PHASORS
(Advanced Topic)

What happens when coherent light comes
through more than two slits, all equally spaced
a distance d apart, in a line parallel to the in-
coming wave fronts? The same criterion still
holds for completely constructive interference
(what we will now refer to as the PRINCIPAL
MAXIMA) but we no longer have a simple cri-
terion for destructive interference: each suc-
cessive slit’s contribution cancels out that of
the adjacent slit, but if there are an odd num-
ber of slits, there is still one left over and the
combined amplitude is not zero.

Does this mean there are no angles where the
intensity goes to zero? Not at all; but it is
not quite so simple to locate them. One way
of making this calculation easier to visualize
(albeit in a rather abstract way) is with the
geometrical aid of PHASORS: A single wave
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Figure 1 A single "PHASOR" of length 1, (the
wave amplitude) precessing at a frequency w in
the complex plane.

can be expressed as ¢(z,t) = e where
0 = kx — wt + ¢ is the phase of the wave at a
fixed position = at a given time ¢. (As usual,
¢ is the “initial” phase at z = 0 and ¢t = 0. At
this stage it is usually ignored; I just retained
it one last time for completeness.) If we fo-
cus our attention on one particular location in
space, this single wave’s “displacement” 1) at
that location can be represented geometrically

as a vector of length 1, (the wave amplitude)
in the complex plane called a “PHASOR” As
time passes, the “direction” of the phasor ro-
tates at an angular frequency w in that ab-
stract plane.

There is not much advantage to this geomet-
rical description for a single wave (except per-
haps that it engages the right hemisphere of
the brain a little more than the algebraic ex-
pression) but when one goes to “add together”
two or more waves with different phases, it
helps a lot! For example, two waves of equal

Figure 2 Two waves of equal amplitude 1),
but different phases 6; and 6, are represented
as PHASORS in the complex plane. Their vec-
tor sum has the resultant amplitude 1, and the
average phase 6.

amplitude but different phases can be added
together algebraically as for BEATS:

N
= 21, " cos(§/2)
= ¢ (1)
where
by = 21, cos(6/2)
0 = (6 +6)
§ = 6,0, . (2)

That is, the combined amplitude v, can be
obtained by adding the phasors “tip-to-tail”



like ordinary vectors. Like the original com-
ponents, the whole thing continues to precess
in the complex plane at the common frequency
w.

We are now ready to use PHASORS to find the
amplitude of an arbitrary number of waves of
arbitrary amplitudes and phases but a com-
mon frequency and wavelength interfering at
a given position. This is illustrated in Fig. 3
for 5 phasors. In practice, we rarely attempt

Figure 3  The net amplitude of a wave pro-
duced by the interference of an arbitrary number
of other waves of the same frequency of arbi-
trary amplitudes v; and phases 6; can in prin-
ciple be calculated geometrically by “tip-to-tail”
vector addition of the individual PHASORS in the
complex plane.

such an arbitrary calculation, since it cannot
be simplified algebraically.

Instead, we concentrate on simple combina-
tions of waves of equal amplitude with well
defined phase differences, such as those pro-
duced by a regular array of parallel slits with
an equal spacing between adjacent slits.

It will be conceptually helpful to show a geo-
metrical explanation of the 6-slit interference
pattern in Fig. 6 in terms of phasor diagrams,
but clearly the smooth curve shown there is
not the result of an infinte number of geomet-
rical constructions. It comes from an algebraic
formula that we can derive for an arbitrary
angle ¥ and a corresponding phase difference
d = (2wd/\) sind between rays from adjacent
slits. The formula itself is obtained by analy-
sis of a geometrical construction like that illus-
trated in Fig. 4 for 7 slits, each of which con-

tributes a wave of amplitude a, with a phase
difference of 6 between adjacent slits.
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Figure 4 PHASOR DIAGRAM for calculating the
intensity pattern produced by the interference of
coherent light passing through 7 parallel, equally
spaced slits.

Figure 5 Blowup of one of the isosceles triangles
formed by a single phasor and two radii from the
center of the circumscribed circle to the tip and
tail of the phasor.

After adding all 7 equal-length phasors in
Fig. 4 “tip-to-tail”, we can draw a vector from
the starting point to the tip of the final phasor.
This vector has a length A (the net amplitude)
and makes a chord of the circumscribed circle,
intercepting an angle

a=2r—N§, (3)

where in this case N = 7. The radius r of the



circumscribed circle is given by

g = rsin (g) , (4)

as can be seen from the blowup in Fig. 5; this
can be combined with the analogous

ge:ran(%) (5)

to give the net amplitude

sin ( &

A=a |— (2) : (6)
Sin (5)

From Eq. (3) we know that o/2 =7 — N /2,

and in general sin(m — #) = sin 6, so

] o

where

5=2w<§>smﬁ (8)

Although the drawing shows N = 7 phasors,
this result is valid for an arbitrary number N
of equally spaced and evenly illuminated slits.

Figure 6 shows an example using 6 identi-
cal slits with a spacing d = 100\. The an-
gular width of the interference pattern from
such widely spaced slits is quite narrow, only
10 mrad (1072 radians) between principal
maxima where all 6 rays are in phase. In be-
tween the principal maxima there are 5 min-
ima and 4 secondary maxima; this can be gen-
eralized:

The interference pattern for N equally
spaced slits exhibits (N — 1) minima and
(N — 2) secondary maxima between each
pair of principal maxima.

We can understand this analytically from ex-
amining Eq. (7) with calculus: the extrema
(maxima and minima) of A occur at the phys-
ical angles ¥ where dA/d¥ = 0. That is, where

L“d [Ntan <§> — tan <N§>] cos?=0.
A sin (g) 2 2

which is satisfied “trivially” at the CENTRAL
MAXIMUM (9 = 0) and otherwise where

N tan (g) = tan (Ng) 9)

The “almost trivial” solution is when §/2 is a
multiple of 7 (or ¢ is a multiple of 27), making
both tangents zero. This corresponds to the
PRINCIPAL MAXIMA where, as expected from

Eq. (8),

d sin¥,, = mA (10)

What about the minima? From Fig. 6 we can
see that the first minimum occurs when N¢§ =
2m, that is, when the phasor diagram closes
on itself. For large N this means that §/2 =
7 /N is a rather small angle and we can use the
small-angle approximation tan(d/2) ~ 6/2 =
/N giving N tan(6/2) = 7 = N§/2 to satisfy
Eq. (9). Combined with Eq. (8) this predicts
that the first minimum occurs at a laboratory
angle ¥(1°® min.) given by

d sin¥(1* min.) =

(11)

2>

For large N and/or d > A, this means

The interference pattern for N equally
spaced slits has its first minimum at an

angle (1% min.) inversely proportional
to N.
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Figure 6 The intensity pattern produced by the interference of coherent light passing through six
parallel slits 100 wavelengths apart. PHASOR DIAGRAMS are shown for selected angles. Note that,
while the phase angle difference & between rays from adjacent slits is a monotonically increasing
function of the angle ¥ (plotted horizontally) that the rays make with the “forward” direction, the
latter is a real geometrical angle in space while the former is a pure abstraction in “phase space”.
The exact relationship is 6/2m = (d/)\) sind &~ (d/A) 9 for very small 9. Note the symmetry about
the 3" minimum at ¥ ~ 5 mrad. At ¥ ~ 10 mrad the intensity is back up to the same value it had
in the central maximum at ¥ = 0; this is called the first PRINCIPAL MAXIMUM. Then the whole
pattern repeats.. ..



