18.1. THE POINT SOURCE

Gauss’ Law

If you go on in Physics you will learn all about GAUSS’
LaAw along with vector calculus in your advanced course
on ELECTRICITY AND MAGNETISM, where it is used to
calculate the electric field strength at various distances
from highly symmetric distributions of electric charge.
However, GAuss’ Law can be applied to a huge vari-
ety of interesting situations having nothing to do with
electricity except by analogy. Moreover, the rigourous
statement of GAUSS’ LAW in the mathematical language
of vector calculus is not the only way to express this
handy concept, which is one of the few powerful mod-
ern mathematical tools which can be accurately deduced
from “common sense” and which really follows from a
statement so simple and obvious as to seem trivial and
uninteresting, to wit:

(Colloquial form of GAUss’ Law)

“When something passes out of a region,
it is no longer inside that region.”

How, you may ask, can such a dumb tautology teach us
anything we don’t already know? The power of GAUSS’
LAW rests in its combination with our knowledge of ge-
ometry (e.g. the surface area A of a sphere of radius
r is A = 47r?) and our instinctive understanding of
symmetry (e.g. there is no way for a point of zero size
to define a favoured direction ). When we put these two
skills together with GAUSS’ LAW we are able to easily de-
rive some not-so-obvious quantitative properties of many
commonly-occurring natural phenomena.

18.1 The Point Source

For example, consider a hypothetical “spherically sym-
metric” sprinkler head (perhaps meant to uniformly ir-
rigate the inside surface of a hollow spherical space
colony): located at the centre of the sphere, it “emits”
(squirts out) d@/dt gallons per second of water in all di-
rections equally, which is what we mean by “spherically
symmetric” or “isotropic.”! Here () is the “amount of
stuff” — in this case measured in gallons. Obviously
(beware of that word, but it’s OK here), since water is
conserved the total flow of water is conserved: once a
“steady-state” (equilibrated) flow has been established,

!Note how our terminology of spherical coordinates stems
from terrestrial navigation (Tropics of Cancer, Capricorn,
etc.). Since the 16*® Century, our most familiar spherical
object (next to the cannonball) has been the Earth.

the rate at which water is deposited on the walls of the
sphere is the same as the rate at which water is emit-
ted from the sprinkler head at the centre. That is, if
we add up (integrate) the “Alux” J of water per sec-
ond per square meter of surface area at the sphere wall
over the whole spherical surface, we must get dQ/dt.
Mathematically, this is written

.. dQ
ﬁiJ-dA_E (1)

where the {f stands for an integral (sum of elements)
over a closed surface §. [This part is crucial, inasmuch
as an open surface (like a hemisphere) does not account
for all the flux and cannot be used with GAuss’ Law].
Now, we must pay a little attention to the vector nota-
tion: the “Aux” J always has a direction, like the flux
(current) of water flowing in a river or in this case the
flux of water droplets passing through space.

Figure 18.1 An isotropic source.

Each droplet has a (vector) velocity, and the velocity
and the density of droplets combine to form the “Hux”
as described above. Not so trivial is the idea of a vector
area element dA, but the sense of this is clear if we
think of what happens to the scalar flux (in gallons/sec)
through a hoop of wire of area dA when we place it
in a river: if the direction of the flow of the river is
perpendicular (“normal”) to the plane of the hoop, we
get the maximum possible flux, namely the vector flux
magnitude (the flow rate of the river) times the area
of the hoop; if we reorient the hoop so that its area
intercepts no flow (i.e. if the direction 7 “normal” to
the plane of the hoop is perpendicular to the direction
of flow of the river) then we get zero flux through the
hoop. In general, the scalar rate of flow (here measured
in gallons/sec) through a “surface element” dA whose
“normal” direction 7 is given by (J - 2)dA or just J - dA



where we have now defined the vector surface element
dA = ndA. This is pictured in Fig. 18.1 above.

Returning now to our sprinkler-head example, we have
a Law [Eq. (1)] which is a mathematical (and therefore
quantitative) statement of the colloquial form, which in
principle allows us to calculate something. However, it
is still of only academic interest in general. Why? Be-
cause the integral described in Eq. (1) is so general that
it may well be hopelessly difficult to solve, unless (!)
there is something about the symmetry of the particu-
lar case under consideration that makes it easy, or even
“trivial.” Fortunately (though hardly by accident) in
this case there is — namely, the isotropic nature of the
sprinkler head’s emission, plus the spherically symmet-
ric (in fact, spherical) shape of the surface designated by
“S” in Eq. (1). These two features ensure that

1. the magnitude J = |J| of the flux is the same
everywhere on the surface S; and

2. the direction of J is normal to the surface every-
where it hits on S.

