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Let’s start with a simple question:

You have almost certainly heard of 
something called “entropy”.  

What is it?
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“A theory is the more impressive the greater 
the simplicity of its premises, the more different 
kinds of things it relates, and the more 
extended its area of applicability. Therefore the 
deep impression that classical thermodynamics 
made upon me.   It is the only physical theory 
of universal content which I am convinced will 
never be overthrown, within the framework of 
applicability of its basic concepts.”  

− Albert Einstein 
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− Josiah Willard Gibbs

1839-1903

“But although, as a matter of history, statistical 
mechanics owes its origin to investigations in 
thermodynamics, it seems eminently worthy of 
an independent development, both on account 
of the elegance and simplicity of its principles, 
and because it yields new results and places old 
truths in a new light in departments quite 
outside of thermodynamics.”
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?        S = k log W      ?
➚   

Entropy!     ↑   

Boltzmann’s constant
(1.38 × 10−23 J/K)

↑ The number
of different ways

that the total energy
of the system (U ) can be distributed among 
all its microscopic degrees of freedom.   Also 
known as the “Multiplicity function” because  

W is a function of U.  

Sometimes denoted  Ω.
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Parking Lot Analogy
The owner of a 
parking lot with 

N = 9 spaces gets 
$1 for each car 

parked.  

How many different ways can the owner get $n ?
The first car has N choices.

The second car has (N−1) choices.
The third car has (N−2) choices...

When the nth car comes in, the total # of possible 
choices will be   N (N−1) (N−2)⋅⋅⋅(N−n+1)
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∴ N (N−1) (N−2)⋅⋅⋅(N−n+1) =
                           N!                         .  

Factorials

N (N−1) (N−2)⋅⋅⋅3⋅2⋅1 ≡ N!

(N−n) (N−n−1) (N−n−2)⋅⋅⋅3⋅2⋅1 

Is this  Ω(n, N ) ?    Not quite.    We have overcounted
by the number of different ways the same n cars can be
rearranged among the same n parking spaces, namely n!
(The lot owner doesn’t care which car is in which space.)  
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         N!        

Multiplicity

(N−n)! n! 

is the number of significantly different ways 
that the owner of an N-car parking lot

can accommodate n cars.

Ω(n, N ) = 

Well, the owner gets $n for this situation, and in 
Physics the “coin of the realm” is Energy U. 

What does this have to do with Thermal Physics?

Like U, money is conserved: if someone gets extra, 
someone else has to give it up.    Hold that thought.
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         N!        
(N−n)! n! 

is also known as the Binomial Distribution:

Ω (n, N ) = 

The fractional width (in n/N ) decreases with N.
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Stirling’s Approximation

log n!  ≈  n log n  −  n  +  log(2πn)/2

can be used to show that  Ω (n, N ) is 
basically a Gaussian “bell curve” with a 

mean n of N/2 and a width 

proportional to N1/2 so that the 

fractional width (width/N ) is 

proportional to  N−1/2.
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         N!        
(N−n)! n! Ω (n, N ) = 

When N gets big (like 1022), 

Ω (n, N ) gets fantastically narrow and
ridiculously huge,  so we take the log!
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Let’s Get Vague!

Suppose we have a fixed amount of energy U1 to 
distribute among all the microscopic degrees of freedom 
of some system S 1.    We don’t care what “microstate”  

S 1  is in;  we are only interested in its net energy U1 

and the number of  “accessible” microstates,  Ω1(U1).

σ1 = log Ω1(U1)   is the entropy of  S 1. 
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σ1 = log Ω1(U1)   is the entropy of  S 1 ? 

What?!

Wait a minute, we thought entropy was some 
mysterious thermodynamic function with weird units. 

This σ thing is a pure number,  just like Ω. 
Also, isn’t S the symbol for entropy?

Solution:  multiply σ by Boltzmann’s constant 
k = 1.38 × 10−23 J/K  to get S.

OK, we know what Joules are, but what’s a K ?

Wednesday, November 4, 2009



S T!
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Suppose we have a fixed amount of energy U1 to 
distribute among all the microscopic degrees of freedom 
of some system S1.   We don’t care what “microstate”  

S1  is in,  we are only interested in its net energy U1 and 

the number of  “accessible” microstates,  Ω1(U1).

σ1 = log Ω1(U1)   is the entropy of  S1. 

R:

Forget about k and K for now.
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What use is it to know that

σ1 = log Ω1(U1)   is the entropy of  S 1 ?

S ?

Answer:  almost none,  unless S 1 can exchange 
energy dU with some other system S 2 .

We call this “being in thermal contact”.
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S 2 contains energy U2

and has Ω2(U2) 
accessible microstates

S 1 contains energy U1

and has Ω1(U1) 
accessible microstates

∴Total number of accessible microstates in 

combined system is  Ωtot = Ω1⋅Ω2 .

