15.1. RANDOM CHANCE

Thermal Physics!

“A theory is the more impressive the
greater the simplicity of its premises, the
more different kinds of things it relates,
and the more extended its area of applica-
bility. Therefore the deep impression that
classical thermodynamics made upon me.
It is the only physical theory of universal
content which I am convinced will never be
overthrown, within the framework of appli-
cability of its basic concepts.” — A. Ein-
stein

“But although, as a matter of history, sta-
tistical mechanics owes its origin to inves-
tigations in thermodynamics, it seems em-
inently worthy of an independent develop-
ment, both on account of the elegance and
simplicity of its principles, and because it
yields new results and places old truths in
a new light in departments quite outside of
thermodynamics.”

— J.W. Gibbs

We have seen how a few simple laws (in particular
NEWTON’S SECOND LAW) can be combined with not-
too-sophisticated mathematics to solve a great vari-
ety of problems — problems which eventually are per-
ceived to fall into a number of reasonably well-defined
categories by virtue of the mathematical manipula-
tions appropriate to each — and that those distinct
classes of mathematical manipulations eventually be-
come familiar enough to acquire familiar names of their
own, such as “conservation of impulse and momentum”
or “conservation of work and energy” or “conservation
of torque and angular momentum.” This emergence
of new tacit paradigms was the great conceptual gift
of the Newtonian revolution. But the most profound
practical impact of the new sciences on society came
in the form of the Industrial Revolution, which was
made possible only when the science of mechanics was
combined with an understanding of how to extract us-
able mechanical work from that most mysterious of
all forms of energy, heat.

Historically, heat was recognized as a form of energy
and temperature was understood in terms of its qual-
itative properties long before anyone truly understood
what either of these terms actually meant in any rig-
orous microscopic model of matter. The link between

T have “borrowed” the notation, general approach, ba-
sic derivations and most of the quotations shown here from
the excellent textbook of the same name by Kittel & Kroe-
mer, who therefore deserve all the credit (and none of the
blame) for the abbreviated version displayed before you.

Newton’s mechanics and the thermodynamics of Joule
and Kelvin was forged by Boltzmann long after steam
power had changed the world, and a simple under-
standing of many of the finer points of Boltzmann’s
statistical mechanics had to wait even longer until
Quantum Mechanics provided a natural explanation
for the requisite fact that the number of possible states
of any system, while huge, is not infinite, and that
small, simple systems are in fact restricted to a count-
able number of discrete “stationary states.” In this
drama Albert Einstein was to play a rather important
role.

The following conceptual outline of Statistical Mechan-
ics is designed to make the subject as clear as possible,
not to be historically accurate or even fair. Having
made this choice, however, I hope to be able to display
the essence of the most astonishing product of human
Science without undue rigamarole, and perhaps to con-
vey the wonder that arises from a deeper and more
fundamental understanding.

15.1 Random Chance

With so many miracles to choose from, where do I
get off declaring Statistical Mechanics to be “the most
astonishing product of human Science?” This is of
course a personal opinion, but it is one shared by many
physicists — perhaps even a majority. The astonish-
ment is a result of the incredible precision with which
one can predict the outcome of experiments on very
complicated systems (the more complicated, the more
precise!) based on the FUNDAMENTAL ASSUMPTION of
STATISTICAL MECHANICS:

A system in thermal equilibrium is a priori
equally likely to be found in any one of the
fully-specified states accessible to it.

This seemingly trivial statement contains a couple of
ringers: the word “accessible” means, for instance,
that the total “internal” energy of the system — which
is always written U — i.e. the sum of the kinetic and
potential energies of all the little particles and waves
that make up the big system — is fixed. There are
many ways to divide up that energy, giving more to
one particle and less to another, and the FUNDAMEN-
TAL ASSUMPTION says that they are all equally likely;
but in every case the energy must add up to the same
U. This can obviously be very confusing, but fortu-
nately we rarely attempt to count up the possibilities
on our fingers!

It is the assumption itself that is so amazing. How can
anything but total ignorance result from the assump-
tion that we know nothing at all about the minute



biases a real system might have for one state over an-
other? More emphatically, how can such an outra-
geous assumption lead to anything but wrong predic-
tions? It amounts to a pronouncement that Nature
runs a perfectly honest casino, in which every possible
combination of the roll of the dice is actually equally
likely! And yet every prediction derived from this as-
sumption has been demonstrated to be accurate to the
best precision our measurements can provide. And the
consequences are numerous indeed!

15.2 Counting the Ways

If we accept the FUNDAMENTAL ASSUMPTION at face
value, then it is easy to calculate the probability of
finding the equilibrated system in any given fully spec-
ified state: if the state is not accessible [e.g. if it takes
more energy U than we have at our disposal] then
the probability is zero; if it is accessible, then its prob-
ability is just %, where Q is the total number of
accessible states. The first step is therefore to calculate
Q. In general this can get difficult, but we can choose
a few simple examples to illustrate how the calculation
goes.

15.2.1 Conditional Multiplicity

Suppose we have a jar full of pennies, say N pen-
nies, all of which have had unique numbers painted
on them so that they can be easily distinguished from
each other. Now suppose we shake it thoroughly and
dump it out on a nice flat table; each penny falls ei-
ther “heads” or “tails” with equal a priori probability.
The probability of penny #1 being “heads” is % The
probability of penny #1 being “heads” and penny #2

being “tails” is % X % = %. The probability of penny

#1 being “heads” and penny #2 being “tails” and
: g e 1ol 1 1

penny #3 being “tails” is § x 5 x 5 = 5. And so

on. If the pennies are all “statistically independent”
(i.e. how one penny falls has no influence on the other
pennies), the probability of any specific arrangement
of specific pennies falling specific ways [what we call a
fully specified state of the system] is

where N is the total number of pennies.

Unfortunately, this is not what we want to know. We
don’t care which pennies fall which way,?> only how
many of each. This is what we call a partially specified

’In the present case, we have a choice of whether to
treat the pennies as “indistinguishable” or not. No two

or partially constrained state of the system. What we
really want to know is the number of ways we can get
n heads and (N —n) tails.?

