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Force vs. Mass

“If I have seen further than other

men, it is because I stood on the

shoulders of giants.” – Isaac
Newton

Isaac Newton (1642-1727) published his mas-
terwork, Philosophiae Naturalis Principia

Mathematica (“Mathematical Principles of
Natural Philosophy”) in 1687. In this tome
he combined the individually remarkable con-
ceptual achievements of calculus, vectors and
an elegant expression of the simple relation-
ship between force and inertia (which in effect
gave definition to those entities for the first
time) to produce an integrated description of
the interactions between objects and exactly
how they produce different kinds of motion.
This was the true beginning of the science of
dynamics, for it marked the adoption of the de-

scriptive paradigms that are still used univer-
sally to describe dynamics, even after Quan-
tum Mechanics has exposed Newtonian Me-
chanics as fundamentally inadequate.1 New-
ton, like most great thinkers, had a variety of
ludicrous foibles and was often a jerk in his
dealings with others. I will not attempt to
document his personal life, though many have
done so [you can consult their work]; although
it is interesting and revealing, it doesn’t mat-
ter to our understanding of the conceptual ed-
ifice he built in the Principia. Moreover, I will

1Note that Quantum Mechanics does not “prove New-
tonian Mechanics wrong;” it merely reveals its shortcom-
ings and the limits of its straightforward applicability. All
paradigms have such shortcomings and limits, even Quan-
tum Mechanics! Bridges did not fall down when Quantum
Mechanics was “discovered,” nor did engines or electro-
magnetic devices cease to function; we simply learned that
Newtonian Mechanics and electromagnetic theory were ap-

proximations to a more fundamentally accurate picture fur-
nished by Quantum Mechanics and Relativity, and where
the approximation was no longer adequate to give a qualita-
tively correct description of the actual behaviour of matter.

make no attempt to introduce concepts in the
order that Newton did, nor will I hesitate to
use a more modern notation or even an up-
dated version of a paradigm, with the rationale
that (a) what matters most is getting the idea
across clearly; and (b) we may have actually
achieved a more elegant, compact understand-
ing than Newton in the intervening centuries.
This is one of the endearing (to me) traditions
of Physics – and indeed of all genuine pursuit
of truth2 – we treasure an æsthetic of searching
for a better, more elegant, more reliable, more
accurate (with regard to predicting the results
of experiments), truer model of the world and
rooting out the demonstrably wrong parts of
existing models. A frightening number of peo-
ple who claim to know the Truth share no such
æsthetic and in fact are dedicated to suppress-
ing such activities when they threaten their
most cherished and unexamined Truths. Gr-
rrr. . . .

Before we go on to expound Newton’s “Laws”
in their modern form it is useful to examine
the “self-evident” [oh, yeah?] concepts of force

and mass and their relationship with that rel-
atively rigorously defined kinematic quantity,
the acceleration.

9.1 Inertia vs. Weight

Prior to Newton, people who thought about
such things observed that objects which had
lots of inertia [ı.e. were hard to get moving by
pushing on them, even where a nearly friction-
less horizontal motion was possible] were also
invariably heavy [ı.e. were pulled down to-
ward the centre of the Earth with great force].
It was therefore understandable for them to
have equated inertia with weight, the magni-
tude of the force of attraction to the Earth.3

2I should say “truth” or otherwise indicate that I don’t
mean there is some sort of ultimate Truth that we can
discover and then relax.

3It is of course easy for us to see the error of such
thinking, because we are privy to Newton’s paradigms; this
should not delude us into scorning the efforts of the “gi-
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Newton was among the first to suggest that in-

ertia and weight were not necessarily the same
thing, but that in fact the Earth’s gravity just

happened to pull down on objects with a force
proportional to their inertial factor or “mass”
(m) which was actually defined in terms of
their resistance to horizontal acceleration by
some force other than gravity.

9.1.1 The Eötvös Experiment

Is there any way to test Newton’s conjecture
that “inertial mass” (the quantitative measure
of an objects resistance to acceleration by an
applied force) is different from “gravitational
mass” (the factor determining the weight of
said object)? Certainly. But first we must
make the proposition more explicit:

• Inertial mass mI is an additive property

of matter. That is, two identical objects,
when combined, will have twice the in-
ertial mass of either one by itself.4

• When subjected to a given force ~F [a
vector quantity, since it certainly has
both magnitude and direction], an ob-
ject will be accelerated in the direction
of ~F at a rate ~a which is inversely pro-

portional5 to its inertial mass mI. Math-
ematically,

~a ∝
~F

mI

. (1)

• Gravitational mass mG is also an addi-
tive property of matter.

ants” on whose shoulders Newton stood to “see further
than other men.”

