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Physics 401 Assignment # 11:

RADIATION 1

SOLUTIONS:

Wed. 22 Mar. 2006 — finish by Wed. 29
Mar.

1. (p. 449, Problem 11.2) — Electric Dipolar

Radiation: Equation (11.14),
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can be expressed in “coordinate-
free” form by writing p0 cos θ = ~p0 · r̂. Do so. . .
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. . . Equation (11.18),
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ANSWER:
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. . . Equation (11.19),
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ANSWER:
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and Equation (11.21),
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ANSWER: As always,
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2. Atomic Dipoles: Explain why you can safely

assume
~m0

c
≪ ~p0 for an atom with magnetic

dipole moment ~m0 and electric dipole moment
~p0, assuming typical values of relevant physical
quantities. ANSWER: Using Bohr’s model
of the H atom, we have an electron
(me ≃ 0.911 × 10−30 kg, e ≃ 1.6 × 10−19 C)
orbiting a heavy nucleus at radius
a0 ≃ 0.53 × 10−10 m, with angular momentum
L = mea

2
0ω = ~ ≃ 1.05 × 10−34 kgm2/s. Thus

ω = ~/mea
2
0 ≃ 4.13 × 1016 s−1. The amplitude

of the electric dipole moment (in the plane of the
orbit) is thus p0 = ea0 ≃ 0.85 × 10−29 Cm. The
magnetic dipole moment is
m0 = πa2

0(eω/2π) ≃ 0.927× 10−23 m2C/s, and
m0/c ≃ 3.09 × 10−30 Cm, which is a factor of

274 smaller than p0.

3. (p. 473-474, Problem 11.22) — Broadcasting

KRUD: A radio tower rises to a height h
above flat horizontal ground. At the top is a
magnetic dipole antenna of radius b, with its
axis vertical. FM station KRUD broadcasts
from this antenna at angular frequency ω, with
a total radiated power P (averaged, of course,
over a full cycle). Neighbors have complained
about problems they attribute to excessive
radiation from the tower — interference with
their stereo systems, mechanical garage doors
opening and closing mysteriously, and a variety
of suspicious medical problems. But the city
engineer who measured the radiation at the
base of the tower found it to be well below the
accepted standard. You have been hired by the
Neighborhood Association to assess the
engineer’s report.

(a) In terms of the variables given (not all of
which may be relevant, of course) find the
formula for the intensity of the radiation
at ground level, a distance R away from
the base of the tower. You may assume
that b ≪ c/ω ≪ h. [Note: we are
interested only in the magnitude of the
radiation, not in its direction — when
measurements are taken, the detector will
be aimed directly at the antenna.]

ANSWER: The average energy flux from
a magnetic dipole antenna, Eq. (11.39), is
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The total power radiated, Eq. (11.40), is
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.
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Thus 〈~S〉 =

(

3〈P 〉 sin2 θ

8πr2

)

r̂ .

Here we have r2 = h2 + R2 and
sin2 θ = R2/r2, giving

|〈~S〉| =
3〈P 〉R2

8π(h2 + R2)2
.

The intensity at the base of the tower
(R = 0) is zero, Doh!

(b) How far from the base of the tower should

the engineer have made the measurement?
What is the formula for the intensity at
this location? ANSWER: At the point
of highest intensity, of course. As for any
extremum, this requires

∂ |〈~S〉|

∂R
= 0 =

3〈P 〉

8π

∂
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(

R2
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)

or
2R

(h2 + R2)2
−

4R3

(h2 + R2)3
= 0

or
2R2

h2 + R2
= 1 or R = h .

(c) KRUD’s actual power output is
35 kilowatts, its frequency is 90 MHz, the
antenna’s radius is 6 cm, and the height of
the tower is 200 m. The city’s
radio-emission limit is
200 microwatts/cm2. Is KRUD in
compliance? ANSWER: We don’t
need to know ω or b. All we need is
〈P 〉 = 3.5 × 104 W and h = 200 m. At the
point of highest intensity (at ground level),
R = h, we have

|〈~S〉| =
3〈P 〉h2

8π(h2 + h2)2
=

3 × 3.5 × 104

32π(200)2

or |〈~S〉|max = 0.02611 W/m2

= 2.611 µW/cm2, well within compliance.1

4. (p. 474, Problem 11.23) — Earth as a

Pulsar: The magnetic north pole of the Earth
does not coincide with the geographic North
Pole — in fact, it’s off by about 7◦ at present.2

1Of course, if you report this to the Neighborhood As-
sociation, they will fire you, accuse you of being a pawn of
Big Broadcasting, and hire someone else to give them the
answer they want.

2The disagreement between the current value and that
in Griffiths is due to the fact that magnetic north pole
(which is actually a south magnetic pole, of course) has
been drifting approximately northwest at about 40 km per
year for the last few years (a blistering pace on a geolog-
ical time scale); it has always wandered around like this,
and has reversed direction more than once! Sailors (and
students in Power Squadron courses) must learn how to
correct their compass readings for this gradual drift.

Relative to the fixed axis of rotation, therefore,
the magnetic dipole moment vector of the
Earth is changing with time, so the Earth must
be giving off magnetic dipole radiation.

(a) Find the formula for the total power
radiated, in terms of the following
parameters: Ψ (the angle between the
geographic and magnetic north poles), M
(the magnitude of the Earth’s magnetic
dipole moment), and ω (the angular
velocity of rotation of the Earth). [Hint:

refer to Prob. 11.4 or Prob. 11.12.]