Suppose we specify that n pennies are “heads” and
the remaining (N —n) are “tails.” The number of
ways we can do this is what we call Q(n,N), the
multiplicity function for the partially constrained state
specified only by n and IN. Here’s how we calculate
Q(n,N): the number of different ways we can rear-
range all N coins is

NI=N-(N-1)-(N—-2)---3-2-1

because we have N choices of which coin will be first,
then we have (N —1) choices of which coin will be sec-
ond, then we have (N —2) choices of which coin will
be third, and so on. The total number of choices is the
product of the numbers of choices at each step. How-
ever, we have overcounted by the number of different
ways the heads can be rearranged among themselves,
which by the same argument is n!, and by the number
(N —n)! of ways the tails can be rearranged among
themselves. Therefore the total number of distinguish-
able combinations that all give n heads and (N —n)

tails is
N!

Another example would be a parking lot with N
spaces in which n cars are parked. The number of
different ways we can label the spaces is N! but the n
occupied spaces can be rearranged amongst themselves
n! different ways and the (N —n) empty spaces can
be rearranged (N —n)! different ways without alter-
ing the partial constraint [namely, that only n of the
spaces are filled).* Then Eq. (1) describes the num-
ber of different ways the cars can be parked without
changing the total number of parked cars.

pennies are really indistinguishable, of course; even with-
out our painted-on numbers, each one has unique scratches
on its surface and was crystallized from the molten state
in a unique microscopic pattern. We could tell one from
another; we just don’t care, for circumstantial reasons.
In QUANTUM MECHANICS, however, you will encounter the
concept of elementary particles [e.g. electrons| which are
so uncomplicated that they truly are indistinguishable
[i.e. perfectly identical]; moreover, STATISTICAL MECHAN-
1CS provides a means of actually testing to see whether they
are really absolutely indistinguishable or just very similar!

3Tt might be that we get to keep all the pennies that
come up heads, but for every penny that comes up tails we
have to chip in another penny of our own. In that case our
profit would be n— (N —n) =2n — N cents.

*If you were the parking lot owner and were charging $1
per space [cheapl], your profit would be $n. I keep coming
back to monetary examples — I guess cash is the social
analogue of energy in this context.



15.2. COUNTING THE WAYS

The Binomial Distribution

To generalize, we talk about a system of N particles,®
each of which can only be in one of two possible single-
particle states. A fully specified N -particle state of
the system would have the single-particle state of each
individual particle specified, and is not very interest-
ing. The partially specified N-particle state with n
of the particles in the first single-particle state and the
remaining (N—n) particles in the other single-particle
state can be realized in Q(n, N) different ways, with
Q(n,N) given by Eq. (1). Because there are only two
possible single-particle states, this case of 2 is called
the binomial distribution. It is plotted® in Fig. 15.1
for several values of N.

Note what happens to Q(n,N) as N gets bigger: the
peak value, which always occurs at npeak = %N , gets
very large [in the plots it is compensated by dividing
by 2%, which is a big number for large N] and the
width of the distribution grows steadily narrower —
i.e. values of & far away from the peak get less and
less likely as N increases. The width is in fact the
standard deviation” of a hypothetical random sample
of n, and is proportional to /N. The fractional
width (expressed as a fraction of the total range of n,

. : vN _ 1.

namely N) is therefore proportional to Y3+ = Wik
. . 1

Fractional Width o« —= (2)

VN

which means that for really large N, like N = 10%°,
the binomial distribution will get really narrow, like a
part in 10'°, in terms of the fraction of the average.

5The term “particle” is [in this usage] meant to be as
vague as possible, just like “system:” the particles are “re-
ally simple things that are all very much alike” and the
system is “a bunch of particles taken together.”

® Actually what is plotted in Fig. 15.1 is the probability
function

1 1 N!
= — -Qn,N) = — ———
Pn) = 55 U N) = 55 i =
vs. %, as explained in the caption. Otherwise it would

be difficult to put more than one plot on the same graph,
as the peak value of Q(n, N) gets very large very fast as
N increases!

"Recall your Physics Lab training on MEASUREMENT!
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Figure 15.1 The normalized binomial distribution for
several values of IN. In order to put several cases on
a single graph, the horizontal axis shows n divided by
its maximum possible value N [giving the fraction of
the total range] and the binomial coefficient Q(n,N)
given by Eq. (1) has been divided by the total number of
possible fully specified N-particle states, 2"V, to give the
“normalized” probability — é.e. if we add up the values
of Q(n,N)/2N for all possible n from 0 to N, the
total probability must be 1. [This is eminently sensible;
the probability of 7 having some value is surely equal
to unity!]

15.2.2 Entropy

“If we wish to find in rational mechanics
an a priori foundation for the principles of
thermodynamics, we must seek mechanical
definitions of temperature and entropy.”
— J.W. Gibbs

The function Q(n,N) is called the MmuLTIPLICITY
FUNCTION for the partially specified system. If N
and n get to be large numbers (which is usually the
case when we are talking about things like the num-
bers of electrons in a crystal), Q(n,N) can get really
huge.® Tt is so huge, in fact, that it becomes very dif-
ficult to cope with, and we do what one usually does
with ungainly huge numbers to make them manage-
able: we take its logarithm. We define the [natural]
logarithm of Q to be the ENTROPY o

o = InQ (3)

8A good estimate of the size of N! for large N is
given by Stirling’s approximation:

N~ V2aN . NV .e™V



Let’s say that again: the ENTROPY o is the natural
logarithm of the MULTIPLICITY FUNCTION ) — i.e.
of the number of different ways we can get the partially
specified conditions in this case defined by n.

Is this all there is to the most fearsome, the most ar-
cane, the most incomprehensible quantity of THERMO-
DYNAMICS? Yep. Sorry to disappoint. That’s it. Of
course, we haven’t played around with o yet to see
what it might be good for — this can get very inter-
esting — nor have I told this story in an historically
accurate sequence; the concept of ENTROPY preceded
this definition in terms of “statistical mechanics” by
many years, during which all of its properties were elu-
cidated and armies of thermal physicists and engineers
built the machines that powered the Industrial Revo-
lution. But understanding THERMODYNAMICS the old-
fashioned way is hard! So we are taking the easy route
— sort of like riding a helicopter to the top of Mt. Ever-
est.

15.3 Statistical Mechanics

Before we go on, I need to move away from our ex-
amples of binomial distributions and cast the general
problem in terms more appropriate to Mechanics. We
can always go back and generalize the paradigm® but
I will develop it along traditional lines.