4This may seem absurdly self-evident, but in fact there
are physical properties that are not additive! So we want
to explicitly point out this assumption as a point of vul-
nerability of the model, in case it is found to break down
later on. This sort of “full disclosure” is characteristic of
any enterprise designed to get at the truth rather than to
win an argument.

5This can be checked by applying a force to two identical
objects stuck together and seeing if they accelerate exactly
half as fast as either one individually subjected to the same
force.

• The force of gravity ~W pulling an object
“down” toward the centre of the Earth
(ı.e. its weight) is proportional to its
gravitational mass mG. Let’s write the
constant of proportionality “g” so that
W = g mG (where W ≡ | ~W| is the mag-

nitude of the weight, which is usually all
we need, knowing as we do which way is
“down”) – or, in full vector notation,

~W = −g mG r̂ (2)

(where r̂ is the unit vector pointing from

the centre of the Earth to the object in
question).

The combination of the last two postulates is
easy to check using a simple balance. However,
it is not so easy to separately check these two
propositions. See why? Fortunately, we don’t
have to.

If we put together the two equations ~a ∝
~F/mI and ~W = −g mG r̂, noting that, in the

case of the force of gravity itself, ~F ≡ ~W, we
get

~a ∝ −r̂ g
mG

mI

(3)

– ı.e. the acceleration due to gravity is in the
−r̂ direction (towards the centre of the Earth),
and is proportional to the ratio of the gravita-
tional mass to the inertial mass. So. . . if the
gravitational mass is proportional to the iner-
tial mass, then all objects should experience

the same acceleration when falling due to the

force of gravity, at least in the absence of any
other forces like air friction. Wait! Isn’t this
just what Galileo was always trying to tell us?
Yep. But was he right?

Clearly the answer hangs on the proportional-
ity of mG and mI . As we shall see, any nontriv-
ial constant of proportionality can be absorbed
into the definition of the units of force; thus in-
stead of ~a ∝ ~F/mI we can write ~a = ~F/mI

and the question becomes, “Are inertial mass
and gravitational mass the same thing?” The
experimental test is of course to actually drop
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a variety of objects in an evacuated chamber
where there truly is no air friction (nor, we
hope, any other more subtle types of friction)
and measure their accelerations as accurately

as possible. This was done by Eötvös to an ad-
vertised accuracy of 10−9 (one part per billion
– often written 1 ppb) who found satisfactory
agreement with Galileo’s “law.”6 Henceforth I
will therefore drop the G and I subscripts on
mass and assume there is only one kind, mass,
which I will write m.

9.1.2 Momentum

René Descartes and Christian Huygens to-
gether introduced the concept of momentum

as the combination of an object’s weight

with its velocity, developing a rather power-
ful scheme for “before and after” analysis of
isolated collisions and similar messy processes.
I will be unfaithful to the historical sequence
of conceptual evolution in this case primarily
because I want to introduce the “impulse and
momentum conservation law” later on as an
example of the “emergence” of new paradigms
from a desire to invent shortcuts around te-
dious mathematical calculations. Neverthe-
less, Newton actually formulated his Second
Law in terms of momentum, so it would be
too much of a distortion to omit at least a def-
inition of momentum at this point, to wit:

~p ≡ m ~v (4)

I.e., the momentum of an object, a vec-
tor quantity which is almost always written
~p (magnitude |~p| ≡ p), is the product of the
object’s mass m and its vector velocity ~v.

6Recent re-measurements by Dicke et al. challenged
Eötvös’ ability to measure so accurately; they tentatively
reported deviations from the expected results, suggesting
that there might be an incredibly weak “fifth force” be-
tween the Earth and other matter that is different for pro-
tons than for neutrons. This was hot news for a while,
but the excitement seems to have died down now, presum-
ably due to new measurements that once again agree with
Galileo and Eötvös.

9.2 Newton’s Laws

We are now ready to state Newton’s three
“Laws” of motion, in Newton’s own words:

1. First Law: Every body

continues in its state of rest,

or of uniform motion in a

right [straight] line, unless it

is compelled to change that

state by a force impressed on

it.

