WAVES

In a purely mathematical approach to the
phenomenology of waves, we might choose to
start with the WAVE EQUATION, a differential
equation describing the qualitative features of
wave propagation in the same way that SHM
is characterized by # = —w?z. The advantage
of such an approach is that one gains confi-
dence that any phenomenon that can be shown
to obey the WAVE EQUATION will automati-
cally exhibit all the characteristic properties of
wave motion. This is a very economical way
of looking at things.

Unfortunately, the phenomenology of wave
motion is not very familiar to most beginners
— at least not in the mathematical form we
will need here; so in this instance I will adopt
the approach used in most first year Physics
textbooks for almost everything: I will start
with the answer (the simplest solution to the
WAVE EQUATION) and explore its properties
before proceeding to show that it is indeed a
solution of the WAVE EQUATION — or, for
that matter, before explaining what the WAVE
EQUATION is.

14.1 Wave Phenomena

We can visualize a vivid example for the sake
of illustration: suppose the “amplitude” A is
the height of the water’s surface in the ocean
(measured from A = 0 at “sea level”) and z is
the distance toward the East, in which direc-
tion waves are moving across the ocean’s sur-
face.! Now imagine that we stand on a skinny
piling and watch what happens to the water
level on its sides as the wave passes: it goes

!Technically speaking, I couldn’t have picked a worse
example, since water waves do not behave like our idealized
example — a cork in the water does not move straight up
and down as a wave passes, but rather in a vertical circle.
Nevertheless I will use the example for illustration because
it is the most familiar sort of easily visualized wave for
most people and you have to watch closely to notice the
difference anyway!
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Figure 14.1 Two views of a wave.

up and down at a regular frequency, executing
SHM as a function of time. Next we stand
at a big picture window in the port side of a
submarine pointed East, partly submerged so
that the wave is at the same level as the win-
dow; we take a flash photograph of the wave
at a given instant and analyze the result: the
wave looks instantaneously just like the graph
of SHM except the horizontal axis is distance
instead of time. These two images are dis-
played in Fig. 14.1.

14.1.1 Traveling Waves

How do we represent this behaviour mathe-
matically? Well, A 1is a function of posi-
tion # and time ¢t: A(#,t). At any fixed po-
sition ¥, A oscillates in time at a frequency
w. We can describe this statement mathemat-
ically by saying that the entire time depen-
dence of A is contained in [the real part of]
a factor e™™' (that is, the amplitude at any
fixed position obeys SHM ).

The oscillation with respect to position 7 at
any instant of time t is given by the analo-

2Note that eT™* would have worked just as well, since
the real part is the same as for e”“*. The choice of sign
does matter, however, when we write down the combined
time and space dependence in Eq. (4), which see.



gous factor ¢® " where k is the wave vec-
tor;® it points in the direction of propagation
of the wave and has a magnitude (called the

“wavenumber”) k given by

27

k= — 1

. (1)

where ) is the wavelength. Note the analogy

between k£ and
2T

= — 2

W= (2)

where T is the period of the oscillation in time

at a given point. You should think of A as
the “period in space.”

We may simplify the above description by
choosing our coordinate system so that the x
axis is in the direction of E, so that! k-7 =
k x. Then the amplitude A no longer depends
on y or z, only on x and .

We are now ready to give a full description of
the function describing this wave:

Alz,t) = A, e*v . g7t

or, recalling the multiplicative property of the

exponential function, e® - e = e(*+?)

Az, t) = A, e'bret), (3)

To achieve complete generality we can restore
the vector version:

Az, t) = A, et(kFw1) (4)

This is the preferred form for a general de-
scription of a PLANE WAVE, but for present

3The name “wave vector” is both apt and inadequate —
apt because the term vector explicitly reminds us that its
direction defines the direction of propagation of the wave;
inadequate because the essential inverse relationship be-
tween k and the wavelength X [see Eq. (1)] is not suggested
by the name. Too bad. It is at least a little more descrip-
tive than the name given to the magnitude k of E, namely
the “wavenumber.”

4In general k- 7= ke + yk_y + zk,. If k = ki then
k:=kand ky =k. =0, giving k-7 =kx.

purposes the scalar version (3) suffices. Using
Egs. (1) and (2) we can also write the plane
wave function in the form

t
A(z,t) = A, exp [27ri <§ — T)} (5)
but you should strive to become completely
comfortable with & and w — we will be
seeing a lot of them in Physics!

14.1.2 Speed of Propagation

Neither of the images in Fig. 14.1 captures
the most important qualitative feature of the
wave: namely, that it propagates — i.e. moves
steadily along in the direction of k. If we were
to let the smapshot in Fig. 14.1b become a
movie, so that the time dependence could be
seen vividly, what we would see would be the
same wave pattern sliding along the graph to
the right at a steady rate. What rate? Well,
the answer is most easily given in simple qual-
itative terms:

The wave has a distance A (one wavelength)
between “crests.” Every period T, one full
wavelength passes a fixed position. Therefore
a given crest travels a distance A in a time 7'
so the velocity of propagation of the wave is
just

c = — or c = — (6)

where I have used c as the symbol for the prop-
agation velocity even though this is a com-
pletely general relationship between the fre-
quency w, the wave vector magnitude £ and
the propagation velocity ¢ of any sort of wave,
not just electromagnetic waves (for which ¢ has
its most familiar meaning, namely the speed of
light).

This result can be obtained more easily by not-
ing that A is a function only of the phase 6 of
the oscillation,

0 = kr —wt (7)
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and that the criterion for “seeing the same
waveform” is 6 = constant or df = 0. If
we take the differential of Eq. (7) and set it
equal to zero, we get

dd = kdr — wdt = 0 or kdr = wdt
de w
or — = —.
dt k

But dx/dt = ¢, the propagation veloc-

ity of the waveform. Thus we reproduce
Eq. (6). This treatment also shows why we
chose e ™! for the time dependence so that
Eq. (7) would describe the phase: if we used
e then the phase would be 0 = kz +
wt which gives dx/dt = —¢, — i.e. a wave-
form propagating in the negative x direction
(to the left as drawn).

If we use the relationship (6) to write (kx —
wt) = k(z — ct), so that Eq. (4) becomes

Az, t) = A, gtkl@=ct)

we can extend the above argument to wave-
forms that are not of the ideal sinusoidal shape
shown in Fig. 14.1; in fact it is more vivid if
one imagines some special shape like (for in-
stance) a pulse propagating down a string at
velocity c. As long as A(x,t) is a function only
of x' = x—ct, no matter what its shape, it will
be static in time when viewed by an observer
traveling along with the wave® at velocity c.
This doesn’t require any elaborate derivation;
x' is just the position measured in such an
observer’s reference frame!

14.2 The Wave Equation

This is a bogus “derivation” in that we start
with a solution to the WAVE EQUATION and
then show what sort of differential equation it
satisfies. Of course, once we have the equation

’Don’t try this with an electromagnetic wave! The ar-
gument shown here is explicitly nonrelativistic, although
a more mathematical proof reaches the same conclusion
without such restrictions.

we can work in the other direction, so this is
not so bad. ...