The owner of the parking lot described earlier is only
interested in the total number of cars parked because
that number will determine his or her profit. In Me-
chanics the “coin of the realm” is energy, which we
have already said is always written U in thermal
physics. The abstract problem in STATISTICAL ME-
CHANICS involves a complex system with many pos-
sible states, each of which has a certain total energy
U. This energy may be in the form of the sum of
the kinetic energies of all the atoms of a gas confined
in a box of a certain volume, or it may be the sum
of all the vibrational energies of a crystal; there is no
end of variety in the physical examples. But we are
always talking about the random, disordered energy
of the system, the so-called internal energy, when we
talk about U.

Now, given a certain amount of internal energy U,
the number of different fully-specified states of the sys-
tem whose total internal energy is U [our partial
constraint| is the conditional MULTIPLICITY FUNCTION
Q(U). Taking the binomial distribution as our exam-
ple again, we could substitute crystal lattice sites for
“parking places” and defects for “cars” [a defect could
be an atom out of place, for instance]. If it takes an

9Count on it!

energy € to create one defect, then the total internal
energy stored in n defects would be U =mne. Lots of
other examples can be imagined, but this one has the
energy U proportional to the number n of defects,
so that you can see how the U-dependence of ) in
this case is just like the n-dependence of 2 before.

So what?

Well, things start to get interesting when you put two
such systems in contact so that U can flow freely
between them through random statistical fluctuations.

15.3.1 Ensembles

One of the more esoteric notions in STATISTICAL ME-
CHANICS is the concept of an ensemble. This has noth-
ing to do with music; it goes back to the original mean-
ing of the French word ensemble, which is a collection
or gathering of things — much more general and ab-
stract than the small band of musicians we tend to vi-
sualize. Anyway, the Statistical Mechanical “ENSEM-
BLE” is a collection of all the possible fully specified
states of some system.

Of course, there are different kinds of ENSEMBLES de-
pending upon what global constraints are in effect. For
instance, the set of all possible states of an isolated
system S consisting of a fixed number N of “par-
ticles” !0 with a well defined total energy U is called
a MICROCANONICAL ENSEMBLE. This is what we have
been discussing so far.

The set of all possible states of a system S consisting
of a fixed number N of particles but in “thermal
contact” with a much, much larger system R (called
a “heat reservoir”) so that the energy U of S can
flow in or out of R at random is called a CANONICAL
ENSEMBLE.

And the set of all possible states of a system S in
contact with a reservoir R with which it can exchange
both energy (U) and particles (N) is called a GRAND
CANONICAL ENSEMBLE.

If the utility of these concepts is less than obvious to
you, join the club. I won’t need to use them to de-
rive the good stuff below, but now you will be able
to scoff at pedants that pretend you can’t understand
“Stat Mech” unless you know what the various types
of Ensembles are.

Remember, a “particle” is meant to be an abstract
concept in this context!



15.4. TEMPERATURE

15.4 Temperature

“The general connection between energy
and temperature may only be established
by probability considerations. [Two sys-
tems| are in statistical equilibrium when
a transfer of energy does not increase the
probability.”

— M. Planck

When we put two systems S; and Sy (with N; and
N, particles, respectively) into “thermal contact” so
that the (constant) total energy U = U; + Uy can
redistribute itself randomly between S; and Ss, the
combined system S = S1+S8> will, we postulate, obey
the FUNDAMENTAL PRINCIPLE — it is equally likely
to be found in any one of its accessible states. The
number of accessible states of S (partially constrained
by the requirement that Ny, N and U =U; + U,
remain constant) is given by

Q = Ql(Ul) X QZ(UZ) (4)

where ; and )y are the MULTIPLICITY FUNCTIONS
for §; and S, taken separately [both depend upon
their internal energies U; and U,] and the over-
all multiplicity function is the product of the two in-
dividual multiplicity functions because the rearrange-
ments within one system are statistically independent
of the rearrangements within the other.!! Since the
ENTROPY is the log of the MULTIPLICITY and the log
of a product is the sum of the logs, Eq. (4) can also be
written

g = 0'1(U1) + UQ(UQ) (5)

— i.e. the entropy of the combined system is the sum
of the entropies of its two subsystems.

15.4.1 The Most Probable

So what? Well, here’s the thing: we know that all ac-
cessible states of the system are a priori equally likely;
however, the number 2 of accessible states will de-
pend upon the division of the total energy U between
Uy and Us,. Moreover, for a certain value of U; (and
therefore of Uy =U —U;), Q will be a maximum —
i.e. that value of U; will make possible the largest
variety of equally likely random states of the system
and consequently we will be more likely, on average, to

Y1If I flip my coin once and you flip your coin twice, there
are 2' =2 ways my flip can go [h, t] and 2% = 4 ways
your 2 flips can go [HH, HT, TH, TT]; the total number of
ways the combination of your flips and mine can go [hHH,
hHT, hTH, hTT, tHH, tHT, tTH, tTT]is 2x4 =8. And
SO om.

find the system in states with that value of U; than
in other states'? with different values of Uj.

This special value of U; is called (reasonably enough)
the “most probable value” and is given the symbolic
representation Uj.

15.4.2 Criterion for Equilibrium

If our two systems are initially prepared separately
with energies U; and U, other than the most proba-
ble, what will happen when we bring them into contact
so that U can flow between them? The correct answer
is, of course, “Everything that possibly can happen.”
But there is a bigger variety of possibilities for certain
gross distributions of energy than for others, and this
makes those gross distributions more likely than oth-
ers. The overall entropy is thus a measure of this like-
lihood. It seems inevitable that one will eventually feel
compelled to anthropomorphize this behaviour and ex-
press it as follows:!?

All random systems “like” variety and will
“seek” arrangements that maximize it.

In any case, the tendency of energy to flow from one
system to the other will not be governed by equal-
ization of either energy or entropy themselves, but by
equalization of the rate of change of entropy with en-
ergy, g—g. To see why, suppose (for now) that more
energy always gives more entropy. Then suppose that
the entropy o1 of system S; depends only weakly
on its energy Uy, while the entropy o, of system S,
depends strongly on its energy Us,. In mathematical
terms, this reads

80'1 60’2

Suppose au, < s

Then removal of a small amount of energy dU from
S1 will decrease its entropy o1, but not by as much
as the addition of that same energy dU to & will
increase its entropy 3. Thus the net entropy o1+ 0>
will be increased by the transfer of dU from S; to
S». This argument is as convoluted as it sounds, but
it contains the irreducible essence of the definition of
temperature, so don’t let it slip by!

