
The University of British Columbia

Physics 401 Assignment # 1:

REVIEW

SOLUTIONS:

Wed. 04 Jan. 2006 — finish by Wed. 11 Jan.

This first assignment was just for review, to make sure you

hadn’t forgotten (or could quickly recall) what you learned in

PHYS 301/354 (or earlier) about the E&M covered in the first

7 chapters of our textbook: David Griffiths, “Introduction to

Electrodynamics”.

Almost all you need is on the inside front and back
covers of the textbook:

Gauss’ law(s): ~∇ · ~D = ρf and ~∇ · ~B = 0 (1)

Faraday’s law: ~∇ × ~E = −∂ ~B

∂t
(2)

Ampère’s law: ~∇ × ~H = ~Jf +
∂ ~D

∂t
(3)

Diverg. thm:

∫∫∫

(

~∇ · ~A
)

dτ =

∫∫

©~A · d~a (4)

Stokes’ thm:

∫∫

(

~∇ × ~A
)

· d~a =

∮

~A · d~̀ (5)

1. MAXWELL’S EQUATIONS:

(a) Starting with Maxwell’s equations in
differential form, derive Maxwell’s
equations in integral form.
ANSWER: Applying (4) to ~D yields
∫∫∫

(

~∇ · ~D
)

dτ =
∫∫

© ~D · d~a. Plug in (1) to

give
∫∫

©~E · d~a = (1/ε0)
∫∫∫

ρ dτ = Qenc/ε0 .

Similarly for ~B with ~∇ · ~B = 0 to give
∫∫

©~B · d~a = 0 . We use (5) [also known as

the curl theorem] on ~E to give
∫∫

( ~∇ × ~E) · d~a =
∮

~E · d~̀ and plug in (2)

to get
∫∫

(

−∂
~B

∂t

)

· d~a = − ∂
∂t

∫∫ ~B · d~a =

−∂ΦM

∂t
=

∮

~E · d~̀ = emf ind or

emf ind = −∂ΦM

∂t
. Finally we apply (5) to

~H to get
∫∫

( ~∇ × ~H) · d~a =
∮

~H · d~̀ and
plug in (3) to get
∫∫

(

~Jf + ∂
~D

∂t

)

· d~a = ∂
∂t

∫∫ ~D · d~a +
∫∫ ~Jf ·

d~a ≡ ∂ΦE

∂t
+ Iencl =

∮

~H · d~̀ or
∮

~H · d~̀ = Iencl +
∂ΦE

∂t
.

(b) Starting with Maxwell’s generalization of

Ampère’s Law, ~∇ × ~H = ~Jf + ∂
~D

∂t
,

derive the continuity equation,
~∇ · ~J + ∂ρ

∂t
= 0, which is the

mathematical expression of charge
conservation. ANSWER: Just take the
divergence of both sides of Eq. (3),
remembering that the divergence of a curl is
always zero, and plug in Gauss’ law for
~∇ · ~D (see above). Immediately we have

~∇ · ~
(~∇ × ~H) = 0 = ~∇ · ~J +

∂ρf

∂t
which is

the same as the continuity equation if
we note that ρ = ρb + ρf where ρb is the
(unchanging) bound charge density. QED

√

(c) Starting with Maxwell’s equations in free

space (~J = 0, ρ = 0), show that ~E and ~B
each satisfy a wave equation. What is the
speed of propagation of the resulting wave
in each case? ANSWER: First take
the time derivative of Eq. (2) to get

~∇ × ∂ ~E

∂t
= −∂2 ~B

∂t2
(6)

(where the order of differentiation wrt time
and space have been reversed). Then

substitute ~H ≡ ~B/µ and ~D ≡ ε~E into
Eq. (3) and take its curl to get

1

µ
~∇×

(

~∇ × ~B
)

= ~∇×~Jf +ε ~∇×∂ ~E

∂t
. (7)

Expanding the double curl gives
~∇ ×

(

~∇ × ~B
)