Suppose we know that we have a traveling
wave A(x,t) = A, cos(kx — wt).

At a fixed position (x = const) we see SHM

in time: 24

(Read: “The second partial derivative of A
with respect to time [i.e. the acceleration of
A] with x held fixed is equal to —w? times A
itself.”) Ie. we must have a linear restoring
force.

Similarly, if we take a “snapshot” (hold ¢ fixed)
and look at the spatial variation of A, we find
the oscillatory behaviour analogous to SHM,

(g%)t = —k*A (9)

(Read: “The second partial derivative of A
with respect to position [i.e. the curvature of
A] with ¢ held fixed is equal to —k?* times A
itself.”)

Thus
A L(oeay 1 /oA
w2z \ o x_ k2 \ 0«2 t'

If we multiply both sides by —k?, we get

B (PA\ (0P
w? \ Ot? x_ 0x? t'

k2
But w=-ck so il giving the WAVE
EQuATION:
%A 1 0’A
— = = — =0 10
0x? 2 Ot? (10)

In words, the curvature of A is equal to 1/c?
times the acceleration of A at any (z,t) point
(what we call an event in spacetime).



Whenever you see this differential equation
governing some quantity A, i.e. where the ac-
celeration of A is proportional to its curvature,
you know that A(x,t) will exhibit wave mo-
tion!

14.3 Wavy Strings
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Figure 14.2 A small segment of a taut string.

One system that exhibits wave motion is the
taut string. Picture a string with a uni-
form mass per unit length p under tension
F. Ignoring any effects of gravity, the undis-
turbed string will of course follow a straight
line which we label the x axis. There are ac-
tually two ways we can “perturb” the quies-
cent string: with a “longitudinal” compres-
sion/stretch displacement (basically a sound
wave in the string) or with a “transverse” dis-
placement in a direction perpendicular to the
x axis, which we will label the y direction.

The sketch in Fig. 14.2 shows a small string
segment of length df and mass dm =
i dl which makes an average angle 6 with re-
spect to the x axis. The angle actually changes
from 6 — df/2 at the left end of the segment
to 6+ df/2 at the right end. For small dis-
placements 6 < 1 [the large 6 shown in the
sketch is just for visual clarity] and we can use
the SMALL-ANGLE APPROXIMATIONS

dr = dl cosf ~ dl

dy = dl sinf =~ 0 dl
dy

%:tanﬁwe

Furthermore, for small # the net force

(11)

dF = 2F sin(df/2) ~ 2F (d§/2) = Fdf (12)

acting on the string segment is essentially in
the y direction, so we can use Newton’s SEC-
OND LAW on the segment at a fixed x location
on the string:

dF =~ dma, = §dm or

Fdf~ypudl or

2 F F
9y ~ £do ~o— @ : (13)
o ) pdl o\ dx

Referring now back to Eq. (11) we can use 6 ~
dy/dz to set

a0\ (9%
da:Nd:L"2t

— i.e. the curvature of the string at time t.
Plugging Eq. (14) back into Eq. (13) gives

0%y F (0%y
(@l T (ﬁt ~0 o 1)

which is the WAVE EQUATION with

(14)

W F
— = = or ¢ = 4/—.

16
Z = F . (16)

We may therefore jump right to the conclusion
that waves will propagate down a taut string
at this velocity.

14.3.1 Polarization

One nice feature of waves in a taut string is
that they explicitly illustrate the phenomenon
of polarization: if we change our notation
slightly to label the string’s equilibrium direc-
tion (and therefore the direction of propaga-
tion of a wave in the string) as z, then there
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are two orthogonal choices of “transverse” di-
rection: x or y. We can set the string “wig-
gling” in either transverse direction, which we
call the two orthogonal polarization directions.

Of course, one can choose an infinite number
of transverse polarization directions, but these
correspond to simple superpositions of z- and
y-polarized waves with the same phase.

One can also superimpose z- and y-polarized
waves of the same frequency and wavelength
but with phases differing by +x/2. This gives
left- and right-circularly polarized waves; 1
will leave the mathematical description of such
waves (and the mulling over of its physical
meaning) as an “exercise for the student....”

14.4 Linear Superposition

The above derivation relied heavily on the
SMALL-ANGLE APPROXIMATIONS which are
valid only for small displacements of the string
from its equilibrium position (y = 0 for all
x). This almost always true: the simple de-
scription of a wave given here is only strictly
valid in the limit of small displacements from
equilibrium; for large displacements we usu-
ally pick up “anharmonic” terms correspond-
ing to nonlinear restoring forces. But as long
as the restoring force stays linear we have
an important consequence: several different
waves can propagate independently through
the same medium. (FE.g. down the same
string.) The displacement at any given time
and place is just the linear sum of the displace-
ments due to each of the simultaneously propa-
gating waves. This is known as the PRINCIPLE
OF LINEAR SUPERPOSITION, and it is essential
to our understanding of wave phenomena.

In general the overall displacement A(x,t) re-
sulting from the linear superposition of two
waves AjelF1z=@it) and A,eik2r—w2t) g given

by

Az, t) = Apeilre—wd 4 g pilker—wat) (g 7)

Let’s look at a few simple examples.

14.4.1 Standing Waves

Traveling Wave at successive times:

AMPLITUDE

POSITION —=

Standing Wave at successive times:

AMPLITUDE

POSITION —=

Figure 14.3 Traveling vs. standing waves.

A particularly interesting example of superpo-
sition is provided by the case where A; =
Ay = A, ki =k =k and w) = —wp = w.
That is, two otherwise identical waves propa-
gating in opposite directions. The algebra is
simple:

A(:L',t) - A [ez’(kaszt)_kez’(karwt)}

0
— Aoezkx [e—zwt + e—l—zwt]

= A,e"*[cos(wt) — isin(wt)
+ cos(wt) + i sin(wt)]

= 2A, cos(wt)e?. (18)

The real part of this (which is all we ever
actually use) describes a sinusoidal waveform
of wavelength A = 27 /k whose amplitude
24, cos(wt) oscillates in time but which does
not propagate in the x direction — i.e. the
lower half of Fig. 14.3. Standing waves are
very common, especially in situations where a
traveling wave is reflected from a boundary,
since this automatically creates a second wave
of similar amplitude and wavelength propagat-
ing back in the opposite direction — the very



condition assumed at the beginning of this dis-
cussion.

14.4.2 Classical Quantization

None of the foregoing discussion allows us to
uniquely specify any wavelike solution to the
WAVE EQUATION, because nowhere have we
given any BOUNDARY CONDITIONS forcing the
wave to have any particular behaviour at any
particular point. This is not a problem for the
general phenomenology discussed so far, but
if you want to actually describe one particular
wave you have to know this stuff.

Standing Waves
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Figure 14.4 The first three allowed standing
waves in a “closed box" (e.g. on a string with
fixed ends).

