
15.1. RANDOM CHANCE 1
Thermal Physi
s1\A theory is the more impressive thegreater the simpli
ity of its premises, themore di�erent kinds of things it relates,and the more extended its area of appli
a-bility. Therefore the deep impression that
lassi
al thermodynami
s made upon me.It is the only physi
al theory of universal
ontent whi
h I am 
onvin
ed will never beoverthrown, within the framework of appli-
ability of its basi
 
on
epts." | A. Ein-stein\But although, as a matter of history, sta-tisti
al me
hani
s owes its origin to inves-tigations in thermodynami
s, it seems em-inently worthy of an independent develop-ment, both on a

ount of the elegan
e andsimpli
ity of its prin
iples, and be
ause ityields new results and pla
es old truths ina new light in departments quite outside ofthermodynami
s." | J.W. GibbsWe have seen how a few simple laws (in parti
ularNewton's se
ond law) 
an be 
ombined with not-too-sophisti
ated mathemati
s to solve a great vari-ety of problems | problems whi
h eventually are per-
eived to fall into a number of reasonably well-de�ned
ategories by virtue of the mathemati
al manipula-tions appropriate to ea
h | and that those distin
t
lasses of mathemati
al manipulations eventually be-
ome familiar enough to a
quire familiar names of theirown, su
h as \
onservation of impulse and momentum"or \
onservation of work and energy" or \
onservationof torque and angular momentum." This emergen
eof new ta
it paradigms was the great 
on
eptual giftof the Newtonian revolution. But the most profoundpra
ti
al impa
t of the new s
ien
es on so
iety 
amein the form of the Industrial Revolution, whi
h wasmade possible only when the s
ien
e of me
hani
s was
ombined with an understanding of how to extra
t us-able me
hani
al work from that most mysterious ofall forms of energy, heat.Histori
ally, heat was re
ognized as a form of energyand temperature was understood in terms of its qual-itative properties long before anyone truly understoodwhat either of these terms a
tually meant in any rig-orous mi
ros
opi
 model of matter. The link between1I have \borrowed" the notation, general approa
h, ba-si
 derivations and most of the quotations shown here fromthe ex
ellent textbook of the same name by Kittel & Kroe-mer, who therefore deserve all the 
redit (and none of theblame) for the abbreviated version displayed before you.

Newton's me
hani
s and the thermodynami
s of Jouleand Kelvin was forged by Boltzmann long after steampower had 
hanged the world, and a simple under-standing of many of the �ner points of Boltzmann'sstatisti
al me
hani
s had to wait even longer untilQuantum Me
hani
s provided a natural explanationfor the requisite fa
t that the number of possible statesof any system, while huge, is not in�nite, and thatsmall, simple systems are in fa
t restri
ted to a 
ount-able number of dis
rete \stationary states." In thisdrama Albert Einstein was to play a rather importantrole.The following 
on
eptual outline of Statisti
al Me
han-i
s is designed to make the subje
t as 
lear as possible,not to be histori
ally a

urate or even fair. Havingmade this 
hoi
e, however, I hope to be able to displaythe essen
e of the most astonishing produ
t of humanS
ien
e without undue rigamarole, and perhaps to 
on-vey the wonder that arises from a deeper and morefundamental understanding.15.1 Random Chan
eWith so many mira
les to 
hoose from, where do Iget o� de
laring Statisti
al Me
hani
s to be \the mostastonishing produ
t of human S
ien
e?" This is of
ourse a personal opinion, but it is one shared by manyphysi
ists | perhaps even a majority. The astonish-ment is a result of the in
redible pre
ision with whi
hone 
an predi
t the out
ome of experiments on very
ompli
ated systems (the more 
ompli
ated, the morepre
ise!) based on the fundamental assumption ofstatisti
al me
hani
s:A system in thermal equilibrium is a prioriequally likely to be found in any one of thefully-spe
i�ed states a

essible to it.This seemingly trivial statement 
ontains a 
ouple ofringers: the word \a

essible" means, for instan
e,that the total \internal" energy of the system | whi
his always written U | i.e. the sum of the kineti
 andpotential energies of all the little parti
les and wavesthat make up the big system | is �xed. There aremany ways to divide up that energy, giving more toone parti
le and less to another, and the fundamen-tal assumption says that they are all equally likely;but in every 
ase the energy must add up to the sameU . This 
an obviously be very 
onfusing, but fortu-nately we rarely attempt to 
ount up the possibilitieson our �ngers!It is the assumption itself that is so amazing. How 
ananything but total ignoran
e result from the assump-tion that we know nothing at all about the minute



2biases a real system might have for one state over an-other? More emphati
ally, how 
an su
h an outra-geous assumption lead to anything but wrong predi
-tions? It amounts to a pronoun
ement that Natureruns a perfe
tly honest 
asino, in whi
h every possible
ombination of the roll of the di
e is a
tually equallylikely! And yet every predi
tion derived from this as-sumption has been demonstrated to be a

urate to thebest pre
ision our measurements 
an provide. And the
onsequen
es are numerous indeed!15.2 Counting the WaysIf we a

ept the fundamental assumption at fa
evalue, then it is easy to 
al
ulate the probability of�nding the equilibrated system in any given fully spe
-i�ed state: if the state is not a

essible [e.g. if it takesmore energy U than we have at our disposal℄ thenthe probability is zero; if it is a

essible, then its prob-ability is just 1
 , where 
 is the total number ofa

essible states. The �rst step is therefore to 
al
ulate
. In general this 
an get diÆ
ult, but we 
an 
hoosea few simple examples to illustrate how the 
al
ulationgoes.15.2.1 Conditional Multipli
itySuppose we have a jar full of pennies, say N pen-nies, all of whi
h have had unique numbers paintedon them so that they 
an be easily distinguished fromea
h other. Now suppose we shake it thoroughly anddump it out on a ni
e 
at table; ea
h penny falls ei-ther \heads" or \tails" with equal a priori probability.The probability of penny #1 being \heads" is 12 . Theprobability of penny #1 being \heads" and penny #2being \tails" is 12 � 12 = 14 . The probability of penny#1 being \heads" and penny #2 being \tails" andpenny #3 being \tails" is 12 � 12 � 12 = 18 . And soon. If the pennies are all \statisti
ally independent"(i.e. how one penny falls has no in
uen
e on the otherpennies), the probability of any spe
i�
 arrangementof spe
i�
 pennies falling spe
i�
 ways [what we 
all afully spe
i�ed state of the system℄ is�12�N = 12Nwhere N is the total number of pennies.Unfortunately, this is not what we want to know. Wedon't 
are whi
h pennies fall whi
h way,2 only howmany of ea
h. This is what we 
all a partially spe
i�ed2In the present 
ase, we have a 
hoi
e of whether totreat the pennies as \indistinguishable" or not. No two

