5.1. TOLERANCE

MEASUREMENT

In preceding Chapters we discussed the tactical
problems associated with describing quantita-
tive measurements, reminding ourselves that the
tools we use (numbers, dimensions, units) are al-
most perfectly arbitrary in isolation but embody
a functional or relational truth in the “gram-
mar” of their use. Accepting these tools provi-
sionally, we turn now to the far messier problem

of actually performing measurements.

5.1 Tolerance

(Advertising Your Uncertainty)

Virtually all [I could follow the consensus and
say all, but I feel like hedging| “scientific” proce-
dures involve measurement of experimental pa-
rameters such as distance, time, velocity, mass,
energy, temperature, ... etc. Virtually all mea-
surements are subject to error; that is, they
may be inaccurate (wrong) by some unknown
amount due to effects ranging from errors in
recording [“I said 3.32, not 3.23!”] to miscali-
brated instruments [“I thought these tic marks
were centimetres!”|. Such “systematic errors”
are embarrassing to the experimenter, as they
imply poor technique, and are always hard to
estimate; but we are honour-bound to try. An
entirely different source of error that conveys no
negative connotations on the experimenter is the
fact that all measurements have limited preci-
sion or “tolerance” — limited by the “marks”
on the generalized “ruler” used for measuring-
by-comparison. (FE.g., the distance your mea-
sure with a micrometer is more precisely known
than the distance you measure with a cloth tape
measure. )

Knowing this, most scientists and virtually all
physicists have an @sthetic about measured val-
ues of things: they are never to be reported
without an explicit estimation of their uncer-
tainty. That is, measurements must always be
reported in the form

(VALUE + UNCERTAINTY) UNITS

or equivalent notation (sometimes a shorthand
version), such as 3.1416(12) radians, meaning
(3.1416 + 0.0012) radians. [The (12) means the
uncertainty in the last two digits is + 12.] This
shorthand form is convenient for long strings of
digits with only the last 1 or 2 digits uncertain,
but the explicit form with the £ is more pleasing
to the @esthetic mentioned above.

When, as in some elementary particle physics
experiments lasting many years and costing mil-
lions of dollars, a great deal of effort has gone
into measuring a single number, it is common
practice to make a clear distinction between
“statistical errors” (the precision of our instru-
mentation) and suspected “systematic errors”
(mistakes). In most situations, however, both
are lumped together or “added in quadrature”
(the total uncertainty is the square root of the
sum of the squares of the uncertainties due to all
the independent sources of error).! It is consid-
ered poor form to cavalierly overestimate one’s
uncertainty to reduce the significance of devia-
tions from expectations.

To write a measured value without its tolerance
(uncertainty, “possible error,” etc.) is as bad
form as leaving out the units of the measure-
ment. The significance of your measurement
is lost. To do this in the presence of physi-
cists is like ordering Ripple with your meal at
Maxim’s. Sadly, values are slipping throughout
society, and otherwise respectable scientists can
often be heard to quote numbers without speci-
fying uncertainties. The best we can do is to be
sure we do not contribute to this decay.

'More on this later. . ..



5.1.1 Graphs and Error Bars

When plotting points on a graph, the uncer-
tainty is included in the form of “error bars”
which look like this:
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5.1.2 Vector Tolerance

Allow me to slip into something a little more
formal. ...

Usually this topic would be called “Error Prop-
agation in Functions of Several Variables” or
something like that; I have used the term “vec-
tor tolerance” because (a) the word “error” has
these perjorative connotations for most people,
whereas “tolerance” is usually considered a good
thing;? (b) when our final result is calculated in
terms of several other quantities, each of which
is uncertain by some amount, and when those
uncertainties are independent of each other, we
get a situation much like trying to define the
overall length of a vector with several indepen-
dent perpendicular components. Each contribu-
tion to the overall uncertainty can be positive or
negative, and on average you would not expect
them to all add up; that would be like assum-
ing that if one were positive they all must be.
So we square each contribution, add the squares
and take the square root of the sum, just as we
would do to find the length of a vector from its
components.

The way to do this is easily prescribed if we use
a little calculus notation: suppose the “answer”
A is a function of several variables, say x and

2«Uncertainty” is somewhere in between.

y. We write A(z,y). So what happens to A
when z changes by some amount 6z?® Simple,
we just write 04, ~ (0A/dx) 0x where the ,
subscript on dA, reminds us that this is just
the contribution to the change in A from that
little change in z, not from any changes in y;
the ~ sign acknowledges that this doesn’t get
exact until 0z — dx, which is really small; and
the 0 symbols are like derivatives except they
remind us that we are treating y as if it were a
constant when we take this derivative.

The same trick works for changes in y, of course,
so then we have two “orthogonal” shifts of the
result to combine into one uncertainty in A.
I have already given the prescription for this
above. The formula reads

(6A4)2 ~ (% 5:1:)2 + (% 6y>2 (1)

This can be extended to a function of N vari-

ables {zy, 29, - x; - zn}:
N (DA ?
§A)? ~ 01, 2
oy~ 3 (G o) @)

where the ) symbol means “sum over all terms
of this form, with the index ¢ running from 1 to
N‘”

The treatment above is a little too “advanced”
mathematically for some people (or for anyone
on a bad day), so here are a few special cases
that the enthusiast may wish to derive from the
general form in Eq. (2):

e Uncertainty in a Sum: If A(z,y) =
a x + by, with constants a and b, then

(6A4)* ~ (a 6x)* + (b 6y)>. (3)

That is, just add the uncertainties in
quadrature.

