Vector Calculus

You don’t really have to know this stuff to use
my HyperReference. However, if you are math-
ematically inclined you will surely enjoy the el-
egance and economy of vector notation when
applied to calculus; if nothing else this is an
aesthetic treat — read it just for fun!

Functions of Several Variables

Suppose we go beyond f(z) and talk about
F(z,y,z) — e.g. a function of the exact po-
sition in space. This is just an example, of
course; the abstract idea of a function of sev-
eral variables can have “several” be as many
as you like and “variables” be anything you
choose. Another place where we encounter lots
of functions of “several” variables is in THER-
MODYNAMICS, but for the time being we will
focus our attention on the three spatial vari-
ables z (left-right), y (back-forth) and z (up-
down).

How can we tackle derivatives of this function?

Partial Derivatives

Well, we do the obvious: we say, “Hold all
the other variables fixed except [for instance]
x and then treat F'(x,y, z) as a function only
of x, with y and z as fixed parameters.” Then
we know just how to define the derivative with
respect to x. The short name for this deriva-
tive is the PARTIAL DERIVATIVE with respect
to x, written symbolically

oFr
ozr
where the fact that there are other variables

being held fixed is implied by the use of the
symbol 0 instead of just d.
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Operators

The foregoing description applies for any func-
tion of (x,y, z); the concept of “taking partial
derivatives” is independent of what function
we are taking the derivatives of. It is therefore
practical to learn to think of
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as OPERATORS that can be applied to any
function (like F). Put the operator on the left
of a function, perform the operation and you
get a partial derivative — a new function of
(x,y,z). In general, such “operators” change
one function into another. Physics is loaded
with operators like these.

The GRADIENT Operator

The GRADIENT operator is a vector operator,
written V and called “grad” or “del.” It is
defined (in Cartesian coordinates x,y, z) as'
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and can be applied directly to any scalar func-
tion of (z,y, z) — say, ¢(z,y,z) — to turn it
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GRADIENTS of Scalar Functions

It is instructive to work up to this “one dimen-
sion at a time.” For simplicity we will stick to
using ¢ as the symbol for the function of which
we are taking derivatives.

The GRADIENT in One Dimension

'T am using the conventional notation for 2,7,k as the
UNIT VECTORS in the z,y, z directions, respectively.



Let the dimension be . Then we have no “ex-
tra” variables to hold constant and the gradi-
ent of ¢(z) is nothing but 242, We can illus-

trate the “meaning” of 6¢ by an example: let
¢(z) be the mass of an object times the ac-
celeration of gravity times the height A of a
hill at horizontal position z. That is, ¢(z) is
the gravitational potential energy of the ob-
ject when it is at horizontal position x. Then
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Note that €% is the slope of the hill and —6(]5
is the honzontal component of the net force
(gravity plus the normal force from the hill’s
surface) on the object. That is, —6@5 is the
downhill force.

The GRADIENT in Two Dimensions

In the previous example we disregarded the
fact that most hills extend in two horizontal
directions, say x = East and y = North. [If we
stick to small distances we won’t notice the
curvature of the Earth’s surface.] In this case
there are two components to the slope: the
Eastward slope 2 —x and the Northward slope
‘gh The former is a measure of how steep the
hlll will seem if you head due East and the
latter is a measure of how steep it will seem if
you head due North. If you put these together
to form a vector “steepness” (gradient)
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then the vector Vh points uphill — i.e. in
the direction of the steepest ascent. Moreover,
the gravitational potential energy ¢ = mgh as
before [only now ¢ is a function of 2 variables,
o(z,y)] so that —Vé is once again the down-
hill force on the object.

The GRADIENT in Three Dimensions

If the potential ¢ is a function of 3 variables,
é(z,y, 2) [such as the three spatial coordinates

x, y and z — in which case we can write it a
little more compactly as ¢(7) where ¥ = x1 +
yj + zk, the vector distance from the origin
of our coordinate system to the point in space
where ¢ is being evaluated], then it is a little
more difficult to make up a “hill” analogy —
try imagining a topographical map in the form
of a 3-dimensional hologram where instead of
lines of constant altitude the “equipotentials”
are surfaces of constant ¢. (This is just what
Physicists do picture!) Fortunately the math
extends easily to 3 dimensions (or any larger
number, if that has any meaning in the context
we choose).