In this case, J-dA = JdA and J is now a constant
which can be taken outside the integral sign, leaving

JﬁidA:Q

where Q is just a compact notation for dQ/dt. But @SdA

is just the area of the sphere, 4nr?, where r is the
radius of the sphere, so (1) becomes

4] = Q
or .
o Q
J(r) = ) (2)

which states the general conclusion for any spherically
symmetric emission of a conserved quantity, namely

The flux from an isotropic source points away
from the centre and falls off proportional to
the inverse square of the distance from the
source.

This holds in an amazing variety of situations. For in-
stance, consider the “electric field lines” from a spheri-
cally symmetric electric charge distribution as measured
at some point a distance r away from the centre. We vi-
sualize these electric field “lines” as streams of some mys-
terious “stuff” being “squirted out” by positive charges
(or “sucked in” by negative charges). The idea of an
electric field line is of course a pure construct; no one

has ever seen or ever will see a “line” of the electric field
E’, but if we think of the strength of E as the “number
of field lines per unit area perpendicular to E” and treat
these “lines of force” as if they were conserved in the
same way as streams of water, we get a useful graph-
ical picture as well as a model which, when translated
into mathematics, gives correct answers. As suspicious
as this may sound, it is really all one can ask of a physical
model of something we cannot see. This is the sense of all
sketches showing electric field lines. For every little bit
(“element”) of charge dg on one side of the symmetric
distribution there is an equal charge element exactly op-
posite (relative to the radius vector joining the centre to
the point at which we are evaluating E), the “transverse”
contributions of such charge elements to E all cancel out,
and so the only possible direction for E to point is along
the radius vector — i.e. as described above. An even
simpler argument is that there is no way to pick a pre-
ferred direction (other than the radial direction) if the
charge distribution truly has spherical symmetry. This
“symmetry argument” is implied in Fig. 18.1.

Now we must change our notation slightly from the gen-
eral description of Egs. (1) and (2) to the specific exam-
ple of electric charge and field. Inasmuch as one’s choice
of a system of units in electromagnetism is rather flex-
ible, and since each choice introduces a different set of
constants of proportionality with odd units of their own,
I will merely state that “J turns into E, dQ/dt — ¢
now stands for electric charge, and there is a 1/¢y in
front of the d@Q/dt = ¢ on the right-hand side of Eq. (1)”
to give us the electrostatics version of (1):

ﬁE dA=1 (3)
S €0

which, when applied to the isotropic charge distribution,
gives the result

q 1

E(r) = dmey 12 )
The implication of Eq. (3) is then that, since the spheri-
cal shell contains the same amount of charge for all radii
r > R, where R is the physical radius of the charge
distribution itself, it cannot matter how the charge is
distributed (as long as it is spherically symmetric); to
the distant observer, the E field it produces will always
look just like the E field due to a point charge ¢ at
the centre; i.e. Eq. (4).

18.1.1 Gravity

Another example is gravity, which differs from the elec-
trostatic force only in its relative weakness and the
innocuous-looking fact that it only comes in one sign,



18.2. THE LINE SOURCE

namely attractive, whereas the electric force can be ei-
ther attractive (for unlike charges) or repulsive (for like
charges). That is, “There are no negative masses.” So
all these equations hold equally well for gravity, except
of course that we must again shuffle constants of propor-
tionality around to make sure we are not setting apples
equal to oranges. In this case we can use some symbol,
say ¢, to represent the force per unit mass at some
position, as we did for E = force per unit charge, and
talk about the “gravitational field” as if it were really
there, rather than being what would be there (a force) if
we placed a mass there. (Note that g will be measured
in units of acceleration.) Then the role of “d@/dt” in
Eq. (1) is played by M, the total mass of the attracting
body, and the constant of proportionality is 47G, where
G is Newton’s Universal Gravitational Constant:

#g’- dA = 47GM (5)
S
and oM

9(r) = —5 (6)

for any spherically symmetric mass distribution of total
mass M. Note that we have “derived” this fundamental
relationship from arguments about symmetry, geometry
and common sense, plus the weird notion that “lines”
of gravitational force are “emitted” by masses and are
“conserved” in the sense of streams of water — a pretty
kinky idea, but evidently one with powerful applications.
Be sure you are satisfied that this is not a “circular argu-
ment;” we really have derived Eq. (6) without using it in
the development at all! Now, besides being suggestive of
deeper knowledge, this trick can be used to draw amus-
ing conclusions about interesting physical situations.

The Spherical Shell

For instance, suppose that one day we assemble all the
matter in the Solar System and build one gigantic spher-
ical shell out of it. We arrange its radius so that the
force of gravity at its surface (standing on the outside)
is “Earth normal,” i.e. 9.81 N/kg or g = 9.81 m/s?.
This is all simple so far, and GAUSS’ LAw tells us that as
long as we are outside of the spherical shell enclosing the
whole spherically symmetric mass distribution, the grav-
itational field we will see is indistinguishable from that
produced by the entire mass concentrated at a point at
the centre. The amazing prediction is that if we merely
step inside the shell, there is still spherical symmetry,
but the spherical surface touching our new radius does
not enclose any mass and therefore sees no gravitational
field at all! This is actually correct: inside the sphere we
are weightless, and travel opportunities to other parts
of the shell (across the inside) become quite interesting.

