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Chapter 19

Ampère’s law

With vector calculus firmly under our
belts (?) we are now ready to tackle Ampère’s

law, right?

19.1 Integral Form

Figure 19.1 A wire carrying a current I passes
through an arbitrary closed loop C, generating a
magnetic field ~B in the region around the wire.
At every point on C there is a path element d~ℓ
in the direction around the loop corresponding to
the direction the fingers of your right hand would
point if you grabbed the wire with your thumb
pointing along the current, and a magnetic field
~B in some direction (not necessarily the same di-

rection as d~ℓ).

If at each step d~ℓ around the path C in Fig. 19.1
we find the component of the magnetic field ~B
in the direction of d~ℓ, multiply the two, and add
up all the results for the whole loop, we get the

integral form of Ampère’s law:

∮

C

~B · d~ℓ = µ0I (1)

where µ0 = 4π × 10−7

Webers/(Amp·m) [or Newtons/Amp2, or Hen-
ries/m, or Tesla·m/Amp, or Volt·s/(Amp·m)] is
the permeability of free space.1

Figure 19.2 By symmetry, a wire carrying a cur-
rent I generates a magnetic field ~B that forms
circular loops centered on the wire at every radius
r.

In cases where the direction of ~B at every point
along the path C is not known, this form is
pretty useless for practical calculations. But
the law of Biot & Savart tells us that the
contribution to ~B from each element of current
is always perpendicular to the current and pro-
portional to the inverse square of the distance

1What can I say? Electromagnetic units are weird!
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from that current element; so symmetry de-
mands that a “line of ~B” forms a circular loop
centered on the wire, as shown in Fig. 19.2,
and that its magnitude is the same everywhere
around that loop. So we simply pick such a
loop of radius r as our path C, and the path
integral on the left side of Eq. (1) becomes just

∮

C

~B · d~ℓ = 2πrB

giving

B(r) =
µ0I

2πr
(2)

as we found in the earlier Exercise.

19.2 Differential Form

We can apply Stokes’ theorem to the inte-
gral in Eq. (1) to get

∫∫

A

( ~∇×
~~B) · d~S = µ0I

and note that

I =

∫∫

A

~J · d~S

on the same surface A bounded by the path C
in Fig. 19.1. Therefore the integrands of the
two surface integrals must be equal:

~∇×
~~B = µ0

~J

or
~∇×

~H = ~J (3)

where ~J is the current density and we have
defined

~B = µ0
~H (4)

in free space. (In magnetic materials ~B = µ ~H
where µ is the magnetic permeability of the ma-
terial.) Equation (3) expresses the relationship
between the current density and the curl of
the magnetic field at any point in space. This
is pretty cool too!

But we have left something out. . . .

19.3 Displacement Current

Figure 19.3 A capacitor consists of two adjacent
plates of conductor separated by an insulator (e.g.
air). The plates are initially uncharged. If a cur-
rent begins flowing onto the left plate, it starts to
accumulate a positive charge; this attracts nega-
tive charges on the light plate, which must come
down the wire on the right (from “elsewhere”).
negative charges flowing to the left constitutes a
positive current to the right, so the current ap-
pears (at least initially) to pass through the ca-
pacitor, even though one plate is isolated from
the other. The surface charges produce an electric
field ~E between the plates (and a voltage V = Ed
where d is the distance between the plates). Since
E is proportional to the accumulated charge on
the plate, ∂E/∂t ∝ I.

James Maxwell reasoned that an application of
the integral form of Ampère’s law to find the
magnetic field encircling the wire far from the
capacitor was supposed to work for any surface
bounded by the path over which the line inte-
gral of ~B is evaluated, it should give the same
answer whether that surface is “punctured” by
the current or not.

Visualize, if you will, a soap bubble across the
blue loop shown in Fig. 19.3. The current I
clearly “punctures” that surface. Now blow to
the left through the blue loop and imagine that
the right plate of the capacitor somehow fails
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to pop the resultant bubble, so that the surface
bounded by the blue loop now passes between
the capacitor plates, where there are no moving
charges. What gives?

Let’s review the electric field between two ca-
pacitor plates: ByGauss’ law it’s constant far
from the edges, points from the + plate to the
− plate, and has a magnitude E = σ/ǫ0, where
σ = Q/A (the charge on one plate divided by
the area of the plate). Thus ǫ0E = D = Q/A
and taking the time derivative gives

A ·

∂D

∂t
=

∂Q

∂t
≡ I.

But since ~D is constant over the area A and
zero outside the capacitor, we can write this as

∫∫

A

∂ ~D

∂t
· d~S = I.

That is, a changing electric field is equivalent
to an actual current.

Maxwell called this surface integral of the
changing electric field a displacement cur-

rent after the name of ~D (the “electric dis-
placement”). It turns out (with a little more
rigorous derivation) to hold equally well for less
simple geometries, giving us Maxwell’s ex-

tension of Ampère’s law,

∮

C

~H · d~ℓ =

∫∫

A

(

~J +
∂ ~D

∂t

)

· d~S. (5)

which is equivalent to the differential version,

~∇×
~H = ~J +

∂ ~D

∂t
(6)
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