?Nothing precludes finding the system in states with
other values of Ui, of course. In fact we must do so some-
times! Just less often.

13Perhaps the converse is actually true: human “wants”
are actually manifestations of random processes whose va-
riety is greater in the direction of perceived desire. I find
this speculation disturbing.



The converse also holds, so we can combine this idea
with our previous statements about the system’s “pref-
erence” for higher entropy and make the following
claim:

Energy U will flow spontaneously from a

o
system with smaller i to a system with

larger g9
85U

If the rate of increase of entropy with energy (g—[‘}) is
the same for &; and S;, then the combined sys-
tem will be “happy,” the energy will stay where it is
(on average) and a state of “thermal equilibrium” will
prevail.

Mathematical Derivation

Is there any way to derive a formal (mathematical) cri-
terion for the condition of thermal equilibrium, start-
ing from a hypothetical knowledge of 2; as a function
of U; and Qy as a function of Uy =U —U;? Of
course! Why else would I be doing this? The thing
about a maximum of a function (or a minimum, for
that matter; either type of extremum obeys the same
rule) is that the slope of the function must be zero at
the extremum. [Otherwise it would still have further
up or down to gol] Since the slope is given by the
derivative, this reads

o0
oU,

In this case, since Q = Q; - Q2, the PRODUCT RULE
for derivatives gives
8Q o an aQZ

Criterion for an extremum: =0 (6)

Now, €5 is a function of Uy, not U;; but we can
get around that by using the CHAIN RULE,
0y 00y 0U

U, — AU, U,

where Us = U — U; and U is a constant, so

oy
U,
. 9 oy .
We can therefore substitute —a—U2 for 6—U1 in
Eq. (7): 50 50
1 2
— - -—= =0
ou, 7 TN
o o0 o9
1 2
=1, =022
au, LU,

If we now divide both sides by the product € - s,
we get

oo 1o, 9

0 oU,  Qy OUy (
Now we need to recall the property of the natural loga-
rithm that was so endearing when we first encountered
it: In(z) is the function whose derivative is the in-
verse,

d 1
| ==
dz n(z) x
and, by the CHAIN RULE,
d 1 dy
1 =-.
dx n(y) y dx
In this case “y” is Q and “z” is U, so we have
0 1 00
—~ In(Q) = = . 2=
v "= a0
which means that Eq. (8) can be written
0 0
—In(Q;) = =—1In(Q
au; mh) = G In(€)

But the logarithm of the MULTIPLICITY FUNCTION €2
is the definition of the ENTROPY o, so the equation
can be simplified further to read

80'1 60’2
k=22 )
oU, oU,
where of course we are assuming that all the other
parameters (like N; and N-) are held constant.

Note that we have recovered, by strict mathematical
methods, the same criterion dictated by common sense
earlier. The only advantage of the formal derivation is
that it is rigourous, general and involves no question-
able assumptions.'*

15.4.3 Thermal Equilibrium

Eq. (9) establishes the criterion for the MOST PROB-
ABLE CONFIGURATION — id.e. the value of U; for
which the combined systems have the maximum to-
tal entropy, the maximum total number of accessible
states and the highest probability. This also defines
the condition of THERMAL EQUILIBRIUM between the
two systems — that is, if U; = Uy, any flow of energy
from S to S» or back will lower the number of
accessible states and will therefore be less likely than
the configuration’® with U; = U;. Therefore if we

Or, at least, none that are readily apparent. . ..

15Note the distinction between the words configuration
and state. The latter implies we specify everything about
the system — all the positions and velocities of all its par-
ticles, etc. — whereas the former refers only to some gross
overall macroscopic specification like the total energy or
how it is split up between two subsystems. A state is
completely specified while a configuration is only partly
specified.
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leave the systems alone and come back later, we will
be most likely to find them in the “configuration” with
U, insystem S; and (U —U;) in system Ss.

This seems like a pretty weak statement. Nothing cer-
tain, just a bias in favour of U, over other possible
values of Uj all the way from zero to U. That is
true. STATISTICAL MECHANICS has nothing whatever
to say about what will happen, only about what is
likely to happen — and how likely! However, when
the numbers of particles involved become very large
(and in Physics they do become very large), the frac-
tional width of the binomial distribution [Eq. (2)] be-
comes very narrow, which translates into a probability
distribution that is incredibly sharply peaked at U.
As long as energy conservation is not violated, there is
nothing but luck to prevent all the air molecules in this
room from vacating the region around my head until I
expire from asphyxiation. However, I trust my luck in
this. A quotation from Boltzmann confirms that I am
in distinguished company:

“One should not imagine that two gases in
a 0.1 liter container, initially unmixed, will
mix, then again after a few days separate,
then mix again, and so forth. On the con-
trary, one finds ... that not until a time
enormously long compared to 101%™ years
will there be any noticeable unmixing of
the gases. One may recognize that this is
practically equivalent to never....”

— L. Boltzmann

15.4.4 Inverse Temperature

What do we expect to happen if the systems are out
of equilibrium? For instance, suppose system S; has
an energy U; < 01. What will random chance “do”
to the two systems? Well, a while later it would be
more likely to find system &; with the energy U,
again. That is, energy would tend to “spontaneously
flow” from system &, into system S; to maximize
the total entropy.'® Now stop and think: is there any
familiar, everyday property of physical objects that
governs whether or not internal energy (HEAT) will
spontaneously flow from one to another? Of course!
Every child who has touched a hot stove knows that
heat flows spontaneously from a hotter object [like a
stove] to a cooler object [like a finger]. We even have
a name for the quantitative measure of “hotness” —
we call it TEMPERATURE.

5This is the same as maximizing the probability, but
from now on I want to use the terminology “maximizing
the entropy.”

Going back to Eq. (9), we have a mathematical ex-
pression for the criterion for THERMAL EQUILIBRIUM,
whose familiar everyday-life equivalent is to say that
the two systems have the same temperature. There-
fore we have a compelling motivation to associate the
quantity g—[‘} for a given system with the TEMPERA-
TURE of that system; then the equation reads the same
as our intuition. The only problem is that we expect
heat to flow from a system at high temperature to a
system at low temperature; let’s check to see what is
predicted by the mathematics.!” Let’s suppose that
for some initial value of U; < ﬁl we have

901 Doz
ou, ~ Uy

Then adding a little extra energy dU to &; will
increase o¢; by more than we decrease oy by sub-
tracting the same dU from S, [which we must do,
because the total energy is conserved]. So the total
entropy will increase if we move a little energy from

the system with a smaller g—[‘} to the system with a
larger g—g. The region of smaller g—(‘} must therefore

be hotter and the region of larger 3—5 must be cooler.

