b" .

11.4 Transparency

classtransparency (value)
Instances of this class will make drawing operations (stroking, filling) to become partially transparent.value
defines the transparency factor in the range0 (opaque) to1 (transparent).

Transparency is available in PDF output only since it is not supported by PostScript. However, for certain
ghostscript devices (for example the pdf backend as used by ps2pdf) proprietary PostScript extension allows
for transparency in PostScript code too. PYX creates such PostScript proprietary code, but issues a warning
when doing so.

62 Contents

CHAPTER

TWELVE

Module pattern

This module contains thepattern class, whichs allows the definition of PostScript Tiling patterns (cf. Sect. 4.9
of the PostScript Language Reference Manual) which may then be used to fill paths. In addition, a number of
predefined hatch patterns are included.

12.1 Class pattern

The classespattern andcanvas differ only in their constructor and in the absence of awriteEPSfile()
method in the former. Thepattern constructor accepts the following keyword arguments:

keyword description
painttype 1 (default) for coloured patterns or2 for uncoloured patterns
tilingtype 1 (default) for constant spacing tilings (patterns are spaced constantly by a multiple of a

device pixel),2 for undistorted pattern cell, whereby the spacing may vary by as much as
one device pixel, or3 for constant spacing and faster tiling which behaves as tiling type1
but with additional distortion allowed to permit a more efficient implementation.

xstep desired horizontal spacing between pattern cells, useNone (default) for automatic
calculation from pattern bounding box.

ystep desired vertical spacing between pattern cells, useNone (default) for automatic calculation
from pattern bounding box.

bbox bounding box of pattern. UseNone for an automatic determination of the bounding box
(including an enlargement by5 pts on each side.)

trafo additional transformation applied to pattern orNone (default). This may be used to rotate
the pattern or to shift its phase (by a translation).

After you have created a pattern instance, you define the pattern shape by drawing in it like in an ordinary canvas.
To use the pattern, you simply pass the pattern instance to astroke() , fill() , draw() or set() method
of the canvas, just like you would do with a colour, etc.

63

64

CHAPTER

THIRTEEN

Module unit

With the unit module PYX makes available classes and functions for the specification and manipulation of
lengths. As usual, lengths consist of a number together with a measurement unit, e.g., 1 cm, 50 points, 0.42 inch.
In addition, lengths in PYX are composed of the five types “true”, “user”, “visual”, “width”, and “TEX”, e.g., 1 user
cm, 50 true points,(0.42 visual + 0.2 width) inch. As their names indicate, they serve different purposes. True
lengths are not scalable and are mainly used for return values of PYX functions. The other length types can be
rescaled by the user and differ with respect to the type of object they are applied to:

user length: used for lengths of graphical objects like positions etc.

visual length: used for sizes of visual elements, like arrows, graph symbols, axis ticks, etc.

width length: used for line widths

TEX length: used for all TEX and LATEX output

When not specified otherwise, all types of lengths are interpreted in terms of a default unit, which, by default, is
1 cm. You may change this default unit by using the module level function
set (uscale=None, vscale=None, wscale=None, xscale=None, defaultunit=None)

Whenuscale, vscale, wscale, or xscaleis notNone, the corresponding scaling factor(s) is redefined to the
given number. Whendefaultunitis notNone, the default unit is set to the given value, which has to be one
of "cm" , "mm", "inch" , or "pt" .

For instance, if you only want thicker lines for a publication version of your figure, you can just rescale all width
lengths using

unit.set(wscale=2)

Or suppose, you are used to specify length in imperial units. In this, admittedly rather unfortunate case, just use

unit.set(defaultunit="inch")

at the beginning of your program.

13.1 Class length

classlength (f, type="u", unit=None)
The constructor of thelength class expects as its first argument a numberf , which represents the prefactor
of the given length. By default this length is interpreted as a user length (type="u") in units of the current
default unit (seeset() function of theunit module). Optionally, a differenttype may be specified,
namely"u" for user lengths,"v" for visual lengths,"w" for width lengths,"x" for TEX length, and"t"
for true lengths. Furthermore, a different unit may be specified using theunit argument. Allowed values are
"cm" , "mm", "inch" , and"pt" .

