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Experiment 6

Magnetic Resonance Imaging in 1
Dimension

Disclaimer: It is absolutely essential that the student read and understand the previous erperiment on nu-
clear magnetic resonance before proceeding with magnetic resonance imaging. The physics of resonance and
relazation of free protons in a DC magnetic field will be assumed knowledge in the following discussion.

6.1 Frequency Encoding by NMR

Medical diagnostic imaging is a branch of applied physics that has experienced explosive growth in the past
two decades. The growth has been fueled by many recent developments in electronics and of course very
lucrative financial incentives. However, it must be noted that much of the success of medical diagnostic
imaging is built upon a solid foundation of fundamental physics that has been understood for almost half a
century. Magnetic resonance imaging (MRI) is one such example, as it is a byproduct of research in nuclear
magnetic resonance.
To begin, recall that the fundamental resonance condition for free protons in a static homogeneous
magnetic field B2 is .
wo = | Bo| (6.1)
where v = 2.675 x 108 rad/sec T is the gyromagnetic ratio for protons. Application of a radio frequency
(rf) pulse with angular frequency w, can coherently move the spin population into an excited state. The net

magnetization M of that state can be measured as a function of time as it decays back to the ground state
while precessing at the Larmor frequency in the Ty plane.

[M(t)| ox et/ T2 (6.2)

This signal is referred to as a free induction decay (FID). The relaxation time T captures the physics of all
interactions which result in a loss of coherence within the spin system.

Now consider an extended inhomogeneous sample in one dimension with the spin density at the point 2
defined as p(z).

p(2)A

-
z

Figure 6.1: The density of an extended inhomogeneous sample in one dimension.
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If the sample is subjected to a static uniform magnetic field B_:,, then all spins in the sample will resonate
at the same frequency and each point z in the sample will contribute to M an amount proportional to p(z).
However, if the sample is subjected to a static field of the form

B = (B, +Gz)3 (6.3)
where B, and G are constants, then the resonance condition will vary linearly across the sample.
Wresonance = ’Y(Bo + GZ) (64)

The similarity of Eqns. 6.3 and 6.4 is very suggestive; if one can instantaneously excite the entire sample
with a single rf pulse, then the ensuing relaxation of M (t) will be a composite of contributions from all parts
of the sample precessing at different frequencies, and the magnitude of the contribution at each frequency
will depend upon the local spin density at a single point in the sample.
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Figure 6.2: The power spectrum obtained from a sample subjected to a static field of the form Eqn. 6.3 and
a broadband rf signal. The mapping wyesonance — 2 shows that p(z) «x Power(wresonance (2))-

Therefore, the power spectrum (magnitude squared of the Fourier transform) of the precession signal
M (t) will be a 1:1 mapping of the spatial distribution of spins in the sample. Imaging by this means is
referred to as frequency encoding - the condition for NMR allows one to convert position into frequency and
spin density into power. By measuring power as a function of frequency, one then obtains density as function
of position.

6.2 Signal Processing Considerations

Now that the essential physics has been explained, one must deal with the practical issues of generating an
image. In particular, two key criteria must be considered:

e The entire sample must be visible within the field of view (FOV). Any apparatus will only be capable
of measuring frequencies over a finite bandwidth. Therefore, the gradient G and static field B, must
be selected such that the resonance frequency on one extreme of the sample will be no less than the
minimum observable frequency wy,;», and the resonance frequency on the other extreme will be no
more than the maximum observable frequency wy,qz-

e The resolution of the apparatus must meet the specifications for the task at hand. In this particular
experiment, this means applying a sufficiently strong gradient G such that the signals from spatially
separated spin populations do not overlap in the power spectrum.

These criteria will be the guiding principles upon which experimental parameters will be based.
To begin, one must first determine how to extract frequency information using the NMR, spectrometer
in the Physics 409 laboratory without a gradient field. During an NMR experiment one typically examines
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Figure 6.3: An NMR signal from the spectrometer tuned on resonance. The power spectrum of this signal
yields no frequency information because the mixer moves the resonance to w = 0.

the output of the mixer, and that signal will oscillate at the difference frequency between the applied rf
pulse and the resonance frequency of the spin system, ws = |w, — wy¢|. For convenience, one often tunes the
system until w, = w,¢, and then the output of the mixer will be zero.

However, this is not an appropriate strategy for MRI because having the system on resonance effectively
nulls any frequency information. Instead, consider the FID as measured by a system slightly off resonance:
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Figure 6.4: An NMR signal from the spectrometer tuned slightly off resonance. The power spectrum of this
signal now has a fully resolved peak at the beat frequency of the mixer signal, ws.

By tuning slightly off resonance, one can see the entire spectrum associated with a FID signal - it is
typically Gaussian in shape with a characteristic width AW because of variations in the static field B, and
the random nature of spin-spin interactions that change the resonance frequency on a local level.

Now consider a sample which has nonzero spin density at only two points z; and z2.

p(2) = po{d(z — 21) + 6(z — 22)}
With only the field B, present, each spin population will resonate at the same frequency and Fig. 6.4 will be

very representative of the measured FID. However, if one supplies a gradient G then the spatially separated
spin populations will resonate at frequencies w; and ws, respectively, as determined from Eqn. 6.4.

