Physics 401 Assignment # 1: **REVIEW**

Wed. 04 Jan. 2006 — finish by Wed. 11 Jan.

This first assignment is just review, to make sure you haven't forgotten (or can quickly recall) what you learned in PHYS 301/354 (or earlier) about the E&M covered in the first 7 chapters of our textbook: David Griffiths, "Introduction to Electrodynamics".

1. MAXWELL'S EQUATIONS:

- (a) Starting with Maxwell's equations in differential form, derive Maxwell's equations in integral form.
- (b) Starting with Maxwell's generalization of Ampère's Law, $\vec{\nabla} \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$, derive the continuity equation, $\vec{\nabla} \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$, which is the mathematical expression of charge conservation.
- (c) Starting with Maxwell's equations in free space ($\vec{J} = 0$, $\rho = 0$), show that \vec{E} and \vec{B} each satisfy a wave equation. What is the speed of propagation of the resulting wave in each case?
- 2. CHARGED CONDUCTORS: Two spherical cavities, of radii a and b, are hollowed out from the interior of a solid neutral conducting sphere of radius R, as shown in the figure. There are charges q_a and q_b at the centres of the respective cavities.
 - (a) What is the electric field in the solid (shaded) conducting material?
 - (b) Find the surface charges σ_a , σ_b and σ_R at the respective surfaces.
 - (c) What is the electric field outside the conductor at a distance r > R from the centre of the large sphere?
 - (d) What are the electric fields inside cavities a and b?
 - (e) What are the forces on q_a and q_b ?
 - (f) If a third charge q_c were brought near the conductor, which (if any) would change:
 - (i) σ_a ?
 - (ii) σ_b ?
 - (ii) σ_R ?
 - (iv) The electric fields inside cavities a and b?
 - (v) The electric field outside the conductor?
- 3. COAXIAL CAPACITOR: A capacitor is constructed of two very long concentric cylindrical conductors with their common axis horizontal, as shown in the diagram. The space between them is exactly half filled with a linear dielectric liquid with dielectric constant κ .
 - (a) Show that the electric field is radial and is the same in the dielectric half as in the vacuum half of the capacitor.
 - (b) Deduce the capacitance per unit length of this coaxial capacitor.
 - (c) If the conductors carry free charges per unit length $\pm \lambda$, find the polarization \vec{P} in the dielectric at any point a distance r from the central axis, in terms of ϵ_0 , κ , λ and r.

4. LINEAR CURRENTS:

Two very long parallel wires carry equal currents $\pm I$ in opposite directions, as illustrated in the figure. Take the \hat{z} direction to be out of the page, in the direction of the current in wire 1. The field point P is located a distance r_1 from wire 1 and a distance r_2 from wire 2, as shown.

- (a) Consider each wire separately and indicate the direction of the vector potential \vec{A} in each case.
- (b) Show that the vector potential \vec{A} at the point P is given by: $\vec{A} = \frac{\mu_0 I}{2\pi} \ln \left(\frac{r_2}{r_1}\right) \hat{z}$
- (c) Show that the result in part (b) is consistent with that obtained using Ampère's Law.

- 5. LAPLACE'S EQUATION: Consider an infinitely long metal pipe, of radius R, which is placed at right angles to an otherwise uniform electric field $\vec{E}_0 = E_0 \hat{x}$.
 - (a) What is the "uniqueness theorem" and why would you want to use it to solve for the electric potential V?
 - (b) What are the boundary conditions on the electric potential V?
 - (c) Solve Laplace's equation for the potential V outside the long metal pipe. You should obtain: $V(r,\theta) = E_0 r \left(\frac{R^2}{r^2} 1\right) \cos\theta \ .$

Hint: Note that this situation has cylindrical symmetry (not spherical!), with no z dependence, and hence simplifies to a 2-D plane polar problem.

Solutions to Laplace's Equation: $\nabla^2 V = 0$

2D Cartesian:

$$\nabla^2 V \equiv \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

$$(1.9) \quad e^{kx} \quad \cos ky$$

$$V(x,y) = \frac{x}{1} \left\{ \begin{array}{c} y \\ 1 \end{array} \right\} + \frac{e^{kx}}{e^{-kx}} \left\{ \begin{array}{c} \cos ky \\ \sin ky \end{array} \right\} \quad + \text{ permutations } (x \leftrightarrow y).$$

3D Cartesian:

$$\nabla^{2}V \equiv \frac{\partial^{2}V}{\partial x^{2}} + \frac{\partial^{2}V}{\partial y^{2}} + \frac{\partial^{2}V}{\partial z^{2}} = 0$$

$$V(x, y, z) = \begin{cases} x \\ 1 \end{cases} \begin{cases} y \\ 1 \end{cases} + \begin{cases} x \\ 1 \end{cases} \begin{cases} \cos py \\ \sin py \end{cases} \begin{cases} e^{qz} \\ e^{-qz} \end{cases} + \begin{cases} e^{px} \\ e^{-px} \end{cases} \begin{cases} \cos qy \\ \sin qy \end{cases} \begin{cases} \cos \sqrt{p^{2} - q^{2}} z \\ \sin \sqrt{p^{2} - q^{2}} z \end{cases}$$

$$+ \text{ all permutations } \{x, y, z\}.$$

2D Plane Polar:

$$\nabla^2 V \equiv \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} = 0$$

$$V(r,\theta) = \frac{\ln r}{1} + \frac{r^n}{r^n} \begin{cases} \cos n\theta \\ \sin n\theta \end{cases}$$

3D Cylindrical:

$$\nabla^2 V \equiv \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

$$V(\rho, \phi, z) = \frac{J_n(k\rho)}{N_n(k\rho)} \left\{ \begin{array}{c} \cos n\phi \\ \sin n\phi \end{array} \right\} \left. \begin{array}{c} e^{kz} \\ e^{-kz} \end{array} \right\}$$

where $J_n(k\rho) \to \text{Bessel functions}$ and $N_n(k\rho) \to \text{Neumann functions}$.

3D Spherical:

$$\nabla^2 V \equiv \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} = 0$$

$$V(r, \theta, \phi) = \frac{r^{\ell}}{r^{-(\ell+1)}} \left. \left. \begin{array}{l} P_{\ell}^{m}(\cos \theta) \\ Q_{\ell}^{m}(\cos \theta) \end{array} \right. \right. \left. \begin{array}{l} \cos m\phi \\ \sin m\phi \end{array} \right. \right\}$$

where $P_{\ell}^{m}(\cos\theta)$ are associated Legendre polynomials

and $Q_{\ell}^{m}(\cos\theta)$ are associated Legendre polynomials of the second kind.

If axial symmetry then
$$V(r, \theta, \phi) = {r^{\ell} \choose r^{-(\ell+1)}} \left\{ {P_{\ell}(\cos \theta) \choose Q_{\ell}(\cos \theta)} \right\}$$

where $P_{\ell}(\cos\theta)$ are Legendre polynomials and $Q_{\ell}(\cos\theta)$ are Legendre polynomials of the second kind.

Match <u>linear combinations</u> of the forms above to the appropriate <u>boundary conditions</u> imposed by (e.g.) conducting surfaces (equipotentials) and any requirements that $V \xrightarrow[r \to \infty]{} 0$ etc.