65

Instances of thelength class support addition and substraction either by anotherlength or by a number which
is then interpeted as being a user length in default units, multiplication by a number and division either by another
length in which case a float is returned or by a number in which case alength instance is returned. When two
lengths are compared, they are first converted to meters (using the currently set scaling), and then the resulting
values are compared.

13.2 Predefined length instances

A number oflength instances are already predefined, which only differ in there values fortype andunit .
They are summarized in the following table

name type unit name type unit
m user m v_m visual m
cm user cm v_cm visual cm
mm user mm v_mm visual mm
inch user inch v_inch visual inch
pt user points v_pt visual points
t_m true m w_m width m
t_cm true cm w_cm width cm
t_mm true mm w_mm width mm
t_inch true inch w_inch width inch
t_pt true points w_pt width points
u_m user m x_m TEX m
u_cm user cm x_cm TEX cm
u_mm user mm x_mm TEX mm
u_inch user inch x_inch TEX inch
u_pt user points x_pt TEX points

Thus, in order to specify, e.g., a length of 5 width points, just use5*unit.w_pt .

13.3 Conversion functions

If you want to know the value of a PYX length in certain units, you may use the predefined conversion functions
which are given in the following table

function result
tom(l) l in units of m
tocm(l) l in units of cm
tomm(l) l in units of mm
toinch(l) l in units of inch
topt(l) l in units of points

If l is not yet alength instance but a number, it first is interpreted as a user length in the default units.

66 Contents

CHAPTER

FOURTEEN

Module trafo: linear transformations

With thetrafo module PYX supports linear transformations, which can then be applied to canvases, Bézier paths
and other objects. It consists of the main classtrafo representing a general linear transformation and subclasses
thereof, which provide special operations like translation, rotation, scaling, and mirroring.

14.1 Class trafo

Thetrafo class represents a general linear transformation, which is defined for a vector~x as

~x′ = A ~x+~b ,

whereA is the transformation matrix and~b the translation vector. The transformation matrix must not be singular,
i.e. we requiredet A 6= 0.

Multiple trafo instances can be multiplied, corresponding to a consecutive application of the respective transfor-
mation. Note thattrafo1*trafo2 means thattrafo1 is applied aftertrafo2 , i.e. the new transformation
is given byA = A1A2 and~b = A1~b2 +~b1. Use thetrafo methods described below, if you prefer thinking the
other way round. The inverse of a transformation can be obtained via thetrafo methodinverse() , defined
by the inverseA−1 of the transformation matrix and the translation vector−A−1~b.

The methods of thetrafo class are summarized in the following table.

trafo method function
__init__(matrix=((1,0),(0,1)),

vector=(0,0)):
create newtrafo instance with transformationmatrix and
vector .

apply(x, y) applytrafo to point vector(x, y).
inverse() returns inverse transformation oftrafo .
mirrored(angle) returnstrafo followed by mirroring at line through(0, 0) with

directionangle in degrees.
rotated(angle,

x=None, y=None)
returnstrafo followed by rotation byangle degrees around
point (x, y), or (0, 0), if not given.

scaled(sx, sy=None,
x=None, y=None)

returnstrafo followed by scaling with scaling factorsx in
x-direction,sy in y-direction (sy = sx, if not given) with
scaling center(x, y), or (0, 0), if not given.

translated(x, y) returnstrafo followed by translation by vector(x, y).
slanted(a, angle=0, x=None,
y=None)

returnstrafo followed by XXX

14.2 Subclasses of trafo

The trafo module provides a number of subclasses of thetrafo class, each of which corresponds to one
trafo method. They are listed in the following table:

67

trafo subclass function
mirror(angle) mirroring at line through(0, 0) with directionangle in degrees.
rotate(angle,

x=None, y=None)
rotation byangle degrees around point(x, y), or (0, 0), if not given.

scale(sx, sy=None,
x=None, y=None)

scaling with scaling factorsx in x-direction,sy in y-direction
(sy = sx, if not given) with scaling center(x, y), or (0, 0), if not
given.

translate(x, y) translation by vector(x, y).
slant(a, angle=0, x=None,
y=None)