This is the opposite of what we expect of TEMPERA-
TURE, so we do the obvious: we define g—[‘} to be the
INVERSE TEMPERATURE of a system:

do 1

— = - (10)

oU T
where (at last) 7 is the TEMPERATURE of the system
in question. We can now express Eq. (9) in the form
that agrees with our intuition:

Condition of THERMAL EQUILIBRIUM:

T1 = To (].].)

— i.e. if the temperatures of the two systems are the
same, then they will be in thermal equilibrium and
everything will be most likely to stay pretty much as
it is.

As you can see, TEMPERATURE is not quite such a
simple or obvious concept as we may have been led to
believe! But now we have a universal, rigorous and
valid definition of temperature. Let’s see what use we
can make of it.

15.4.5 Units & Dimensions

I have borrowed from several authors the convention of
expressing the ENTROPY o in explicitly dimensionless

'"We have already done this once, but it bears repeating!
To avoid complete redundancy, this time we will reverse the
order of hot and cold.



form [the logarithm of a pure number is another pure
number]. By the same token, the simple definition of
TEMPERATURE 7 given by Eq. (10) automatically
gives 7 dimensions of energy, just like U. Thus 7
can be measured in joules or ergs or other more eso-
teric units like electron-volts; but we are accustomed
to measuring TEMPERATURE in other, less “physical”
units called degrees. What gives?

The story of how temperature units got invented is fas-
cinating and sometimes hilarious; suffice it (for now) to
say that these units were invented before anyone knew
what temperature really was!'® There are two types
of “degrees” in common use: Fahrenheit degrees!? and
Celsius degrees (written °C) which are moderately sen-
sible in that the interval between the freezing point of
water (0°C) and the boiling point of water (100°C) is
divided up into 100 equal “degrees” [hence the alter-
nate name “Centigrade”]. However, in Physics there
are only one kind of “degrees” in which we measure
temperature: degrees absolute or “Kelvin”2° which are
written just “K” without any © symbol. One K is the
same size as one °C, but the zero of the Kelvin scale
is at absolute zero, the coldest temperature possible,
which is itself an interesting concept. The freezing
temperature of water is at 273.15 K, so to convert °C
into K you just add 273.15 degrees. Temperature mea-
sured in K is always written T

What relationship does 7 bear to 77 The latter had
been invented long before the development of Statisti-
cal Mechanics and the explanation of what tempera-
ture really was; but these clumsy units never go away
once people have gotten used to them. The two types
of units must, of course, differ by some constant con-
version factor. The factor in this case is ks, BoLTZ-

18Well, to be fair, people had a pretty good working
knowledge of the properties of temperature; they just
didn’t have a definition of temperature in terms of nuts-
and-bolts mechanics, like Eq. (10).

19These silly units were invented by an instrument maker
called Fahrenheit [1686-1736] who was selling thermome-
ters to meteorologists. He picked body temperature [a
handy reference, constant to the precision of his measure-
ments] for one “fiducial” point and for the other he picked
the freezing point of saturated salt water, presumably from
the North Sea. Why not pure water? Well, he didn’t like
negative temperatures [neither do we, but he didn’t go far
enough!] so he picked a temperature that was, for a me-
teorologist, as cold as was worth measuring. [Below that,
presumably, it was just “damn cold!”] Then he (sensibly)
divided up the interval between these two fiducials into
96 = 64432 equal “degrees” [can you see why this is a prag-
matic choice for the number of divisions?] and wvoild! he
had the Fahrenheit temperature scale, on which pure wa-
ter freezes at 32°F and boils at 212°F. A good system to
forget, if you can.

*ONamed after Thomson, Lord Kelvin [1852], a pioneer
of thermodynamics.

MANN’S CONSTANT:

T = kg1 where

ks = 1.38066 x 10723 J/K (12)

By the same token, the “conventional entropy” S de-
fined by the relationship
1 oS
- = — (13)
T ou
must differ from our dimensionless version ¢ by the
same conversion factor:

S = ko (14)

This equivalence completes the definition of the mys-
terious entities of classical thermodynamics in terms of
the simple “mechanical” paradigms of Statistical Me-
chanics. I will continue to use ¢ and 7 here.

15.4.6 A Model System

Some of the more peculiar properties of temperature
can be illustrated by a simple example:

Certain particles such as electrons have “spin %” which
(it turns out) prevents their spins from having any ori-
entation in a magnetic field B other than parallel to
the field (“spin up”) or antiparallel to it (“spin down”).
Because each electron has a magnetic moment g (sort
of like a tiny compass needle) lined up along its spin
direction, there is an energy ¢ = —{i - B associated
with its orientation in the field.2! For a “spin up” elec-
tron the energy is ey = +uB and for a “spin down”
electron the energy is ¢, = —ubB.

Consider a system consisting of N electrons in a mag-
netic field and neglect all other interactions, so that the
total energy U of the system is given by

U=(Ny—N,) uB

where N is the number of electrons with spin up and
N, is the number of electrons with spin down. Since
N, = N — Ny, this means

U= 2Ny —-N)uB or

N U
Ny = — + ——
t=3 B
— that is, Ny and U are basically the same thing
except for a couple of simple constants. As N3 goes

from 0 to N, U goes from —NuB to +NuB.

(15)

21 The rate of change of this energy with the angle be-
tween the field and the compass needle is in fact the torque
which tries to align the compass in the Earth’s magnetic
field, an effect of considerable practical value.



15.5. TIME & TEMPERATURE

This system is another example of the binomial dis-
tribution whose multiplicity function was given by
Eq. (1), with Nt in place of n. This can be easily
converted to Q(U). The entropy o(U) is then just
the logarithm of Q(U), as usual. The result is plotted
in the top frame of Fig. 15.2 as a function of energy.
Note that the entropy has a maximum value for equal
numbers of spins up and down — i.e. for zero energy.
There must be some such peak in o(U) whenever
the energy is bounded above — i.e. whenever there
is a maximum possible energy that can be stored in
the system. Such situations do occur [this is a “real”
example!] but they are rare; usually the system will
hold as much energy as you want.