2. Second Law: The change

in motion [rate of change of
momentum with time] is pro-

portional to the motive force

impressed; and is made in the

direction of the right line in

which that force is impressed.

3. Third Law: To every ac-

tion there is always opposed

an equal reaction; or, the mu-

tual actions of two bodies are

always equal, and directed to

contrary parts.

Now, Newton’s language was fairly precise,
but to our modern ears it sounds a bit stilted
and not very concise. We also imagine that,
with the benefit of several centuries of prac-
tice, we have achieved a clearer understanding
of these Laws than Newton himself. Regard-
less of the validity of this conceit, we like to
express the Laws in a more modern form with
a little mathematical notation thrown in:

1. First Law: A body’s ve-

locity ~v [which might be zero]
will never change unless and

until a force ~F acts on the

body.

2. Second Law: The time

rate of chage of the momen-

tum of a body is equal to
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the force acting on the body.
That is,

d~p

dt
= ~F. (5)

3. Third Law: Whenever a

force ~FBA is applied to A by

B, there is an equal and op-

posite reaction force ~FAB on

B due to A. That is,

~FAB = −~FBA, (6)

where the subscript AB (for
instance) indicates the force
from A to B.

As long as the mass m is constant7 we have

d~p

dt
=

d

dt
(m~v) = m

d~v

dt
= m~a

since the derivative of a constant times a vari-
able is the constant times the derivative of the
variable. Then the Second Law takes the
more familiar form,

~F = m~a. (7)

This famous equation is often written in scalar
form,

ṗ ≡
dp

dt
= F or F = m a

because ~̇p and ~F are always in the same direc-
tion.

9.3 What Force?

The Third Law is a real ringer. It looks so
trivial, yet it warns us of a leading cause of
confusion in mechanics problems: There are

always two forces for every interaction! When

7Counterexamples are not as rare as you might think!
Consider for instance a rocket, which is constantly losing
mass as the motor burns fuel. In such cases the original
form of the Second Law is essential.

A exerts a force ~FAB on B there is always an
equal and opposite force ~FBA = −~FAB exerted
back on A by B. The latter is arbitrarily desig-
nated the “reaction force,” but of course this is
only because we first started talking about the
former; both forces have equal intrinsic sta-
tus. So if you say, “The force between A and
B is. . . .” I don’t know which force you are
talking about! Never talk about “the force”
unless you mean “the Force” from Star Wars.
Always make up a sentence describing the ac-

tion taking place: “The force exerted on [A]
by [B] is. . . .”

9.3.1 The Free Body Diagram

A good way to keep track of this (and cathect
the right hemisphere in the process) is to draw
what is universally known in Physics as a Free

Body Diagram [FBD]. When you need to an-
alyze the forces acting on a body [there are
usually more than one!] the first step is to de-
cide upon the boundary of “the body” – ı.e. an
imaginary surface that separates “the body”
from “the outside world” so that we can talk
unambiguously about who is applying which
force to whom. Having done this in our imag-
ination, it is usually wise to actually draw a
little sketch of “the body” isolated from the
rest of the world; it needn’t be a good sketch,
just a blob of approximately the right shape
so we know what we are talking about. Then
we draw in each of the vector forces acting
on the body from other entities in the outside
world; forces are always pictured as little ar-
rows pointing in the direction of application of
the force.8 A rather trivial example is shown
in Fig. 9.1. We call N a “normal” force be-
cause it is normal (perpendicular) to the hori-
zontal surface on which he stands; this termi-
nology (and the N symbol) will be extended
to describe any force exerted by a frictionless

8If we mess up and draw the force in the opposite di-
rection from its actual direction of application, we needn’t
worry, as the mathematics will automatically deliver up
a result with a − sign as if to say, “This force is in the
opposite direction from the way you drew it, dummy!”
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Figure 9.1 A man standing on the Earth (left)
and his FBD (right). The man is pulled down-
ward by the force of gravity W which is spread
out over all his individual atoms but can be
treated as if it were concentrated at his cen-

tre of gravity [CG] indicated on the diagram
at about belt-buckle position. He is prevented
from accelerating [falling] toward the centre of
the Earth by the “normal force” N exerted
upwards by the ground against his feet. These
are the only two forces we need to consider to
treat the problem of his equilibrium – ı.e. the
fact that he is not accelerating. The FBD on
the right is perhaps a rather extreme exam-
ple of a “simplified sketch” but it does serve
the purpose, which is to show just the object
in question and the forces acting on it from

outside.

surface [yes, I know, another idealization. . . ],
which can only be perpendicular to that sur-
face. Think about it.