XXX

68 Contents

APPENDIX

A

Named colors

grey.black

grey.white

rgb.red

rgb.green

rgb.blue

rgb.white

rgb.black

cmyk.GreenYellow

cmyk.Yellow

cmyk.Goldenrod

cmyk.Dandelion

cmyk.Apricot

cmyk.Peach

cmyk.Melon

cmyk.YellowOrange

cmyk.Orange

cmyk.BurntOrange

cmyk.Bittersweet

cmyk.RedOrange

cmyk.Mahogany

cmyk.Maroon

cmyk.BrickRed

cmyk.Red

cmyk.OrangeRed

cmyk.RubineRed

cmyk.WildStrawberry

cmyk.Salmon

cmyk.CarnationPink

cmyk.Magenta

cmyk.VioletRed

cmyk.Rhodamine

cmyk.Mulberry

cmyk.RedViolet

cmyk.Fuchsia

cmyk.Lavender

cmyk.Thistle

cmyk.Orchid

cmyk.DarkOrchid

cmyk.Purple

cmyk.Plum

cmyk.Violet

cmyk.RoyalPurple

cmyk.BlueViolet

cmyk.Periwinkle

cmyk.CadetBlue

cmyk.CornflowerBlue

cmyk.MidnightBlue

cmyk.NavyBlue

cmyk.RoyalBlue

cmyk.Blue

cmyk.Cerulean

cmyk.Cyan

cmyk.ProcessBlue

cmyk.SkyBlue

cmyk.Turquoise

cmyk.TealBlue

cmyk.Aquamarine

cmyk.BlueGreen

cmyk.Emerald

cmyk.JungleGreen

cmyk.SeaGreen

cmyk.Green

cmyk.ForestGreen

cmyk.PineGreen

cmyk.LimeGreen

cmyk.YellowGreen

cmyk.SpringGreen

cmyk.OliveGreen

cmyk.RawSienna

cmyk.Sepia

cmyk.Brown

cmyk.Tan

cmyk.Gray

cmyk.Black

cmyk.White

69

70

APPENDIX

B

Module style

linecap.butt (default)

linecap.round

linecap.square

linejoin.miter (default)

linejoin.round

linejoin.bevel

linestyle.solid (default)

linestyle.dashed

linestyle.dotted

linestyle.dashdotted

linewidth.THIN

linewidth.THIn

linewidth.THin

linewidth.Thin

linewidth.thin

linewidth.normal (default)

linewidth.thick

linewidth.Thick

linewidth.THick

linewidth.THIck

linewidth.THICk

linewidth.THICK

miterlimit.lessthan180deg

miterlimit.lessthan90deg

miterlimit.lessthan60deg

miterlimit.lessthan45deg

miterlimit.lessthan11deg (default)

dash((1, 1, 2, 2, 3, 3), 0)

dash((1, 1, 2, 2, 3, 3), 1)

dash((1, 2, 3), 2)

dash((1, 2, 3), 3)

dash((1, 2, 3), 4)

dash((1, 2, 3), rellengths=1)

71

72

APPENDIX

C

Arrows in deco module

earrow.Small

earrow.small

earrow.normal

earrow.large

earrow.Large

barrow.normal

earrow.Large([deco.filled([color.rgb.red]), style.linewidth.normal])

earrow.normal(constriction=None)

earrow.Large([style.linejoin.round])

earrow.Large([deco.stroked.clear])

73

74

INDEX

Symbols
__call__() (method), 14

A
allwarning (texmessage attribute), 25
anchoredpathaxis (class in graph.axis.axis),

44
append()

normsubpath method, 12
path method, 9

arc (class in path), 11
arclen() (path method), 9
arclentoparam() (path method), 9
arcn (class in path), 11
arct (class in path), 11
arrow (class in graph.style), 37
at() (path method), 9
atbegin() (path method), 9
atend() (path method), 9
autolin (class in graph.axis.parter), 45
autolinear (class in graph.axis.parter), 45
autolog (class in graph.axis.parter), 46
autologarithmic (class in graph.axis.parter),

46
axes (graphxy attribute), 30
axisatv() (graphxy method), 31
axistrafo() (graphxy method), 31

