
1Ve
tor Cal
ulusYou don't really have to know this stu� to usemy HyperReferen
e. However, if you are math-emati
ally in
lined you will surely enjoy the el-egan
e and e
onomy of ve
tor notation whenapplied to 
al
ulus; if nothing else this is an�stheti
 treat | read it just for fun!Fun
tions of Several VariablesSuppose we go beyond f(x) and talk aboutF (x; y; z) | e.g. a fun
tion of the exa
t po-sition in spa
e. This is just an example, of
ourse; the abstra
t idea of a fun
tion of sev-eral variables 
an have \several" be as manyas you like and \variables" be anything you
hoose. Another pla
e where we en
ounter lotsof fun
tions of \several" variables is in ther-modynami
s, but for the time being we willfo
us our attention on the three spatial vari-ables x (left-right), y (ba
k-forth) and z (up-down).How 
an we ta
kle derivatives of this fun
tion?Partial DerivativesWell, we do the obvious: we say, \Hold allthe other variables �xed ex
ept [for instan
e℄x and then treat F (x; y; z) as a fun
tion onlyof x, with y and z as �xed parameters." Thenwe know just how to de�ne the derivative withrespe
t to x. The short name for this deriva-tive is the partial derivative with respe
tto x, written symboli
ally�F�xwhere the fa
t that there are other variablesbeing held �xed is implied by the use of thesymbol � instead of just d.Similarly for �F�y and �F�z .

OperatorsThe foregoing des
ription applies for any fun
-tion of (x; y; z); the 
on
ept of \taking partialderivatives" is independent of what fun
tionwe are taking the derivatives of. It is thereforepra
ti
al to learn to think of��x and ��y and ��yas operators that 
an be applied to anyfun
tion (like F ). Put the operator on the leftof a fun
tion, perform the operation and youget a partial derivative | a new fun
tion of(x; y; z). In general, su
h \operators" 
hangeone fun
tion into another. Physi
s is loadedwith operators like these.The Gradient OperatorThe gradient operator is a ve
tor operator,written ~r and 
alled \grad" or \del." It isde�ned (in Cartesian 
oordinates x; y; z) as1~r � {̂ ��x + |̂ ��y + k̂ ��zand 
an be applied dire
tly to any s
alar fun
-tion of (x; y; z) | say, �(x; y; z) | to turn itinto a ve
tor fun
tion, ~r� = {̂���x + |̂���y +k̂ ���z .Gradients of S
alar Fun
tionsIt is instru
tive to work up to this \one dimen-sion at a time." For simpli
ity we will sti
k tousing � as the symbol for the fun
tion of whi
hwe are taking derivatives.The Gradient in One Dimension1I am using the 
onventional notation for {̂; |̂; k̂ as theunit ve
tors in the x; y; z dire
tions, respe
tively.



2Let the dimension be x. Then we have no \ex-tra" variables to hold 
onstant and the gradi-ent of �(x) is nothing but {̂d�dx . We 
an illus-trate the \meaning" of ~r� by an example: let�(x) be the mass of an obje
t times the a
-
eleration of gravity times the height h of ahill at horizontal position x. That is, �(x) isthe gravitational potential energy of the ob-je
t when it is at horizontal position x. Then~r� = {̂ d�dx = {̂ ddx(mgh) = mg  dhdx! {̂:Note that dhdx is the slope of the hill and � ~r�is the horizontal 
omponent of the net for
e(gravity plus the normal for
e from the hill'ssurfa
e) on the obje
t. That is, � ~r� is thedownhill for
e.The Gradient in Two DimensionsIn the previous example we disregarded thefa
t that most hills extend in two horizontaldire
tions, say x = East and y = North. [If westi
k to small distan
es we won't noti
e the
urvature of the Earth's surfa
e.℄ In this 
asethere are two 
omponents to the slope: theEastward slope �h�x and the Northward slope�h�y . The former is a measure of how steep thehill will seem if you head due East and thelatter is a measure of how steep it will seem ifyou head due North. If you put these togetherto form a ve
tor \steepness" (gradient)~rh = {̂ �h�x + |̂ �h�ythen the ve
tor ~rh points uphill | i.e. inthe dire
tion of the steepest as
ent. Moreover,the gravitational potential energy � = mgh asbefore [only now � is a fun
tion of 2 variables,�(x; y)℄ so that � ~r� is on
e again the down-hill for
e on the obje
t.The Gradient in Three DimensionsIf the potential � is a fun
tion of 3 variables,�(x; y; z) [su
h as the three spatial 
oordinates