Boundary conditions are probably easiest to
illustrate with the system of a taut string
of length L with fixed ends, as shown in
Fig. 14.4.5 Fixing the ends forces the wave
function A(z,t) to have nodes (positions
where the amplitude is always zero) at those
positions. This immediately rules out travel-
ing waves and restricts the simple sinusoidal
“modes” to standing waves for which L is an
integer number of half-wavelengths:”

2L
)\n =

n

n=1,23--  (19)

5The Figure could also describe standing sound waves
in an organ pipe closed at both ends, or the electric field
strength in a resonant cavity, or the probability amplitude
of an electron confined to a one-dimensional “box” of length
L.

"Note that the n'" mode has (n — 1) nodes in addition
to the two at the ends.

Assuming that ¢ = w/k = Av = const, the
frequency v [in cycles per second or Hertz
(Hz)] of the n*® mode is given by v, = ¢/\, or
n=123,--- (20)

Vp = N i,
For a string of linear mass density g under
tension F' we can use Eq. (16 to write what
one might frivolously describe as THE GUITAR
TUNER’S EQUATION:

n |F
Vp = D)

— —1.2.3....
2L 'LL n )=y

(21)
Note that a given string of a given length L
under a given tension F' has in principle an in-
finite number of modes (resonant frequencies);
the guitarist can choose which modes to ex-
cite by plucking the string at the position of an
antinode (position of maximum amplitude) for
the desired mode(s). For the first few modes
these antinodes are at quite different places, as
evident from Fig. 14.4. As another “exercise
for the student” try deducing the relationship
between modes with a common antinode —
these will all be excited as “harmonics” when
the string is plucked at that position.

Exactly the same formulae apply to sound
waves in organ pipes if they are closed at both
ends. An organ pipe open at one end must
however have an antinode at that end; this
leads to a slightly different scheme for enu-
merating modes, but one that you can easily
deduce by a similar sequence of logic.

This sort of restriction of the allowed modes of
a system to a discrete set of values is known
as QUANTIZATION. However, most people are
not accustomed to using that term to describe
macroscopic classical systems like taut strings;
we have a tendency to think of quantization
as something that only happens in QUANTUM
MECHANICS. In reality, quantization is an
ubiquitous phenomenon wherever wave mo-
tion runs up against fixed boundary condi-
tions.
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14.5 Energy Density

Consider again our little element of string at
position . We have shown that (for fixed
x) the mass element will execute SHM as a
function of time ¢. Therefore there is an ef-
fective LINEAR RESTORING FORCE in the y
direction acting on the mass element dm =
pdr: dF = Fdf = F (0°y/0x?)dz. But for
a simple traveling wave we have® y(z,t) =
y, cos(kr —wt) so (9*y/dz?) = —k?y, giving
dF = — [k? F dz] y. In other words, the effec-
tive spring constant for an element of string
dr long is ke = k?*Fdx where I have
used the unconventional notation « for the ef-
fective spring constant to avoid confusing it
with the wavenumber k, which is something
completely different. Applying our knowledge
of the potential energy stored in a stretched
spring, dU = %K/eﬂ‘ y?,  we have the elastic
potential energy stored in the string per unit
length, dU/dx = $k*>Fy® or, plugging in
y(z, 1),

a1, 5
- = §k Fy? cos®(kx — wt)

(22)
— that is, the potential energy density is pro-
portional to the amplitude squared.

What about kinetic energy? From SHM we
expect the energy to be shared between po-
tential and kinetic energy as each mass ele-
ment oscillates through its period. Well, the
kinetic energy dK of our little element of
string is just dK = %dm vs. Again dm =
pdzr and now we must evaluate v,. Work-
ing from y(z,t) = y, cos(kx — wt) we have
vy = —wy, sin(kx — wt), from which we can
write
dK 1

= - pw?y’ sin®(kr — wt).

o 5 (23)

The total energy density is of course the sum

81 have avoided complex exponentials here to avoid con-
fusion when I get around to calculating the transverse
speed of the string element, v,. The acceleration is the
same as for the complex version.

of these two:

dE dU N dK
- = - 0
dz dz dz '
aE- 1 51 2 2 2
%_iyo[kFcose+uw 81119]
where 60 = kxr — wt. Using ¢ = w/k =
\/F/p we can write this as
dE- 1 4 2 .2 2 2
2 = 3% [,uw cos” 0 + pw* sin 9] or
dE 1
T = Sy (24)

You can use F'k? in place of pw? if you like,
since they are equal. [Exercise for the student.]

Note that the net energy density (potential
plus kinetic) is constant in time and space for
such a uniform traveling wave. It just switches
back and forth between potential and kinetic
energy twice every cycle. Since the average
of either cos?# or sin?6 is 1/2, the energy
density is on average shared equally between
kinetic and potential energy.

If we want to know the energy per unit time
(power P) transported past a certain point x
by the wave, we just multiply dE/dz by ¢ =
dx/dt to get

_dE 1 9 o9
P:%:iuw Cyo.

Again, you can play around with the con-

stants; instead of uwQC you can use

w?/Fu and so on.

(25)

Note that while the wave does not transport
any mass down the string (all physical motion
is transverse) it does transport energy. This is
an ubiquitous property of waves, lucky for us!

14.6 Water Waves

Although all sorts of waves are ubiquitous in
our lives,” our most familiar “wave experi-
ences” are probably with water waves, which

9Indeed, we are made of waves, as QUANTUM MECHAN-
1cs has taught us!



are unfortunately one of the least simple types
of waves. Therefore, although water waves
are routinely used for illustration, they are
rarely discussed in great depth (heh, heh) in
introductory Physics texts. They do, how-
ever, serve to illustrate one important feature
of waves, namely that not all waves obey the
simple relationship ¢ = w/k for their propa-
gation velocity c.

Let’s restrict ourselves to deep ocean waves,
where the “restoring force” is simply gravity.
(When a wave reaches shallow water, the bot-
tom provides an immobile boundary that com-
plicates matters severely, as anyone knows who
has ever watched surf breaking on a beach!)
The motion of an “element” of water in such a
wave is not simply “up and down” as we pre-
tended at the beginning of this chapter, but
a superposition of “up and down” with “back
and forth” in the direction of wave propaga-
tion. A cork floating on the surface of such a
wave executes circular motion, or so [ am told.
(It is actually quite difficult to confirm this as-
sertion experimentally since it requires a fixed
reference that is not moving with the water
— a hard thing to arrange in practice with-
out disturbing the wave itself.) More impor-
tantly, the propagation velocity of such waves
is higher for longer wavelength.

14.6.1 Phase vs. Group Velocity

The precise relationship between angular fre-
quency w and wavenumber k for deep-water
waves is

gk
w = /=

2

where ¢ has its usual meaning. Such a func-
tional relationship w(k) between frequency
and wavenumber is known as the DISPERSION
RELATION for waves in the medium in ques-
tion, for reasons that will be clear shortly.

