
18.1. THE POINT SOURCE 1Gauss' LawIf you go on in Physics you will learn all about Gauss'Law along with vector calculus in your advanced courseon Electricity and Magnetism, where it is used tocalculate the electric �eld strength at various distancesfrom highly symmetric distributions of electric charge.However, Gauss' Law can be applied to a huge vari-ety of interesting situations having nothing to do withelectricity except by analogy. Moreover, the rigourousstatement of Gauss' Law in the mathematical languageof vector calculus is not the only way to express thishandy concept, which is one of the few powerful mod-ern mathematical tools which can be accurately deducedfrom \common sense" and which really follows from astatement so simple and obvious as to seem trivial anduninteresting, to wit:(Colloquial form of Gauss' Law)\When something passes out of a region,it is no longer inside that region."How, you may ask, can such a dumb tautology teach usanything we don't already know? The power of Gauss'Law rests in its combination with our knowledge of ge-ometry (e.g. the surface area A of a sphere of radiusr is A = 4�r2) and our instinctive understanding ofsymmetry (e.g. there is no way for a point of zero sizeto de�ne a favoured direction ). When we put these twoskills together withGauss' Law we are able to easily de-rive some not-so-obvious quantitative properties of manycommonly-occurring natural phenomena.18.1 The Point SourceFor example, consider a hypothetical \spherically sym-metric" sprinkler head (perhaps meant to uniformly ir-rigate the inside surface of a hollow spherical spacecolony): located at the centre of the sphere, it \emits"(squirts out) dQ=dt gallons per second of water in all di-rections equally, which is what we mean by \sphericallysymmetric" or \isotropic."1 Here Q is the \amount ofstu�" | in this case measured in gallons. Obviously(beware of that word, but it's OK here), since water isconserved the total 
ow of water is conserved: once a\steady-state" (equilibrated) 
ow has been established,1Note how our terminology of spherical coordinates stemsfrom terrestrial navigation (Tropics of Cancer, Capricorn,etc.). Since the 16th Century, our most familiar sphericalobject (next to the cannonball) has been the Earth.

the rate at which water is deposited on the walls of thesphere is the same as the rate at which water is emit-ted from the sprinkler head at the centre. That is, ifwe add up (integrate) the \
ux" ~J of water per sec-ond per square meter of surface area at the sphere wallover the whole spherical surface, we must get dQ=dt.Mathematically, this is writtenZZS
~J � d~A = dQdt (1)where the RRS
 stands for an integral (sum of elements)over a closed surface S. [This part is crucial, inasmuchas an open surface (like a hemisphere) does not accountfor all the 
ux and cannot be used with Gauss' Law].Now, we must pay a little attention to the vector nota-tion: the \
ux" ~J always has a direction, like the 
ux(current) of water 
owing in a river or in this case the
ux of water droplets passing through space.

Figure 18.1 An isotropic source.Each droplet has a (vector) velocity, and the velocityand the density of droplets combine to form the \
ux"as described above. Not so trivial is the idea of a vectorarea element d~A, but the sense of this is clear if wethink of what happens to the scalar 
ux (in gallons/sec)through a hoop of wire of area d~A when we place itin a river: if the direction of the 
ow of the river isperpendicular (\normal") to the plane of the hoop, weget the maximum possible 
ux, namely the vector 
uxmagnitude (the 
ow rate of the river) times the areaof the hoop; if we reorient the hoop so that its areaintercepts no 
ow (i.e. if the direction n̂ \normal" tothe plane of the hoop is perpendicular to the directionof 
ow of the river) then we get zero 
ux through thehoop. In general, the scalar rate of 
ow (here measuredin gallons/sec) through a \surface element" d~A whose\normal" direction n̂ is given by (~J � n̂)dA or just ~J � d~A



2where we have now de�ned the vector surface elementd~A � n̂dA. This is pictured in Fig. 18.1 above.Returning now to our sprinkler-head example, we havea Law [Eq. (1)] which is a mathematical (and thereforequantitative) statement of the colloquial form, which inprinciple allows us to calculate something. However, itis still of only academic interest in general. Why? Be-cause the integral described in Eq. (1) is so general thatit may well be hopelessly di�cult to solve, unless (!)there is something about the symmetry of the particu-lar case under consideration that makes it easy, or even\trivial." Fortunately (though hardly by accident) inthis case there is | namely, the isotropic nature of thesprinkler head's emission, plus the spherically symmet-ric (in fact, spherical) shape of the surface designated by\S" in Eq. (1). These two features ensure that1. the magnitude J = j~J j of the 
ux is the sameeverywhere on the surface S; and2. the direction of ~J is normal to the surface every-where it hits on S.In this case, ~J � d~A = JdA and J is now a constantwhich can be taken outside the integral sign, leavingJ ZZS
dA = _Qwhere _Q is just a compact notation for dQ=dt. But RRS
dAis just the area of the sphere, 4�r2, where r is theradius of the sphere, so (1) becomes4�r2J = _Qor J(r) = _Q4�r2 (2)which states the general conclusion for any sphericallysymmetric emission of a conserved quantity, namelyThe 
ux from an isotropic source points awayfrom the centre and falls o� proportional tothe inverse square of the distance from thesource.This holds in an amazing variety of situations. For in-stance, consider the \electric �eld lines" from a spheri-cally symmetric electric charge distribution as measuredat some point a distance r away from the centre. We vi-sualize these electric �eld \lines" as streams of some mys-terious \stu�" being \squirted out" by positive charges(or \sucked in" by negative charges). The idea of anelectric �eld line is of course a pure construct; no one