= ~∇
(

~∇ · ~B
)

−∇2B and

Gauss’ law says ~∇ · ~B = 0, so Eq. (7)
becomes

− 1

µε
∇2 ~B =

1

ε
~∇ × ~Jf + ~∇ × ∂ ~E

∂t
. (8)

At this point you were expected to impose
the usual conditions for propagating EM
waves, namely no free charges or currents
(ρf = ~Jf = 0). In a conductor, things get a
bit more complicated (see Section 9.4 of the

textbook). With ~Jf = 0, Eq. (8) has the
same RHS (right hand side) as the LHS of

Eq. (6), yielding ∂2 ~B
∂t2

= 1
µε
∇2 ~B or

∇2 ~B − 1

v2

∂2 ~B

∂t2
= 0

— i.e. the wave equation for ~B, where

the speed of propagation is v = 1/
√

µε .
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In free space, of course,
c = 1/

√
µ0ε0 ≡ 2.99792458× 108 m/s

[exactly, by definition]. Since µ ≥ µ0 and
ε ≥ ε0, v = c/n ≤ c, where
n =

√

µε/µ0ε0 ≥ 1 is the index of refraction.

For ~E we take the time derivative of Eq. (3),

with ~H ≡ ~B/µ and ~D ≡ ε~E, this time

setting ~Jf = 0 at the outset. The result is

~∇ × ∂
~B

∂t
= µε∂2 ~E

∂t2
. Then we take the curl

of Eq. (2) to get ∇2 ~E = ~∇ × ∂
~B

∂t
. Again

matching up RHS with LHS gives

∇2 ~E − 1

v2

∂2~E

∂t2
= 0

— i.e. the same wave equation for ~E.

2. CHARGED CONDUCTORS: Two spher-
ical cavities, of radii a and b, are hollowed out
from the interior of a solid neutral conducting
sphere of radius R, as shown in the figure. There
are charges qa and qb at the centres of the respec-
tive cavities.

(a) What is the electric field in the solid
(shaded) conducting material?

ANSWER: Zero .

(b) Find the surface charges σa, σb and σR at
the respective surfaces.
ANSWER: Since the point charges are
centered on the spherical cavities, by
Gauss’ law it takes an equal and opposite
uniform surface charge to cancel ~E inside

the conductor. Thus σa = −qa/(4πa2)

and σb = −qb/(4πb2) . The net interior

surface charge, −(qa + qb), leaves behind a
charge +(qa + qb) which will distribute itself
uniformly over the outer surface (to achieve
maximum separation), giving an exterior
surface charge of

σR = (qa + qb)/(4πR2) .

(c) What is the electric field outside the
conductor at a distance r > R from the
centre of the large sphere?

ANSWER: ~E =
1

4πε0

qa + qb

r2
r̂ .

(d) What are the electric fields inside cavities
a and b?

ANSWER: ~E =
1

4πε0

qa

r2
a

r̂a and

~E =
1

4πε0

qb

r2
b

r̂b , where ra and rb are

the distances from the centre of each cavity,
respectively.

(e) What are the forces on qa and qb?

ANSWER: Zero . They are centred in
their cavities.

(f) If a third charge qc were brought near the
conductor, which (if any) would change:

i. σa? No .

ii. σb? No .

iii. σR? Yes . An additional
(nonuniform) surface charge would be
required to terminate electric field
lines coming from the third charge.

iv. The electric fields inside cavities a and
b? No .

v. The electric field outside the
conductor? Yes . Doh!

3. COAXIAL CAPACITOR: A capacitor
is constructed of two very long concentric
cylindrical conductors with their common axis
horizontal, as shown in the diagram. The space
between them is exactly half filled with a linear
dielectric liquid with dielectric constant κ.