(26)

If we have a simple traveling plane wave
A(x,t) = A, expli(kr — wt)], with no begin-
ning and no end, the rate of propagation of a

point of constant phase (known as the PHASE
VELOCITY wvpy) is still given by Eq. (6):

(27)

Uph =

=&

However, by combining Eq. (27) with Eq. (26)
we find that the phase velocity is higher for
smaller k (longer \):

Uph = —. (28)

Moreover, such a wave carries no information.
It has been passing by forever and will con-
tinue to do so forever; it is the same ampli-
tude everywhere; and so on. Obviously our
PLANE WAVE is a bit of an oversimplification.
If we want to send a signal with a wave, we
have to turn it on and off in some pattern; we
have to make wave pulses (or, anticipating the
terminology of QUANTUM MECHANICS, “WAVE
PACKETS”). And when we do that with wa-
ter waves, we notice something odd: the wave
packets propagate slower than the “wavelets”
in them!

Figure 14.5 A WAVE PACKET moving at
vy with “wavelets” moving through it at vpy.

Such a packet is a superposition of waves with
different wavelengths; the k-dependence of vy,
causes a phenomenon known as DISPERSION,
in which waves of different wavelength, ini-
tially moving together in phase, will drift apart
as the packet propagates, making it “broader”
in both space and time. (Obviously such a DIs-
PERSIVE MEDIUM is undesirable for the trans-
mission of information!) But how do we deter-
mine the effective speed of transmission of said
information — i.e. the propagation velocity of
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the packet itself, called the GROUP VELOCITY
vg?

Allow me to defer an explanation of the fol-
lowing result until a later section. The general
definition of the group velocity (the speed of
transmission of information and/or energy in
a wave packet) is

0w
Vg = =

% (29)

For the particular case of deep-water waves,
Eq. (29) combined with Eq. (26) gives

1 /g
Vg = =1/
& 2V 2k

That is, the packet propagates at half the
speed of the “wavelets” within it. This be-
haviour can actually be observed in the wake
of a large vessel on the ocean, seen from high
above (e.g. from an airliner).

(30)

Such exotic-seeming wave phenomena are
ubiquitous in all dispersive media, which are
anything but rare. However, in the follow-
ing chapters we will restrict ourselves to waves
propagating through simple non-dispersive
media, for which the DISPERSION RELATION
is just w = ck with ¢ constant, for which
Uph = Ug = C.

14.7 Sound Waves

Picture a “snapshot” (holding time ¢ fixed) of a
small cylindrical section of an elastic medium,
shown in Fig. 14.6: the cross-sectional area
is A and the length is dx. An excess pres-
sure P (over and above the ambient pres-
sure existing in the medium at equilibrium)
is exerted on the left side and a slightly dif-
ferent pressure P + dP on the right. The
resulting volume element dV = Adx has a
mass dm = pdV = pAdx, where p is
the mass density of the medium. If we choose
the positive x direction to the right, the net

=}
8

Figure 14.6 Cylindrical element of a compressible
medium.

force acting on dm in the x direction is
dF, = PA— (P+dP)A=—AdP.

Now let s denote the displacement of parti-
cles of the medium from their equilibrium po-
sitions. (I didn’t use A here because I am using
that symbol for the area. This may also dif-
fer between one end of the cylindrical element
and the other: s on the left vs. s+ ds on
the right. We assume the displacements to be
in the z direction but very small compared to
dz, which is itself no great shakes.'

The fractional change in volume dV/V  of
the cylinder due to the difference between the
displacements at the two ends is

V. (s+ds)A—sA  ds
Vo Adx  dx

([ 0s
~ \0x .
where the rightmost expression reminds us

explicitly that this description is being con-
structed around a “snapshot” with ¢ held fixed.

(31)

Now, any elastic medium is by definition com-
pressible but “fights back” when compressed
(dV < 0) by exerting a pressure in the
direction of increasing volume. The BULK
MODULUS B is a constant characterizing how
hard the medium fights back — a sort of

ONote also that any of s, ds, P or dP can be either
positive or negative; we merely illustrate the math using
an example in which they are all positive.
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3-dimensional analogue of the SPRING CON-
STANT. It is defined by

av
P = -B—. 2
. (52)
Combining Eqgs. (31) and (32) gives
Os
p=-B(2

so that the difference in pressure between the
two ends is

oP 0?%s

We now use > F, = may,
ment, giving

on the mass ele-

2
_Adp = 4B (22 @
ox2 .

0%s
= dma, = pAdx | — 35
< onr (3o
where we have noted that the acceleration of
all the particles in the volume element (assum-
ing ds < s) is just a, = (0%s/0t?),.

If we cancel Adz out of Eq. (35), divide
through by B and collect terms, we get

Ps\ _p (TN _
o:2), B \o2) ~ ?

0?%s 1 [0%s
(@l B (w)w =0 9

which the acute reader will recognize as the
WAVE EQUATION in one dimension (z), pro-

vided
B

c = {[—
p

is the velocity of propagation.

(37)

The fact that disturbances in an elastic
medium obey the WAVE EQUATION guarantees
that such disturbances will propagate as sim-

ple waves with phase velocity ¢ given by
Eq. (37).

We have now progressed from the strictly one-
dimensional propagation of a wave in a taut
string to the two-dimensional propagation of
waves on the surface of water to the three-
dimensional propagation of pressure waves in
an elastic medium (i.e. sound waves); yet we
have continued to pretend that the only sim-
ple type of traveling wave is a plane wave with
constant k. This will never do; we will need
to treat all sorts of wave phenomena, and al-
though in general we can treat most types of
waves as local approximations to plane waves
(in the same way that we treat the Earth’s sur-
face as a flat plane in most mechanics prob-
lems), it is important to recognize the most
important features of at least one other com-
mon idealization — the SPHERICAL WAVE.

14.8 Spherical Waves

The utility of thinking of k as a “ray” be-
comes even more obvious when we get away
from plane waves and start thinking of waves
with curved wavefronts. The simplest such
wave is the type that is emitted when a peb-
ble is tossed into a still pool — an exam-
ple of the “point source” that radiates waves
isotropically in all directions. The wavefronts
are then circles in two dimensions (the sur-
face of the pool) or spheres in three dimen-
sions (as for sound waves) separated by one
wavelength A and heading outward from the
source at the propagation velocity c. In this
case the “rays” k point along the radius vec-
tor 7 from the source at any position and we
can once again write down a rather simple for-
mula for the “wave function” (displacement A
as a function of position) that depends only on
the time ¢ and the scalar distance r from the
source.

A plausible first guess would be just A(z,t) =
A, =) but this cannot be right! Why
not? Because it violates energy conservation.
The energy density stored in a wave is pro-
portional to the square of its amplitude; in
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the trial solution above, the amplitude of the
outgoing spherical wavefront is constant as a
function or r, but the area of that wavefront
increases as r2. Thus the energy in the wave-
front increases as 727 I think not. We can get
rid of this effect by just dividing the amplitude
by r (which divides the energy density by r?).
Thus a trial solution is

i(kr—wt)
S (38)

Az, t) .

which is, as usual, correct.!! The factor of
1/r accounts for the conservation of energy in
the outgoing wave: since the spherical “wave
front” distributes the wave’s energy over a sur-
face area 47wr? and the flux of energy per unit
area through a spherical surface of radius r is
proportional to the square of the wave ampli-
tude at that radius, the integral of | f|? over the
entire sphere (i.e. the total outgoing power)
is independent of r, as it must be.