or partially 
onstrained state of the system. What wereally want to know is the number of ways we 
an getn heads and (N � n) tails.3Suppose we spe
ify that n pennies are \heads" andthe remaining (N � n) are \tails." The number ofways we 
an do this is what we 
all 
(n;N), themultipli
ity fun
tion for the partially 
onstrained statespe
i�ed only by n and N . Here's how we 
al
ulate
(n;N): the number of di�erent ways we 
an rear-range all N 
oins isN ! � N � (N � 1) � (N � 2) � � � 3 � 2 � 1be
ause we have N 
hoi
es of whi
h 
oin will be �rst,then we have (N�1) 
hoi
es of whi
h 
oin will be se
-ond, then we have (N � 2) 
hoi
es of whi
h 
oin willbe third, and so on. The total number of 
hoi
es is theprodu
t of the numbers of 
hoi
es at ea
h step. How-ever, we have over
ounted by the number of di�erentways the heads 
an be rearranged among themselves,whi
h by the same argument is n!, and by the number(N � n)! of ways the tails 
an be rearranged amongthemselves. Therefore the total number of distinguish-able 
ombinations that all give n heads and (N �n)tails is 
(n;N) = N !n! � (N � n)! (1)Another example would be a parking lot with Nspa
es in whi
h n 
ars are parked. The number ofdi�erent ways we 
an label the spa
es is N ! but the no

upied spa
es 
an be rearranged amongst themselvesn! di�erent ways and the (N � n) empty spa
es 
anbe rearranged (N � n)! di�erent ways without alter-ing the partial 
onstraint [namely, that only n of thespa
es are �lled℄.4 Then Eq. (1) des
ribes the num-ber of di�erent ways the 
ars 
an be parked without
hanging the total number of parked 
ars.pennies are really indistinguishable, of 
ourse; even with-out our painted-on numbers, ea
h one has unique s
rat
heson its surfa
e and was 
rystallized from the molten statein a unique mi
ros
opi
 pattern. We 
ould tell one fromanother; we just don't 
are, for 
ir
umstantial reasons.In quantum me
hani
s, however, you will en
ounter the
on
ept of elementary parti
les [e.g. ele
trons℄ whi
h areso un
ompli
ated that they truly are indistinguishable[i.e. perfe
tly identi
al℄; moreover, statisti
al me
han-i
s provides a means of a
tually testing to see whether theyare really absolutely indistinguishable or just very similar!3It might be that we get to keep all the pennies that
ome up heads, but for every penny that 
omes up tails wehave to 
hip in another penny of our own. In that 
ase ourpro�t would be n� (N � n) = 2n�N 
ents.4If you were the parking lot owner and were 
harging $1per spa
e [
heap!℄, your pro�t would be $n. I keep 
omingba
k to monetary examples | I guess 
ash is the so
ialanalogue of energy in this 
ontext.



15.2. COUNTING THE WAYS 3The Binomial DistributionTo generalize, we talk about a system of N parti
les,5ea
h of whi
h 
an only be in one of two possible single-parti
le states. A fully spe
i�ed N -parti
le state ofthe system would have the single-parti
le state of ea
hindividual parti
le spe
i�ed, and is not very interest-ing. The partially spe
i�ed N -parti
le state with nof the parti
les in the �rst single-parti
le state and theremaining (N�n) parti
les in the other single-parti
lestate 
an be realized in 
(n;N) di�erent ways, with
(n;N) given by Eq. (1). Be
ause there are only twopossible single-parti
le states, this 
ase of 
 is 
alledthe binomial distribution. It is plotted6 in Fig. 15.1for several values of N .Note what happens to 
(n;N) as N gets bigger: thepeak value, whi
h always o

urs at npeak = 12N , getsvery large [in the plots it is 
ompensated by dividingby 2N , whi
h is a big number for large N ℄ and thewidth of the distribution grows steadily narrower |i.e. values of nN far away from the peak get less andless likely as N in
reases. The width is in fa
t thestandard deviation7 of a hypotheti
al random sampleof n, and is proportional to pN . The fra
tionalwidth (expressed as a fra
tion of the total range of n,namely N) is therefore proportional to pNN = 1pN :Fra
tional Width / 1pN (2)whi
h means that for really large N , like N = 1020,the binomial distribution will get really narrow, like apart in 1010, in terms of the fra
tion of the average.
5The term \parti
le" is [in this usage℄ meant to be asvague as possible, just like \system:" the parti
les are \re-ally simple things that are all very mu
h alike" and thesystem is \a bun
h of parti
les taken together."6A
tually what is plotted in Fig. 15.1 is the probabilityfun
tionP(n) � 12N � 
(n;N) = 12N � N !n! (N � n)!vs. nN , as explained in the 
aption. Otherwise it wouldbe diÆ
ult to put more than one plot on the same graph,as the peak value of 
(n;N) gets very large very fast asN in
reases!7Re
all your Physi
s Lab training on measurement!

Figure 15.1 The normalized binomial distribution forseveral values of N . In order to put several 
ases ona single graph, the horizontal axis shows n divided byits maximum possible value N [giving the fra
tion ofthe total range℄ and the binomial 
oeÆ
ient 
(n;N)given by Eq. (1) has been divided by the total number ofpossible fully spe
i�ed N -parti
le states, 2N , to give the\normalized" probability | i.e. if we add up the valuesof 
(n;N)=2N for all possible n from 0 to N , thetotal probability must be 1. [This is eminently sensible;the probability of n having some value is surely equalto unity!℄15.2.2 Entropy\If we wish to �nd in rational me
hani
san a priori foundation for the prin
iples ofthermodynami
s, we must seek me
hani
alde�nitions of temperature and entropy."| J.W. GibbsThe fun
tion 
(n;N) is 
alled the multipli
ityfun
tion for the partially spe
i�ed system. If Nand n get to be large numbers (whi
h is usually the
ase when we are talking about things like the num-bers of ele
trons in a 
rystal), 
(n;N) 
an get reallyhuge.8 It is so huge, in fa
t, that it be
omes very dif-�
ult to 
ope with, and we do what one usually doeswith ungainly huge numbers to make them manage-able: we take its logarithm. We de�ne the [natural℄logarithm of 
 to be the entropy �:� � ln
 (3)8A good estimate of the size of N ! for large N isgiven by Stirling's approximation:N ! � p2�N �NN � e�N



