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Driving Free Electrons

At one position in space, a plane EM wave E’(:T:,t) = E’oei("“ﬁ_”t) produces an
oscillating electric field Ege . If at that position there is a free particle of mass
m and charge ¢, NEWTON’S SECOND LAW says

I
md—’;} = qEpe ™" —my7 , (1)

where v is a ‘“viscous’ damping rate in s 1. [This is plausible, but difficult to
calculate from first principles.] Plugging in a trial steady-state solution of the form

—

U(t) = vpe ™*, we find that this will work if

) E
Bo= — 0. (2)
m(y — iw)

Conundrum: We are ignoring the effect of the concomitant magnetic field B 1
U || E, which will deflect the particles’ paths if they develop a significant speed;
with strong damping this effect is suppressed, but what happens if v — 07
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If there are N such particles per unit volume in that region, they form a current
density J = Nqv. Thus Eq. () is equivalent to

2
N 5
1 E, (3)

J =
m(y — iw)

which is just OHM’S LAW, J = oE, if we define a complex conductivity

o= m(j iVzcu) ' (4)

This is the frequency-dependent version of DRUDE THEORY.

For a good conductor like copper, v ~ 10'3 s™1, ensuring that o is pure real

up to frequencies w ~ 10 s=1, i.e. in between the microwave and infrared ranges.

However, in a tenuous plasma where the charged particles almost never collide,
v vanishes and o is pure imaginary (there are no resistive losses). We will look at
this case in some more detail.

Jess H. Brewer, UBC Physics 401 4



EM Waves in a Plasma

In a thin plasma (v — 0) we can write Eq. (4] as

where W

€ "BEM

(plasma frequency)?. (5)

Assuming € = €y and p ~ g (as seems reasonable for a near vacuum) this gives a
complex wavevector (squared) of

~ 10 1
k’2 = ,LLECU2 (1 + a) ~ ? (w2 — wg) (6)

Thus for w < w,, there is no propagating wave in the plasma, and (since there is also
no dissipation mechanism) the plasma is a perfect reflector for low frequencies.
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Equation (b)) predicts that for w > w, there is no x (infinite "skin depth”) — i.e.
the wave propagates freely.

But its propagation speeds are bizarre:

The phase or “wave” velocity v, and the group velocity v, behave as

o\ —1/2 o\ 1/2
vn="2—cl1-22 > C; oA |2 < (7)
S e R "

respectively; vpy diverges whereas v, — 0 as w — w,, from above.

Remember, no actual information or energy moves at v,,. However, it seems
peculiar to have even a phase velocity becoming infinite! This is analogous to the
apparent speed of a bright spot on the wall illuminated by a laser pointer: if | rotate
the source fast enough, the spot will “move” faster than c.
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Phase and Group Velocities
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Looking at it another way

Going back to Eq. (1)), and assuming no damping (v — 0), we could just as well
solve for the steady-state position of the charged particle as a function of time,

FEq -

mw?

where we measure @& from the equilibrium position of the particle. Displacing a
charge produces an electric dipole moment p = qx. If there are N such dipoles per
unit volume they form a polarization P = Nq&. Thus Eq. (I) is equivalent to

P=yFE = 4 SE or € = <1+ 2) : (9)
mw w

(I think | lost track of a sign in there somewhere!)

You can think in terms of a frequency-dependent dielectric constant OR in terms of
an imaginary conductivity; but don’t try both at once!

(See what happens to k2 in Eq. (6]) if you do.)
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The lonosphere

What Is It?

e lonization of upper atmosphere by the Sun's ultraviolet
e Variation with Altitude A

> Variation of density with A
Intensity of sunlight vs. A

>

> Layers
> Diurnal variations
>

Plasma Frequency w,(A)

Reflection of Radio Waves

e Single bounce
e Reflections off the ground

e The atmosphere as a waveguide
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Driving Bound Electrons

If our charged particle (e.g. an electron) is bound to some fixed equilibrium position
(a heavy nucleus will do) and driven by an oscillatory FE,

dz 2%

di —wt
dt O qt2

(et — qE’oe — myy

= (10)

for a damping rate v and a resonant frequency wq of the particle in its local potential
well [almost always a good approximation for small displacements|. Plugging in

—

T(t) = Zoe !, we get

, q/m =
= E,. 11
e wi — w? — iyw 0 (11)

Again we get a dipole moment p = &, and if there are N such dipoles per unit

volume, the polarization is P = Nqx so Eq. ((11)) defines a complex susceptibility

w2

= p | 12
X Wi — w? — iyw (12)
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If we have an assortment of species, each with its own characteristic charge g;, mass
m;, number density N;, plasma frequency wy, = Nj;q;/mjeo, resonant frequency
w; and damping rate v;, then

w2

€ = € 1+Zw2 £ . . (13)

(92 :
Wi~ W =W

Recalling that k= wy/pe =k + ik, if we assume & g and x| < 1

so that /ué = /éopo(1 ‘|' X 6)1/2 (1 + %Xe)'

kako | 145 Zw —wQ—Ww (14)

where kg = w/c is the wavevector of a free plane wave at that frequency.
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. . . after some algebra. . .

We get an index of refraction

2 2

w — W
E—N].

describing the phase velocity of the wave

and an absorption coefficient

1 Yw?
o= 2K~ — w2
C Z Pj ((w? —w?)? + 7?w2>

J

describing the attenuation of energy in the wave.
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