B
bar

class in graph.axis.axis, 42
class in graph.axis.painter, 48
class in graph.style, 38

barpos (class in graph.style), 38
baseline (valign attribute), 22
basepath() (anchoredaxis method), 43
bbox()

canvas method, 16
path method, 9

begin() (path method), 9
bitmap

class in bitmap, 58
module,58

bottom (valign attribute), 22
bottomzero (vshift attribute), 22

boxcenter (halign attribute), 21
boxleft (halign attribute), 21
boxright (halign attribute), 21
boxwarning (texmessage attribute), 25

C
canvas

class in canvas, 16
module,16

cbdfile (class in graph.data), 34
center (halign attribute), 21
central

class in graph.graph, 32
graphxyz attribute, 31

changebar (class in graph.style), 38
changecircle (symbol attribute), 36
changecircletwice (symbol attribute), 36
changecross (symbol attribute), 36
changediamond (symbol attribute), 36
changediamondtwice (symbol attribute), 37
changefilledstroked (symbol attribute), 37
changelinestyle (line attribute), 37
changeplus (symbol attribute), 36
changesquare (symbol attribute), 36
changesquaretwice (symbol attribute), 36
changestrokedfilled (symbol attribute), 37
changetriangle (symbol attribute), 36
changetriangletwice (symbol attribute), 36
circle

class in path, 13
symbol attribute, 36

close() (normsubpath method), 12
closepath (class in path), 11
conffile (class in graph.data), 34
cross (symbol attribute), 36
cube (class in graph.axis.rater), 49
curve (class in path), 12
curveradius() (path method), 9
curveto (class in path), 11
cycloid (class in deformer), 14

D
data (class in graph.data), 34
decimal (class in graph.axis.texter), 46
defaultcolumnpattern (file attribute), 33
defaultcommentpattern (file attribute), 33

75

defaultstringpattern (file attribute), 33
defaulttexrunner (data in text), 25
defaultvariants

autolinear attribute, 45
autologarithmic attribute, 46

deform() (method), 14
deformer (module),14
diamond (symbol attribute), 36
distance (class in graph.axis.rater), 49
doaxes() (graphxy method), 30
dobackground() (graphxy method), 30
document

class in document, 18
module,18

dodata() (graphxy method), 30
dokey() (graphxy method), 30
dolayout() (graphxy method), 30
doplot() (graphxy method), 30
draw() (canvas method), 16

E
end() (path method), 9
end (texmessage attribute), 24
errorbar (class in graph.style), 37
exponential (class in graph.axis.texter), 46
extend()

normsubpath method, 12
path method, 9

F
file (class in graph.data), 32
fill() (canvas method), 16
finish() (graphxy method), 30
flushcenter (halign attribute), 21
flushleft (halign attribute), 21
flushright (halign attribute), 21
fontwarning (texmessage attribute), 25
footnotesize (size attribute), 23
function (class in graph.data), 33
functiongradient (class in), 62

G
getcolor() (in module), 62
gradient (class in), 62
graph.axis.axis (module),42
graph.axis.painter (module),47
graph.axis.parter (module),44
graph.axis.positioners (module),50
graph.axis.rater (module),49
graph.axis.texter (module),46
graph.axis.tick (module),44
graph.data (module),32
graph.graph (module),29
graph.key (module),39
graph.style (module),35
graphicsload (texmessage attribute), 24
graphxy (class in graph.graph), 29
graphxyz (class in graph.graph), 31

grid (class in graph.style), 38
gridpath() (anchoredaxis method), 43
gridpos (class in graph.style), 38

H
halign (class in text), 21
histogram (class in graph.style), 37
Huge (size attribute), 23
huge (size attribute), 23

I
ignore (texmessage attribute), 25
image (class in bitmap), 58
impulses (class in graph.style), 37
insert() (canvas method), 16
intersect() (path method), 9

J
join() (normpath method), 12
joined() (path method), 9
jpegimage (class in bitmap), 58

