
The University of British Columbia

Physics 401 Assignment # 1:

REVIEW

Wed. 04 Jan. 2006 — finish by Wed. 11 Jan.

This first assignment is just review, to make sure you haven’t forgotten (or can quickly recall) what you learned in PHYS 301/354

(or earlier) about the E&M covered in the first 7 chapters of our textbook: David Griffiths, “Introduction to Electrodynamics”.

1. MAXWELL’S EQUATIONS:

(a) Starting with Maxwell’s equations in differential form, derive Maxwell’s equations in integral form.

(b) Starting with Maxwell’s generalization of Ampère’s Law, ~∇× ~H = ~Jf + ∂
~
D
∂t

, derive the continuity

equation, ~∇ · ~J + ∂ρ
∂t

= 0, which is the mathematical expression of charge conservation.

(c) Starting with Maxwell’s equations in free space (~J = 0, ρ = 0), show that ~E and ~B each satisfy a
wave equation. What is the speed of propagation of the resulting wave in each case?

2. CHARGED CONDUCTORS: Two spherical cavities, of radii a and b, are hollowed out from the
interior of a solid neutral conducting sphere of radius R, as shown in the figure. There are charges qa and
qb at the centres of the respective cavities.

(a) What is the electric field in the solid (shaded) conducting material?

(b) Find the surface charges σa, σb and σR at the respective surfaces.

(c) What is the electric field outside the conductor at a distance r > R

from the centre of the large sphere?

(d) What are the electric fields inside cavities a and b?

(e) What are the forces on qa and qb?

(f) If a third charge qc were brought near the conductor, which (if any) would change:

(i) σa?

(ii) σb?

(ii) σR?

(iv) The electric fields inside cavities a and b?

(v) The electric field outside the conductor?

3. COAXIAL CAPACITOR: A capacitor is constructed of two very long concentric cylindrical conductors
with their common axis horizontal, as shown in the diagram. The space between them is exactly half filled
with a linear dielectric liquid with dielectric constant κ.

(a) Show that the electric field is radial and is the same in the dielectric half as in the vacuum half of the
capacitor.

(b) Deduce the capacitance per unit length of this coaxial capacitor.

(c) If the conductors carry free charges per unit length ±λ, find the polarization ~P in the dielectric at
any point a distance r from the central axis, in terms of ǫ0, κ, λ and r.
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4. LINEAR CURRENTS:

Two very long parallel wires carry equal currents ±I in opposite
directions, as illustrated in the figure. Take the ẑ direction to be
out of the page, in the direction of the current in wire 1. The field
point P is located a distance r1 from wire 1 and a distance r2 from
wire 2, as shown.

(a) Consider each wire separately and indicate the direction of

the vector potential ~A in each case.

(b) Show that the vector potential ~A at the point P is given by:

~A =
µ0I

2π
ln

(

r2

r1

)

ẑ

(c) Show that the result in part (b) is consistent with that ob-
tained using Ampère’s Law.

5. LAPLACE’S EQUATION: Consider an infinitely long metal pipe, of radius R, which is placed at right
angles to an otherwise uniform electric field ~E0 = E0x̂.

(a) What is the “uniqueness theorem” and why would
you want to use it to solve for the electric potential
V ?

(b) What are the boundary conditions on the electric
potential V ?

(c) Solve Laplace’s equation for the potential V outside
the long metal pipe. You should obtain:

V (r, θ) = E0r

(

R2

r2
− 1

)

cos θ .

Hint: Note that this situation has cylindrical symmetry (not spherical!), with no z dependence, and hence
simplifies to a 2-D plane polar problem.
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Solutions to Laplace’s Equation: ∇2
V = 0

2D Cartesian:
∇2V ≡

∂2V

∂x2
+

∂2V

∂y2
= 0

V (x, y) =
x

1

} y

1

}

+
ekx

e−kx

}

cos ky

sinky

}

+ permutations (x ↔ y).

3D Cartesian:
∇2V ≡

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0

V (x, y, z) =
x

1

} y

1

} z

1

}

+
x

1

} cos py

sin py

}

eqz

e−qz

}

+
epx

e−px

}

cos qy

sin qy

}

cos
√

p2 − q2 z

sin
√

p2 − q2 z

}

+ all permutations {x, y, z}.

2D Plane Polar:
∇2V ≡

1

r

∂

∂r

(

r
∂V

∂r

)

+
1

r2

∂2V

∂θ2
= 0

V (r, θ) =
ln r

1

}

+
rn

r−n

}

cosnθ

sin nθ

}

3D Cylindrical:
∇2V ≡

1

ρ

∂

∂ρ

(

ρ
∂V

∂ρ

)

+
1

ρ2

∂2V

∂φ2
+

∂2V

∂z2
= 0

V (ρ, φ, z) =
Jn(kρ)

Nn(kρ)

}

cosnφ

sin nφ

}

ekz

e−kz

}

where Jn(kρ) → Bessel functions and Nn(kρ) → Neumann functions.

3D Spherical:
∇2V ≡

1

r2

∂

∂r

(

r2 ∂V

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

+
1

r2 sin2 θ

∂2V

∂φ2
= 0

V (r, θ, φ) =
rℓ

r−(ℓ+1)

}

Pm
ℓ (cos θ)

Qm
ℓ (cos θ)

}

cosmφ

sin mφ

}

where Pm
ℓ (cos θ) are associated Legendre polynomials

and Qm
ℓ (cos θ) are associated Legendre polynomials of the second kind.

If axial symmetry then V (r, θ, φ) =
rℓ

r−(ℓ+1)

}

Pℓ(cos θ)

Qℓ(cos θ)

}

where Pℓ(cos θ) are Legendre polynomials and Qℓ(cos θ) are Legendre polynomials of the second kind.

Match linear combinations of the forms above to the appropriate boundary conditions

imposed by (e.g.) conducting surfaces (equipotentials) and any requirements that V −→
r→∞

0
etc.