4Let's say that again: the entropy � is the naturallogarithm of the multipli
ity fun
tion 
 | i.e.of the number of di�erent ways we 
an get the partiallyspe
i�ed 
onditions in this 
ase de�ned by n.Is this all there is to the most fearsome, the most ar-
ane, the most in
omprehensible quantity of thermo-dynami
s? Yep. Sorry to disappoint. That's it. Of
ourse, we haven't played around with � yet to seewhat it might be good for | this 
an get very inter-esting | nor have I told this story in an histori
allya

urate sequen
e; the 
on
ept of entropy pre
ededthis de�nition in terms of \statisti
al me
hani
s" bymany years, during whi
h all of its properties were elu-
idated and armies of thermal physi
ists and engineersbuilt the ma
hines that powered the Industrial Revo-lution. But understanding thermodynami
s the old-fashioned way is hard! So we are taking the easy route| sort of like riding a heli
opter to the top of Mt. Ever-est.15.3 Statisti
al Me
hani
sBefore we go on, I need to move away from our ex-amples of binomial distributions and 
ast the generalproblem in terms more appropriate to Me
hani
s. We
an always go ba
k and generalize the paradigm9 butI will develop it along traditional lines.The owner of the parking lot des
ribed earlier is onlyinterested in the total number of 
ars parked be
ausethat number will determine his or her pro�t. In Me-
hani
s the \
oin of the realm" is energy, whi
h wehave already said is always written U in thermalphysi
s. The abstra
t problem in statisti
al me-
hani
s involves a 
omplex system with many pos-sible states, ea
h of whi
h has a 
ertain total energyU . This energy may be in the form of the sum ofthe kineti
 energies of all the atoms of a gas 
on�nedin a box of a 
ertain volume, or it may be the sumof all the vibrational energies of a 
rystal; there is noend of variety in the physi
al examples. But we arealways talking about the random, disordered energyof the system, the so-
alled internal energy, when wetalk about U .Now, given a 
ertain amount of internal energy U ,the number of di�erent fully-spe
i�ed states of the sys-tem whose total internal energy is U [our partial
onstraint℄ is the 
onditional multipli
ity fun
tion
(U). Taking the binomial distribution as our exam-ple again, we 
ould substitute 
rystal latti
e sites for\parking pla
es" and defe
ts for \
ars" [a defe
t 
ouldbe an atom out of pla
e, for instan
e℄. If it takes an9Count on it!

energy " to 
reate one defe
t, then the total internalenergy stored in n defe
ts would be U = n ". Lots ofother examples 
an be imagined, but this one has theenergy U proportional to the number n of defe
ts,so that you 
an see how the U -dependen
e of 
 inthis 
ase is just like the n-dependen
e of 
 before.So what?Well, things start to get interesting when you put twosu
h systems in 
onta
t so that U 
an 
ow freelybetween them through random statisti
al 
u
tuations.15.3.1 EnsemblesOne of the more esoteri
 notions in statisti
al me-
hani
s is the 
on
ept of an ensemble. This has noth-ing to do with musi
; it goes ba
k to the original mean-ing of the Fren
h word ensemble, whi
h is a 
olle
tionor gathering of things | mu
h more general and ab-stra
t than the small band of musi
ians we tend to vi-sualize. Anyway, the Statisti
al Me
hani
al \ensem-ble" is a 
olle
tion of all the possible fully spe
i�edstates of some system.Of 
ourse, there are di�erent kinds of ensembles de-pending upon what global 
onstraints are in e�e
t. Forinstan
e, the set of all possible states of an isolatedsystem S 
onsisting of a �xed number N of \par-ti
les"10 with a well de�ned total energy U is 
alleda mi
ro
anoni
al ensemble. This is what we havebeen dis
ussing so far.The set of all possible states of a system S 
onsistingof a �xed number N of parti
les but in \thermal
onta
t" with a mu
h, mu
h larger system R (
alleda \heat reservoir") so that the energy U of S 
an
ow in or out of R at random is 
alled a 
anoni
alensemble.And the set of all possible states of a system S in
onta
t with a reservoir R with whi
h it 
an ex
hangeboth energy (U) and parti
les (N) is 
alled a grand
anoni
al ensemble.If the utility of these 
on
epts is less than obvious toyou, join the 
lub. I won't need to use them to de-rive the good stu� below, but now you will be ableto s
o� at pedants that pretend you 
an't understand\Stat Me
h" unless you know what the various typesof Ensembles are.10Remember, a \parti
le" is meant to be an abstra
t
on
ept in this 
ontext!



15.4. TEMPERATURE 515.4 Temperature\The general 
onne
tion between energyand temperature may only be establishedby probability 
onsiderations. [Two sys-tems℄ are in statisti
al equilibrium whena transfer of energy does not in
rease theprobability." | M. Plan
kWhen we put two systems S1 and S2 (with N1 andN2 parti
les, respe
tively) into \thermal 
onta
t" sothat the (
onstant) total energy U = U1 + U2 
anredistribute itself randomly between S1 and S2, the
ombined system S = S1+S2 will, we postulate, obeythe fundamental prin
iple | it is equally likelyto be found in any one of its a

essible states. Thenumber of a

essible states of S (partially 
onstrainedby the requirement that N1, N2 and U = U1 + U2remain 
onstant) is given by
 = 
1(U1) � 
2(U2) (4)where 
1 and 
2 are the multipli
ity fun
tionsfor S1 and S2 taken separately [both depend upontheir internal energies U1 and U2℄ and the over-all multipli
ity fun
tion is the produ
t of the two in-dividual multipli
ity fun
tions be
ause the rearrange-ments within one system are statisti
ally independentof the rearrangements within the other.11 Sin
e theentropy is the log of the multipli
ity and the logof a produ
t is the sum of the logs, Eq. (4) 
an also bewritten � = �1(U1) + �2(U2) (5)| i.e. the entropy of the 
ombined system is the sumof the entropies of its two subsystems.15.4.1 The Most ProbableSo what? Well, here's the thing: we know that all a
-
essible states of the system are a priori equally likely;however, the number 
 of a

essible states will de-pend upon the division of the total energy U betweenU1 and U2. Moreover, for a 
ertain value of U1 (andtherefore of U2 = U �U1), 
 will be a maximum |i.e. that value of U1 will make possible the largestvariety of equally likely random states of the systemand 
onsequently we will be more likely, on average, to11If I 
ip my 
oin on
e and you 
ip your 
oin twi
e, thereare 21 = 2 ways my 
ip 
an go [h, t℄ and 22 = 4 waysyour 2 
ips 
an go [HH, HT, TH, TT℄; the total number ofways the 
ombination of your 
ips and mine 
an go [hHH,hHT, hTH, hTT, tHH, tHT, tTH, tTT℄ is 2� 4 = 8. Andso on.

�nd the system in states with that value of U1 thanin other states12 with di�erent values of U1.This spe
ial value of U1 is 
alled (reasonably enough)the \most probable value" and is given the symboli
representation Û1.15.4.2 Criterion for EquilibriumIf our two systems are initially prepared separatelywith energies U1 and U2 other than the most proba-ble, what will happen when we bring them into 
onta
tso that U 
an 
ow between them? The 
orre
t answeris, of 
ourse, \Everything that possibly 
an happen."But there is a bigger variety of possibilities for 
ertaingross distributions of energy than for others, and thismakes those gross distributions more likely than oth-ers. The overall entropy is thus a measure of this like-lihood. It seems inevitable that one will eventually feel
ompelled to anthropomorphize this behaviour and ex-press it as follows:13All random systems \like" variety and will\seek" arrangements that maximize it.In any 
ase, the tenden
y of energy to 
ow from onesystem to the other will not be governed by equal-ization of either energy or entropy themselves, but byequalization of the rate of 
hange of entropy with en-ergy, ���U . To see why, suppose (for now) that moreenergy always gives more entropy. Then suppose thatthe entropy �1 of system S1 depends only weaklyon its energy U1, while the entropy �2 of system S2depends strongly on its energy U2. In mathemati
alterms, this readsSuppose ��1�U1 < ��2�U2Then removal of a small amount of energy dU fromS1 will de
rease its entropy �1, but not by as mu
has the addition of that same energy dU to S2 willin
rease its entropy �2. Thus the net entropy �1+�2will be in
reased by the transfer of dU from S1 toS2. This argument is as 
onvoluted as it sounds, butit 
ontains the irredu
ible essen
e of the de�nition oftemperature, so don't let it slip by!12Nothing pre
ludes �nding the system in states withother values of U1, of 
ourse. In fa
t we must do so some-times! Just less often.13Perhaps the 
onverse is a
tually true: human \wants"are a
tually manifestations of random pro
esses whose va-riety is greater in the dire
tion of per
eived desire. I �ndthis spe
ulation disturbing.