P(w) = Po{6(w —w1) + 6(w — w2)}

Furthermore, the spectral features will be broadened by the same mechanisms responsible for the Gaussian
in Fig. 6.4. Let the Gaussian centred at frequency ws be denoted by F(w,ws). The power spectrum of the
spatially separated samples will then be a convolution of the Gaussian with the delta function frequency
responses of the sample.
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Figure 6.5: The power spectrum generated by a sample consisting of two spatially separated point-like spin
populations. The spectrum is a convolution of the delta function frequency response of the
sample and the Gaussian broadening by field inhomogeneities and spin-spin interactions.

Figure 6.5 indicates one of the key experimental limitations. In order to claim sharp resolution of the
sample in question, the difference in resonance frequencies Aw = ws — w; must significantly exceed the
Gaussian broadening of the signals; Aw > AW. This places a constraint upon the minimum allowable
gradient. By defining the lowest acceptable spatial resolution as Az,,q4; = 22 — 21, Eqn. 6.4 yields

Az ~— 6.5
Equation 6.5 suggests that one can obtain arbitrarily high spatial resolution Az — 0 by turning up G to
an arbitrarily large value. However, there is a limit imposed by the measurement electronics, and one must
choose G to satisfy the FOV criterion. In this experiment, a digitizing oscilloscope will be used to measure
the power spectrum. This device will have a sampling frequency Fs and corresponding Nyquist limit

F,
FNyquist = ?8 (66)

The values of G and w,;y must be chosen such that the measured resonance frequency at any point in
the sample after mixing Wmeqsured = |Wresonance — Wr| does not exceed 2w Fnyquist (Assume that B, is not
a variable - leave it fixed at the value of ~0.36 T used for the NMR experiment). One can use the gradient
term in Eqn. 6.4 to establish the size of the FOV from the Nyquist frequency:

2 F uis
FOV = % (6.7)

Therefore, setting the size of the FOV equal to the width of the region to be probed determines G.
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Finally, one must then ensure that the resolution criterion given by Eqn. 6.5 is also satisfied by the value
of G derived above. In this case the limiting quantity will be the digital sampling interval Ty, = 1/F;. To
unambiguously resolve the difference in frequency between two sine waves, one of the waves must have a
period at least 2T, shorter than the other.

wmeasured(z + Az) - wmeasu'red(z) — 1
2 2T
e
Az = 6.8
z YGT (6.8)

To summarize, if one knows the sampling rate of the measurement system and the size of the sample to
be probed, then the gradient can be chosen via Eqn. 6.7 and the theoretical resolution can be obtained from
Eqn. 6.8. If the resolution surpasses the maximum acceptable value from Eqn. 6.5, then the performance of
the imaging system can be deemed satisfactory.

6.3 Apparatus

The MRI experiment uses the NMR apparatus discussed in the previous chapter, but an additional set of
coils for generating a gradient field along the 2 direction must be included. The additional coils are operated
with the electrical current traveling in opposing directions in the two windings, and this configuration is
referred to as a Mazwell pair. The student is asked to calculate the theoretical gradient given that the elements
of the Mazwell pair have 100 windings each, are d = 5.8 cm apart, and have radii of 9.25cm. Determine G
for currents ranging from 0 to 10 A.

A Tektronix model 360 digitizing oscilloscope will be supplied for this experiment. This device has a
built-in power spectrum function and a floppy drive for exporting either data or images. Keep in mind that
the power spectrum function displays the amplitude data on a logarithmic scale (dB), and so the width of
peaks must be gauged from the -3dB points. Manuals will be provided with the oscilloscope and they will
be necessary to quantify the performance of the device.

6.4 Samples and Data Analysis

A special ceramic sample vial that has two bores separated by roughly 3.3mm will be found with the
apparatus. A very small drop of glycerin has been injected into each bore. Treat this sample as the idealized
spatially separated spin populations discussed previously.

Begin the experiment with the gradient field turned off. Locate the resonance frequency w, and adjust
the oscilloscope scale to fully resolve a FID from a roughly /2 pulse. Detune the oscillator from resonance
by roughly 30 £H z to obtain a usable mixer signal. Note that the amount of detuning may need adjustment
once the gradient is applied - one cannot discern the sign of wyeqsured = |Wresonance — Wrf|. An optimized
system will have a resonance corresponding t0 Wieqsureda = 0 on one extreme of the sample and wWresonance <
27 FNyquist on the other extreme.

The m/2 pulse used to excite the spin system previously should be able to excite the spin populations in
both samples with the gradient field turned on. Even though the continuous wave rf field has one specific
frequency, the finite duration pulse will have a broad power spectrum. It is recommended that the student
measure the duration of the w/2 pulse supplied to the rf coils and to measure its power spectrum. Note that
the Fourier transform of a finite duration pulse is an elementary problem that the student has most likely
encountered in either a mathematical physics or optics course.

Since the spatial separation of the spin populations is known, one can use this information and the
observed difference in resonance frequencies, Aw in Fig. 6.5, to calculate the gradient G. Compare with the
results from a theoretical expression for the gradient. Once the gradient calibration has been completed, it
should be possible to attempt to extract shape information from the measured intensity profile.
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Figure 6.6: The central core of the MRI apparatus, showing how the gradient coils are oriented with respect
to the rf transmitters and receiver.
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