Entropy

Inverse Temperature

Temperature

Figure 15.2 Entropy, inverse temperature and tempera-
ture of a system consisting of N = 32 spin—% particles
(with magnetic moments p) in a magnetic field B.

Negative Temperature

The “boundedness” of U and the consequent “peaked-
ness” of ¢(U) have some interesting consequences:

the slope of o(U) [which, by Eq. (10), defines the
inverse temperature] decreases steadily and smoothly
over the entire range of U from —NupB to +NuB,
going through zero at U = 0 and becoming negative
for positive energies. This causes the temperature it-
self to diverge toward +oco as U — 0 from the left
and toward —oo as U — 0 from the right. Such
discontinuous behaviour is disconcerting, but it is only
the result of our insistence upon thinking of 7 as “fun-
damental” when in fact it is 1/7 that most sensibly
defines how systems behave. Unfortunately, it is too
late to get thermometers calibrated in inverse temper-
ature and get used to thinking of objects with lower
inverse temperature as being hotter. So we have to live
with some pretty odd properties of “temperature.”

Consider, for instance, the whole notion of negative
temperature, which is actually exhibited by this sys-
tem and can actually be prepared in the laboratory.??
What is the behaviour of a system with a negative tem-
perature? Our physical intuition, which in this case is
trustworthy, declares that one system is hotter than
another if, when the two are placed in thermal con-
tact, heat energy spontaneously flows out of the first
into the second. I will leave it as an exercise for the
reader to decide which is most hot — infinite positive
temperature or finite negative temperature.

15.5 Time & Temperature

Let’s do the following Gedankenexperiment: Suppose I
show you a movie of a swimming pool full of waves and
splashes; suddenly (in the movie) all the waves come
together and squirt a diver out of the pool. She flies
gracefully through the air to land on the diving board
while the pool’s surface has miraculously returned to
mirror smoothness. What is wrong with this picture?
Wait! Before you answer, you also get the following
movie: A box full of 100 black and 100 white marbles
sits on a table; the marbles are arranged randomly. An
anonymous assistant picks up the box, closes the lid,
shakes the box for a while, puts it down and opens the
lid. All the white marbles are now on the left side and
all the black marbles are on the right side. Why do
you keep thinking there is a problem? Try this: The
same box, the same assistant, the same story; except
this time there are only 4 marbles, two of each. Not
so sure, hmmm? How about 2 marbles, one black and
one white? Now we can’t tell a thing about whether
the movie is being shown forward or backward, right?
What is going on here?

Our concept of the “arrow of time” is somehow bound

?2[by reversing the direction of the magnetic field before

the spins have a chance to react]
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up with statistical mechanics and is alarmingly fragile
— we can lose our bearings completely just by con-
fining our attention to too small a system! As we will
see later, the “fundamental” laws governing the micro-
scopic interactions of matter will be no help at all in
clarifying this mystery.

15.6 Boltzmann’s Distribution

In defining the concept of temperature, we have exam-
ined the behaviour of systems in thermal contact (i.e.
able to exchange energy back and forth) when the to-
tal energy U is fixed. In the real world, however, it
is not often that we know the total energy of an arbi-
trary system; there is no “energometer” that we can
stick into a system and read off its energy! What we
often do know about a system it its temperature. To
find this out, all we have to do is stick a calibrated ther-
mometer into the system and wait until equilibrium is
established between the thermometer and the system.
Then we read its temperature off the thermometer. So
what can we say about a small system?® S (like a
single molecule) in thermal equilibrium with a large
system (which we usually call a “heat reservoir” R)
at temperature 7 = kgT'?

Well, the small system can be in any one of a large
number of fully-specified states. It is convenient to be
invent an abstract Iabel for a given fully-specified state
so that we can talk about its properties and probabil-
ity. Let’s call such a state |a) where «a is a “full
label” — di.e. « includes all the information there
is about the state of &. It is like a complete list of
which car is parked in which space, or exactly which
coins came up heads or tails in which order, or what-
ever. For something simple like a single particle’s spin,
« may only specify whether the spin is up or down.
Now consider some particular fully-specified state |a)
whose energy is 4. As long as R is very big and S
is very small, § can — and sometimes will — absorb
from R the energy e, required to be in the state
|a), no matter how large e, may be. However, you
might expect that states with really big e, would
be excited somewhat less often than states with small
€q, because the extra energy has to come from R,
and every time we take energy out of R we decrease
its entropy and make the resultant configuration that
much less probable. You would be right. Can we be
quantitative about this?

Well, the combined system {S+ R} has a multiplicity
function 2 which is the product of the multiplicity

Z8 A “small system” can even be a “particle,” since both

terms are intentionally vague and abstract enough to mean
anything we want!

function Qs = 1 for S [which equals 1 because
we have already postulated that S 1is in a specific
fully specified state |a)] and the multiplicity function
Qr =e’» for R:

0 = QsXQR = 1xe’r

Moreover, the probability P, of finding S in state
|y with energy e, will be proportional to this net
multiplicity:

Po x e’®r

We must now take into account the effect on this prob-
ability of removing the energy e, from R to excite
the state |a).

The energy of the reservoir R before we brought &
into contact with it was U. We don’t need to know
the value of U, only that it was a fixed starting point.
The entropy of R was then o, (U). Once contact is
made and an energy &, has been “drained off” into
S, the energy of R is (U —&,) and its entropy is
0, (U —¢€q).

Because ¢, is so tiny compared to U, we can treat
it as a “differential” of U (like “dU”) and estimate
the resultant change in o, [relative to its old value
0, (U)] in terms of the derivative of o, with respect
to energy:

o, (U+dU) = o, (U) + (%) - dU

or in this case (with dU = —¢,)

0. (U—¢€a) = 0,(U) — (%) “€a

But this derivative is by definition the inverse temper-

ature of R: % = % Thus
€
O.R(U_‘SOZ) = UR(U) - Ta

and thus the probability of finding S in the state |a)
obeys

P, x e’=U=%) = exp [UR(U) - 8—0‘}

€
or Py ox erW) . exp (——a)

-
Since e’=Y) is a constant independent of either &,
or T, that term will be the same for any state |a) so

we may ignore it and write simply
€
Pa o exp (——a) (16)
T

This is the famous BOLTZMANN FACTOR that describes
exactly how to calculate the relative probabilities of
different states |a) of a system in thermal contact
with a heat reservoir at temperature 7. It is probably
the single most useful rule of thumb in all of thermal
physics.



