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The Exponential FunctionSuppose the newspaper headlines read, \The cost of living went up 10% this year." Can we translatethis information into an equation? Let \V " denote the value of a dollar, in terms of the \real goods"it can buy | whatever economists mean by that. Let the elapsed time t be measured in years (y).Then suppose that V is a function of t, V (t), which function we would like to know explicitly.Call now \t = 0" and let the initial value of the dollar (now) be V0, which we could take to be$1.00 if we disregard in
ation at earlier times.1Then our news item can be writtenV (0) = V0; whereas V (1 y) = (1� 0:1)V0 = 0:9V0:This formula can be rewritten in terms of the changes in the dependent and independent variables,�V = V (1 y)� V (0) and �t = 1y: �V�t = �0:1V0; (1)where it is now to be understood that V is measured in \1998 dollars" and t is measured in years.That is, the average time rate of change of V is proportional to the value of V at the beginning ofthe time interval, and the constant of proportionality is �0.1 y�1. (By y�1 or \inverse years" wemean the per year rate of change.)This is almost like a derivative. If only �t were in�nitesimally small, it would be a derivative. Sincewe're just trying to describe the qualitative behaviour, let's make an approximation: assume that�t = 1 year is \close enough" to an in�nitesimal time interval, and that the above formula (1) forthe in
ation rate can be turned into an instantaneous rate of change:2dVdt = �0:1V: (2)This means that the dollar in your pocket right now will be worth only $0.99999996829 in onesecond.Well, this is interesting, but we cannot go any further with it until we ask a crucial question: \Whatwill happen if this goes on?" That is, suppose we assume that equation (2) is not just a temporarysituation, but represents a consistent and ubiquitous property of the function V (t), the \real value"of your dollar bill as a function of time.3Applying the d=dt \operator" to both sides of Eq. (2) givesddt  dVdt ! = ddt(�0:1V ) or d2Vdt2 = �0:1 dVdt : (3)1Since our dollar will be worth less a year from now, we should really call it de
ation!2The error introduced by this approximation is not very serious.3Banks, insurance companies, trade unions, and governments all pretend that they don't assume this, but they would allgo bankrupt if they didn't assume it.



2But dV=dt is given by (2). If we substitute that formula into the above equation (3), we getd2Vdt2 = (�0:1)2 V = 0:01V: (4)That is, the rate of change of the rate of change is always positive, or the (negative) rate of changeis getting less negative all the time.4 In general, whenever we have a positive second derivative ofa function (as is the case here), the curve is concave upwards. Similarly, if the second derivativewere negative, the curve would be concave downwards.So by noting the initial value of V , which is formally written V0 but in this case equals $1.00, andby applying our understanding of the \graphical meaning" of the �rst derivative (slope) and thesecond derivative (curvature), we can visualize the function V (t) pretty well. It starts out with amaximum downward slope and then starts to level o� as time increases. This general trend con-tinues indefinitely. Note that while the function always decreases, it never reaches zero. This isbecause, the closer it gets to zero, the slower it decreases [see Eq. (2)]. This is a very \cute" featurethat makes this function especially fun to imagine over long times.We can also apply our analytical understanding to the formulas (2) and (4) for the derivatives:every time we take still another derivative, the result is still proportional to V | the constant ofproportionality just picks up another factor of (�0:1). This is a really neat feature of this function,namely that we can write down all its derivatives with almost no e�ort:dVdt = �0:1V (5)d2Vdt2 = (�0:1)2 V = +0:01V (6)d3Vdt3 = (�0:1)3 V = �0:001V (7)d4Vdt4 = (�0:1)4 V = +0:0001V (8)...dnVdtn = (�0:1)n V for any n: (9)This is a pretty nifty function. What is it? That is, can we write it down in terms of familiar thingslike t, t2, t3, and so on?First, note that Eq. (9) can be written in the formdnVdtn = kn V; where k = �0:1 (10)A simpler version would be where k = 1, givingdnWdtn = W; (11)4A politician trying to obfuscate the issue might say, \The rate of decrease is decreasing."