6The 
onverse also holds, so we 
an 
ombine this ideawith our previous statements about the system's \pref-eren
e" for higher entropy and make the following
laim:Energy U will 
ow spontaneously from asystem with smaller ���U to a system withlarger ���U .If the rate of in
rease of entropy with energy � ���U � isthe same for S1 and S2, then the 
ombined sys-tem will be \happy," the energy will stay where it is(on average) and a state of \thermal equilibrium" willprevail.Mathemati
al DerivationIs there any way to derive a formal (mathemati
al) 
ri-terion for the 
ondition of thermal equilibrium, start-ing from a hypotheti
al knowledge of 
1 as a fun
tionof U1 and 
2 as a fun
tion of U2 = U � U1? Of
ourse! Why else would I be doing this? The thingabout a maximum of a fun
tion (or a minimum, forthat matter; either type of extremum obeys the samerule) is that the slope of the fun
tion must be zero atthe extremum. [Otherwise it would still have furtherup or down to go!℄ Sin
e the slope is given by thederivative, this readsCriterion for an extremum: �
�U1 = 0 (6)In this 
ase, sin
e 
 = 
1 � 
2, the produ
t rulefor derivatives gives�
�U1 = �
1�U1 � 
2 + 
1 � �
2�U1 = 0 (7)Now, 
2 is a fun
tion of U2, not U1; but we 
anget around that by using the 
hain rule,�
2�U1 = �
2�U2 � �U2�U1 �where U2 = U � U1 and U is a 
onstant, so�U2�U1 = �1We 
an therefore substitute ��
2�U2 for �
2�U1 inEq. (7): �
1�U1 � 
2 � 
1 � �
2�U2 = 0or �
1�U1 �
2 = 
1 � �
2�U2

If we now divide both sides by the produ
t 
1 � 
2,we get 1
1 � �
1�U1 = 1
2 � �
2�U2 : (8)Now we need to re
all the property of the natural loga-rithm that was so endearing when we �rst en
ounteredit: ln(x) is the fun
tion whose derivative is the in-verse, ddx ln(x) = 1xand, by the 
hain rule,ddx ln(y) = 1y � dydxIn this 
ase \y" is 
 and \x" is U , so we have��U ln(
) = 1
 � �
�Uwhi
h means that Eq. (8) 
an be written��U1 ln(
1) = ��U2 ln(
2)But the logarithm of the multipli
ity fun
tion 
is the de�nition of the entropy �, so the equation
an be simpli�ed further to read��1�U1 = ��2�U2 (9)where of 
ourse we are assuming that all the otherparameters (like N1 and N2) are held 
onstant.Note that we have re
overed, by stri
t mathemati
almethods, the same 
riterion di
tated by 
ommon senseearlier. The only advantage of the formal derivation isthat it is rigourous, general and involves no question-able assumptions.1415.4.3 Thermal EquilibriumEq. (9) establishes the 
riterion for the most prob-able 
onfiguration | i.e. the value of Û1 forwhi
h the 
ombined systems have the maximum to-tal entropy, the maximum total number of a

essiblestates and the highest probability. This also de�nesthe 
ondition of thermal equilibrium between thetwo systems | that is, if U1 = Û1, any 
ow of energyfrom S1 to S2 or ba
k will lower the number ofa

essible states and will therefore be less likely thanthe 
on�guration15 with U1 = Û1. Therefore if we14Or, at least, none that are readily apparent. . . .15Note the distin
tion between the words 
on�gurationand state. The latter implies we spe
ify everything aboutthe system | all the positions and velo
ities of all its par-ti
les, et
. | whereas the former refers only to some grossoverall ma
ros
opi
 spe
i�
ation like the total energy orhow it is split up between two subsystems. A state is
ompletely spe
i�ed while a 
on�guration is only partlyspe
i�ed.



15.4. TEMPERATURE 7leave the systems alone and 
ome ba
k later, we willbe most likely to �nd them in the \
on�guration" withÛ1 in system S1 and (U � Û1) in system S2.This seems like a pretty weak statement. Nothing 
er-tain, just a bias in favour of Û1 over other possiblevalues of U1 all the way from zero to U . That istrue. statisti
al me
hani
s has nothing whateverto say about what will happen, only about what islikely to happen | and how likely! However, whenthe numbers of parti
les involved be
ome very large(and in Physi
s they do be
ome very large), the fra
-tional width of the binomial distribution [Eq. (2)℄ be-
omes very narrow, whi
h translates into a probabilitydistribution that is in
redibly sharply peaked at Û1.As long as energy 
onservation is not violated, there isnothing but lu
k to prevent all the air mole
ules in thisroom from va
ating the region around my head until Iexpire from asphyxiation. However, I trust my lu
k inthis. A quotation from Boltzmann 
on�rms that I amin distinguished 
ompany:\One should not imagine that two gases ina 0.1 liter 
ontainer, initially unmixed, willmix, then again after a few days separate,then mix again, and so forth. On the 
on-trary, one �nds . . . that not until a timeenormously long 
ompared to 101010 yearswill there be any noti
eable unmixing ofthe gases. One may re
ognize that this ispra
ti
ally equivalent to never. . . ."| L. Boltzmann15.4.4 Inverse TemperatureWhat do we expe
t to happen if the systems are outof equilibrium? For instan
e, suppose system S1 hasan energy U1 < Û1. What will random 
han
e \do"to the two systems? Well, a while later it would bemore likely to �nd system S1 with the energy Û1again. That is, energy would tend to \spontaneously
ow" from system S2 into system S1 to maximizethe total entropy.16 Now stop and think: is there anyfamiliar, everyday property of physi
al obje
ts thatgoverns whether or not internal energy (heat) willspontaneously 
ow from one to another? Of 
ourse!Every 
hild who has tou
hed a hot stove knows thatheat 
ows spontaneously from a hotter obje
t [like astove℄ to a 
ooler obje
t [like a �nger℄. We even havea name for the quantitative measure of \hotness" |we 
all it temperature.16This is the same as maximizing the probability, butfrom now on I want to use the terminology \maximizingthe entropy."