15.6. BOLTZMANN'’S DISTRIBUTION

15.6.1 The Isothermal Atmosphere

The gravitational potential energy of a gas molecule of
mass m at an altitude h above sea level is given
approximately by & = mgh, where g = 9.81 m/s?.
Here we neglect the decrease of g with altitude, which
is a good approximation over a few dozen miles. Next
we pretend that the temperature of the atmosphere
does not vary with altitude, which is untrue, but per-
haps relative to 0 K it is not all that silly, since the
difference between the freezing (273.15 K) and boiling
(373.15 K) points of water is less than 1/3 of their av-
erage. For convenience we will assume that the whole
atmosphere has a temperature 7' = 300 K (a slightly
warm “room temperature”).

In this approximation, the probability P(h) of finding
a given molecule of mass m at height h will drop
off exponentially with h:

P(h) = P(0) exp (_m_gh>

T

Thus the density of such molecules per unit volume
and the partial pressure p,, of that species of molecule
will drop off exponentially with altitude h:

pult) = ) exp (-1 )
0
where hg is the altitude at which the partial pressure
has dropped to 1/e of its value p,,(0) at sea level.
We may call hy the “mean height of the atmosphere”
for that species of molecule. A quick comparison and
a bit of algebra shows that
r

ho = —
my

For oxygen molecules (the ones we usually care about
most) hg ~ 8 km. For helium atoms hy = 64 km and
in fact He atoms rise to the “top” of the atmosphere
and disappear into interplanetary space. This is one
reason why we try not to lose any helium from super-
conducting magnets etc. — helium is a non-renewable
resource!

15.6.2 How Big are Atoms?

Wait a minute! How did I calculate hg? I had to
know m for the different molecules, and that requires
some knowledge of the sizes of atoms — information
that has not yet been set forth in this book! In fact,
empirical observations about how fast the pressure of
the atmosphere does drop off with altitude could give
a pretty good idea of his big atoms are; this isn’t how
it was done historically, but let’s give it a try anyway:

11

Suppose that, by climbing mountains and measuring
the density of oxygen molecules (O3) as a function of
altitude, we have determined empirically that ho for
O, is about 8,000 m. Then, according to this simple
model, it must be true that the mass m of an O,
molecule is about

NL_?’OOXL?’SXIO_%
T hog ~ 8x103x9.81

m

or m ~ 5.3 x 1072 kg

This is a mighty small mass!

Now to mix in just a pinch of actual history: Long
ago, chemists discovered (again empirically) that dif-
ferent pure substances combined with other pure sub-
stances in fixed ratios of small integers times a cer-
tain characteristic mass (characteristic for each pure
substance) called its molecular weight A. People
had a pretty good idea even then that these pure sub-
stances were made up of large numbers of identical
units called “atoms,”?* but no one had the faintest
idea how big atoms were — except of course that they
must be pretty small, since we never could see any di-
rectly. The number Ny of molecules in one molecular
weight of a pure substance was (correctly) presumed to
be the same, to explain why chemical reactions obeyed
this rule. This number came to be called a “mole” of
the substance. For oxygen (O,), the molecular weight
is roughly 32 grams or 0.032 kg.

If we now combine this conventional definition of a
mole of Oy with our previous estimate of the mass of
one O, molecule, we can estimate

0.032

- 23
53x10-2 ~ 0x10

Ng ~
The exact number, obtained by quite different means,

18
Ny = 6.02205 x 1073 (17)

molecules per mole. This is known as AVOGADRO’S
NUMBER.

Turning the argument around, the mass of a molecule
can be obtained from its molecular weight A as fol-
lows: One mole of any substance is defined as a mass
A x 1 gram, and contains Ny molecules (or atoms,
in the case of monatomic molecules) of the substance.
Thus helium, with A =4, weighs 4 gm (or 0.004 kg)
per mole containing Ny atoms, so one He atom weighs
(0.004/Ny) kg or 6.6 x 1077 kg.

241 will cover the history of “Atomism” in a bit more
detail later on!
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15.7 1Ideal Gases

We have argued on an abstract basis that the state of
highest entropy (and hence the most probable state)
for any complicated system is the one whose macro-
scopic properties can be obtained in the largest pos-
sible number of different ways; if the model systems
we have considered are any indication, a good rule of
thumb for how to do this is to let each “degree of free-
dom” of the system contain (on average) an equal frac-
tion of the total energy U. We can justify this argu-
ment by treating that degree of freedom as a “system”
in its own right (almost anything can be a “system”)
and applying Boltzmann’s logic to show that the prob-
ability of that microsystem having an energy ¢ while
in thermal equilibrium at temperature 7 decays expo-
nentially as exp(—e/7). This implies a mean € on the
order of 7, if we don’t quibble over factors comparable
to 1.

The Equipartition Theorem, which is more rigourously
valid than the above hand-waving would suggest,?®
specifies the factor to be exactly 1/2:

A system in thermal
equilibrium with a heat reservoir at tem-

perature T will have a mean energy of

%T per degree of freedom.

In an ideal monatomic gas of N atoms at temperature
7 each atom has three degrees of freedom: left-right
(z), back—forth (y) and up—down (z). Thus the average
internal energy of our monatomic ideal gas is

U = gN T (18)

25Tf you want the details, here they are: Suppose that p;

is the CANONICAL MOMENTUM characterizing the i*" degree

of freedom of a system and that e(p;) = bp? is the energy

associated with a given value of p;. Assume further that

pi can have a continuous distribution of values from —oo

to +o0o. Then the probability of p; having a given value

is proportional to exp(—bp?/7) and therefore the average

energy associated with that degree of freedom is given by
J2Z bpre i dp;

J7Z et ap,

(e(pi)) =

“well known” solutions:

—+oo
_az? [
e der =/ —,
a
— 00

where in this case a = b/7 and z = p;, giving

These definite integrals have

+oco
2 —az? 1 m
de = -/ —
/ ve v 2V a3’

— 00

T

() = 5.

5 QED

In spite of the simplicity of the above argument?® this
is a profound and useful result. It tells us, for in-
stance, that the energy U of an ideal gas does not
depend upon its pressure?” p! This is not strictly
true, of course; interactions between the atoms of a
gas make its potential energy different when the atoms
are (on average) close together or far apart. But for
most gases at (human) room temperature and (Earth)
atmospheric pressure, the ideal-gas approximation is
extremely accurate!