(a) Show that the electric field is radial and is
the same in the dielectric half as in the
vacuum half of the capacitor.
ANSWER: Symmetry with respect to z
ensures that ~E can have only radial and
aximuthal components Er and Eφ and that
neither one changes with z. [I am using r
rather than the textbook’s s for the radial
direction.] Meanwhile each of the
conductors is at constant potential, forcing
cylindrical symmetry upon V (r, φ) through
its boundary conditions. This symmetry is
passed on to ~E = − ~∇V , so there can be no
aximuthal component of ~E: Eφ = 0 and ~E
is radial everywhere.

√

QED. [Note that
this does not mean a uniform distribution of
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surface charge on the conductors! See next
part.]

(b) Deduce the capacitance per unit length of
this coaxial capacitor. ANSWER: A
capacitor filled with a dielectric has a larger
surface charge on the conductors for the
same electric field in between (i.e. the same
voltage across) so its capacitance is
increased by a factor of κ ≡ ε/ε0 (the
dielectric constant, written “εr” in the
textbook). More charge will pile up on the
conductors where the dielectric is than
elsewhere; σ will be uniform within each
region, but a factor of κ higher where the
space is filled with dielectric. The net
capacitance is the average of what one
would get for the empty capacitor and what
one would get if it were completely filled:

C

L
=

2π

ln (b/a)

[

ε + ε0
2

]

=
πε0(κ + 1)

ln (b/a)

(c) If the conductors carry free charges per

unit length ±λ, find the polarization ~P in
the dielectric at any point a distance r
from the central axis, in terms of ε0, κ, λ
and r. ANSWER: We have
~P ≡ ~D − ε0 ~E = (κ − 1)ε0 ~E. From Gauss’
law on a cylinder of length ` and radius r
(with a < r < b) we have
∫∫

©
~(D) · d~a = πr`(ε0E + εE) = Qf = `λ.

Thus ε0E = λ
πr(1+κ) , giving

~P =
(κ − 1)λ

πr(κ + 1)
r̂ .

4. LINEAR CURRENTS: Two very long par-
allel wires carry equal currents ±I in opposite
directions, as illustrated in the figure. Take the
ẑ direction to be out of the page, in the direc-
tion of the current in wire 1. The field point P is
located a distance r1 from wire 1 and a distance
r2 from wire 2, as shown.

(a) Consider each wire separately and indicate

the direction of the vector potential ~A in
each case. ANSWER: Generally

~A(~r) =
µ0

4π

∫∫∫ ~J(~r′)

|~r − ~r′|
dτ ′ .

For thin wires we can replace the volume
integral by a line integral:

~A(~r) =
µ0

4π
I

∫

d~̀ ′

|~r − ~r′|
,

where it is usually assumed that the current
loop is closed. In this case we pretend it is
not, and take one wire at a time, choosing
the origin at point P for simplicity (~r = 0).

Since d~̀ ′ is everywhere parallel to ẑ, at

point P ~A1 = A1ẑ and ~A2 = −A2ẑ .

(b) Show that the vector potential ~A at the

point P is given by: ~A =
µ0I

2π
ln

(

r2

r1

)

ẑ

ANSWER: Choose the zero of ~A
arbitrarily at some radius R from the wire of
your choice. If we construct a rectangular
loop with sides of length ` parallel to the
wire (along ±ẑ) and the other sides radial
from r < R out to R, the magnetic flux
through that loop, ΦB ≡ ∫∫ ~B · d~a around

that loop is equal (since ~B = ~∇ × ~A) to
∫∫

( ~∇ × ~A) · d~a =
∮

~A · d~̀ by Stokes’

theorem. We know ~B = µ0I
2πr′

φ̂ so

ΦB = µ0I`
2π

∫ R

r
dr′

r′
= µ0I`

2π
ln R

r
. Meanwhile,

since two sides are ⊥ ~A and one of the
others is at R where ~A = 0, the line integral
of ~A · d~̀ is just `A(r). Setting these equal

gives A(r) =
µ0I

2π
ln

R

r
for the wire of

your choice. The total ~A is the sum of
~A1 + ~A2 = [A(r1) − A(r2)]ẑ =
µ0I
2π

[

ln R
r1

− ln R
r2

]