ANSWER: Problem 11.12 gives the total
power radiated by a magnetic dipole
generated by a time-varying current in a
circular loop: Ploop = µ0m̈

2/6πc3. Problem
11.4 describes an electric dipole rotating

about the ẑ axis as a superposition of two
oscillating dipoles in the x̂ and ŷ

directions, π/2 out of phase:
~p(t) = p0[cos(ωt)x̂ + sin(ωt)ŷ]. You are
then invited to find the intensity as a
function of the polar angle θ and calculate
the total power radiated, explaining why the
power seems to satisfy the superposition
principle even though it is quadratic in the
fields.

A more conventional way to represent
precession of a dipole is to make the x̂

component real and the ŷ component
imaginary: m̃(t) = m0e

iωt which amounts to
the same thing as above. In the Earth’s case
it is only the transverse component
M⊥ = M sin Ψ eiωt that precesses; the axial
component M‖ = M cosΨ just adds a
constant magnetic dipole field. Thus
m̈ = −ω2M sinΨ eiωt and we expect3

P =
µ0 ω4 M2 sin2 Ψ

6πc3
.

3When using complex notation m0e
iωt to describe pre-

cession, we must understand m̈2 to mean |m̈|2 — i.e. the
eiωt term is multiplied by its complex conjugate, e−iωt to
give unity for the time dependence. This expresses the con-
clusion of Problem 11.12: the dipole moment never gets
larger or smaller, it just changes direction, and the radia-
tion pattern follows it. If you stood on top of it and rotated
with it (as we certainly do on the Earth) you would see a
fixed intensity profile and the fact that it radiates at all
would be confusing if you failed to notice that you were in
a rotating reference frame.
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(b) Using the fact that the Earth’s magnetic
field is about half a gauss at the Equator,
estimate the magnetic dipole moment M
of the Earth. ANSWER: From
Eq. (5.87) on p. 246 we have the field of a
static magnetic dipole:

~Bdip =
µ0

4π

[

3( ~m · r̂)r̂ − ~m

r3

]

which reduces to ~Bdip = −µ0 ~m/4πr3 for
r̂ ⊥ ~m (i.e. at the Equator). Thus
M ≈ 4π × 0.5 × 10−4 × (6.4 × 106)3/µ0 or

M ≈ 1.3 × 1023 Am2 . (We neglect the
7◦ tilt and the fact that the Earth’s dipole is
far from pointlike on the scale of RE .)

(c) Find the power radiated. [Your answer
should be several times 10−5 W.]
ANSWER: The Earth’s
ω = 2π/(24 × 60 × 60) ≃ 0.727 × 10−4 s−1.
Plugging this, M ≈ 1.3 × 1023 Am2, and
sin Ψ ≈ Ψ = 0.122 into

P =
µ0 ω4 M2 sin2 Ψ

6πc3

gives PEarth = 1.73 × 10−5 W .

(d) Pulsars are thought to be rotating neutron
stars, with a typical radius of about
R ∼ 10 km, a typical surface magnetic
field of B(R) ∼ 108 T and a variety of
rotational periods T ; let’s use T ∼ 10−3 s.
What sort of radiated power would you
expect from such a star? [See J.P. Ostriker
and J.E. Gunn, Astrophys. J. 157, 1395
(1969). Answer: 2 × 1036 W.]

ANSWER: Again we use
BEquator

dip = µ0 m/4πr3 to get

m ≈ 4π × 108 × (104)3/µ0 = 1027 Am2.
This is only some 8000 times bigger than the
Earth’s magnetic moment, but the frequency
ω ≈ 2π/10−3 = 6300 s−1 is a lot bigger,
and ω4 is . . . well . . . huge. Thus
(assuming the star’s magnetic moment is
perpendicular to its axis of rotation, which
gives the biggest result) we get

Pstar ≈ 3.86 × 1036 W ! This is about a
factor of two larger than the value predicted
by Griffiths. No doubt this is because of the
probability distribution of angles Ψ between
the star’s magnetic moment and its axis of
rotation. If we assume all values of Ψ
between 0 and π are equally likely, then we
should multiply our result by 〈sin2 Ψ〉 = 1/2,

giving 〈Pstar〉 ≈ 1.93 × 1036 W . But this

seems a little silly in two respects: first, we
are just making an estimate for a “typical”
neutron star. A 20% change of ω would
have the same effect. Second, it seems
improbable that the formation of neutron
stars from supernovae of spinning suns
would indiscriminately orient the star’s
magnetic moment relative to its axis or
rotation; naively one might expect Ψ ∼ 0 to
be more likely, which would bias our estimate
toward much smaller values of 〈Pstar〉. A
more realistic estimate would require a
deeper knowledge of astrophysics than I (for
one) possess.4

4The magnetism of neutron stars is a very interesting
topic. If you assume (unrealistically) a pointlike central
magnetic dipole, the field at 1 km from the centre of this
“typical” star is more like 1011 T, and others may have
much higher fields. Thus some may reach fields ∼ 1012 T
at which there is speculation that the Cabbibo angle (one
of the key quantities in the so-called “Standard Model” of
elementary particle physics) might vanish! [See A. Salam
and J. Strathdee, Nature 252, 569 (1974).]

On Earth we don’t usually encounter such large magnetic
fields, unless you count the effective field Beff ∼ 5×1010 T
of a magnetic nucleus like 93Nb at a negative muon bound
to it in an orbit that is mostly inside the nucleus; this might
explain the anomalously large nuclear capture rate of the
µ− on that nucleus. [See P.J.S. Watson, Phys. Lett. 58B,
431 (1975).]