It also means that if we change the temperature of
a container of gas, the rate of change of the internal
energy U with temperature, which is the definition
of the HEAT CAPACITY

ou

C = —, 19

5T (19)
is extremely simple: since 7 = kgT and U = %NT,
U= %N ksT and so the heat capacity of an ideal gas
is constant:

C [ideal gas] = ;NkB (20)

Now let’s examine our gas from a more microscopic,
“mechanical” point of view: picture one atom bounc-
ing around inside a cubical container which is a length
L on a side. In the “ideal” approximation, atoms
never hit each other, but only bounce off the walls, so
our consideration of a single atom should be indepen-
dent of whether or not there are other atoms in there
with it. Suppose the atom in question has a velocity
¥ with components v,, v, and v, along the three axes
of the cube.

Thinking only of the wall at the +z end of the box,
our atom will bounce off this wall at a rate 1/t where
t is the time taken to travel a distance 2L (to the far
wall and back again) at a speed wv,: t = 2L/v,. We
assume perfectly elastic collisions — i.e. the magni-
tude of v, does not change when the particle bounces,
it just changes sign. Each time our atom bounces off
the wall in question, it imparts an impulse of 2mwv, to
that wall. The average impulse per unit time (force)
exerted on said wall by said atom is thus F} = 2muv, [t
or Fy =mwv2/L. This force is (on average) spread out
all over the wall, an area A = L2, so that the force
per unit area (or pressure) due to that one particle is

Z6We can, of course, make the explanation more elabo-
rate, thus satisfying both the demands of rigourous logic
and the Puritan conviction that nothing of real value can
be obtained without hard work. I will leave this as an
exercise for other instructors.

*"Unfortunately, we use the same notation (p) for both
momentum and pressure. Worse yet, the notation for num-
ber density (number of atoms per unit volume) is n. Sorry,
I didn’t set up the conventions.



15.8. THINGS I LEFT OUT

given by p; = Fi/A = mv2/L3. Since L3 =V, the
volume of the container, we can write p; = mov?/V

or
2
T

pV = mv
The average pressure p exerted by all N atoms
together is just N times the mean value of p;: p=
N{p1), where the “(---)” notation means the average
of the quantity within the angle brackets. Thus

pV = Nm(v2) (21)

Now, the kinetic energy of our original atom is explic-
itly given by

1 1 .
imv2 = Em(vi +v) 4 v7)

since ¥ is the vector velocity. We expect each of the
mean square velocity components (v3), (v7) and (v?)
to average about the same in a random gas, so each
one has an average value of 1 of their sum.?® Thus
(2) = (vj) = (v2) = £(v*) and the mean kinetic
energy of a single particle is Uy = 2m(v2). The
kinetic energy of all N atoms is just U = NU;, or
3 2
U = ENm(v,;) (22)
But according to Eq. (18) we have U = 2 N7; so we
may write2’
m{v2) = 1 (23)

Combining Eqgs. (21) and (23), we obtain the famous
IDEAL GAS LAW:

Despite the flimsiness of the foregoing arguments, the
IDEAL GAS LAW is a quantum mechanically correct de-
scription of the interrelationship between the pressure
p, the volume V and the temperature 7 = kgT
of an ideal gas of N particles, as long as the only
way to store energy in the gas is in the form of the ki-
netic energy of individual particles (usually atoms or
molecules). Real gases can also store some energy in
the form of rotation or vibration of larger molecules
made of several atoms or in the form of potential en-
ergies of interaction (attraction or repulsion) between

?8We may say that the average kinetic energy “stored in
the  degree of freedom” of an atom is m(v).

29This is equivalent to saying that the average energy
stored in the z degree of freedom of one atom [or, for that
matter, in any other degree of freedom)] is %T — which
is just what we originally claimed in the EQUIPARTITION
THEOREM. We could have just jumped to this result, but I
thought it might be illuminating to show an explicit argu-
ment for the equality of the mean energies stored in several

different degrees of freedom.
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the particles themselves. It is the latter interaction
that causes gases to spontaneously condense, below a
certain boiling point T}, into liquids and, at a still
lower temperature T, (called the melting point), into
solids. However, in the gaseous phase even carbon [va-
porized diamond] will behave very much like an ideal
gas at sufficiently high temperature and low pressure.
It is a pretty good Law!

15.8 Things I Left Out

As you can tell by the length of this chapter, I find
it hard to stop talking about this wonderful subject.
Thermal Physics is like an old but vibrantly modern
city with a long, fabulous and meticulously preserved
history: around every corner there is a host of fascinat-
ing shops, theatres, galleries and restaurants offering
the latest goodies from a cosmopolitan state of the art,
intermixed with libraries and museums that tell stories
of heroic acts and world-changing events. “Shop till
you drop!” Still, I have to stop somewhere.

The foregoing has been a rather unusual introduction
to Thermal Physics. I have completely left out THE
LAWS OF THERMODYNAMICS — the traditional start-
ing point for the subject — in favour of a strictly con-
ceptual (though often painfully formal, I know) expla-
nation of the meaning of entropy and temperature, in
the conviction that these notions can be generalized to
provide tools for quantitative analysis of random sta-
tistical processes in realms where no one ever dreamed
of applying the paradigms of Physics. In my zeal to
convey this conviction, I have also omitted any discus-
sion of the profound practical applications of Thermo-
dynamics, like ENGINES and REFRIGERATORS. Worst
of all, I have not told any stories of the bizarre spon-
taneous behaviour of large numbers of similar atoms
under different conditions of temperature and pressure
— the so-called EQUATIONS OF STATE and PHASE DIA-
GRAMS of gases, liquids and solids, from FERMI GASES
to SUPERFLUIDS and SUPERCONDUCTORS. Part of the
reason for this is that you need a bit more introduc-
tion to the phenomenology of Physics — QUANTUM
MECHANICS in particular — before you can fully ap-
preciate (or even, in some cases, describe) much of the
above-mentioned behaviour. All I can hope to have
done in this HyperReference is to have unlocked the
door (and perhaps opened it a crack) to a world of
wonder and magic where analytical thinking and math-
ematics play the role of spells and incantations. I urge
you to continue this adventure beyond the limits (and
end) of this HyperReference!