ẑ or

~A =
µ0I

2π
ln

(

r2

r1

)

ẑ .
√

QED

(c) Show that the result in part (b) is
consistent with that obtained using
Ampère’s law. ANSWER: Treat the
wires separately. For the wire of your choice,
in cylindrical coordinates (again using r

instead of s) ~B = ~∇ × ~A =
[

1
r

∂Az

∂φ
− ∂Aφ

∂z

]

r̂ +
[

∂Ar

∂z
− ∂Az

∂r

]

φ̂ +

1
r

[

∂
∂r

(rAφ) − ∂Ar

∂φ

]

ẑ but Ar = Aφ = 0 and

∂Az

∂φ
= 0, so ~B = −∂Az

∂r
φ̂, or

~B = −µ0I
2π

∂
∂r

[ln R − ln r] φ̂, or
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~B =
µ0I

2πr
φ̂

for each wire, the same as we get from
Ampère’s law. (Note: since each wire’s φ̂

is different, the net field is messy looking;
that’s why we just did it one at a time,
relying on the knowledge that we can
superimpose them if needed. Also note: the
derivation of ~A used the ~B above, supplied
by Ampère’s law, so consistency is hardly
surprising!)

5. LAPLACE’S EQUATION: Consider an in-
finitely long metal pipe, of radius R, which is
placed at right angles to an otherwise uniform
electric field ~E0 = E0 x̂.

Hint: Note that this situation has cylindrical
symmetry (not spherical!), with no z depen-
dence, and hence simplifies to a 2-D plane polar
problem.

(a) What is the “uniqueness theorem” and
why would you want to use it to solve for
the electric potential V ?
ANSWER: The uniqueness theorem
says that if you have a solution V (~r) of
Poisson’s (or Laplace’s) equation in some
region and it has the right values at all the
boundaries of that region, then it is the

only solution in that region. It’s obvious
why this is desirable: you can guess, and if it
works, it’s right! Of course, educated
guesses are a lot more efficient, and so we
check our list of all possible solutions for the
specified symmetry imposed by the
boundary conditions. This quickly eliminates
all the really dumb gueses. Then we take
advantage of the linearity of the differential
equation for V , which ensures that any linear
combination of the above list is allowed.
Usually from there we just have to find the
constants that make it fit at the boundaries.
What’s not to like?

(b) What are the boundary conditions on the
electric potential V ? ANSWER: Let’s
measure r from the axis of the cylinder and
set θ = 0 in the x̂ direction. The surface of

the conductor at r = R must be an
equipotential (which we are free to set equal

to zero), V (r = R) = 0 independent of θ,

but far from the cylinder ~E −→
r→∞ E0 x̂ so

that V (r, θ) −→
r→∞ −E0 x or

V (r, θ) −→
r→∞ −E0 r cos θ .

(c) Solve Laplace’s equation for the potential
V outside the long metal pipe. You should

obtain: V (r, θ) = E0 r

(

R2

r2
− 1

)

cos θ .

ANSWER: The most general form has all
integer powers of cos θ and sin θ, but the
boundary condition at r → ∞ tells us
immediately that we need only use n = 1
with cos θ and correspondingly only r or 1/r
(or both) for the r-dependence. The most
general reasonable solution is thus
V (r, θ) =

(

a1r
1 + b1r

−1
)

cos θ. Let’s see if
we can find values for a1 and b1 that satisfy
the boundary conditions. As r → ∞ we can
ignore the effect of the second term, leaving
simply a1 = −E0. Good so far. How about
V (r = R) = 0 = (−E0R + b1/R) cos θ?
This can only be true if b1/R = E0R or
b1 = E0R

2. Hey, we’re done!

V (r, θ) = E0

(

R2

r
− r

)

cos θ .
√

QED