We won'’t use this equation for anything right
now, but it is interesting to know that it
does accurately describe an outgoing!? spheri-
cal wave.

The perceptive reader will have noticed by now
that Eq. (38) is not a solution to the WAVE
EQUATION as represented in one dimension by
Eq. (10). That is hardly surprising, since the
spherical wave solution is an intrinsically 3-
dimensional beast; what happened to y and 27
The correct vector form of the WAVE EQUA-

171 should probably show you a few wrong guesses first,
just to avoid giving the false impression that we always
guess right the first time in Physics; but it would use up
a lot of space for little purpose; and besides, “knowing
the answer” is always the most powerful problem-solving
technique!

20ne can also have “incoming” spherical waves, for
which Eq. (38) becomes

6i(k7‘+wt)

<+ 4L

TION 18

2
V2A_iﬂ

2 Ot? =0

(39)

where the LAPLACIAN operator V? can be

expressed in Cartesian'® coordinates (x,y, 2)

aSl4

0? 0? 0?
Vi= — 4+ — + .

0x? oy? 022
With a little patient effort you can show that
Eq. (38) does indeed satisfy Eq. (39), if you
remember that r = /22 + y2+ 22. Or you

can just take my word for it. ...

(40)

13The LAPLACIAN operator can also be represented in
other coordinate systems such as spherical (r, 8, ¢) or cylin-
drical (p,6,z) coordinates, but I won’t get carried away
here.
14The LAPLACIAN operator can also be thought of as the
inner (scalar or “dot”) product of the GRADIENT operator
V with itself: V? =V .V, where
> .0 .0 ~ 0
V =1 + 3 oy + k B
in Cartesian coordinates. This VECTOR CALCULUS stuff
is really elegant — you should check it out sometime —
but it is usually regarded to be beyond the scope of an
introductory presentation like this.
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14.9 Electromagnetic Waves

We have some difficulty visualizing a wave consisting only of electric and magnetic fields. How-
ever, if we plot the strength of E along one axis and the strength of B along another (perpen-
dicular) axis, as in Fig. 14.7, then the direction of propagation k will be perpendicular to both
E and é, as shown.

v e v

Figure 14.7 A linearly polarized electromagnetic wave. The electric and magnetic fieIdsAE’ and B

are mutually perpendicular and both are perpendicular to the direction of propagation k (IQ is the
wave vector).

14.9.1 Polarization

The case shown in Fig. 14.7 is linearly polarized, which means simply that the E and B fields
are in specific fixed directions. Of course, the directions of E and B could be interchanged,
giving the “opposite” polarization. Polaroid sunglasses transmit the light waves with E vertical
(which are not reflected efficiently off horizontal surfaces) and absorb the light waves with E
horizontal (which are), thus reducing “glare” (reflected light from horizontal surfaces) without
blocking out all light.

There is another poss1b1l1ty, namely that the two linear polarizations be superimposed so that
both the E and B vectors rotate around the direction of propagation k: remaining always
perpendicular to k and to each other. This is known as circular polarization. It too comes
in two versions, right circular polarization and left circular polarization, referring to the hand
whose fingers curl in the direction of the rotation if the thumb points along k.

14.9.2 The Electromagnetic Spectrum

We have special names for electromagnetic (EM) waves of different wavelengths and frequen-
cies.® We call EM waves with A 2 1 m “radio waves,” which are subdivided into various ranges
or “bands” like “short wave” (same thing as high frequency), VHF (very high frequency), UHF
(ultra high frequency) and so on.'® The dividing line between “radar” and “microwave” bands
(for example) is determined by arbitrary convention, if at all, but the rule of thumb is that if
the wavelength fits inside a very small appliance it is “microwave.” Somewhere towards the
short end of the microwave spectrum is the beginning of “far infrared,” which of course becomes
“near infrared” as the wavelength gets still shorter. The name “infrared” is meant to suggest

51 the wavelength A increases (so that the wavenumber k = 27/\ decreases), then the frequency w must decrease to
match, since the ratio w/k must always be equal to the same propagation velocity c.

'5One can detect a history of proponents of different bands claiming ever higher (and therefore presumably “better”)
frequency ranges. . ..
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frequencies below those of the red end of the visible light spectrum of EM waves, which extends
(depending on the individual eye) from a wavelength of roughly 500 nm (5000 A) for red light
through orange, yellow, green and blue to roughly 200 nm (2000 A) for violet light. Beyond
that we lost sight of the shorter wavelengths (so to speak) and the next range is called “near
ultraviolet,” the etymology of which is obvious. Next comes “far ultraviolet” which fades into
“soft x-rays” and in turn “hard x-rays” and finally “gamma rays” as the frequency increases
and the wavelength gets shorter. Note all the different kinds of “rays” that are all just other
forms of light — i.e. EM waves — with different wavelengths!

—— Wavelength A [m]
10° 10° 10" 1o 1 10 10t 1077 10 107

ULTRASONIC = ©
RADIO

TELEVISION
RADAR

SEISMIC
SONIC
MICROWAVE
INFRARED
ULTRAVIOLET
X—RAYS
»y—RAYS

8 12 14

1 100 10 10° 10 10° 10"% 10" 10"® 10® 10

Frequency v [Hz] ——=

Figure 14.8 The electromagnetic spectrum. Note logarithmic wavelength and frequency scales.

14.10 Reflection

The simplest thing waves do is to REFLECT off flat surfaces. Since billiard balls do the same
thing quite nicely, this is not a particularly distinctive behaviour of waves — which was probably
one of the reasons why Newton was convinced that light consisted of particles.!” The reflection
of waves looks something like Fig. 14.9.

The incoming wave vector k makes the same angle with the surface (or, equivalently, with the
=
direction normal to the surface) as the outgoing wavevector k :
6 = ¢ (41)

This is the most important property of reflection, and it can be stated in words thus:

The incident [incoming| angle is equal to the reflected [outgoing] angle.

'"He was actually correct, but it is equally true that light consists of waves. If you are hoping that these apparently
contradictory statements will be reconciled with common sense by the Chapter on QUANTUM MECHANICS, you are in for
a disappointment. Common sense will have to be beaten into submission by the utterly implausible facts.



Figure 14.9 Reflection of a wave from a flat surface.

14.11 Refraction

]C / ku
g + 8 //
c faster : ,
c’ slower “
]Z/ :-/,? A’
o \k

Figure 14.10 Refraction of a wave at a boundary between two media where the propagation velocity
(¢) of the wave in the first medium is greater than that (¢) in the second medium. The diagram on the
left shows the wavefronts (“crests” of the waves) and the corresponding perpendicular wavevectors

7 - - _’I . g . .
k (incoming wave), k (transmitted wave) and k” (reflected wave). The diagram on the right shows
the angles between the wavevectors and the normal to the interface.