In general, any time there is a potential energy
function ¢(7) we can immediately write down
the force F' associated with it as

F = —6¢
A perfectly analogous expression holds for the
electric field E [force per unit charge| in terms

of the electrostatic potential ¢ [potential en-
ergy per unit charge]:?
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The GRADIENT in N Dimensions

Although we won’t be needing to go beyond
3 dimensions very often in Physics, you might
want to borrow this metaphor for application
in other realms of human endeavour where
there are more than 3 variables of which your
scalar field is a function. You could have ¢ be
a measure of happiness, for instance [though it
is hard to take reliable measurements on such a
subjective quantity|; then ¢ might be a func-
tion of lots of factors, such as x; = freedom
from violence, x5 = freedom from hunger, x3
= freedom from poverty, 4, = freedom from

%I know, I know, I am using the ¢ symbol for two dif-
ferent things. Well, I said it was the preferred symbol for
a scalar field, so you shouldn’t be surprised to see it “recy-
cled” many times. This won’t be the last!



oppression, and so on.> Note that with an ar-
bitrary number of variables we get away from
thinking up different names for each one and
just call the 7*® variable “z;.”

Then we can define the GRADIENT in N di-
mensions as
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where 2; is a UNIT VECTOR in the x; direction.

DIVERGENCE of a Vector Field

If we form the scalar (“dot”) product of V

with a vector function A(x,y,z) we get a

scalar result called the DIVERGENCE of A:
divA = V- A = —=
a ox + dy 0z

This name is actually quite mnemonic: the
DIVERGENCE of a vector field is a local mea-
sure of its “outgoingness” — i.e. the extent
to which there is more exiting an infinitesimal
region of space than entering it. If the field is
represented as “flux lines” of some indestruc-
tible “stuff” being emitted by “sources” and
absorbed by “sinks,” then a nonzero DIVER-
GENCE at some point means there must be a
source or sink at that position. That is to say,

“What leaves a region is no longer in it.”

For example, consider the divergence of the
CURRENT DENSITY j, which describes the
FLUX of a CONSERVED QUANTITY such as elec-
tric charge Q. (Mass, as in the current of a
river, would do just as well.)

3These are rotten examples, of course — the first practi-
cal criterion for the variables of which any ¢ is a function is
that they should be linearly independent [i.e. orthogonal |
so that the dependence on one is not all mixed up with the
dependence on another!

J (z+dz)

dz

Figure 1 Flux into and out of a volume element
dV =dzdydz.

To make this as easy as possible, let’s picture
a cubical volume element dV = dxdydz. In
general, J will (like any vector) have three
components (J,, J,, J.), each of which may be
a function of position (z,y, z). If we take the
lower left front corner of the cube to have coor-
dinates (x,y, z) then the upper right back cor-
ner has coordinates (v + dz, y + dy, z + dz).
Let’s concentrate first on .J, and how it de-
pends on z.

It may not depend on z at all, of course. In this
case, the amount of ) coming into the cube
through the bottom surface (per unit time)
will be the same as the amount of () going
out through the top surface and there will be
no net gain or loss of ) in the volume — at
least not due to .J,.

If J, is bigger at the top, however, there will
be a net loss of () within the volume dV" due
to the “divergence” of .J,. Let’s see how much:
the difference between .J,(z) at the bottom and
J.(z + dz) at the top is, by definition, dJ, =
(%) dz. The flux is over the same area at top
and bottom, namely dx dy, so the total rate of
loss of () due to the z-dependence of .J, is given



by
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or @ = —(az>dv.

A perfectly analogous argument holds for the
xz-dependence if J, and the y-dependence of
Jy, giving a total rate of change of ()
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or Q = —V - JdV

Q =

The total amount of ) in our volume element
dV at a given instant is just pdV, of course,
so the rate of change of the enclosed () is just

Q = pdV
which means that we can write

g = _%.Jav
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or, just cancelling out the common factor dV/
on both sides of the equation,

dp
ot
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which is the compact and elegant “differential
form” of the EQUATION OF CONTINUITY.

This equation tells us that the “Q) sourciness”
of each point in space is given by the degree to
which flux “lines” of J tend to radiate away
from that point more than they converge to-
ward that point — namely, the DIVERGENCE
of J at the point in question. This esoteric-
looking mathematical expression is, remem-
ber, just a formal way of expressing our origi-
nal dumb tautology!

CurlL of a Vector Field

If we form the vector (“cross”) product of V
with a vector function A(z,y, z) we get a vec-
tor result called the curl of A:
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This is a lot harder to visualize than the DI-
VERGENCE, but not impossible. Suppose you
are in a boat in a huge river (or Pass) where
the current flows mainly in the x direction but
where the speed of the current (flux of water)
varies with y. Then if we call the current J ,
we have a nonzero value for the derivative 2=

oy ?
which you will recognize as one of the terms

in the formula for V x J. What does this
imply? Well, if you are sitting in the boat,
moving with the current, it means the current
on your port side moves faster — ¢.e. forward
relative to the boat — and the current on your
starboard side moves slower — i.e. backward
relative to the boat — and this implies a cir-
culation of the water around the boat — i.e.
a whirlpool! So V x J is a measure of the lo-
cal “swirliness” of the current J , which means
“curl” is not a bad name after all!

