
The University of British Columbia

Physics 210 Assignment # 9:

MATRIX MADNESS!

Tue. 16 Nov. 2010 — finish by Tue. 23 Nov.

Since the course descriptions headlines MatLab, let’s do
something truly “computational” with it. (I will describe
the exercises in terms of MatLab, but you are welcome
to use octave or python instead, as they will both do
everything required for this Assignment at least as well as
MatLab does. Just pick your favorite!)

As usual, create your /home2/phys210/$USER/a09/ di-
rectory to store your work in.

1. MATLAB WARMUP: Remember the Fibonacci
numbers from earlier Assignments? In a file
fibmat.m, write a MatLab function to generate the
Fibonacci numbers Fn and plot the resulting Fn

as a function of n (up to at least n = 10)1 so it
will be easy to check your work. Store your plot
in /home2/phys210/$USER/a09/fib.pdf (using Im-

ageMagick ’s convert if necessary).

2. PAULI MATRICES: The most important matri-
ces in Physics (so say I) are the Pauli spin matrices,
described accurately in the WikipediA2 as “a set of
2 × 2 complex Hermitian and unitary matrices. . . ”

σ1 =

[

0 1
1 0

]

; σ2 =

[

0 −i
i 0

]

; σ3 =

[

1 0
0 −1

]

(1)

which can represent (among other things) the three
components (σx ≡ σ1, σy ≡ σ2 and σz ≡ σ3)
of the vector spin operator ~σ for a spin-1

2
parti-

cle.3 Well, MatLab claims to be a “Matrix Labo-
ratory”, so it should be an ideal platform for ver-
ifying the essential properties of the Pauli matri-
ces.4 Do so, for the list of properties listed on

1If you go to n much larger than 10, it might be wise to plot
log Fn vs. n.

2You can Google them, or go directly to http://en.-

wikipedia.org/wiki/Pauli matrices or http://mathworld.-
wolfram.com/PauliMatrices.html to get a nice compact intro-
duction to their mathematical properties. Be sure you under-
stand what “Hermitian” and “unitary” mean.

3Actually, the Pauli matrices can be used to describe the
quantum mechanics of any two-state system, which makes them
useful not only in elementary particle physics but also in a wide
variety of quantum computing topics.

4I don’t find MatLab to be as great as it claims, since I
have not found a compact, elegant way to express the three
Pauli matrices {σx, σy, σz} as a vector ~σ of matrices in MatLab,
even though that is a “natural” description in Physics. This is

possible with python; Google “NumPy for Matlab Users”.

http://en.wikipedia.org/wiki/Pauli_matrices

down to the beginning of the subject heading labelled
“SU(2)”. Make sure you understand the meaning of
all these properties thoroughly.5

In this notation, the spin state of a spin-1

2
particle is

represented by a 2-component column vector, like

|↑〉 =

[

1

0

]

and |↓〉 =

[

0

1

]

(2)

for “spin up” and “spin down” (along the ẑ axis)
respectively. Verify that operating on these column
vectors from the left with the Pauli matrix σz yields
+|↑〉 and −|↓〉, respectively.6

Construct a column vector |→〉 with the property
that σx|→〉 = +|→〉 (so that |→〉 represents a spin- 1

2

particle with its spin in the +x̂ direction).

Similarly, construct a column vector |⊗〉 with the
property that σy|⊗〉 = +|⊗〉 (so that |⊗〉 represents
a spin- 1

2
particle with its spin in the +ŷ direction).

3. TWO SPIN- 1

2
PARTICLES: Suppose you have

two spin- 1

2
particles, such as a proton (p) and an

electron (e), whose magnetic moments ~µp = µp ~σp

and ~µe = −µe ~σe interact with an external magnetic
field ~B, each contributing its Zeeman energy EZ =
−~µ · ~B. Then the Zeeman hamiltonian operator is

HZ = −µp ~σp · ~B + µe ~σe · ~B. (3)

Again picking the ẑ direction as the quantization
axis, we have four possible fully-specified quantum
states:

|⇑↑〉 =

[

1

0

0

0

]

|⇑↓〉 =

[

0

1

0

0

]

|⇓↑〉 =

[

0

0

1

0

]

|⇓↓〉 =

[

0

0

0

1

]

(4)

where the m and l symbols designate “spin up/down”
(along the ẑ axis) for the electron and the proton,
respectively.