When a wave crosses a boundary between two regions in which its velocity of propagation
has different values, it “bends” toward the region with the slower propagation velocity. The
following mnemonic image can help you remember the qualitative sense of this phenomenon,
which is known as REFRACTION: picture the wave front approaching the boundary as a yardstick
moving through some fluid in a direction perpendicular to its length. If one end runs into a
thicker fluid first, it will “drag” that end a little so that the trailing end gets ahead of it, changing
the direction of motion gradually until the whole meter stick is in the thicker fluid where it will
move more slowly.!®

Conversely, if one end emerges first into a thinner fluid (where it can move faster) it will pick up
speed and the trailing end will fall behind. This picture also explains why there is no “bending”
if the wave hits the interface normally (at right angles). The details are revealed mathematically

8By, is this ever Aristotelian!
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Figure 14.11 Refraction of a wave at a boundary between two media where the propagation velocity
(c) of the wave in the first medium is less than that (¢/) in the second medium.

(of course) in SNELL'S Law:!?

sin() ¢
sin(¢') ¢ (42)

where 6 is the angle of incidence of the incoming wave (the angle that k makes with the normal

=/
to the interface), ' is the angle that the refracted wavevector k makes with the same normal,
¢ is the propagation velocity of the wave in the first medium and ¢ is the propagation velocity
of the wave in the second medium.

19SNELL’S LAW is normally expressed in terms of the INDEX OF REFRACTION 7 in each medium:
n sin(f) = n' sin(f'),

where (we now know) the INDEX OF REFRACTION is the ratio of the speed of light in vacuum to the speed of light in the
medium:

The reason for inventing such a semicircular definition was that when Willebrord Snell discovered this empirical rela-
tionship in 1621 he had no idea what n was, only that every medium had its own special value of n. (This is typical of
anything that gets the name “index.”) I see no pedagogical reason to even define the dumb thing.
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Another semi-obvious consequence of the fact
that the “crests” of the waves remain continu-
ous? is that the wavelength gets shorter as the
wave enters the “thicker” medium or longer as
it enters a “thinner” medium. Another way
of putting this is that the frequency stays the
same (and therefore so does the period T) as
the wave crosses the boundary. Since ¢ = \/T
this means that if the velocity decreases, so
does the wavelength. One can follow this ar-
gument a bit further to derive SNELL'S LAwW
from a combination of geometry and logic. I
haven’t done this, but you might want to....

There is also always a reflected wave at any in-
terface, though it may be weak. The reflected
wave is shown as dotted lines in Figs. 14.10
and 14.11, where its wavevector is denoted k.
This phenomenon is familiar as a source of an-
noyance to anyone who has tried to watch tele-
vision in a room with a sunny window facing
the TV screen. However, it does have some
redeeming features, as can be deduced from a
thoughtful analysis of Eq. (42). For instance, if
the wave is emerging from a “thick” medium
into a “thin” medium as in Fig. 14.11 (like
light emerging from glass into air), then there
is some incoming angle 6., called the CRITICAL
ANGLE, for which the refracted wave will actu-
ally be parallel to the interface —i.e. §' = /2
(90°). This implies sin(#') = 1 so that SNELL’S
LAW reads

sin(f,) = (43)

c
¢
which has a solution only if ¢ > ¢ — i.e.
for emergence into a “thinner” medium with
a higher wave propagation velocity, as speci-
fied earlier.

What happens, qualitatively, is that as 6 gets
larger and larger (closer and closer to “graz-
ing incidence”) the amplitude (strength) of
the transmitted wave gets weaker and weaker,
while the amplitude of the reflected wave gets
stronger and stronger, until for incoming an-
gles # > 6. there is no transmitted wave

20A “crest” doesn’t turn into a “trough” just because the
propagation velocity changes!

and the wave is entirely reflected. This phe-
nomenon is known as TOTAL INTERNAL RE-
FLECTION and has quite a few practical con-
sequences.

Because of total internal reflection, a fish can-
not see out of the water except for a lim-
ited “cone” of vision overhead bounded by
the critical angle for water, which is about
sin 1(1/1.33) or 49°. Lest this lend reckless
abandon to fishermen, it should be kept in
mind that the light “rays” which appear to
come from just under 49° from the vertical
are actually coming from just across the wa-
ter’s surface, so the fish has a pretty good
view of the surrounding environment — it just
looks a bit distorted. To observe this phe-
nomenon with your own eyes, put on a good
diving mask, carefully slip into a still pool and
hold your breath until the surface is perfectly
calm again. Looking up at the surface, you
will see the world from the fish’s perspective
(except that the fish is probably a good deal
less anoxic) — inside a cone of about 49° from
the vertical, you can see out of the water; but
outside that cone, the surface forms a perfect
mirror!

How total is total internal reflection? To-
tal! If the surface has no scratches etc., the
light is perfectly reflected back into the denser
medium. This is how “light pipes” work —
light put into one end of a long Lucite rod
will follow the rod through bends and twists
(as long as they are “gentle” so that the light
never hits the surface at less than the criti-
cal angle) and emerge at the other end attenu-
ated only by the absorption in the Lucite itself.
Even better transmission is achieved in FIBER
oPTICS, where fine threads of special glass
are prepared with extremely low absorption
for the wavelengths of light that are used to
send signals down them. A faint pulse of light
sent into one end of a fiber optic transmission
line will emerge many kilometers down the line
with nothing “leaking out” in between. (This
feature is especially attractive to those who
don’t want their conversations bugged, or so I
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am told.) Another application was invented by
Lorne Whitehead while he was a UBC Physics
graduate student: by an ingenious trick he was
able to make a large-diameter hollow LIGHT
Pr1pE [trademark] which avoids even the small
losses in the Lucite itself! Using this trick he is
able to “pipe” large amounts of light from sin-
gle (efficient) light sources [including rooftop
solar collectors| into other areas [like the inte-
riors of office buildings| using strictly passive
components that do not wear out. He founded
a company called TIR — see if you can guess
what the acronym stand for!

14.12 Huygens’ Principle

At the beginning of this chapter we pictured
only PLANE WAVES, in which the wavefronts
(“crests” of the waves) form long straight lines
(or, in space, flat planes) moving along to-
gether in parallel (separated by one wave-
length \) in a common direction k. One good
reason for sticking to this description for as
long as possible (and returning to it every
chance we get) is that it is so simple — we
can write down an explicit formula for the am-
plitude of a plane wave as a function of time
and space whose qualitative features are read-
ily apparent (with a little effort). Another
good reason has to do with the fact that all
waves look pretty much like plane waves when
they are far from their origin.?* We will come
back to this shortly. A final reason for our love
of plane waves is that they are so easily related
to the idea of “RAYS.”

In GEOMETRICAL OPTICS it is convenient to
picture the wavevector k as a “ray” of light
(though we can adopt the same notion for any
kind of wave) that propagates along a straight
line like a billiard ball. In fact, the analogy
between k and the momentum p of a particle

is more than just a metaphor, as we shall see

21 This is sort of like the mathematical assertion that all
lines look straight if we look at them through a powerful
enough microscope.

later. However, for now it will suffice to bor-
row this imagery from Newton and company,
who used it very effectively in describing the
corpuscular theory of light.??