There are many more examples of entertaining properties
of spherically symmetric charge or mass distributions, all
of which you can easily deduce from similar arguments
to dazzle your friends. Let us now ask, however, if any
less symmetric situations can also be treated easily with
this technique.

18.1.2 The Uniform Sphere

Another familiar example of spherical symmetry is the
uniformly dense solid sphere of mass (if we are inter-
ested in gravity) or the solid sphere of insulating mate-
rial carrying a uniform charge density p (if we want to
do electrostatics). Let’s pick the latter, just for variety.
If we imagine a spherical “Gaussian surface” concentric
with the sphere, with a radius 7 less than the sphere’s
radius R, the usual isotropic symmetry argument gives
ﬁﬁ' -dA = 47r?E, where E is the (constant) radial
electric field strength at radius r < R. The net charge
enclosed within the Gaussian surface is %m‘i" p, giving
A’ B =L %71”[‘3 p, or

€0

E(r<R) =21 (7)
360
for the electric field inside such a uniform spherical
charge density.

A similar linear relationship holds for the gravitational
field within a solid sphere of uniform mass density, of
course, except in that case the force on a “test mass” is
always back toward the centre of the sphere — i.e. a
linear restoring force with all that implies. ...

18.2 The Line Source

A sphere, as we have seen, can be collapsed to a point
without affecting the external field; and a point is es-
sentially a “zero-dimensional object” — it has no prop-
erties that can help us to define a unique direction in
space. The next higher-dimensional object would be one-
dimensional, namely a line. What can we do with this?

In the spirit of the normal physics curriculum, we will
now stick to the example of electrostatics, remembering
that all the same arguments can be used on gravity or
indeed on other situations not involving “force fields”
at all. (Consider the sprinkler, or a source of “rays” of
light.) Suppose that we have an “infinite line of charge,”
i.e. a straight wire with a charge A\ per unit length.
This is pictured in Fig. 18.2.

The same sort of symmetry arguments used in Fig. 18.1
tell us that for every element of charge a distance d



above position x on the wire, there is an equal ele-
ment of charge an equal distance d below position z,
from which we can conclude that the “transverse” con-
tributions to the E field from the opposite charge ele-
ments cancel, leaving only the components pointing di-
rectly away from the wire; i.e. perpendicular to the wire.
In what are referred to as “cylindrical coordinates,” the
perpendicular distance from the wire to our field point
is called r, and the direction described above is the r
direction. Thus E points in the # direction. (Indeed,
if it wanted to point in another direction, it would have
to choose it arbitrarily, as there is no other direction
that can be defined uniquely by reference to the wire’s
geometry!) Given the direction of E and the “obvious”
(but nevertheless correct) fact that it must have the same
strength in all directions (i.e. it must be independent of
the “azimuthal angle” ¢ — another descriptive term
borrowed from celestial navigation), we can guess at a
shape for the closed surface of Eq. (3) which will give
us E either parallel to the surface (no contribution to
the outgoing flux) or normal to the surface and constant,
which will let us take E outside the integral and just de-
termine the total area perpendicular to E: we choose a
cylindrical shaped “pillbox” centred on the wire. No flux
escapes from the “end caps” because E is parallel to
the surface; E is constant in magnitude over the curved
outside surface and everywhere perpendicular (normal)
to it. Thus

)%E dA=E ﬁidA = (E)(2nrL)

where 27rL is the curved surface area of a cylinder of
radius r and height L.

The same surface, clipping off a length L of wire, en-
closes a net charge ¢ = AL. Plugged into (3), this

gives
L
2nrLE = /\—
€0
or A1
E(r) = - — 8
(r) 2mey T (8)

which states the general conclusion for any cylindrically
symmetric charge distribution, namely that

The electric field from a cylindrically sym-
metric charge distribution points away from
the central line and falls off proportional to
the inverse of the distance from the centre.

This also holds in an amazing variety of situations. Ap-
plications are left to the interested student.

Figure 18.2 An infinite, uniform line of charge.

18.3 The Plane Source

Note the interesting trend: a zero-dimensional distribu-
tion (a point) produces a field that drops off as r~2,
while a one-dimensional distribution (a line) produces a
field that drops off as r~!. We have to be tempted to
see if a two-dimensional distribution (a plane) will give
us a field that drops off as 7 — i.e. which does not drop
off at all with the distance from the plane, but remains
constant throughout space. This application of GAUss’
LaAw is a straightforward analogy to the other two, and

can be worked out easily by the reader. 3-)