x, y and z | in whi
h 
ase we 
an write it alittle more 
ompa
tly as �(~r) where ~r � x{̂ +y|̂ + zk̂, the ve
tor distan
e from the originof our 
oordinate system to the point in spa
ewhere � is being evaluated℄, then it is a littlemore diÆ
ult to make up a \hill" analogy |try imagining a topographi
al map in the formof a 3-dimensional hologram where instead oflines of 
onstant altitude the \equipotentials"are surfa
es of 
onstant �. (This is just whatPhysi
ists do pi
ture!) Fortunately the mathextends easily to 3 dimensions (or any largernumber, if that has any meaning in the 
ontextwe 
hoose).In general, any time there is a potential energyfun
tion �(~r) we 
an immediately write downthe for
e ~F asso
iated with it as~F � � ~r�A perfe
tly analogous expression holds for theele
tri
 �eld ~E [for
e per unit 
harge℄ in termsof the ele
trostati
 potential � [potential en-ergy per unit 
harge℄:2~E � � ~r�The Gradient in N DimensionsAlthough we won't be needing to go beyond3 dimensions very often in Physi
s, you mightwant to borrow this metaphor for appli
ationin other realms of human endeavour wherethere are more than 3 variables of whi
h yours
alar �eld is a fun
tion. You 
ould have � bea measure of happiness, for instan
e [though itis hard to take reliable measurements on su
h asubje
tive quantity℄; then � might be a fun
-tion of lots of fa
tors, su
h as x1 = freedomfrom violen
e, x2 = freedom from hunger, x3= freedom from poverty, x4 = freedom from2I know, I know, I am using the � symbol for two dif-ferent things. Well, I said it was the preferred symbol fora s
alar �eld, so you shouldn't be surprised to see it \re
y-
led" many times. This won't be the last!



3oppression, and so on.3 Note that with an ar-bitrary number of variables we get away fromthinking up di�erent names for ea
h one andjust 
all the ith variable \xi."Then we 
an de�ne the gradient in N di-mensions as~r� = {̂1 ���x1 + {̂2 ���x2 + � � � + {̂N ���xNor ~r� = NXi=1 {̂i ���xiwhere {̂i is a unit ve
tor in the xi dire
tion.Divergen
e of a Ve
tor FieldIf we form the s
alar (\dot") produ
t of ~rwith a ve
tor fun
tion ~A(x; y; z) we get as
alar result 
alled the divergen
e of ~A:div~A � ~r � ~A � �Ax�x + �Ay�y + �Az�zThis name is a
tually quite mnemoni
: thedivergen
e of a ve
tor �eld is a lo
al mea-sure of its \outgoingness" | i.e. the extentto whi
h there is more exiting an in�nitesimalregion of spa
e than entering it. If the �eld isrepresented as \
ux lines" of some indestru
-tible \stu�" being emitted by \sour
es" andabsorbed by \sinks," then a nonzero diver-gen
e at some point means there must be asour
e or sink at that position. That is to say,\What leaves a region is no longer in it."For example, 
onsider the divergen
e of the
urrent density ~J , whi
h des
ribes theflux of a 
onserved quantity su
h as ele
-tri
 
harge Q. (Mass, as in the 
urrent of ariver, would do just as well.)3These are rotten examples, of 
ourse | the �rst pra
ti-
al 
riterion for the variables of whi
h any � is a fun
tion isthat they should be linearly independent [i.e. orthogonal ℄so that the dependen
e on one is not all mixed up with thedependen
e on another!

