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The Retarded Potential Revisited

Aµ(~r, t) =
µ0

4π

∫∫∫
Jµ(~r′, tr)dτ ′

R
(1)

where tr ≡ t− R

c
is the retarded time and ~R ≡ ~r − ~r′ so that

R =
√

r2 + r′2 − 2~r · ~r′ = r

[
1 +

(
r′

r

)2

− 2
(

r̂ · ~r′

r

)]1/2

.

Equation (1) is exact, but (as we have seen) difficult to use. Let’s see if we can
simplify it using some approximations.
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Far Field approximation

Approximation 1: r′2 � r2 (“Far Field approximation”)

Then R ≈ r

[
1− 2

(
r̂ · ~r′

r

)]1/2

≈ r

[
1−

(
r̂ · ~r′

r

)]
(2)

and
1
R
≈ 1

r

[
1− 2

(
r̂ · ~r′

r

)]−1/2

≈ 1
r

[
1 +

(
r̂ · ~r′

r

)]
(3)

so tr ≈ t− r
c + r̂·~r′

c . We then expand Jµ(~r′, tr) as a Taylor series about t0 ≡ t− r
c,

the retarded time at the origin:

Jµ(~r′, tr) ≈ Jµ(~r′, t0) + J̇µ(~r′, t0)
(

r̂ · ~r′

c

)
+ J̈µ(~r′, t0)

(
r̂ · ~r′

c

)2

+ · · · (4)
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Slow approximation

Approximation 2: r′ � λ = 2πc
ω (“Slow approximation”)

[The source region changes slowly compared with the time light takes to cross it.]

Then we can neglect all but the first time derivative in the Taylor expansion (4)1

and plug (3) and (4) back into (1) to get

Aµ(~r, t) ≈ µ0

4π r

∫∫∫ [
Jµ(~r′, t0) + J̇µ

(
~r′, t0

) (
r̂ · ~r′

c

)] [
1 +

(
~r · r̂′

r

)]
dτ ′ . (5)

Neglecting terms higher than first order in r′, we get

Aµ(~r, t) ≈ µ0

4π r

∫∫∫ {
Jµ(~r′, t0) + Jµ(~r′, t0)

(
r̂ · ~r′

r

)
+ J̇µ(~r′, t0)

(
r̂ · ~r′

c

)}
dτ ′ .

(6)

OUTLINE

1 Griffiths acknowledges that this is not entirely obvious. Me too.
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For the zeroth component (A0 ≡ V/c and J0 ≡ cρ), the first term in Eq. (6)
integrates to the total charge Q at time t0 (or any other time, since Q is conserved):

V (~r, t) ≈ 1
4πε0 r

{
Q +

r̂

r
·
∫∫∫

ρ(~r′, t0)~r′dτ ′ +
r̂

c
· ∂

∂t

∫∫∫
ρ(~r′, t0)~r

′ dτ ′
}

(7)

where r̂ and ∂
∂t have been brought outside the integral since they don’t depend on

~r′. Both remaining integrals are equal to the overall dipole moment ~p at time t0,
leaving

V (~r, t) ≈ 1
4πε0

{
Q

r
+

r̂ · ~p(t0)
r2

+
r̂ · ṗ(t0)

r c

}
(8)

in which the first and second terms are just the static potentials of the net monopole
and dipole moments of the charge distribution. The last term is the main actor!

“Similar arguments” (mercifully omitted) give the vector potential:

~J(~r, t) ≈ µ0

4π

ṗ(t0)
r

. (9)
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The Radiation Fields

It remains to take the required derivatives to get ~E and ~B.