has ever seen or ever will see a \line" of the electric �eld~E, but if we think of the strength of ~E as the \numberof �eld lines per unit area perpendicular to ~E" and treatthese \lines of force" as if they were conserved in thesame way as streams of water, we get a useful graph-ical picture as well as a model which, when translatedinto mathematics, gives correct answers. As suspiciousas this may sound, it is really all one can ask of a physicalmodel of something we cannot see. This is the sense of allsketches showing electric �eld lines. For every little bit(\element") of charge dq on one side of the symmetricdistribution there is an equal charge element exactly op-posite (relative to the radius vector joining the centre tothe point at which we are evaluating ~E); the \transverse"contributions of such charge elements to ~E all cancel out,and so the only possible direction for ~E to point is alongthe radius vector | i.e. as described above. An evensimpler argument is that there is no way to pick a pre-ferred direction (other than the radial direction) if thecharge distribution truly has spherical symmetry. This\symmetry argument" is implied in Fig. 18.1.Now we must change our notation slightly from the gen-eral description of Eqs. (1) and (2) to the speci�c exam-ple of electric charge and �eld. Inasmuch as one's choiceof a system of units in electromagnetism is rather 
ex-ible, and since each choice introduces a di�erent set ofconstants of proportionality with odd units of their own,I will merely state that \J turns into E, dQ=dt ! qnow stands for electric charge, and there is a 1=�0 infront of the dQ=dt � q on the right-hand side of Eq. (1)"to give us the electrostatics version of (1):ZZS
~E � d~A = q�0 (3)which, when applied to the isotropic charge distribution,gives the result E(r) = q4��0 � 1r2 (4)The implication of Eq. (3) is then that, since the spheri-cal shell contains the same amount of charge for all radiir > R, where R is the physical radius of the chargedistribution itself, it cannot matter how the charge isdistributed (as long as it is spherically symmetric); tothe distant observer, the ~E �eld it produces will alwayslook just like the ~E �eld due to a point charge q atthe centre; i.e. Eq. (4).18.1.1 GravityAnother example is gravity, which di�ers from the elec-trostatic force only in its relative weakness and theinnocuous-looking fact that it only comes in one sign,



18.2. THE LINE SOURCE 3namely attractive, whereas the electric force can be ei-ther attractive (for unlike charges) or repulsive (for likecharges). That is, \There are no negative masses." Soall these equations hold equally well for gravity, exceptof course that we must again shu�e constants of propor-tionality around to make sure we are not setting applesequal to oranges. In this case we can use some symbol,say ~g, to represent the force per unit mass at someposition, as we did for ~E = force per unit charge, andtalk about the \gravitational �eld" as if it were reallythere, rather than being what would be there (a force) ifwe placed a mass there. (Note that ~g will be measuredin units of acceleration.) Then the role of \dQ=dt" inEq. (1) is played by M , the total mass of the attractingbody, and the constant of proportionality is 4�G, whereG is Newton's Universal Gravitational Constant:ZZS
~g � d~A = 4�GM (5)and g(r) = GMr2 (6)for any spherically symmetric mass distribution of totalmass M . Note that we have \derived" this fundamentalrelationship from arguments about symmetry, geometryand common sense, plus the weird notion that \lines"of gravitational force are \emitted" by masses and are\conserved" in the sense of streams of water | a prettykinky idea, but evidently one with powerful applications.Be sure you are satis�ed that this is not a \circular argu-ment;" we really have derived Eq. (6) without using it inthe development at all! Now, besides being suggestive ofdeeper knowledge, this trick can be used to draw amus-ing conclusions about interesting physical situations.The Spherical ShellFor instance, suppose that one day we assemble all thematter in the Solar System and build one gigantic spher-ical shell out of it. We arrange its radius so that theforce of gravity at its surface (standing on the outside)is \Earth normal," i.e. 9.81 N/kg or g = 9:81 m/s2.This is all simple so far, and Gauss' Law tells us that aslong as we are outside of the spherical shell enclosing thewhole spherically symmetric mass distribution, the grav-itational �eld we will see is indistinguishable from thatproduced by the entire mass concentrated at a point atthe centre. The amazing prediction is that if we merelystep inside the shell, there is still spherical symmetry,but the spherical surface touching our new radius doesnot enclose any mass and therefore sees no gravitational�eld at all! This is actually correct: inside the sphere weare weightless, and travel opportunities to other partsof the shell (across the inside) become quite interesting.