5You’ll thank me later!
6Thus | ↑〉 and | ↓〉 are the eigenvectors of σz: operating on

them with σz is the same as multiplying them by a number
which is their eigenvalue with respect to σz. In the language of
spin orientation, the eigenvalue is the projection of the particle’s
spin along the ~z direction). This follows from the fact that σz

is diagonal.



2

In this basis, verify that the 4× 4 matrix representa-
tions of the electron and proton spin operators are

σe1
=

2

6

6

4

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

3

7

7

5

; σp1
=

2

6

6

4

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

3

7

7

5

(5)

σe2
=

2

6

6

4

0 0 −i 0
0 0 0 −i

i 0 0 0
0 i 0 0

3

7

7

5

; σp2
=

2

6

6

4

0 −i 0 0
i 0 0 0
0 0 0 −i

0 0 i 0

3

7

7

5

σe3
=

2

6

6

4

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

3

7

7

5

; σp3
=

2

6

6

4

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

3

7

7

5

Given this information, write down the matrix rep-
resentation of the full Zeeman hamiltonian for these
two spins in an arbitrary magnetic field ~B = Bxx̂ +
By ŷ + Bz ẑ. Express your result in terms of µp, µe

and the three components of ~B.

4. THE CONTACT INTERACTION: Suppose
your two spin-1

2
particles (e.g. the proton and the

electron in a hydrogen atom) interact in a way that
depends only on the scalar product of their spin vec-
tors,7

Hhf = A ~σp · ~σe = A(σp1
σe1

+σp2
σe2

+σp3
σe3

) , (6)

where Hhf is the Heisenberg hamiltonian operator
and A is the strength of the interaction, in energy
units. For simplicity, set A = 1 (i.e. measure all
energies as multiples of A) in this part.

Express the Heisenberg spin hamiltonian (6) as a ma-

trix in the 4-state basis (4) defined above, and show
that it is not diagonal. Using MatLab, diagonalize it

and describe the new basis in which it is diagonal.8

7Such an interaction is known as a contact interaction or a
hyperfine interaction or a Heisenberg spin-spin interaction.

8If you need help with this, just ask!

5. BREIT-RABI DIAGRAM: [EXTRA CREDIT]
We are now ready to solve the general problem of
the spin hamiltonian (which governs everything the
spins do!) of a hydrogen atom in an s state with
orbital angular momentum ℓ = 0.9 The Breit-Rabi

hamiltonian is

HBR = Hhf + HZ

= A ~σp · ~σe − µp ~σp · ~B + µe ~σe · ~B. (7)

Express this hamiltonian in matrix form for the 4-
state basis (4) and (using MatLab) diagonalize it for
some particular choice of applied magnetic field, let’s
say ~B = (0.1 T)ẑ. Once you have accomplished this,
you can repeat the diagonalization for a succession of
different values of | ~B| = Bz and plot the four energy
eigenvalues as a function of field to get the famous
Breit-Rabi diagram for hydrogen:

Figure 1 : Breit-Rabi diagram showing the energy lev-
els of a system of two spin-1/2 particles of opposite sign
and different magnetic moments (e.g. the hydrogen atom)
as functions of the reduced field x ≡ B/B0 where B0

(504.4 Oe for H in vacuum) is a characteristic hyperfine

field. For the purpose of illustration, unphysical values of
moments and coupling constants have been used.

The actual hyperfine frequency ν0 ≡ ω0/2π ≡ A/h (where
h is Planck’s constant) has the value 1.42040575 GHz
for hydrogen in vacuum. In consistent units, µe/h =
−28.024953 GHz/T and µp/h = 0.042577482 GHz/T.

In zero field the three triplet (J = 1) eigenstates |1〉,
|2〉 and |3〉 are degenerate and the singlet (J = 0) ground
state |4〉 is h̄ω0 lower in energy.

At high reduced field (x → ∞) the eigenstates are
|1〉 → |⇑↑〉, |2〉 → |⇑↓〉, |3〉 → |⇓↓〉 and |4〉 → |⇓↑〉.
That is, the original basis!

9Actually there are ℓ 6= 0 states mixed into the “1s” state of
a hydrogen atom if the two spins are parallel; but this is a very
small effect.