Approximation 3: Discard
1
r2

terms in ~E and ~B. (“Radiation approximation”)

We do this because ~S ≡ ~E× ~B/µ0 drops off as r−4 for products of such terms, and
where we are going (the “Radiation Zone”) they will be negligible.2 The results
(skipping some relatively straightforward algebra) are:

~E(~r, t) ≈ µ0

4π r
{r̂ × [r̂ × p̈(t0)]} ~B(~r, t) ≈ − µ0

4π r c
[r̂ × p̈(t0)] , (10)

giving ~S(~r, t) ≈ µ0

16π2 c

(
|r̂ × p̈(t0)|

r

)2

r̂ . (11)

OUTLINE

2 There can also be cross terms that drop off as r−3, but they (and other features of the “Near Field Zone”) are
painfully complicated and not usually of interest. The radiation fields are hard enough!
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Radiated Power

If we integrate Eq. (11) over a sphere at r we obtain the total radiated power:

P (t) ≡
∫∫∫

~S(~r, t) · d~a ≈ µ0 |p̈(t0)|2

6π c
. (12)

where the time at which p̈ is evaluated still has to be earlier than “now” (t) by the
time it took the light to travel from the source out to “here” (r).3

Let’s relate this back to the simple case of an accelerating point charge q: since
(relative to the origin) ~p = q~r′, it follows that p̈ = qr̈′ ≡ q~a where ~a is the
acceleration of the charge. We can therefore write Eq. (12) as

P (t) ≈ µ0 q2 |~a(t0)|2

6π c
Larmor formula. (13)

The conclusion that accelerated charges radiate is utterly incompatible with the
stability of atoms! We had to invent Quantum Mechanics to fix this problem.

OUTLINE

3 Good thing we chose a sphere to integrate over, eh?
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Relativistic Radiation

Equation (13) is the famous Larmor formula for radiation by an accelerated charge.
It is strictly valid only in the frame where the particle is (or, more accurately, was)
instantaneously at rest at time t0.

However, by performing the right Lorentz transformation into the frame where q
has a velocity ~v, one can obtain Liénard’s generalization which is valid even for
ultrarelativistic particles:

P (t) ≈ µ0 q2 γ6

6π c

(
a2 − |~v × ~a|2

c

)
Liénard’s generalization. (14)

Here we must still evaluate ~a, ~v and γ ≡ 1√
1− v2

c2

at the retarded time t0,

but only if we are being rigourous about what we mean by “now”.

Relativistic motion of q distorts the angular distribution of the radiated power from
the static “donut” shape to one in which the “sides of the donut” are swept forward.
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Angular Distributions

Equation (11) can be rewritten in terms of the acceleration ~a as

~S(~r, t) ≈ µ0q
2

16π2 c

(
|r̂ × ~a(t0)|

r

)2

r̂ . (15)

Applying Lorentz transformations to this distribution gives

for ~v ‖ ~a :
dP

dΩ
≈ µ0q

2a2γ6

16π2 c

sin2 θ

[1− (v/c) cos θ]5
(16)

where θ is measured relative to the direction of motion, and

for ~v ⊥ ~a :
dP

dΩ
≈ µ0q

2a2γ6

16π2 c

[(v/c)− cos θ]2

[1− (v/c) cos θ]5
(17)

where θ is the angle between ~a(tr) and ~v(tr).
OUTLINE
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Equation (11) describes the distribution
of radiation from an accelerated charge
with instantaneous velocity ~v = 0:

Equation (16) describes the distribution
of Bremsstrahlung radiation:

Equation (17) describes the distribution
of Synchrotron radiation:
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Synchrotron radiation losses were a limiting factor for the Large

Electron-Positron (LEP) synchrotron at CERN, which collided e+

with e− beams at energies of 90 Gev, and was the largest

synchrotron accelerator in the world. The main ring tunnel has

a circumference of 26.67 km. It now houses the Large Hadron

Collider (LHC) which is scheduled to produce colliding beams of

7 TeV protons starting in 2007. (Synchrotron radiation is much

less of a problem for the heavy protons.)

The DORIS synchrotron at

the DESY laboratory in

Germany uses synchrotron

radiation from 4.5 Gev

electrons as a sensitive probe

of biological and solid state

materials.
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http://www.hep.ucl.ac.uk/~jpc/all/ulthesis/node15.html
http://lhc.web.cern.ch/lhc/
http://doris.desy.de/
http://www.desy.de/html/home/index_eng.html


The Canadian Light Source (CLS) synchrotron in Saskatoon, SK:
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