There are many more examples of entertaining propertiesof spherically symmetric charge or mass distributions, allof which you can easily deduce from similar argumentsto dazzle your friends. Let us now ask, however, if anyless symmetric situations can also be treated easily withthis technique.18.1.2 The Uniform SphereAnother familiar example of spherical symmetry is theuniformly dense solid sphere of mass (if we are inter-ested in gravity) or the solid sphere of insulating mate-rial carrying a uniform charge density � (if we want todo electrostatics). Let's pick the latter, just for variety.If we imagine a spherical \Gaussian surface" concentricwith the sphere, with a radius r less than the sphere'sradius R, the usual isotropic symmetry argument givesRRS
~E � d~A = 4�r2E, where E is the (constant) radialelectric �eld strength at radius r < R. The net chargeenclosed within the Gaussian surface is 43�r3 �, giving4�r2E = 1�0 43�r3 �, orE(r < R) = �3�0 r (7)for the electric �eld inside such a uniform sphericalcharge density.A similar linear relationship holds for the gravitational�eld within a solid sphere of uniform mass density, ofcourse, except in that case the force on a \test mass" isalways back toward the centre of the sphere | i.e. alinear restoring force with all that implies. . . .18.2 The Line SourceA sphere, as we have seen, can be collapsed to a pointwithout a�ecting the external �eld; and a point is es-sentially a \zero-dimensional object" | it has no prop-erties that can help us to de�ne a unique direction inspace. The next higher-dimensional object would be one-dimensional, namely a line. What can we do with this?In the spirit of the normal physics curriculum, we willnow stick to the example of electrostatics, rememberingthat all the same arguments can be used on gravity orindeed on other situations not involving \force �elds"at all. (Consider the sprinkler, or a source of \rays" oflight.) Suppose that we have an \in�nite line of charge,"i.e. a straight wire with a charge � per unit length.This is pictured in Fig. 18.2.The same sort of symmetry arguments used in Fig. 18.1tell us that for every element of charge a distance d



4above position x on the wire, there is an equal ele-ment of charge an equal distance d below position x,from which we can conclude that the \transverse" con-tributions to the ~E �eld from the opposite charge ele-ments cancel, leaving only the components pointing di-rectly away from the wire; i.e. perpendicular to the wire.In what are referred to as \cylindrical coordinates," theperpendicular distance from the wire to our �eld pointis called r, and the direction described above is the rdirection. Thus ~E points in the r̂ direction. (Indeed,if it wanted to point in another direction, it would haveto choose it arbitrarily, as there is no other directionthat can be de�ned uniquely by reference to the wire'sgeometry!) Given the direction of ~E and the \obvious"(but nevertheless correct) fact that it must have the samestrength in all directions (i.e. it must be independent ofthe \azimuthal angle" � | another descriptive termborrowed from celestial navigation), we can guess at ashape for the closed surface of Eq. (3) which will giveus ~E either parallel to the surface (no contribution tothe outgoing 
ux) or normal to the surface and constant,which will let us take E outside the integral and just de-termine the total area perpendicular to ~E: we choose acylindrical shaped \pillbox" centred on the wire. No 
uxescapes from the \end caps" because ~E is parallel tothe surface; ~E is constant in magnitude over the curvedoutside surface and everywhere perpendicular (normal)to it. ThusZZS
~E � d~A = E ZZS
dA = (E)(2�rL)where 2�rL is the curved surface area of a cylinder ofradius r and height L.The same surface, clipping o� a length L of wire, en-closes a net charge q = �L. Plugged into (3), thisgives 2�rLE = �L�0or E(r) = �2��0 � 1r (8)which states the general conclusion for any cylindricallysymmetric charge distribution, namely thatThe electric �eld from a cylindrically sym-metric charge distribution points away fromthe central line and falls o� proportional tothe inverse of the distance from the centre.This also holds in an amazing variety of situations. Ap-plications are left to the interested student.

Figure 18.2 An in�nite, uniform line of charge.18.3 The Plane SourceNote the interesting trend: a zero-dimensional distribu-tion (a point) produces a �eld that drops o� as r�2,while a one-dimensional distribution (a line) produces a�eld that drops o� as r�1. We have to be tempted tosee if a two-dimensional distribution (a plane) will giveus a �eld that drops o� as r0 | i.e. which does not dropo� at all with the distance from the plane, but remainsconstant throughout space. This application of Gauss'Law is a straightforward analogy to the other two, andcan be worked out easily by the reader. ;-)