K
key (class in graph.key), 39

L
LARGE(size attribute), 23
Large (size attribute), 23
large (size attribute), 23
left (halign attribute), 21
length (class in), 65
lin

class in graph.axis.axis, 42
class in graph.axis.parter, 45
class in graph.axis.rater, 49

line
class in graph.style, 37
class in path, 12

linear
class in graph.axis.axis, 42
class in graph.axis.parter, 44
class in graph.axis.rater, 49

lineargradient (class in), 62
lineto (class in path), 10
linked (class in graph.axis.painter), 48
linkedaxis (class in graph.axis.axis), 44
linkedbar (class in graph.axis.painter), 48
linkedsplit (class in graph.axis.painter), 49
load (texmessage attribute), 24
loaddef (texmessage attribute), 24
log

class in graph.axis.axis, 42
class in graph.axis.parter, 46
class in graph.axis.rater, 49

logarithmic
class in graph.axis.axis, 42
class in graph.axis.parter, 45

76 Index

class in graph.axis.rater, 49

M
mathaxis (vshift attribute), 22
mathmode (data in text), 23
middle (valign attribute), 22
middlezero (vshift attribute), 22
mixed (class in graph.axis.texter), 47
moveto (class in path), 10
multicurveto_pt (class in path), 11
multilineto_pt (class in path), 11

N
nestedbar (class in graph.axis.axis), 43
noaux (texmessage attribute), 24
normalsize (size attribute), 23
normpath() (path method), 9
normpath (class in path), 12
normsubpath (class in path), 12

O
orthogonal (rotatetext attribute), 47

P
page (class in document), 18
paperformat (class in document), 18
parallel

class in deformer, 14
class in graph.graph, 32
graphxyz attribute, 31
rotatetext attribute, 47

paramfunction (class in graph.data), 33
paramtoarclen() (path method), 9
parbox (class in text), 22
path

class in path, 9
module,9

pattern (module),63
phantom (data in text), 23
pipeGS() (canvas method), 17
plot() (graphxy method), 30
plus (symbol attribute), 36
points (class in graph.data), 34
pos() (graphxy method), 30
pos (class in graph.style), 35
pre125exp (logarithmic attribute), 45
pre1exp (logarithmic attribute), 45
pre1exp2 (logarithmic attribute), 45
pre1exp3 (logarithmic attribute), 45
pre1exp4 (logarithmic attribute), 45
pre1exp5 (logarithmic attribute), 45
pre1to9exp (logarithmic attribute), 45
preamble()

in module text, 25
texrunner method, 20

preexp (class in graph.axis.parter), 45

R
raggedcenter (halign attribute), 21
raggedleft (halign attribute), 21
raggedright (halign attribute), 21
range() (path method), 10
range (class in graph.style), 35
rater (class in graph.axis.rater), 49
rational

class in graph.axis.texter, 47
class in graph.axis.tick, 44

rcurveto (class in path), 11
rect

class in graph.style, 37
class in path, 13

regular (class in graph.axis.painter), 48
reset()

in module text, 25
texrunner method, 21

reverse() (normpath method), 12
reversed() (path method), 10
right (halign attribute), 21
rlineto (class in path), 11
rmoveto (class in path), 10
rotatetext (class in graph.axis.painter), 47
rotation() (path method), 10

S
scriptsize (size attribute), 23
select() (in module), 62
set()

in module text, 25
in module unit, 65
texrunner method, 20

setlinkedaxis() (linkedaxis method), 44
settexrunner() (canvas method), 16
size (class in text), 23
small (size attribute), 23
smoothed (class in deformer), 14
split() (path method), 10
split

class in graph.axis.axis, 43
class in graph.axis.painter, 48

splitatvalue() (in module graph.data), 35
square (symbol attribute), 36
stackedbarpos (class in graph.style), 38
start (texmessage attribute), 24
stroke() (canvas method), 16
surface (class in graph.style), 38
symbol (class in graph.style), 36

T
tangent() (path method), 10
texmessage (class in text), 24
texmessagepattern (class in text), 25
texrunner (class in text), 19
text()

canvas method, 16
in module text, 25

Index 77

texrunner method, 20
text

class in graph.style, 37
module,19, 21

tick (class in graph.axis.tick), 44
tickdirection() (anchoredaxis method), 43
ticklength (class in graph.axis.painter), 48
tickpoint() (anchoredaxis method), 43
tiny (size attribute), 23
top (valign attribute), 22
topzero (vshift attribute), 22
trafo() (path method), 10
transform() (normpath method), 12
transformed() (path method), 10
transparency (class in), 62
triangle (symbol attribute), 36