3W (t) being the function satisfying this criterion. We should perhaps try �guring out this simplerproblem �rst, and then come back to V (t).Let's try expressing W (t), then, as a linear combination5 of such terms. For starters we will try a\third order polynomial" (i.e. we allow terms up to t3):W (t) = a0 + a1t + a2t2 + a3t3: ThendWdt = a1 + 2a2t + 3a3t2follows by simple \di�erentiation" [a single word for \taking the derivative"]. Now, these twoequations have similar-looking right-hand sides, provided that we pretend not to notice that termin t3 in the �rst one, and provided the constants an obey the rule an�1 = nan [i.e. a0 = a1, a1 = 2a2and a2 = 3a3]. But we can't really neglect that t3 term! To be sure, its \coe�cient" a3 is smallerthan any of the rest, so if we had to neglect anything it might be the best choice; but we're tryingto be precise, right? How precise? Well, precise enough. In that case, would we be precise enoughif we added a term a4t4, preserving the rule about coe�cients [a3 = 4a4]? No? Then how abouta5t5? And so on. No matter how precise an agreement with Eq. (11) we demand, we can alwaystake enough terms, using this procedure, to achieve the desired precision. Even if you demandin�nite precision, we just [just?] take an in�nite number of terms:W (t) = 1Xn=0 an tn; where an�1 = n an or an = an�1n : (12)Now, suppose we give W (t) the initial value 1. [If we want a di�erent initial value we can justmultiply the whole series by that value, without a�ecting Eq. (11).] Well, W (0) = 1 tells us thata0 = 1. In that case, a1 = 1 also, and a2 = 12 , and a3 = 12 � 13 , and a4 = 12 � 13 � 14 , and so on. If wede�ne the factorial notation,n! � n� (n� 1)� (n� 2)� (n� 3)� : : :� 3� 2� 1 (13)(read, \n factorial") and de�ne 0! � 1, we can express our function W (t) very simply:W (t) = 1Xn=0 tnn! (14)We could also write a more abstract version of this function in terms of a generalized variable \x":W (x) = 1Xn=0 xnn! (15)Let's do this, and then de�ne x � k t and set V (t) = V0 W (x). Then, by the Chain Rule forderivatives,6 dVdt = V0 dWdx dxdt (16)5\Linear combination" means we multiply each term by a simple constant and add them up.6The Chain Rule for derivatives says that if z is an explicit function of y, z(y), and y is an explicit function of x,y(x), then z is an implicit function of x and its derivative with respect to x is given bydzdx = dzdy � dydx :



4and since ddt(k t) = k, we have dVdt = k V0W = k V: (17)By repeating this we obtain Eq. (10). ThusV (t) = V0 W (kt) = V0 1Xn=0 (kt)nn! (18)where k = �0:1 in the present case.This is a nice description; we can always calculate the value of this function to any desired degreeof accuracy by including as many terms as we need until the change produced by adding the nextterm is too small to worry us.7 But it is a little clumsy to keep writing down such an unwieldyformula every time you want to refer to this function, especially if it is going to be as popular as weclaim. After all, mathematics is the art of precise abbreviation. So we give W (x) [from Eq. (15)] aspecial name, the \exponential" function, which we write as either8exp(x) or ex: (19)In FORTRAN it is represented as EXP(X). It is equal to the numbere = 2:71828182845904509 � � � (20)raised to the xth power. In our case we have x � �0:1 t, so that our \answer" isV (t) = V0 e�0:1 t (21)which is a lot easier to write down than Eq. (18).Now, the choice of notation ex is not arbitrary. There are a lot of rules we know how to use on anumber raised to a power. One is that e�x � 1ex (22)You can easily determine that this rule also works for the de�nition in Eq. (15).The \inverse" of this function (the power to which one must raise e to obtain a speci�ed number)is called the \natural logarithm" or \ln" function. We writeif W = ex; then x = ln(W )or x = ln(ex) (23)A handy application of this de�nition is the ruleyx = ex ln(y) or yx = exp[x ln(y)]: (24)7This is exactly what a \scienti�c" hand calculator does when you push the function key whose name will be revealedmomentarily.8Now you know which key it is on a calculator.



