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Coaxial Cylinders

Griffiths goes to some length to explain why TEM modes (with ~E and ~B perpen-

dicular to ~K = kẑ, i.e. a normal transverse wave propagating straight down the
guide) cannot exist in a hollow waveguide because the empty region is surrounded
by an equipotential.

Then he states that this restriction is lifted if there is a central conductor. (In fact it
is lifted any time there are two parallel conductors involved, as for a simple pair of
wires or two parallel strips of conductor.) From there he derives the equivalence of
the differential equations describing the transverse field components to Maxwell’s
equations in two dimensions.

I’d like to take a simpler approach: just take our known results for static EM fields
and impose a wavelike variation along the z axis perpendicular to both.
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We have solved for the electric field between two coaxial cylinders with opposite
charges per unit length λ and for the magnetic field between two coaxial cylinders
carrying equal and opposite currents I:

~E(r) =
λ

2πε

(
r̂

r

)
and ~B(r) =

µI

2π

(
θ̂

r

)
(1)

where we have allowed for the possibility of a linear dielectric and/or magnetic
medium between the inner and outer conductors.

If we let

λ = λ(z, t) = λ0e
i(kz−ωt) and I = I(z, t) = I0e

i(kz−ωt) , (2)

the result can easily be shown to satisfy Maxwell’s equations and all the
required boundary conditions.

This falls into the “Try the simplest case and see if it works!” category, which we
all know and love.

Jess H. Brewer, UBC Physics 401 3



At a given time t it looks like this.

You have often calculated the potential

difference V = −
∫ b

a
~E ·d~r between the

inner and outer conductors at a given z
position in terms of the instantaneous
charge per unit length at that z:

V (z, t) =
λ(z, t)
2πε0

ln
(

b

a

)
. (3)

This voltage depends on z and t as

V (z, t) = V0 ei(kz−ωt) . (4)
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Of course, we can’t measure λ directly with a voltmeter; but we can invert Eq. (3):

λ(z, t) =
[

2πε0
ln(b/a)

]
V (z, t) , (5)

so the corresponding electric field is

~E(r, z, t) =
V (z, t)
ln(b/a)

(
r̂

r

)
. (6)

As usual, E = vB where v = (εµ)−1/2 is the speed of light in the medium between
the inner and outer conductors (which is actually usually filled with an insulator for
practical reasons). Thus the magnetic field is

~B(r, z, t) =
V (z, t)

v ln(b/a)

(
θ̂

r

)
. (7)
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Impedance

The (z, t) dependence of the fields is entirely due to

V (z, t) = V0 ei(kz−ωt) (8)

and the current is [comparing Eqs. (1) with Eqs. (6) and (7)]

I(z, t) =
[

2πV0

µv ln(b/a)

]
ei(kz−ωt) . (9)

Since µv =
√

µ/ε, the impedance Z ≡ V/I is given by

Z =
µv

2π
ln
(

b

a

)
=

ln(b/a)
2π

√
µ

ε
. (10)

For µ = µ0 and ε = ε0 the numerical value of Z is (59.96 Ω) · ln(b/a). A typical
coax cable has a ≈ 0.4 mm and b ≈ 1.6 mm, so ln(b/a) ≈ 1.4, µ ≈ µ0 and ε ≈ 3ε0
to make Z ≈ 50 Ω.
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RG58 Cables

These are the “workhorse” cables used in any experiments
where sharp timing signals must be transported without
dispersion over distances of up to ∼ 100 m. They are
carefully designed to have an impedance of exactly 50 Ω.
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