The LAPLACIAN Operator

If we form the scalar (“dot”) product of V
with itself we get a scalar second derivative
operator called the LAPLACIAN:

V-V =

What does the V? operator “mean?” It
is the three-dimensional generalization of the
one-dimensional CURVATURE operator d?/dz?.



Consider the familiar one-dimensional func-
tion h(x) where h is the height of a hill
at horizontal position z. Then dh/dz is the
slope of the hill and d?h/dz? is its curva-
ture (the rate of change of the slope with po-
sition). This property appears in every form
of the WAVE EQUATION. In three dimensions,
a nice visualization is harder (there is no ex-
tra dimension “into which to curve”) but V?¢
represents the equivalent property of a scalar
function ¢(z,y, 2).

GAUSS’ Law

The EQUATION OF CONTINUITY (see above)
describes the conservation of “actual physical
stuft” entering or leaving an infinitesimal re-
gion of space dV. For example, J may be the
current density (charge flow per unit time per
unit area normal to the direction of flow) in
which case p is the charge density (charge per
unit volume); in that example the conserved
“stuftf” is electric charge itself. Many other
examples exist, such as FLUID DYNAMICS (in
which mass is the conserved stuff) or HEAT
FLOW (in which energy is the conserved quan-
tity). In ELECTROMAGNETISM, however, we
deal not only with the conservation of charge
but also with the continuity of abstract vec-
tor fields like E and B. In order to visualize
E, we have developed the notion of “electric
field lines” that cannot be broken except where
they originate (from positive charges) and ter-
minate (on negative charges). [This descrip-
tion only holds for static electric fields; when
things move or otherwise change with time,
things get a lot more complicated ... and in-
teresting!] Thus a positive charge is a “source
of electric field lines” and a negative charge is
a “sink” — the charges themselves stay put,
but the lines of E diverge out of or into them.
You can probably see where this is heading.

GAuss’ LAaw states that the net flux of electric
field “lines” out of a closed surface S is pro-
portional to the net electric charge enclosed

within that surface. The constant of propor-
tionality depends on which system of units one
is using; in ST units it is 1/€,. In mathematical
shorthand, this reads

€o #E ' dla = Qencl .
S

Recalling our earlier discussion of DIVER-
GENCE, we can think of E as being a sort of
flux density of conserved “stuftf” emitted by
positive electric charges. Remember, in this
case the charges themselves do not go any-
where; they simply emit (or absorb) the elec-
tric field “lines” which emerge from (or dis-
appear into) the enclosed region. The rate of
generation of this “stuff” is Qene/€.. We can
then apply GAuss’ LAW to an infinitesimal
volume element using Fig. 1 with e E in place
of J. Except for the “fudge factor” €, and the
replacement of Q by Qenc, the same arguments
used to derive the EQUATION OF CONTINU-
ITY lead in this case to a formula relating the
divergence of E to the electric charge density
p at any point in space, namely

S . 1
V-E = —p|.
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This is the differential form of GAUSS’ LAw.

Poisson and Laplace

Even in its differential form, GAuUss’ LAw is
a little tricky to solve analytically, since it is
a vector differential equation. Generally we
have an easier time solving scalar differen-
tial equations, even though they may involve
higher order partial derivatives. Fortunately,
we can convert the former into the latter: re-
call that the vector electric field can always be
obtained from the scalar electrostatic potential
using

E = —6@5.
Thusdiszﬁ-E:—ﬁ-ﬁqﬁor
1
Vi = ——p
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This relation is known as POISSON’S EQUA-
TION. Its simplified cousin, LAPLACE’S EQUA-
TION, applies in regions of space where there
are no free charges:

Vip = 0|.

Each of these equations finds much use in real
electrostatics problems. Advanced students of
electromagnetism learn many types of func-
tions that satisfy LAPLACE’S EQUATION, with
different symmetries; since a conductor is al-
ways an equipotential (every point in a given
conductor must have the same ¢, otherwise
there would be an electric field in the con-
ductor that would cause charges to move un-
til they cancelled out the differences in ¢),
empty regions surrounded by conductors of
certain shapes must have ¢ with a spatial de-
pendence satisfying those BOUNDARY CONDI-
TIONS as well as LAPLACE’S EQUATION. One
can often write down a complicated-looking
formula for ¢ almost by inspection, using this
favourite method of Physicists and Mathe-
maticians, namely ... KNOWING THE AN-
SWER.



