
Lecture # 2

– “TOOLKIT” for Electrostatics:

Electrostatics and Conductors

Equations of Poisson & Laplace

Method of Images

Multipole expansions

– ... for Magnetostatics:

The Vector Potential A

Multipole expansions

. . .

● Logistics & Leftovers: WebCT ?

● Review of Electrostatics & Magnetostatics, cont'd
– Coulomb's (↔ Gauss') Law & Biot-Savart (↔ Ampère's) Law



Conductors & Electrostatics
J = σE  until charge redistributes itself to cancel out  E .   Consequently

E = 0  inside a conductor.   Since  E = −     V,   V = const.  in a conductor.  

By Gauss' law,  if  E = 0  then   ρ = 0   as well.   All charges go to surfaces. 

At any interface,   Eabove –  Ebelow = σ          (σ = surface charge density)‡.    

Just outside a conductor,    E  = 0  &   Eσ .  

Thus the surfaces of conductors are key boundaries between regions where 
(usually) Laplace's equation                applies.    See next page.

Note:  all the above assumes electrostatics (no steady currents applied)!  
‡ Notational ambiguity:  σ  the surface charge density  vs.  σ  the conductivity! 



Solutions to Laplace's
 Equation:

In general,   

(Poisson's equation)    
but most practical problems 
involve free space, dielectrics or 
conductors, where  ρ = 0  in the 
regions of interest.

We solve the differential equation 
by separation of variables in an 
appropriate coordinate system, 
then try a linear combination of all 
the (finite variety of) solutions in 
that geometry, using the 
equipotentials of conducting 
surfaces as boundary conditions.  



Method of Images
If a combination of the field due to real charges and that due to 
“pretend charges” inside the conductor would give a new field that is 
everywhere perpendicular to the surface of the conductor (making 
that surface an equipotential), then that is the field in the region 
outside the conductor.   (Uniqueness theorem) 

Not a useful “brute force” technique, but great for “tricks”!

Examples:  

Point charge beside a conducting plane

Point charge beside a conducting sphere



The Vector Potential

Just as we set  E = −     V , we can express  B  as the curl of a vector 
potential A:   B =     x A .   Plugging this into Ampère's law yields  
2A = - µ0 J  +    x (    • A) .   We can always choose       • A = 0   to make 
that last term go away, leaving    2A = - µ0 J ,   which (by analogy with 
Poisson's equation for  V ) has the general solution        



Multipole Expansions

When the test point at  r  is far away and the source region (the range of  r' ) is 
tiny by comparison  (r'  r)  we can treat the source region as “the origin” and 
expand the potentials in powers of  (r'/r),  yielding for the   scalar 
(electrostatic) potential 

and for the   vector (magnetostatic) potential

where   Pn(cos θ' )   are  Legendre polynomials.  