3Notational convention: we use Az to denote “a change
in z, not necessarily tiny” whereas dx usually means “a little
bitty change in z, but definitely finite!” and dx means “a
change in = that is so teensy that it can be neglected relative
to anything else but another really teensy thing.” That last
one (dz) is called a “differential” — Mathematicians don’t

like it much but Physicists use it all the time.
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e Uncertainty in a Product: If
A(z,y) = a z y, with constant a, then

()22 o

That is, just add the fractional uncertain-
ties in quadrature.

e Uncertainty in a Quotient: It
A(z,y) = a z/y, with constant a, then

(8- o

That is, just add the fractional uncertain-
ties in quadrature, just like for a product.

e Uncertainty in a Product of Power
Laws: If A(z,y) = a 2P y9, with con-
stant a, p and ¢, then

() =02) (%) o

which includes simple products and quo-
tients.

These should get you through almost anything,
if applied wisely.

5.2  Statistical Analysis

It’s all very well to say that one should always
report the results of measurements with uncer-
tainties (or “errors” as they are often mislead-
ingly called) specified; but this places a burden
of judgement on the experimenter, who must es-
timate uncertainties in a manner fraught with
individual idiosyncracies. Wouldn'’t it be nice if
there were a way to measure one’s uncertainty
in a rigourous fashion?

Well, there is. It is a little tedious and compli-
cated, but easily understood: one must make a
large number of repeated measurements of the

same thing and analyze the “scatter” of the an-
swers!

Suppose we are trying to determine the “true”
value of the quantity z. (We usually refer to
unspecified things as “z” in this business.) It
could be your pulse rate or some other simple

physical observable.

We make N independent measurements z; (i =
1,2,3,...,N) under as close to identical con-
ditions as we can manage. Each measurment,
we suspect, is not terribly precise; but we don’t
know just how imprecise. (It could be largely
due to some factor beyond our control; pulse
rates, for instance, fluctuate for many reasons.)

Now, the z; will “scatter” around the “true” = in
a distribution that will put some x; smaller than
the true z and others larger. We assume that
whatever the cause of the scatter, it is basically
random  i.e. the exact value of one measure-
ment x;,1 is not directly influenced by the value
x; obtained on the previous measurement. (Ac-
tually, perfect randomness is not only hard to
define, but rather difficult to arrange in practice;
it is sufficient that most fluctuations are random
enough to justify the treatment being described
here.) It is intuitively obvious (and can even be
rigorously proved in most cases) that our best
estimate for the “true” x is the average or mean
value, Z, given by:*

T

1 N

i=1

But what is the uncertainty in 7 Let’s call it

N
*The symbol Z represents an operator called “summa-

i=1
tion” — it means that {the stuff to the right of the X},
which will always have a subscript ; in one or more places,
is to be thought of as the “'™ term” and all such terms

with ¢ values running from 1 to IV are to be added together
N

to form the desired result. So, for instance, Z T; means

i=1
{r14+z24+2z3+... +TN_1+ 2N}, Or (to be more specific) if
N =3, just {x1+z2+=z3}. This may seem a little arcane, but
it is actually a very handy compact notation for the rather
common sumimation operation.



Ty
How can we find 6, mathematically from the
data?  Well, if we assume that each indi-
vidual measurement z; has the same single-
measurement uncertainty o,, then the distribu-
tion of x; should look like a “bell-shaped curve”
or gaussian distribution:
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Figure 5.1 A typical graph of D(z), the distri-
bution of x, defined as the relative frequency of
occurence of different values of 2 from successive
measurements. The “centre” of the distribution
is at x, the average or mean of x. The “width”
of the distribution is 20 (one o on either side of
the mean.

Obviously, Ax; = x; L & is a measure of the
“error” in the ™ measurement, but we cannot
just find the average of Ax;, since by definition
the sum of all Ax; is zero (there are just as many
negative errors as positive errors). The way out
of this dilemma is always to take the average of
the squares of Ax;, which are all positive. This

“mean square” error is called the variance, s2:

1 N
s2 NZ z; Lx)? (8)

=1

and its square root, the “root mean square er-
ror”, is called the standard deviation — which
can be shown (rigorously, in many cases, al-
though not without a good deal of math) to
be the best possible estimate for the single-

measurement uncertainty o,.

So we actually have a way of “calculating” our

uncertainty directly from the data! This is quite
remarkable. But wait. We have not just mea-
sured x once; we have measured it /N times. Our
instincts (7) insist that our final best estimate
of x, namely the mean, z, is determined more
precisely than we would get from just a single
measurement. This is indeed the case. The un-
certainty in the mean, ,, is smaller than o,.
By how much?  Well, it takes a bit of math
to derive the answer, but you will probably not
find it implausible to accept the result that 62
is smaller than o2 by a factor of 1/N. That is,

_ O—I

o ik 9)
Thus 4 measurements give an average that is
twice as precise as a single measurement, 9 give
an improvement of 3, 100 give an improvement
of 10, and so on. This is an extremely useful
principle to remember, and it is worth thinking
about its implications for a while.




5.2.

STATISTICAL ANALYSIS

COMMENT:

The above analysis of statistical
uncertainties explains how to find
the best estimate (the mean) from
a number N of independent mea-
surements with unknown but similar
individual uncertainties. Sometimes
we can estimate the uncertainty o,
in each measurement xz; by some
independent means like “common
sense” (watch out for that one!). If
this is the case, and if the mea-
surements are not all equally pre-
cise (as, for instance, in combining
all the world’s best measurements
of some esoteric parameter in ele-
mentary particle physics), then it
is wrong to give each measurement
equal weight in the average. There
is then a better way to define the av-
erage, namely the “weighted mean”:

N
21':1 W; 5

N
i=1 Wi

T =

where w; = 1/02 . If the reader is
interested in the proper way to esti-
mate the uncertainty &, in the mean
under these circumstances, it is time
to consult a statistics text; the an-
swer is not difficult, but it needs
some explanation that is beyond the
scope of this HyperReference.