Atwood’s Machine:

To illustrate the use of the FBD in nontrivial
mechanics problems we can imagine another
series of measurements9 with a simple device

9Aha! another Gedankenexperiment ! But this time we
can actually imagine performing it in our basement – or in
a teaching lab at the University (where in fact it is almost
always one of the required experiments in every first year
Physics course). Of course, the actual experiment is beset
by numerous annoying imperfections that interfere with our

known as Atwood’s Machine. The apparatus
is pictured in Fig. 9.2.

Figure 9.2 Atwood’s Machine – one object la-
belled m1 is glued to a massless cart with mass-
less wheels that roll without friction on a per-
fectly horizontal surface. The cart is attached
to a massless, unstretchable string that runs
over yet another massless, frictionless pulley
and is attached at the other end to a second
object labelled m2 that is pulled downward by
the force of gravity. [You can see that a real ex-
periment might involve a few corrections!] At
the right are pictured the two separate FBD’s
for m1 and m2, showing all the external forces
acting on each. Here W1 is the weight of m1

and N is the normal force exerted on m1 by the
horizontal surface (through the cart) to keep it
from falling. Since it does not fall, N must ex-
actly balance W1. The only unbalanced force
on m1 is the tension T in the string, which
accelerates it to the right. The tension in a
string is the same everywhere, so the same T
pulls up on m2, partly counteracting its weight

W2.

It is easy to see that the two vertical forces
(W1 and N) acting on m1 must cancel. The
rest is less trivial. The weight of m2 is given by
W2 = m2 g; thus for m1 and m2, respectively,

cherished idealizations and require tedious and ingenious
corrections. Even simple experiments are hard in real life!
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we have the “equations of motion”

a1 =
T

m1

(to the right)

and

a2 =
m2 g − T

m2

(downward).

But we have here three unknowns (a1, a2 and
T ) and only two equations. The rules of lin-
ear algebra say that we need at least as many
equations as unknowns to find a solution! Our
salvation lies in recognition of the constraints

of the system: Because the string does not
stretch or go limp, both masses are constrained

to move exactly the same distance (though in
different directions) and therefore both expe-
rience the same magnitude of acceleration a.
Thus our third equation is a1 = a2 = a and we
can equate the right sides of the two previous
equations to get

T

m1

=
m2 g − T

m2

which we multiply through by m1 m2 to get

m2 T = m1 m2 g − m1 T

or T [m1 + m2] = m1 m2 g

or T =
m1 m2 g

m1 + m2

.

Plugging this back into our first equation gives

a = g
m2

m1 + m2

.

A quicker, simpler, more intuitive (and thus
riskier) way of seeing this is to picture the
pair of constrained masses as a unit. Let’s use
this approach to replace the distinction bew-
teen gravitational and inertial mass, just to
see how it looks. The accelerating force is pro-
vided by the weight W2 of m2 which is given
by W2 = g m2G

, where m2G
is the gravitational

mass of m2. However, this force must accel-
erate both objects at the same rate because
the string constrains both to move together

(though in different directions). Thus the net
inertia to be overcome by W2 is the sum of the
inertial masses of m1 and m2, so the accelera-
tion is given by

a =
W2

m1I
+ m2I

= g
m2G

m1I
+ m2I

or
a

g
=

m2G

m1I
+ m2I

.

The latter form expresses the acceleration ex-
plicity in units of g, the acceleration of gravity,
which is often called “one gee.”

Suppose we have three identical objects, each
of which has the same inertial mass mI and
the same gravitational mass mG. [This can
easily be checked using a balance and a stan-
dard force like a spring.] Then we use two of
them for m1 and m2, set the apparatus in mo-
tion and measure the acceleration in “gees.”
The result will be a/g = mG/2mI. Next we
put two of the objects on the cart and leave
the third hanging. This time we should get
a/g = mG/3mI. Finally we hand two and
leave one on the cart, for a/g = 2mG/3mI.
If the measured accelerations are actually in
the ratios of 1

2
: 1

3
: 2

3
then it must be true

that mG/mI is constant – ı.e. that mG is pro-
portional to mI or that in fact they are really
basically the same thing (in this case)! Unfor-
tunately we have only confirmed this for these

three identical objects. In fact all we have re-
ally demonstrated is that our original postu-
lates are not trivially wrong. To go further we
need to repeat the Eötvös experiment.