Going ba
k to Eq. (9), we have a mathemati
al ex-pression for the 
riterion for thermal equilibrium,whose familiar everyday-life equivalent is to say thatthe two systems have the same temperature. There-fore we have a 
ompelling motivation to asso
iate thequantity ���U for a given system with the tempera-ture of that system; then the equation reads the sameas our intuition. The only problem is that we expe
theat to 
ow from a system at high temperature to asystem at low temperature; let's 
he
k to see what ispredi
ted by the mathemati
s.17 Let's suppose thatfor some initial value of U1 < Û1 we have��1�U1 > ��2�U2 :Then adding a little extra energy dU to S1 willin
rease �1 by more than we de
rease �2 by sub-tra
ting the same dU from S2 [whi
h we must do,be
ause the total energy is 
onserved℄. So the totalentropy will in
rease if we move a little energy fromthe system with a smaller ���U to the system with alarger ���U . The region of smaller ���U must thereforebe hotter and the region of larger ���U must be 
ooler.This is the opposite of what we expe
t of tempera-ture, so we do the obvious: we de�ne ���U to be theinverse temperature of a system:���U � 1� (10)where (at last) � is the temperature of the systemin question. We 
an now express Eq. (9) in the formthat agrees with our intuition:Condition of thermal equilibrium:�1 = �2 (11)| i.e. if the temperatures of the two systems are thesame, then they will be in thermal equilibrium andeverything will be most likely to stay pretty mu
h asit is.As you 
an see, temperature is not quite su
h asimple or obvious 
on
ept as we may have been led tobelieve! But now we have a universal, rigorous andvalid de�nition of temperature. Let's see what use we
an make of it.15.4.5 Units & DimensionsI have borrowed from several authors the 
onvention ofexpressing the entropy � in expli
itly dimensionless17We have already done this on
e, but it bears repeating!To avoid 
omplete redundan
y, this time we will reverse theorder of hot and 
old.



8form [the logarithm of a pure number is another purenumber℄. By the same token, the simple de�nition oftemperature � given by Eq. (10) automati
allygives � dimensions of energy, just like U . Thus �
an be measured in joules or ergs or other more eso-teri
 units like ele
tron-volts; but we are a

ustomedto measuring temperature in other, less \physi
al"units 
alled degrees. What gives?The story of how temperature units got invented is fas-
inating and sometimes hilarious; suÆ
e it (for now) tosay that these units were invented before anyone knewwhat temperature really was!18 There are two typesof \degrees" in 
ommon use: Fahrenheit degrees19 andCelsius degrees (written ÆC) whi
h are moderately sen-sible in that the interval between the freezing point ofwater (0ÆC) and the boiling point of water (100ÆC) isdivided up into 100 equal \degrees" [hen
e the alter-nate name \Centigrade"℄. However, in Physi
s thereare only one kind of \degrees" in whi
h we measuretemperature: degrees absolute or \Kelvin"20 whi
h arewritten just \K" without any Æ symbol. One K is thesame size as one ÆC, but the zero of the Kelvin s
aleis at absolute zero, the 
oldest temperature possible,whi
h is itself an interesting 
on
ept. The freezingtemperature of water is at 273.15 K, so to 
onvert ÆCinto K you just add 273.15 degrees. Temperature mea-sured in K is always written T .What relationship does � bear to T ? The latter hadbeen invented long before the development of Statisti-
al Me
hani
s and the explanation of what tempera-ture really was; but these 
lumsy units never go awayon
e people have gotten used to them. The two typesof units must, of 
ourse, di�er by some 
onstant 
on-version fa
tor. The fa
tor in this 
ase is kB, Boltz-18Well, to be fair, people had a pretty good workingknowledge of the properties of temperature; they justdidn't have a de�nition of temperature in terms of nuts-and-bolts me
hani
s, like Eq. (10).19These silly units were invented by an instrument maker
alled Fahrenheit [1686-1736℄ who was selling thermome-ters to meteorologists. He pi
ked body temperature [ahandy referen
e, 
onstant to the pre
ision of his measure-ments℄ for one \�du
ial" point and for the other he pi
kedthe freezing point of saturated salt water, presumably fromthe North Sea. Why not pure water? Well, he didn't likenegative temperatures [neither do we, but he didn't go farenough!℄ so he pi
ked a temperature that was, for a me-teorologist, as 
old as was worth measuring. [Below that,presumably, it was just \damn 
old!"℄ Then he (sensibly)divided up the interval between these two �du
ials into96 = 64+32 equal \degrees" [
an you see why this is a prag-mati
 
hoi
e for the number of divisions?℄ and voil�a! hehad the Fahrenheit temperature s
ale, on whi
h pure wa-ter freezes at 32ÆF and boils at 212ÆF. A good system toforget, if you 
an.20Named after Thomson, Lord Kelvin [1852℄, a pioneerof thermodynami
s.

mann's 
onstant:� � kB T wherekB � 1:38066� 10�23 J/K (12)By the same token, the \
onventional entropy" S de-�ned by the relationship1T = �S�U (13)must di�er from our dimensionless version � by thesame 
onversion fa
tor:S � kB � (14)This equivalen
e 
ompletes the de�nition of the mys-terious entities of 
lassi
al thermodynami
s in terms ofthe simple \me
hani
al" paradigms of Statisti
al Me-
hani
s. I will 
ontinue to use � and � here.15.4.6 A Model SystemSome of the more pe
uliar properties of temperature
an be illustrated by a simple example:Certain parti
les su
h as ele
trons have \spin 12" whi
h(it turns out) prevents their spins from having any ori-entation in a magneti
 �eld ~B other than parallel tothe �eld (\spin up") or antiparallel to it (\spin down").Be
ause ea
h ele
tron has a magneti
 moment ~� (sortof like a tiny 
ompass needle) lined up along its spindire
tion, there is an energy " = �~� � ~B asso
iatedwith its orientation in the �eld.21 For a \spin up" ele
-tron the energy is "" = +�B and for a \spin down"ele
tron the energy is "# = ��B.Consider a system 
onsisting of N ele
trons in a mag-neti
 �eld and negle
t all other intera
tions, so that thetotal energy U of the system is given byU = (N" �N#) �Bwhere N" is the number of ele
trons with spin up andN# is the number of ele
trons with spin down. Sin
eN# = N �N", this meansU = (2N" �N) �B orN" = N2 + U2�B (15)| that is, N" and U are basi
ally the same thingex
ept for a 
ouple of simple 
onstants. As N" goesfrom 0 to N , U goes from �N�B to +N�B.21The rate of 
hange of this energy with the angle be-tween the �eld and the 
ompass needle is in fa
t the torquewhi
h tries to align the 
ompass in the Earth's magneti
�eld, an e�e
t of 
onsiderable pra
ti
al value.



15.5. TIME & TEMPERATURE 9This system is another example of the binomial dis-tribution whose multipli
ity fun
tion was given byEq. (1), with N" in pla
e of n. This 
an be easily
onverted to 
(U). The entropy �(U) is then justthe logarithm of 
(U), as usual. The result is plottedin the top frame of Fig. 15.2 as a fun
tion of energy.Note that the entropy has a maximum value for equalnumbers of spins up and down | i.e. for zero energy.There must be some su
h peak in �(U) wheneverthe energy is bounded above | i.e. whenever thereis a maximum possible energy that 
an be stored inthe system. Su
h situations do o

ur [this is a \real"example!℄ but they are rare; usually the system willhold as mu
h energy as you want.