Ω1 of S 1 is independent from Ω2 of S 2 .
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S 2 contains energy U2

and has Ω2(U2) 
accessible microstates

S 1 contains energy U1

and has Ω1(U1) 
accessible microstates

Total energy U = U1 + U2 is conserved.

dU1 = − dU2 

Changes:  dΩ1 = Ω1(U1 + dU1) − Ω1(U1)

dΩ2 = Ω2(U2 + dU2) − Ω2(U2)
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A Little Mathematics

Ωtot = Ω1⋅Ω2

⇒  dΩtot = Ω2⋅dΩ1 + Ω1⋅dΩ2

= Ω2⋅(dΩ1/dU1)dU1 + Ω1⋅(dΩ2/dU2)dU2

= Ω2⋅(dΩ1/dU1)dU1 − Ω1⋅(dΩ2/dU2)dU1

Divide through by  Ωtot :

dΩtot = (dΩ1/dU1)dU1 − (dΩ2/dU2)dU1

       Ωtot             Ω1                      Ω2 
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dΩtot = (dΩ1/dU1)dU1− (dΩ2/dU2)dU1

       Ωtot             Ω1                      Ω2 

This is the same as saying

dσtot = (dσ1/dU1)dU1 − (dσ2/dU2)dU1

Now is the time to ask 
“Why are we doing this?”
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Most Probable Configuration
Remember that every possible accessible microstate
is (a priori) equally likely.   Thus we can never predict 
which microstate the system(s) will be in; we can only 

identify macrostates which comprise a larger 
number Ωtot of microstates and therefore a larger 
entropy σtot.   As energy shifts around randomly 
between the two systems, the most probable 

macrostate will be the one where σtot is a maximum.  
What’s the criterion for an extremum of σtot (U1) ?

dσtot/dU1 = 0
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We have   dσtot = (dσ1/dU1)dU1 − (dσ2/dU2)dU1

and we want   dσtot/dU1 = 0.

Thus   dσ1/dU1 = dσ2/dU2

is the criterion for the most probable configuration.

That is, we are most likely to find the system in a 

macrostate in which β1 = β2

where    β ≡ dσ/dU    for each.
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Most likely configuration:

  β1 = β2     where   β ≡ dσ/dU.

Also known as “Thermal Equilibrium”.

What does this remind you of?
What do you think β is?

To answer, let’s ask ourselves what will happen

if (for example)   β1 > β2 ?
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S 2 contains energy U2

and has entropy 
σ2(U2) 

S 1 contains energy U1

and has entropy 
σ1(U1)

dU1 = − dU2 

β1 > β2    where    β ≡ dσ/dU

Energy U will “drift randomly” from S 2 into S 1

because σ1 increases by more than σ2 decreases.
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β ≡ dσ/dU

Energy will “drift randomly” 
from a system with low β  (“hot” )
into a region of high β  (“cold” ).   

This sounds a lot like temperature, 
except “backward”!

Well, actually, “upside down”.

Temperature τ is defined as 1/β.
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Great Big Thermal Reservoir   

R at temperature  τR

Itsy-bitsy, teenie-weenie system S in a fully 

specified microstate α whose energy is εαα 

loses entropy

dσR = − εαα /τR
when εαα is supplied to S.

Probability Pα ∝ Ωtot

Ωtot = 1 ⋅ ΩR

= e(σR + dσR)

= eσR ⋅ e−εαα 
/τR

∴ Pα ∝ e−εαα 
/τR

(Boltzmann factor)
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Example 1: 

 Isothermal Atmosphere

S = one nitrogen molecule, mass m
R = the rest of the atmosphere

τR = temperature of the atmosphere
≈ 300 K = 4.14×10−21 J

εαh = mgh = gravitational potential energy of 

the molecule at altitude h

∴ P(h) ∝ e−mgh
 
/τR
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Empirical observation:  Pressure drops off with 

altitude like   e−h 
/λ   where  λ ≈ 8 km

P(h) ∝ e−mgh
 
/τR

Mass of an N2 Molecule

∴  mg /τR ≈ 1/λ   or  m  ≈ τR /gλ  or

m  ≈ (4.14×10−21 J)/(9.8 m/s2)(8×103 m)  or

m  ≈ 5.28×10−26 kg

Check:   mN2  = 2×14 AMU = 4.65×10−26 kg
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Example 2: 

 Proton Polarization

S = the spin of one proton                
(magnetic moment µ = 1.41×10−26 J/T)

R = your brain.   τR = 310 K = 4.28×10−21 J

εα↑↓ = ± µB = 4.23×10−26 J where B = 3 T      
is a typical magnetic field in an MRI scanner.

∴ Pα↑↓ ∝ e±µB
 
/τR  =  e± 4.23/428000 =  e± 0.0000099
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Pα↑↓ ∝ e± 0.00001 ≈  1 ± ε + ε2 ± ε3 + ... where  ε = 10−5

But “∝” is not “ =”!  How do we normalize 

so that  Pα↑ + Pα↓ = 1 ?                                    
(The sum of probabilities of all possible states must be 1, duh!)

Answer:  stick in a constant, then find out what it is!
Pα↑↓ = C (1 ± ε + ε2)    ∍    1 = 2C (1 + ε2)     or               

C = 1/[2 (1 + ε2)] = 0.499999999998 ≈ 1/2 ,   so           
the polarization of the proton spins is                       
Pα↑ − Pα↓ = (1 + ε  − 1 + ε)/2  =  ε = 10−5. 
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The protons are only polarized to 10 parts per million!
This is pretty pathetic, but higher fields are expensive, 
and patients often object to being cooled down to a few 
thousandths of a Kelvin . . . .

As an exercise, you might try calculating the polarization 
of a collection of electrons (with magnetic moment 
µe = 0.93×10−23 J/T) in the same magnetic field (3 T) 
at room temperature (300 K) or at the temperature of 
liquid helium (4.2 K).  This sort of thing makes a good 
exam question . . . .
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Fs
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