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Driving Free Electrons

At one position in space, a plane EM wave ~E(~x, t) = ~E0e
i(~k·~x−ωt) produces an

oscillating electric field ~E0e
−iωt. If at that position there is a free particle of mass

m and charge q, Newton’s second law says

m
d~v

dt
= q~E0e

−iωt −mγ~v , (1)

where γ is a “viscous” damping rate in s−1. [This is plausible, but difficult to
calculate from first principles.] Plugging in a trial steady-state solution of the form
~v(t) = ~v0e

−iωt, we find that this will work if

~v0 =
q~E0

m(γ − iω)
. (2)

Conundrum: We are ignoring the effect of the concomitant magnetic field ~B ⊥
~v ‖ ~E, which will deflect the particles’ paths if they develop a significant speed;
with strong damping this effect is suppressed, but what happens if γ → 0?
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If there are N such particles per unit volume in that region, they form a current
density ~J = Nq~v. Thus Eq. (2) is equivalent to

~J =
q2N

m(γ − iω)
~E , (3)

which is just Ohm’s law, ~J = σ~E, if we define a complex conductivity

σ =
q2N

m(γ − iω)
. (4)

This is the frequency-dependent version of Drude theory.

For a good conductor like copper, γ ∼ 1013 s−1, ensuring that σ is pure real
up to frequencies ω ∼ 1013 s−1, i.e. in between the microwave and infrared ranges.

However, in a tenuous plasma where the charged particles almost never collide,
γ vanishes and σ is pure imaginary (there are no resistive losses). We will look at
this case in some more detail.
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EM Waves in a Plasma

In a thin plasma (γ → 0) we can write Eq. (4) as

σ = iε0
ω2

p

ω
where ω2

p ≡
Nq2

mε0
≡ (plasma frequency)2. (5)

Assuming ε ≈ ε0 and µ ≈ µ0 (as seems reasonable for a near vacuum) this gives a
complex wavevector (squared) of

k̃2 = µεω2

(
1 +

iσ

εω

)
≈ 1

c2

(
ω2 − ω2

p

)
(6)

Thus for ω < ωp there is no propagating wave in the plasma, and (since there is also
no dissipation mechanism) the plasma is a perfect reflector for low frequencies.
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Equation (6) predicts that for ω > ωp there is no κ (infinite ”skin depth”) — i.e.
the wave propagates freely.

But its propagation speeds are bizarre:

The phase or “wave” velocity vph and the group velocity vg behave as

vph ≡
ω

k
= c

(
1−

ω2
p

ω2

)−1/2

> c ; vg ≡
dω

dk
= c

(
1−

ω2
p

ω2

)1/2

< c (7)

respectively; vph diverges whereas vg → 0 as ω → ωp from above.

Remember, no actual information or energy moves at vph. However, it seems
peculiar to have even a phase velocity becoming infinite! This is analogous to the
apparent speed of a bright spot on the wall illuminated by a laser pointer: if I rotate
the source fast enough, the spot will “move” faster than c.
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Phase and Group Velocities

Plot of Eqs. (7).
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Looking at it another way

Going back to Eq. (1), and assuming no damping (γ → 0), we could just as well
solve for the steady-state position of the charged particle as a function of time,

~x = − q~E0

mω2
~E . (8)

where we measure ~x from the equilibrium position of the particle. Displacing a
charge produces an electric dipole moment ~p = q~x. If there are N such dipoles per
unit volume they form a polarization ~P = Nq~x. Thus Eq. (8) is equivalent to

~P ≡ χe
~E = −q2N

mω2
~E or ε = ε0

(
1 +

ω2
p

ω2

)
. (9)

(I think I lost track of a sign in there somewhere!)

You can think in terms of a frequency-dependent dielectric constant OR in terms of
an imaginary conductivity; but don’t try both at once!

(See what happens to k̃2 in Eq. (6) if you do.)
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The Ionosphere

What Is It?

• Ionization of upper atmosphere by the Sun’s ultraviolet

• Variation with Altitude A

. Variation of density with A

. Intensity of sunlight vs. A

. Layers

. Diurnal variations

. Plasma Frequency ωp(A)

Reflection of Radio Waves

• Single bounce

• Reflections off the ground

• The atmosphere as a waveguide
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Driving Bound Electrons

If our charged particle (e.g. an electron) is bound to some fixed equilibrium position

(a heavy nucleus will do) and driven by an oscillatory ~E,

m
d~x

dt
= q~E0e

−iωt −mγ
d~x

dt
−mω2

0

d2~x

dt2
(10)

for a damping rate γ and a resonant frequency ω0 of the particle in its local potential
well [almost always a good approximation for small displacements]. Plugging in
~x(t) = ~x0e

−iωt, we get

~x0 =
q/m

ω2
0 − ω2 − iγω

~E0 . (11)

Again we get a dipole moment ~p = q~x, and if there are N such dipoles per unit

volume, the polarization is ~P = Nq~x so Eq. (11) defines a complex susceptibility

χ̃e =
ω2

p

ω2
0 − ω2 − iγω

. (12)
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If we have an assortment of species, each with its own characteristic charge qj, mass
mj, number density Nj, plasma frequency ωpj

= Njq
2
j/mjε0, resonant frequency

ωj and damping rate γj, then

ε̃ = ε0

1 +
∑

j

ω2
pj

ω2
j − ω2 − iγjω

 . (13)

Recalling that k̃ = ω
√

µε̃ = k + iκ, if we assume µ ≈ µ0 and |χ̃e| � 1
so that

√
µε̃ =

√
ε0µ0(1 + χ e)1/2 ≈ 1

c

(
1 + 1

2χe

)
,

k̃ ≈ k0

1 +
1
2

∑
j

ω2
pj

ω2
j − ω2 − iγjω

 (14)

where k0 ≡ ω/c is the wavevector of a free plane wave at that frequency.
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. . . after some algebra. . .

We get an index of refraction

n ≡ ck

ω
≈ 1 +

1
2

∑
j

ω2
pj

(
ω2

j − ω2

(ω2
j − ω2)2 + γ2

j ω2

)
(15)

describing the phase velocity of the wave

and an absorption coefficient

α ≡ 2κ ≈ 1
c

∑
j

ω2
pj

(
γω2

(ω2
j − ω2)2 + γ2

j ω2

)
(16)

describing the attenuation of energy in the wave.
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