Figure 15.2 Entropy, inverse temperature and tempera-ture of a system 
onsisting of N = 32 spin- 12 parti
les(with magneti
 moments �) in a magneti
 �eld B.Negative TemperatureThe \boundedness" of U and the 
onsequent \peaked-ness" of �(U) have some interesting 
onsequen
es:

the slope of �(U) [whi
h, by Eq. (10), de�nes theinverse temperature℄ de
reases steadily and smoothlyover the entire range of U from �N�B to +N�B,going through zero at U = 0 and be
oming negativefor positive energies. This 
auses the temperature it-self to diverge toward +1 as U ! 0 from the leftand toward �1 as U ! 0 from the right. Su
hdis
ontinuous behaviour is dis
on
erting, but it is onlythe result of our insisten
e upon thinking of � as \fun-damental" when in fa
t it is 1=� that most sensiblyde�nes how systems behave. Unfortunately, it is toolate to get thermometers 
alibrated in inverse temper-ature and get used to thinking of obje
ts with lowerinverse temperature as being hotter. So we have to livewith some pretty odd properties of \temperature."Consider, for instan
e, the whole notion of negativetemperature, whi
h is a
tually exhibited by this sys-tem and 
an a
tually be prepared in the laboratory.22What is the behaviour of a system with a negative tem-perature? Our physi
al intuition, whi
h in this 
ase istrustworthy, de
lares that one system is hotter thananother if, when the two are pla
ed in thermal 
on-ta
t, heat energy spontaneously 
ows out of the �rstinto the se
ond. I will leave it as an exer
ise for thereader to de
ide whi
h is most hot | in�nite positivetemperature or �nite negative temperature.15.5 Time & TemperatureLet's do the following Gedankenexperiment : Suppose Ishow you a movie of a swimming pool full of waves andsplashes; suddenly (in the movie) all the waves 
ometogether and squirt a diver out of the pool. She 
iesgra
efully through the air to land on the diving boardwhile the pool's surfa
e has mira
ulously returned tomirror smoothness. What is wrong with this pi
ture?Wait! Before you answer, you also get the followingmovie: A box full of 100 bla
k and 100 white marblessits on a table; the marbles are arranged randomly. Ananonymous assistant pi
ks up the box, 
loses the lid,shakes the box for a while, puts it down and opens thelid. All the white marbles are now on the left side andall the bla
k marbles are on the right side. Why doyou keep thinking there is a problem? Try this: Thesame box, the same assistant, the same story; ex
eptthis time there are only 4 marbles, two of ea
h. Notso sure, hmmm? How about 2 marbles, one bla
k andone white? Now we 
an't tell a thing about whetherthe movie is being shown forward or ba
kward, right?What is going on here?Our 
on
ept of the \arrow of time" is somehow bound22[by reversing the dire
tion of the magneti
 �eld beforethe spins have a 
han
e to rea
t℄



10up with statisti
al me
hani
s and is alarmingly fragile| we 
an lose our bearings 
ompletely just by 
on-�ning our attention to too small a system! As we willsee later, the \fundamental" laws governing the mi
ro-s
opi
 intera
tions of matter will be no help at all in
larifying this mystery.15.6 Boltzmann's DistributionIn de�ning the 
on
ept of temperature, we have exam-ined the behaviour of systems in thermal 
onta
t (i.e.able to ex
hange energy ba
k and forth) when the to-tal energy U is �xed. In the real world, however, itis not often that we know the total energy of an arbi-trary system; there is no \energometer" that we 
ansti
k into a system and read o� its energy! What weoften do know about a system it its temperature. To�nd this out, all we have to do is sti
k a 
alibrated ther-mometer into the system and wait until equilibrium isestablished between the thermometer and the system.Then we read its temperature o� the thermometer. Sowhat 
an we say about a small system23 S (like asingle mole
ule) in thermal equilibrium with a largesystem (whi
h we usually 
all a \heat reservoir" R)at temperature � = kBT ?Well, the small system 
an be in any one of a largenumber of fully-spe
i�ed states. It is 
onvenient to beinvent an abstra
t label for a given fully-spe
i�ed stateso that we 
an talk about its properties and probabil-ity. Let's 
all su
h a state j�i where � is a \fulllabel" | i.e. � in
ludes all the information thereis about the state of S. It is like a 
omplete list ofwhi
h 
ar is parked in whi
h spa
e, or exa
tly whi
h
oins 
ame up heads or tails in whi
h order, or what-ever. For something simple like a single parti
le's spin,� may only spe
ify whether the spin is up or down.Now 
onsider some parti
ular fully-spe
i�ed state j�iwhose energy is "�. As long as R is very big and Sis very small, S 
an | and sometimes will | absorbfrom R the energy "� required to be in the statej�i, no matter how large "� may be. However, youmight expe
t that states with really big "� wouldbe ex
ited somewhat less often than states with small"�, be
ause the extra energy has to 
ome from R,and every time we take energy out of R we de
reaseits entropy and make the resultant 
on�guration thatmu
h less probable. You would be right. Can we bequantitative about this?Well, the 
ombined system fS+Rg has a multipli
ityfun
tion 
 whi
h is the produ
t of the multipli
ity23A \small system" 
an even be a \parti
le," sin
e bothterms are intentionally vague and abstra
t enough to meananything we want!

fun
tion 
S = 1 for S [whi
h equals 1 be
ausewe have already postulated that S is in a spe
i�
fully spe
i�ed state j�i℄ and the multipli
ity fun
tion
R = e�R for R:
 = 
S � 
R = 1� e�RMoreover, the probability P� of �nding S in statej�i with energy "� will be proportional to this netmultipli
ity: P� / e�RWe must now take into a

ount the e�e
t on this prob-ability of removing the energy "� from R to ex
itethe state j�i.The energy of the reservoir R before we brought Sinto 
onta
t with it was U . We don't need to knowthe value of U , only that it was a �xed starting point.The entropy of R was then �R(U). On
e 
onta
t ismade and an energy "� has been \drained o�" intoS, the energy of R is (U � "�) and its entropy is�R(U � "�).Be
ause "� is so tiny 
ompared to U , we 
an treatit as a \di�erential" of U (like \dU") and estimatethe resultant 
hange in �R [relative to its old value�R(U)℄ in terms of the derivative of �R with respe
tto energy:�R(U + dU) = �R(U) + ���R�U � � dUor in this 
ase (with dU � �"�)�R(U � "�) = �R(U) � ���R�U � � "�But this derivative is by de�nition the inverse temper-ature of R: ��R�U � 1� . Thus�R(U � "�) = �R(U) � "��and thus the probability of �nding S in the state j�iobeys P� / e�R (U�"�) = exp h�R(U)� "�� ior P� / e�R (U) � exp��"�� �Sin
e e�R (U) is a 
onstant independent of either "�or � , that term will be the same for any state j�i sowe may ignore it and write simplyP� / exp��"�� � (16)This is the famousBoltzmann fa
tor that des
ribesexa
tly how to 
al
ulate the relative probabilities ofdi�erent states j�i of a system in thermal 
onta
twith a heat reservoir at temperature � . It is probablythe single most useful rule of thumb in all of thermalphysi
s.