5Before we return to our original function, is there anything more interesting about the \naturallogarithm" than that it is the inverse of the \exponential" function? And what is so all-�red specialabout e, the \base" of the natural log? Well, it can easily be shown9 that the derivative of ln(x)is a very simple and familiar function: d[ln(x)]dx = 1x: (25)This is perhaps the most useful feature of ln(x), because it gives us a direct connection betweenthe exponential function and a function whose derivative is 1=x. [The handy and versatile ruled(xr)dx = rxr�1 is valid for any value of r, including r = 0, but it doesn't help us with this task.Why?] It also explains what is so special about the number e.Summary: The Exponential Function(s)

Figure 5.1 The functions ex, e�x, ln(x) and 1=x plotted on the same graph over the range fromx = 0 to x = 4. Note that ln(0) is unde�ned. [There is no �nite power to which we can raisee and get zero.] Similarly, 1=x is unde�ned at x = 0, while 1=(�x) = �1=x. Also, ln(1) = 0[because any number raised to the zeroth power equals 1 | you can easily check this against thede�nitions] and ln(�) [where � any positive number less than 1] is negative. However, there is nosuch thing as the natural logarithm of any negative number.Our formula (21) for the real value of your dollar as a function of time is the only function whichwill satisfy the di�erential equation (2) from which we started. The exponential function is one ofthe most useful of all for solving a wide variety of di�erential equations. For now, just rememberthis:9Watch for this phrase! Whenever someone says \It can easily be shown. . . ," they mean, \This is possible to prove, but Ihaven't got time; besides, I might want to assign it as homework."



6 Whenever you have dydx = k y, you can be sure that y(x) = y0 ekx where y0 is the\initial value" of y [when x = 0]. Note that k can be either positive or negative.Finally, note the property of the second derivative:d2ydx2 = k2 y: (26)We will see another equation almost like this when we talk about Simple Harmonic Motion.An Example from Mechanics: DampingWe should really work out at least one example applying the exponential function to a real Mechanicsproblem. The classic example is where an object (mass m) is moving with an initial velocity v0,starting from an initial position x0, and experiences a frictional damping force Fd which isproportional to the velocity and (as always, for frictional forces) in the direction opposite to thevelocity: Fd = �� v. The equation of motion then reads a = �(�=m) v ord2xdt2 = �k dxdt (27)where we have combined � and m into the constant k � �=m. This can also be written in theform dvdt = �k vwhich should ring a bell! The solution (for the velocity v) isv(t) = v0 e�k t (28)To obtain the solution for x(t), we switch back to the notationdxdt = v0 e�k t =) Z xx0 dx = v0 Z t0 e�k t dtand note that the function whose time derivative is e�k t is � 1k e�k t, givingx� x0 = �v0k he�k tit0where the [� � �]t0 notation means that the expression in the square brackets is to be \evaluatedbetween 0 and t" | i.e. plug in the upper limit (just t itself) for t in the expression and thensubtract the value of the expression with the lower limit (0) substituted for t. In this case the lowerlimit gives e�0 = e0 = 1 (anything to the zeroth power gives one) so the result isx(t) = x0 + v0k �1� e�k t� (29)The qualitative behaviour is plotted in Fig. 5.2. Note that x(t) approaches a �xed \asymptotic"value xmax = x0 + v0=k as t!1. The generic function (1� e�k t) is another useful addition toyour pattern-recognition repertoire.
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Figure 5.2 Solution to the damping force equation of motion, in which the frictional force is pro-portional to the velocity.