Figure 1 Flux into and out of a volume elementdV = dx dy dz.To make this as easy as possible, let's pi
turea 
ubi
al volume element dV = dx dy dz. Ingeneral, ~J will (like any ve
tor) have three
omponents (Jx; Jy; Jz), ea
h of whi
h may bea fun
tion of position (x; y; z). If we take thelower left front 
orner of the 
ube to have 
oor-dinates (x; y; z) then the upper right ba
k 
or-ner has 
oordinates (x + dx; y + dy; z + dz).Let's 
on
entrate �rst on Jz and how it de-pends on z.It may not depend on z at all, of 
ourse. In this
ase, the amount of Q 
oming into the 
ubethrough the bottom surfa
e (per unit time)will be the same as the amount of Q goingout through the top surfa
e and there will beno net gain or loss of Q in the volume | atleast not due to Jz.If Jz is bigger at the top, however, there willbe a net loss of Q within the volume dV dueto the \divergen
e" of Jz. Let's see how mu
h:the di�eren
e between Jz(z) at the bottom andJz(z + dz) at the top is, by de�nition, dJz =��Jz�z � dz. The 
ux is over the same area at topand bottom, namely dx dy, so the total rate ofloss ofQ due to the z-dependen
e of Jz is given



4by_Qz = �dx dy �Jz�z ! dz = � �Jz�z ! dx dy dzor _Q = � �Jz�z ! dV :A perfe
tly analogous argument holds for thex-dependen
e if Jx and the y-dependen
e ofJy, giving a total rate of 
hange of Q_Q = � �Jx�x + �Jy�y + �Jz�z ! dVor _Q = � ~r � ~J dVThe total amount of Q in our volume elementdV at a given instant is just � dV , of 
ourse,so the rate of 
hange of the en
losed Q is just_Q = _� dVwhi
h means that we 
an write���t dV = � ~r � ~J dVor, just 
an
elling out the 
ommon fa
tor dVon both sides of the equation,���t = � ~r � ~Jwhi
h is the 
ompa
t and elegant \di�erentialform" of the Equation of Continuity.This equation tells us that the \Q sour
iness"of ea
h point in spa
e is given by the degree towhi
h 
ux \lines" of ~J tend to radiate awayfrom that point more than they 
onverge to-ward that point | namely, the divergen
eof ~J at the point in question. This esoteri
-looking mathemati
al expression is, remem-ber, just a formal way of expressing our origi-nal dumb tautology!

Curl of a Ve
tor FieldIf we form the ve
tor (\
ross") produ
t of ~rwith a ve
tor fun
tion ~A(x; y; z) we get a ve
-tor result 
alled the 
url of ~A:
url ~A � ~r� ~A � {̂ �Az�y � �Ay�z !+ |̂ �Ax�z � �Az�x !+ k̂ �Ay�x � �Ax�y !This is a lot harder to visualize than the di-vergen
e, but not impossible. Suppose youare in a boat in a huge river (or Pass) wherethe 
urrent 
ows mainly in the x dire
tion butwhere the speed of the 
urrent (
ux of water)varies with y. Then if we 
all the 
urrent ~J ,we have a nonzero value for the derivative �Jx�y ,whi
h you will re
ognize as one of the termsin the formula for ~r � ~J . What does thisimply? Well, if you are sitting in the boat,moving with the 
urrent, it means the 
urrenton your port side moves faster | i.e. forwardrelative to the boat | and the 
urrent on yourstarboard side moves slower | i.e. ba
kwardrelative to the boat | and this implies a 
ir-
ulation of the water around the boat | i.e.a whirlpool! So ~r� ~J is a measure of the lo-
al \swirliness" of the 
urrent ~J , whi
h means\
url" is not a bad name after all!The Lapla
ian OperatorIf we form the s
alar (\dot") produ
t of ~rwith itself we get a s
alar se
ond derivativeoperator 
alled the Lapla
ian:~r � ~r � r2 � �2�x2 + �2�y2 + �2�z2What does the r2 operator \mean?" Itis the three-dimensional generalization of theone-dimensional 
urvature operator d2=dx2.