15.6. BOLTZMANN'S DISTRIBUTION 1115.6.1 The Isothermal AtmosphereThe gravitational potential energy of a gas mole
ule ofmass m at an altitude h above sea level is givenapproximately by " = mgh, where g = 9.81 m/s2.Here we negle
t the de
rease of g with altitude, whi
his a good approximation over a few dozen miles. Nextwe pretend that the temperature of the atmospheredoes not vary with altitude, whi
h is untrue, but per-haps relative to 0 K it is not all that silly, sin
e thedi�eren
e between the freezing (273.15 K) and boiling(373.15 K) points of water is less than 1/3 of their av-erage. For 
onvenien
e we will assume that the wholeatmosphere has a temperature T = 300 K (a slightlywarm \room temperature").In this approximation, the probability P(h) of �ndinga given mole
ule of mass m at height h will dropo� exponentially with h:P(h) = P(0) exp��mgh� �Thus the density of su
h mole
ules per unit volumeand the partial pressure pm of that spe
ies of mole
ulewill drop o� exponentially with altitude h:pm(h) = pm(0) exp�� hh0�where h0 is the altitude at whi
h the partial pressurehas dropped to 1=e of its value pm(0) at sea level.We may 
all h0 the \mean height of the atmosphere"for that spe
ies of mole
ule. A qui
k 
omparison anda bit of algebra shows thath0 = �mgFor oxygen mole
ules (the ones we usually 
are aboutmost) h0 � 8 km. For helium atoms h0 � 64 km andin fa
t He atoms rise to the \top" of the atmosphereand disappear into interplanetary spa
e. This is onereason why we try not to lose any helium from super-
ondu
ting magnets et
. | helium is a non-renewableresour
e!15.6.2 How Big are Atoms?Wait a minute! How did I 
al
ulate h0? I had toknow m for the di�erent mole
ules, and that requiressome knowledge of the sizes of atoms | informationthat has not yet been set forth in this book! In fa
t,empiri
al observations about how fast the pressure ofthe atmosphere does drop o� with altitude 
ould givea pretty good idea of his big atoms are; this isn't howit was done histori
ally, but let's give it a try anyway:

Suppose that, by 
limbing mountains and measuringthe density of oxygen mole
ules (O2) as a fun
tion ofaltitude, we have determined empiri
ally that h0 forO2 is about 8,000 m. Then, a

ording to this simplemodel, it must be true that the mass m of an O2mole
ule is aboutm � �h0 g = 300� 1:38� 10�238� 103 � 9:81 kgor m � 5:3� 10�26 kgThis is a mighty small mass!Now to mix in just a pin
h of a
tual history: Longago, 
hemists dis
overed (again empiri
ally) that dif-ferent pure substan
es 
ombined with other pure sub-stan
es in �xed ratios of small integers times a 
er-tain 
hara
teristi
 mass (
hara
teristi
 for ea
h puresubstan
e) 
alled its mole
ular weight A. Peoplehad a pretty good idea even then that these pure sub-stan
es were made up of large numbers of identi
alunits 
alled \atoms,"24 but no one had the faintestidea how big atoms were | ex
ept of 
ourse that theymust be pretty small, sin
e we never 
ould see any di-re
tly. The number N0 of mole
ules in one mole
ularweight of a pure substan
e was (
orre
tly) presumed tobe the same, to explain why 
hemi
al rea
tions obeyedthis rule. This number 
ame to be 
alled a \mole" ofthe substan
e. For oxygen (O2), the mole
ular weightis roughly 32 grams or 0.032 kg.If we now 
ombine this 
onventional de�nition of amole of O2 with our previous estimate of the mass ofone O2 mole
ule, we 
an estimateN0 � 0:0325:3� 10�26 � 6� 1023The exa
t number, obtained by quite di�erent means,is N0 � 6:02205� 1023 (17)mole
ules per mole. This is known as Avogadro'snumber.Turning the argument around, the mass of a mole
ule
an be obtained from its mole
ular weight A as fol-lows: One mole of any substan
e is de�ned as a massA � 1 gram, and 
ontains N0 mole
ules (or atoms,in the 
ase of monatomi
 mole
ules) of the substan
e.Thus helium, with A = 4, weighs 4 gm (or 0.004 kg)per mole 
ontaining N0 atoms, so one He atom weighs(0:004=N0) kg or 6:6� 10�27 kg.24I will 
over the history of \Atomism" in a bit moredetail later on!



1215.7 Ideal GasesWe have argued on an abstra
t basis that the state ofhighest entropy (and hen
e the most probable state)for any 
ompli
ated system is the one whose ma
ro-s
opi
 properties 
an be obtained in the largest pos-sible number of di�erent ways; if the model systemswe have 
onsidered are any indi
ation, a good rule ofthumb for how to do this is to let ea
h \degree of free-dom" of the system 
ontain (on average) an equal fra
-tion of the total energy U . We 
an justify this argu-ment by treating that degree of freedom as a \system"in its own right (almost anything 
an be a \system")and applying Boltzmann's logi
 to show that the prob-ability of that mi
rosystem having an energy " whilein thermal equilibrium at temperature � de
ays expo-nentially as exp(�"=�). This implies a mean " on theorder of � , if we don't quibble over fa
tors 
omparableto 1.The Equipartition Theorem, whi
h is more rigourouslyvalid than the above hand-waving would suggest,25spe
i�es the fa
tor to be exa
tly 1/2:A system in thermalequilibrium with a heat reservoir at tem-perature � will have a mean energy of12� per degree of freedom.In an ideal monatomi
 gas of N atoms at temperature� ea
h atom has three degrees of freedom: left{right(x), ba
k{forth (y) and up{down (z). Thus the averageinternal energy of our monatomi
 ideal gas isU = 32 N � (18)25If you want the details, here they are: Suppose that piis the 
anoni
al momentum 
hara
terizing the ith degreeof freedom of a system and that "(pi) = bp2i is the energyasso
iated with a given value of pi. Assume further thatpi 
an have a 
ontinuous distribution of values from �1to +1. Then the probability of pi having a given valueis proportional to exp(�bp2i=� ) and therefore the averageenergy asso
iated with that degree of freedom is given byh"(pi)i = R +1�1 bp2i e�bp2i =�dpiR +1�1 e�bp2i =�dpiThese de�nite integrals have \well known" solutions:Z +1�1 x2e�ax2dx = 12q �a3 ; Z +1�1 e�ax2dx =q�a ;where in this 
ase a = b=� and x = pi, givingh"(pi)i = �2 : QED