However, near any localized source of waves
the outgoing wavefronts are nothing like plane
waves; if the dimensions of the source are small
compared to the wavelength then the outgo-
ing waves look pretty much like SPHERICAL
WAVES. For sources similar in size to A, things
can get very complicated.

Christian Huygens (1629-1695) invented the
following gimmick for constructing actual
wavefronts from spherical waves:

HUYGENS’ PRINCIPLE:

“All points on a wavefront can be consid-
ered as point sources for the production of
spherical secondary wavelets. At a later
time, the new position of the wavefront
will be the surface of tangency to these
secondary wavelets.”

This may be seen to make some sense (try
it yourself) but its profound importance to
our qualitative understanding of the behaviour
of light was really brought home by Fresnel
(1788-1827), who used it to explain the phe-
nomenon of diffraction, which we will discuss
shortly. But first, let’s familiarize ourselves
with the simpler phenomena of interference.

14.13 Interference

To get more quantitative about this “addition
of amplitudes,” we make the following assump-
tion, which is crucial for the arguments to fol-
low and is even valid for the most important

22 «Corpuscles” are hypothetical particles of light that
follow trajectories Newton called “rays,” thus starting a
long tradition of naming every new form or radiation a
“ray.ﬂ
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kinds of waves, namely EM waves, under all
but the most extreme conditions:

LINEAR SUPERPOSITION OF WAVES:

As several waves pass the same point in
space, the total amplitude at that point
at any instant is simply the sum of the
amplitudes of the individual waves.

For water waves this is not perfectly true (wa-
ter waves are very peculiar in many ways) but
to a moderately good approximation the am-
plitude (height) of the surface disturbance at a
given position and time is just the sum of the
heights of all the different waves passing that
point at any instant. This has some alarm-
ing implications for sailors! If you are sailing
along a coastline with steep cliffs, the incom-
ing swells are apt to be reflected back out to
sea with some efficiency; if the reflected waves
from many parts of the shoreline happen to in-
terfere constructively with the incoming swells
at the position of your boat, you can encounter
“freak waves” many times higher than the
mean swell height. Experienced sailors stay
well out from the coastline to avoid such un-
predictable interference maxima.

14.13.1 Interference in Time

Suppose we add together two equal amplitude
waves with slightly different frequencies

w=w+0/2 and wy=w—0/2 (44)

where @ is the average frequency and ¢ is the
difference between the two frequencies. If we
measure the combined amplitude at a fixed
point in space, a little algebra reveals the phe-
nomenon of BEATS. This is usually done with
sin or cos functions and a lot of trigonomet-
ric identities; let’s use the complex notation
instead — I find it more self-evident, at least
algebraically:

g Two different frequencies:
()
S
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O
O
a
2
a
-1 | | | | | | | |
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Figure 14.12 Beats.
_ twit twal
Yz t) = 1, e+ ]

= 4, [ei(w+6/2)t+ei(w—6/2)t]
= 9, it [e+i(6/2)t _|_efi(6/2)t]

= 24, e cos[(6/2)t] (45)
That is, the combined signal consists of an os-
cillation at the average frequency, modulated
by an oscillation at one-half the difference fre-
quency. This phenomenon of “BEATS” is fa-
miliar to any musician, automotive mechanic
or pilot of a twin engine aircraft.

One seemingly counterintuitive feature of
BEATS is that the “envelope function”
cos[(0/2)t] has only half the angular frequency
of the difference between the two original fre-
quencies. What we hear when two frequen-
cies interfere is the variation of the sound IN-
TENSITY with time; and the intensity is pro-
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portional to the square of the displacement.?

Squaring the envelope effectively doubles its
frequency (see Fig. 14.12) and so the detected
BEAT FREQUENCY is the full frequency differ-
ence d = w; — Wa.

This is a universal feature of waves and in-
terference: the detected signal is the average
intensity, which is proportional to the square
of the amplitude of the displacement oscilla-
tions; and it is the displacements themselves
that add linearly to form the interference pat-
tern. Be sure to keep this straight.

14.13.2

Interference in Space

Figure 14.13 A replica of Thomas Young's orig-
inal drawing (1803) showing the interference pat-
tern created by two similar waves being emitted
“in phase” (going up and down simultaneously)
from two sources separated by a small distance.
The arrows point along lines of constructive in-
terference (crests on top of crests and troughs
underneath troughs) and the dotted lines indicate
“lines of nodes” where the crests and troughs
cancel.

Suppose spherical waves emanate from two
point sources oscillating in phase (one goes
“up” at the same time as the other goes “up”)

23 Actually the INTENSITY is defined in terms of the av-
erage of the square of the displacement over times long
compared with the average frequency @. This makes sense
as long as the beat frequency § < @; but if w; and ws differ
by an amount § ~ w then it is hard to define what is meant
by a “time average”. We will just duck this issue.

<

at the same frequency, so that the two wave-
generators are like synchronized swimmers in
water ballet.?* Each will produce outgoing
spherical waves that will interfere wherever
they meet.

The qualitative situation is pictured in
Fig.14.13, which shows a “snapshot” of two
outgoing spherical?® waves and the “rays” (k
directions) along which their peaks and val-
leys (or crests and troughs, whatever) coin-
cide, giving constructive interference. This
diagram accompanied an experimental obser-
vation by Young of “interference fringes”” (a
pattern of intensity maxima and minima on
a screen some distance from the two sources)
that is generally regarded as the final proof of
the wave nature of light.?

If we want to precisely locate the angles at
which constructive interference occurs (“inter-
ference maxima”) then it is most convenient
to think in terms of “rays” (K vectors) as pic-
tured in Fig. 14.14.

The mathematical criterion for constructive
interference is simply a statement that the dif-

24This notion of being “in phase” or “out of phase” is
one of the most archetypal metaphors in Physics. It is so
compelling that most Physicists incorporate it into their
thinking about virtually everything. A Physicist at a cock-
tail party may be heard to say, “Yeah, we were 90° out
of phase on everything. Eventually we called it quits.”
This is slightly more subtle than, “...we were 180° out of
phase...” meaning diametrically opposed, opposite, can-
celling each other, destructively interfering. To be “90°
out of phase” means to be moving at top speed when the
other is sitting still (in SH M, this would mean to have all
your energy in kinetic energy when the other has it all in
potential energy) and vice versa. The E and B fields in a
linearly polarized EM wave are 90° out of phase, as are the
“push” and the “swing” when a resonance is being driven
(like pushing a kid on a swing) at maximum effect, so in
the right circumstances “90° out of phase” can be produc-
tive.... Just remember, “in phase” at the point of interest
means constructive interference (maximum amplitude) and
“180° out of phase” at the point of interest means destruc-
tive interference (minimum amplitude — zero, in fact, if
the two waves have equal amplitude).

0K, they are circular waves, not spherical waves. You
try drawing a picture of spherical waves!