U
unit (module),65

V
valign (class in text), 21
values (class in graph.data), 34
vangle() (graphxyz method), 32
vbasepath()

method, 50
anchoredaxis method, 43

vgeodesic() (graphxy method), 31
vgeodesic_el() (graphxy method), 31
vgridpath()

method, 50
anchoredaxis method, 43

vpos() (graphxy method), 31
vshift (class in text), 22
vtickdirection()

method, 50
anchoredaxis method, 43

vtickpoint() (anchoredaxis method), 43
vtickpoint_pt() (method), 50
vzindex() (graphxyz method), 31

W
writeEPSfile()

canvas method, 16
document method, 18

writePDFfile()
canvas method, 17
document method, 18

writePSfile()
canvas method, 16
document method, 18

writetofile()
canvas method, 17
document method, 18

X
xbasepath() (graphxy method), 31
xgridpath() (graphxy method), 31

xtickdirection() (graphxy method), 31
xtickpoint() (graphxy method), 31
xvbasepath() (graphxy method), 31
xvgridpath() (graphxy method), 31
xvtickdirection() (graphxy method), 31
xvtickpoint() (graphxy method), 31

Y
ybasepath() (graphxy method), 31
ygridpath() (graphxy method), 31
ytickdirection() (graphxy method), 31
ytickpoint() (graphxy method), 31
yvbasepath() (graphxy method), 31
yvgridpath() (graphxy method), 31
yvtickdirection() (graphxy method), 31
yvtickpoint() (graphxy method), 31

78 Index

	1 Introduction
	1.1 Organisation of the P-.3em.5exY-.18em X package

	2 Basic graphics
	2.1 Introduction
	2.2 Path operations
	2.3 Attributes: Styles and Decorations
	2.4 Module path
	2.4.1 Class path --- PostScript-like paths
	2.4.2 Path elements
	2.4.3 Class normpath
	2.4.4 Class normsubpath
	2.4.5 Predefined paths

	2.5 Module deformer
	2.6 Module canvas
	2.6.1 Class canvas

	2.7 Module document
	2.7.1 Class page
	2.7.2 Class document
	2.7.3 Class paperformat

	3 Module text: TeX/LaTeX interface
	3.1 Basic functionality
	3.2 TeX/LaTeX instances: the texrunner class
	3.3 TeX/LaTeX attributes
	3.4 Using the graphics-bundle with LaTeX
	3.5 TeX message parsers
	3.6 The defaulttexrunner instance
	3.7 Some internals on temporary files etc.

	4 Graphs
	4.1 Introduction
	4.2 Component architecture
	4.3 Module graph.graph: Graphs
	4.4 Module graph.data: Data
	4.5 Module graph.style: Styles
	4.6 Module graph.key: Keys

	5 Axes
	5.1 Component architecture
	5.2 Module graph.axis.axis: Axes
	5.3 Module graph.axis.tick: Ticks
	5.4 Module graph.axis.parter: Partitioners
	5.5 Module graph.axis.texter: Texter
	5.6 Module graph.axis.painter: Painter
	5.7 Module graph.axis.rater: Rater
	5.8 Module graph.axis.positioner: Positioners

	6 Module box: convex box handling
	6.1 Polygon
	6.2 Functions working on a box list
	6.3 Rectangular boxes

	7 Module connector
	7.1 Class line
	7.2 Class arc
	7.3 Class curve
	7.4 Class twolines

	8 Module epsfile: EPS file inclusion
	9 Bitmaps
	9.1 Introduction
	9.2 Bitmap module

	10 Module bbox
	10.1 bbox constructor
	10.2 bbox methods

	11 Module color
	11.1 Color models
	11.2 Example
	11.3 Color gradients
	11.4 Transparency

	12 Module pattern
	12.1 Class pattern

	13 Module unit
	13.1 Class length
	13.2 Predefined length instances
	13.3 Conversion functions

	14 Module trafo: linear transformations
	14.1 Class trafo
	14.2 Subclasses of trafo

	A Named colors
	B Module style
	C Arrows in deco module
	Index

