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Experiment 1

Electromagnetic Skin Depth of Metals

1.1 Introduction

It is common knowledge that electromagnetic radiation does not pass easily through a metal. The electric
field associated with the wave generates relatively large currents in the metal which flow in such a way as
to shield the metal interior from the radiation. It is the purpose of this experiment to examine the so called
‘skin depth’ problem quantitatively.

Metals typically do not strongly attenuate AC magnetic fields in the frequency range 0 — 10° Hz. In fact,
this magnetic shielding effect does not become important for ordinary metals for frequencies less than ~ 10°
Hz. The shielding effect that is typically discussed in connection with low frequency and radio frequency
circuits is electrostatic shielding, which is due to surface charges which are induced on any closed metal
object located in an electrostatic field.

1.2 The Skin Depth Problem

Let a metal cylinder be immersed in a uniform magnetic field which is varying with time as e*!. The
magnetic field is parallel to the cylinder axis and this direction is taken to be the z direction of a system of
polar co-ordinates, as seen in Fig. 1.1. The cylinder is hollow and has an outer diameter 2R, and an inner
diameter 2R;. The problem is to calculate the amplitude and phase of the magnetic field everywhere inside
the cylinder.
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Figure 1.1: The geometry used in the cylindrical skin depth problem.

One always begins this sort of problem by invoking Maxwell’s equations (in SI units):
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V x j—l—eat (1.2)
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V-H=0 (1.4)

where it has been assumed that the relation between B and H can be written B = pH The problem
presented here has cylindrical symmetry so both Eand H depend only upon the radius . Moreover, H has
only one component, H= H,. This component does not depend upon 2, and so the condition V - H=0is
satisfied.

Tt is easy to apply Eqn. 1.1 to a ring of radius r and thickness dr (see Fig. 1.1) if the equation is written
in integral form and one employs Stokes’ theorem:

I d -
E.-ds=— —//H-dS
ﬁ i A

By appropriate integration over the complete contour C' and area A one obtains the following result:

2m(r + dr)Eg(r + dr) — 2nrEg(r) = —/,L% (27rr - dr - Hz(r))

27rdi(rE9) pj (27rrH (r ))

It will be assumed that all quantities vary with time like e**. One can now use this explicit time

dependence.

1d
;d—(rEg) wwH, (1.5)

Similarly, from Eqn. 1.2 and the rectangular closed contour shown in Fig. 1.2,

Closed Contour

r r—+dr

[

Figure 1.2: A rectangular closed contour.

dH, )
prai —Jjo + weky (1.6)
Equations 1.5 and 1.6 can be combined to give an expression for Fy:
drld
rE ] 2By = —spwj 1.
[ (rE)] + enw® By = —pojs (L.7)
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For_’an isotropic metal, one can typically relate current and electric fields using Ohm’s law in the form
j = oE, where o is the (assumed scalar) conductivity of the material. Upon substituting and rearranging,
one obtains the following: p p
%[%%(TEg)] + pw(ew +10)Eg =0 (1.8)

At sufficiently low frequency, € is related to the polarizability of the material, hence it is proportional to
the amount of bound charge within the system. On the other hand, ¢ is proportional to the amount of free
charge. If free charge dominates the electromagnetic response (metallic behaviour), then one can assume
that ew < o and ignore the bound charge response. In this regime, Eqn. 1.8 becomes

drld
~\|Z=2(rE Ey = 1.
dr [r dr (r 0)} +wpoky =0 (1.9)
which will have two distinct types of solutions outside (o = 0) and inside (¢ # 0) the metal.
e Vacuum (o = 0)

Eqn. 1.9 will have the following simple solution:
A,r &

2+r

Ey(r) = (1.10)
where A, and B, are constants to be determined by boundary conditions. One can now solve for the
magnetic field outside of the metal by using Eqn. 1.5.

A
H. (vacuum) (1) = W—ZJ = constant (1.11)

Therefore, if a magnetic field H = H,3 exists outside of the cylinder, then the field inside the hollow of
the cylinder will have a constant amplitude given by Eqn. 1.11. Note that A, can be a complex quantity,
thus allowing for both attenuation of the amplitude and a phase shift relative to H outside of the cylinder.
e Metal (o # 0)

For this case, Eqn. 1.9 is a particular form of Bessel’s equation. In order to place Eqn. 1.9 into a more
standard form, it shall be necessary to make a change of variables. Let

V=T Iwpo = 4/ %r(z + 1) =kor(z+ 1)
Substituting into Eqn. 1.9 then gives

d’Ey 1dE, 1
— 1—-—|Ey = 1.12
dv? +Udv+( vz) 6 =0 (1.12)

which is Bessel’s equation of order 1 whose solutions are designated Ji(z) and Y;(z). The general solution
is then

where A,, and B,, are constants to be determined by the boundary conditions. The magnetic field inside
of the metal can be obtained from Eqn. 1.5 and the recurrence relation for derivatives of Bessel functions:

dJm m
& = I E) = ()
from which it follows that Folo 4 1)
o(2 +
Hz(metal) = WT(AmJO(U) + Bm%(v)) (114)

Now that expressions for the magnetic field both inside and outside of the metal have been obtained,
one can return to the original task - to determine the attenuation and phase shift of the field H; inside of
the cylinder with respect to the applied field H, outside of the cylinder. Given that H, must be continuous
across the vacuum-metal interfaces, one can determine expressions for the constant fields H; and H, by
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evaluating Eqn. 1.14 at radii R; and Rs, respectively. Let v1 = k,R1(1 + 1) and v = ko,R2(z + 1) and then
determine the ratio « = H;/H,:

_ Hi _ Jo(v1) + (Bm/Am)Yo(v1)
T H, T Jo(wa) + (B /Am)Yo(v2) (1.15)

Finally, the ratio By, /A, can be rewritten by invoking the integral form of Eqn. 1.1 and using a circle

of radius R; in the (r,0) plane.
I d I
]{ E-ds:—,u—// H-dS
c dt JJa

d
2n Ry Bp(Ry) = —p (waHi)

Upon substituting Fy from Eqn. 1.13 and H; from Eqn. 1.14, both evaluated at radius R;, one can solve
for By, /Am.
_ (koR1/2)(2 + 1)Jo(v1) + J1(v1)
Yi(v1) + (koR1/2)(2 + 1)Yo(v1)
Substituting Eqn. 1.16 into Eqn. 1.15 then yields a complete expression for the complex attenuation
coefficient a.

By /Am =

(1.16)

Jo(’Ul)Y]_(’U]_) - Jl(vl)%(vl)
(Jo(v2)Y1(v1) _ J1(01)Yo(1)2)) + (koR1/2) (2 + 1)(J0(U2)Y0(U1) - JO(’Ul)YO(’UZ))

o=

(1.17)

In principle, the skin depth problem for a hollow circular cylinder has been solved. Given the dimensions
of the pipe and the conductivity of the metal, the quantities k,, v; and vo are known. With modern software
it is a relatively simple matter to use Eqn. 1.17 in its present form, however it shall be instructive to take a
high frequency limit using limiting forms for the Bessel functions. In the limits |2| — oo and |Arg[z]| < ,

Im(2) = \/2/mzcos(z —mm /2 — w/4)

Y (2) = \/2/7zsin(z — mm /2 — 7 /4)

In this asymptotic limit, which corresponds to k,R;, k, Ry — 00, the attenuation coefficient becomes

R2 e(l—l)ko(Rz—R1)
24/ == 1.1
TN R TH (1 - koRy /2 (H18)

which can be rewritten in terms of a polar quantity o = pe*® as follows:

—ko(R2—R1)
p=o B2 (1.19)
Ri \/1+ koR: + K2R3/2
— koRl
¢ = ko(Rz — R]_) + arctan(m) (120)

Eqns. 1.19 and 1.20 are accurate to ~ 1% for k,R; > 5.

Thus an explicit theoretical expression for the complex attenuation coefficient for a cylindrical geometry
has been constructed. However, Eqns. 1.19 and 1.20 do not yield a simple physical interpretation. For this
purpose, the student is asked to solve a simpler problem in which a magnetic field H = H,3 is oriented
parallel on one side of an infinite plane metal slab of thickness d, as shown in Fig. 1.3.

The student should be able to demonstrate that the magnetic field on the opposite side of the slab is

Al = H,et- ke
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3
H=H.3z
A X
Y
H =2

Figure 1.3: The skin depth problem for an infinite slab of metal.

and then one can easily recognize that 6, = 1/k, is the lengthscale over which a magnetic field is extinguished
by a factor of e~ by a metallic conductor. The lengthscale &, is known as the skin depth and is intimately

linked to the conductivity of a metal.
[ 2
0o =4/ — (1.21)
wpo

Though the infinite slab problem provides a more direct means of interpreting the relation between a
complex attenuation coefficient in terms of the skin depth, there are practical difficulties which make the
cylindrical geometry easier to implement. The student is asked to consider those practical difficulties that
would be encountered if one attempted to implement an infinite slab version of the skin depth experiment.

1.3 Experiment

A coil approximately 6” long, 2” in diameter and wound with approximately 10 turns/cm is connected in
series with a 50  resistor to a HP 3324 A synthesizer. This system is used to generate alternating magnetic
fields over the frequency range 100 Hz to 40 kHz. It is worthwhile to roughly calculate the frequency
response of this LR circuit. If one includes stray capacitance, what will happen to the frequency response
of the circuit?

A pickup coil of approximately 200 turns of #38 Formez insulated copper wire has been wound on a
3/8” diameter nylon rod to probe the field in the primary coil. The small EMF generated by the pickup
coil is amplified and then displayed on a Textroniz 2232 digital storage scope. A LabView-based program,
C:\Physics 352\Skin Depth.exe, is used to input the data from the scope to the PC via an IEEE-488
bus. The program will guide you through the data collection process.

The object of the experiment is to measure the phase and amplitude of the alternating magnetic field
inside a metal pipe relative to the field outside of the pipe. Thus you will need to perform measurements
both with and without the metal pipe present. The data are to be compared with the high frequency
approximation for a via Eqns. 1.19 and 1.20.

To begin, use either an aluminum or copper pipe. Locate reasonable conductivity values in a reliable
reference and then fit the data to the model to determine an experimental measure of . How well does the
skin depth model work?

Now repeat the experiment using a steel pipe. Note that the magnetic shielding has improved consid-
erably, however the skin depth model is incapable of fitting the data very well. Why does steel behave so
differently than the metals studied previously?
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Figure 1.4: A block diagram of the skin depth apparatus.

1.4 Selected References

Griffiths, David J. Introduction to FElectrodynamics. Prentice Hall Press,

Englewood Cliffs USA, 1989.

Weast, Robert C. (ed.) CRC Handbook of Chemistry and Physics. CRC Press,

Boca Raton USA.