In spite of the simpli
ity of the above argument26 thisis a profound and useful result. It tells us, for in-stan
e, that the energy U of an ideal gas does notdepend upon its pressure27 p! This is not stri
tlytrue, of 
ourse; intera
tions between the atoms of agas make its potential energy di�erent when the atomsare (on average) 
lose together or far apart. But formost gases at (human) room temperature and (Earth)atmospheri
 pressure, the ideal-gas approximation isextremely a

urate!It also means that if we 
hange the temperature ofa 
ontainer of gas, the rate of 
hange of the internalenergy U with temperature, whi
h is the de�nitionof the heat 
apa
ityC � �U�T ; (19)is extremely simple: sin
e � � kBT and U = 32N� ,U = 32NkBT and so the heat 
apa
ity of an ideal gasis 
onstant: C [ideal gas℄ = 32 N kB (20)Now let's examine our gas from a more mi
ros
opi
,\me
hani
al" point of view: pi
ture one atom boun
-ing around inside a 
ubi
al 
ontainer whi
h is a lengthL on a side. In the \ideal" approximation, atomsnever hit ea
h other, but only boun
e o� the walls, soour 
onsideration of a single atom should be indepen-dent of whether or not there are other atoms in therewith it. Suppose the atom in question has a velo
ity~v with 
omponents vx, vy and vz along the three axesof the 
ube.Thinking only of the wall at the +x end of the box,our atom will boun
e o� this wall at a rate 1=t wheret is the time taken to travel a distan
e 2L (to the farwall and ba
k again) at a speed vx: t = 2L=vx. Weassume perfe
tly elasti
 
ollisions | i.e. the magni-tude of vx does not 
hange when the parti
le boun
es,it just 
hanges sign. Ea
h time our atom boun
es o�the wall in question, it imparts an impulse of 2mvx tothat wall. The average impulse per unit time (for
e)exerted on said wall by said atom is thus F1 = 2mvx=tor F1 = mv2x=L. This for
e is (on average) spread outall over the wall, an area A = L2, so that the for
eper unit area (or pressure) due to that one parti
le is26We 
an, of 
ourse, make the explanation more elabo-rate, thus satisfying both the demands of rigourous logi
and the Puritan 
onvi
tion that nothing of real value 
anbe obtained without hard work. I will leave this as anexer
ise for other instru
tors.27Unfortunately, we use the same notation (p) for bothmomentum and pressure. Worse yet, the notation for num-ber density (number of atoms per unit volume) is n. Sorry,I didn't set up the 
onventions.



15.8. THINGS I LEFT OUT 13given by p1 = F1=A = mv2x=L3. Sin
e L3 = V , thevolume of the 
ontainer, we 
an write p1 = mv2x=Vor p1 V = mv2xThe average pressure p exerted by all N atomstogether is just N times the mean value of p1: p =Nhp1i, where the \h� � �i" notation means the averageof the quantity within the angle bra
kets. Thusp V = N m hv2xi (21)Now, the kineti
 energy of our original atom is expli
-itly given by 12mv2 = 12m(v2x + v2y + v2z)sin
e ~v is the ve
tor velo
ity. We expe
t ea
h of themean square velo
ity 
omponents hv2xi, hv2yi and hv2zito average about the same in a random gas, so ea
hone has an average value of 13 of their sum.28 Thushv2xi = hv2yi = hv2zi = 13 hv2i and the mean kineti
energy of a single parti
le is U1 = 32 mhv2xi. Thekineti
 energy of all N atoms is just U = NU1, orU = 32 N m hv2xi (22)But a

ording to Eq. (18) we have U = 32 N� ; so wemay write29 m hv2xi = � (23)Combining Eqs. (21) and (23), we obtain the famousideal gas law: p V = N � (24)Despite the 
imsiness of the foregoing arguments, theideal gas law is a quantum me
hani
ally 
orre
t de-s
ription of the interrelationship between the pressurep, the volume V and the temperature � � kBTof an ideal gas of N parti
les, as long as the onlyway to store energy in the gas is in the form of the ki-neti
 energy of individual parti
les (usually atoms ormole
ules). Real gases 
an also store some energy inthe form of rotation or vibration of larger mole
ulesmade of several atoms or in the form of potential en-ergies of intera
tion (attra
tion or repulsion) between28We may say that the average kineti
 energy \stored inthe x degree of freedom" of an atom is 12mhv2xi.29This is equivalent to saying that the average energystored in the x degree of freedom of one atom [or, for thatmatter, in any other degree of freedom℄ is 12 � | whi
his just what we originally 
laimed in the equipartitiontheorem. We 
ould have just jumped to this result, but Ithought it might be illuminating to show an expli
it argu-ment for the equality of the mean energies stored in severaldi�erent degrees of freedom.

the parti
les themselves. It is the latter intera
tionthat 
auses gases to spontaneously 
ondense, below a
ertain boiling point Tb, into liquids and, at a stilllower temperature Tm (
alled the melting point), intosolids. However, in the gaseous phase even 
arbon [va-porized diamond℄ will behave very mu
h like an idealgas at suÆ
iently high temperature and low pressure.It is a pretty good Law!15.8 Things I Left OutAs you 
an tell by the length of this 
hapter, I �ndit hard to stop talking about this wonderful subje
t.Thermal Physi
s is like an old but vibrantly modern
ity with a long, fabulous and meti
ulously preservedhistory: around every 
orner there is a host of fas
inat-ing shops, theatres, galleries and restaurants o�eringthe latest goodies from a 
osmopolitan state of the art,intermixed with libraries and museums that tell storiesof heroi
 a
ts and world-
hanging events. \Shop tillyou drop!" Still, I have to stop somewhere.The foregoing has been a rather unusual introdu
tionto Thermal Physi
s. I have 
ompletely left out thelaws of thermodynami
s | the traditional start-ing point for the subje
t | in favour of a stri
tly 
on-
eptual (though often painfully formal, I know) expla-nation of the meaning of entropy and temperature, inthe 
onvi
tion that these notions 
an be generalized toprovide tools for quantitative analysis of random sta-tisti
al pro
esses in realms where no one ever dreamedof applying the paradigms of Physi
s. In my zeal to
onvey this 
onvi
tion, I have also omitted any dis
us-sion of the profound pra
ti
al appli
ations of Thermo-dynami
s, like engines and refrigerators. Worstof all, I have not told any stories of the bizarre spon-taneous behaviour of large numbers of similar atomsunder di�erent 
onditions of temperature and pressure| the so-
alled equations of state and phase dia-grams of gases, liquids and solids, from Fermi gasesto superfluids and super
ondu
tors. Part of thereason for this is that you need a bit more introdu
-tion to the phenomenology of Physi
s | quantumme
hani
s in parti
ular | before you 
an fully ap-pre
iate (or even, in some 
ases, des
ribe) mu
h of theabove-mentioned behaviour. All I 
an hope to havedone in this HyperReferen
e is to have unlo
ked thedoor (and perhaps opened it a 
ra
k) to a world ofwonder and magi
 where analyti
al thinking and math-emati
s play the role of spells and in
antations. I urgeyou to 
ontinue this adventure beyond the limits (andend) of this HyperReferen
e!