5Consider the familiar one-dimensional fun
-tion h(x) where h is the height of a hillat horizontal position x. Then dh=dx is theslope of the hill and d2h=dx2 is its 
urva-ture (the rate of 
hange of the slope with po-sition). This property appears in every formof the wave equation. In three dimensions,a ni
e visualization is harder (there is no ex-tra dimension \into whi
h to 
urve") but r2�represents the equivalent property of a s
alarfun
tion �(x; y; z).Gauss' LawThe Equation of Continuity (see above)des
ribes the 
onservation of \a
tual physi
alstu�" entering or leaving an in�nitesimal re-gion of spa
e dV . For example, ~J may be the
urrent density (
harge 
ow per unit time perunit area normal to the dire
tion of 
ow) inwhi
h 
ase � is the 
harge density (
harge perunit volume); in that example the 
onserved\stu�" is ele
tri
 
harge itself. Many otherexamples exist, su
h as fluid dynami
s (inwhi
h mass is the 
onserved stu�) or heatflow (in whi
h energy is the 
onserved quan-tity). In Ele
tromagnetism, however, wedeal not only with the 
onservation of 
hargebut also with the 
ontinuity of abstra
t ve
-tor �elds like ~E and ~B. In order to visualize~E, we have developed the notion of \ele
tri
�eld lines" that 
annot be broken ex
ept wherethey originate (from positive 
harges) and ter-minate (on negative 
harges). [This des
rip-tion only holds for stati
 ele
tri
 �elds; whenthings move or otherwise 
hange with time,things get a lot more 
ompli
ated . . . and in-teresting!℄ Thus a positive 
harge is a \sour
eof ele
tri
 �eld lines" and a negative 
harge isa \sink" | the 
harges themselves stay put,but the lines of ~E diverge out of or into them.You 
an probably see where this is heading.Gauss' Law states that the net 
ux of ele
tri
�eld \lines" out of a 
losed surfa
e S is pro-portional to the net ele
tri
 
harge en
losed

within that surfa
e. The 
onstant of propor-tionality depends on whi
h system of units oneis using; in SI units it is 1=�Æ. In mathemati
alshorthand, this reads�Æ ZZS
~E � d~A = Qen
l :Re
alling our earlier dis
ussion of diver-gen
e, we 
an think of ~E as being a sort of
ux density of 
onserved \stu�" emitted bypositive ele
tri
 
harges. Remember, in this
ase the 
harges themselves do not go any-where; they simply emit (or absorb) the ele
-tri
 �eld \lines" whi
h emerge from (or dis-appear into) the en
losed region. The rate ofgeneration of this \stu�" is Qen
l=�Æ. We 
anthen apply Gauss' Law to an in�nitesimalvolume element using Fig. 1 with �Æ ~E in pla
eof ~J . Ex
ept for the \fudge fa
tor" �Æ and therepla
ement of _Q by Qen
l, the same argumentsused to derive the Equation of Continu-ity lead in this 
ase to a formula relating thedivergen
e of ~E to the ele
tri
 
harge density� at any point in spa
e, namely~r � ~E = 1�Æ � :This is the di�erential form of Gauss' Law.Poisson and Lapla
eEven in its di�erential form, Gauss' Law isa little tri
ky to solve analyti
ally, sin
e it isa ve
tor di�erential equation. Generally wehave an easier time solving s
alar di�eren-tial equations, even though they may involvehigher order partial derivatives. Fortunately,we 
an 
onvert the former into the latter: re-
all that the ve
tor ele
tri
 �eld 
an always beobtained from the s
alar ele
trostati
 potentialusing ~E � � ~r� :Thus div~E � ~r � ~E = � ~r � ~r� orr2� = � 1�Æ � :



6This relation is known as Poisson's equa-tion. Its simpli�ed 
ousin, Lapla
e's equa-tion, applies in regions of spa
e where thereare no free 
harges:r2� = 0 :Ea
h of these equations �nds mu
h use in realele
trostati
s problems. Advan
ed students ofele
tromagnetism learn many types of fun
-tions that satisfy Lapla
e's equation, withdi�erent symmetries; sin
e a 
ondu
tor is al-ways an equipotential (every point in a given
ondu
tor must have the same �, otherwisethere would be an ele
tri
 �eld in the 
on-du
tor that would 
ause 
harges to move un-til they 
an
elled out the di�eren
es in �),empty regions surrounded by 
ondu
tors of
ertain shapes must have � with a spatial de-penden
e satisfying those boundary 
ondi-tions as well as Lapla
e's equation. One
an often write down a 
ompli
ated-lookingformula for � almost by inspe
tion, using thisfavourite method of Physi
ists and Mathe-mati
ians, namely . . . knowing the an-swer.