26Young’s classic experiment is in fact the archetype for
all subsequent demonstrations of wave properties, as shall
be seen in the Chapter(s) on QUANTUM MECHANICS.
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Figure 14.14 Diagram showing the condition for
constructive interference of two “rays” of the
same frequency and wavelength A\ emitted in
phase from two sources separated by a distance
d. At angles for which the difference in path
length A/ is an integer number (m) of wave-
lengths, mJ, the two rays arrive at a distant de-
tector in phase so that their amplitudes add con-
structively, maximizing the intensity. The case
shown is for m = 1.

ference in path length, Al = d sin4,,, for the
two “rays” is an integer number m of wave-
lengths A, where the ,, subscript on v, is a
reminder that this will be a different angle for
each value of m:

dsind,, = mA (46)

(criterion for CONSTRUCTIVE INTERFERENCE)

Conversely, if the path length difference is a
half-integer number of wavelengths, the two
waves will arrive at the distant detector ex-
actly out of phase and cancel each other out.
The angles at which this happens are given by

1
d sin 9 4 — <m + 5) A (47)

(criterion for DESTRUCTIVE INTERFERENCE)

Phasors

What happens when coherent light comes
through more than two slits, all equally spaced
a distance d apart, in a line parallel to the in-
coming wave fronts? The same criterion (46)
still holds for completely constructive interfer-
ence (what we will now refer to as the PRINCI-
PAL MAXIMA) but (47) is no longer a reliable
criterion for destructive interference: each suc-
cessive slit’s contribution cancels out that of
the adjacent slit, but if there are an odd num-
ber of slits, there is still one left over and the
combined amplitude is not zero.

Does this mean there are no angles where the
intensity goes to zero? Not at all; but it is
not quite so simple to locate them. One way
of making this calculation easier to visualize
(albeit in a rather abstract way) is with the
geometrical aid of PHASORS: A single wave

Im

Figure 14.15 A single “PHASOR" of length 1,
(the wave amplitude) precessing at a frequency
w in the complex plane.

can be expressed as (z,t) = 1,6 where
0 = kx — wt + ¢ is the phase of the wave at a
fixed position = at a given time ¢. (As usual,
¢ is the “initial” phase at = 0 and ¢t = 0. At
this stage it is usually ignored; I just retained
it one last time for completeness.) If we fo-
cus our attention on one particular location in
space, this single wave’s “displacement” ¢/ at
that location can be represented geometrically
as a vector of length ¢, (the wave amplitude)
in the complex plane called a “PHASOR” As
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time passes, the “direction” of the phasor ro-
tates at an angular frequency w in that ab-
stract plane.

There is not much advantage to this geomet-
rical description for a single wave (except per-
haps that it engages the right hemisphere of
the brain a little more than the algebraic ex-
pression) but when one goes to “add together”
two or more waves with different phases, it
helps a lot! For example, two waves of equal

Figure 14.16 Two waves of equal amplitude ),
but different phases #; and 6, are represented
as PHASORS in the complex plane. Their vec-
tor sum has the resultant amplitude v, and the
average phase 0.

amplitude but different phases can be added
together algebraically as in Eq. (45)

b= gy [+ ]
= 24, € cos(6/2)
= 4 ¢’ (48)
where
b, = 2, cos(6/2)
0 = L(6,+6)
5 = 0,—0, . (49)

That is, the combined amplitude v, can be
obtained by adding the phasors “tip-to-tail”
like ordinary vectors. Like the original com-
ponents, the whole thing continues to precess

e A

in the complex plane at the common frequency
w.

We are now ready to use PHASORS to find the
amplitude of an arbitrary number of waves of
arbitrary amplitudes and phases but a com-
mon frequency and wavelength interfering at a
given position. This is illustrated in Fig. 14.17
for 5 phasors. In practice, we rarely attempt

Figure 14.17 The net amplitude of a wave pro-
duced by the interference of an arbitrary number
of other waves of the same frequency of arbi-
trary amplitudes 1); and phases 6; can in prin-
ciple be calculated geometrically by “tip-to-tail”
vector addition of the individual PHASORS in the
complex plane.

such an arbitrary calculation, since it cannot
be simplified algebraically.

Instead, we concentrate on simple combina-
tions of waves of equal amplitude with well de-
fined phase differences, such as those produced
by a regular array of parallel slits with an equal
spacing between adjacent slits. Figure 14.18
shows an example using 6 identical slits with
a spacing d = 100\. The angular width of the
interference pattern from such widely spaced
slits is quite narrow, only 10 mrad (1072 ra-
dians) between principal maxima where all 6
rays are in phase. In between the principal
maxima there are 5 minima and 4 secondary
maxima; this can be generalized:

The interference pattern for N equally
spaced slits exhibits (N — 1) minima and
(N — 2) secondary maxima between each
pair of principal maxima.
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Figure 14.18 The intensity pattern produced by the interference of coherent light passing through
six parallel slits 100 wavelengths apart. PHASOR DIAGRAMS are shown for selected angles. Note
that, while the phase angle difference § between rays from adjacent slits is a monotonically increasing
function of the angle ¥ (plotted horizontally) that the rays make with the “forward” direction, the
latter is a real geometrical angle in space while the former is a pure abstraction in “phase space”.
The exact relationship is 6 /27 = (d/)\) sin?d ~ (d/\) 9 for very small ¥J. Note the symmetry about
the 3" minimum at ¥ ~ 5 mrad. At 9 ~ 10 mrad the intensity is back up to the same value it had
in the central maximum at ¥ = 0; this is called the first PRINCIPAL MAXIMUM. Then the whole
pattern repeats.. ..

It may be conceptually helpful to show the geometrical explanation of the 6-slit interference
pattern in Fig. 14.18 in terms of phasor diagrams, but clearly the smooth curve shown there is not
the result of an infinte number of geometrical constructions. It comes from an algebraic formula
that we can derive for an arbitrary angle ¥ and a corresponding phase difference § = (27d/\) sin
between rays from adjacent slits. The formula itself is obtained by analysis of a geometrical
construction like that illustrated in Fig. 14.19 for 7 slits, each of which contributes a wave of
amplitude a, with a phase difference of 0 between adjacent slits.
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Figure 14.19 PHASOR DIAGRAM for calculat-
ing the intensity pattern produced by the interfer-
ence of coherent light passing through 7 parallel,
equally spaced slits.

Figure 14.20 Blowup of one of the isosceles
triangles formed by a single phasor and two radii
from the center of the circumscribed circle to the
tip and tail of the phasor.

After adding all 7 equal-length phasors in
Fig. 14.19 “tip-to-tail”, we can draw a vector
from the starting point to the tip of the final
phasor. This vector has a length A (the net
amplitude) and makes a chord of the circum-
scribed circle, intercepting an angle

a=2r—NJd, (50)

where in this case N = 7. The radius r of the
circumscribed circle is given by

a ) (5)
—=rsin|=],
2 2

(51)

el T

as can be seen from the blowup in Fig. 14.20;
this can be combined with the analogous

A
5= 7 sin (%) (52)
to give the net amplitude
sin ( &
A=a M : (53)
sin (g)

From Eq. (50) we know that a/2 =7 — N §/2,
and in general sin(m — ) = sin @, so

B
an ()
where
6 =27 (%) sin v (55)

Although the drawing shows N = 7 phasors,
this result is valid for an arbitrary number N
of equally spaced and evenly illuminated slits.



