
14.1. WAVE PHENOMENA 1WAVESIn a purely mathemati
al approa
h to thephenomenology of waves, we might 
hoose tostart with theWave Equation, a di�erentialequation des
ribing the qualitative features ofwave propagation in the same way that SHMis 
hara
terized by �x = �!2x. The advantageof su
h an approa
h is that one gains 
on�-den
e that any phenomenon that 
an be shownto obey the Wave Equation will automati-
ally exhibit all the 
hara
teristi
 properties ofwave motion. This is a very e
onomi
al wayof looking at things.Unfortunately, the phenomenology of wavemotion is not very familiar to most beginners| at least not in the mathemati
al form wewill need here; so in this instan
e I will adoptthe approa
h used in most �rst year Physi
stextbooks for almost everything: I will startwith the answer (the simplest solution to theWave Equation) and explore its propertiesbefore pro
eeding to show that it is indeed asolution of the Wave Equation | or, forthat matter, before explaining what theWaveEquation is.14.1 Wave PhenomenaWe 
an visualize a vivid example for the sakeof illustration: suppose the \amplitude" A isthe height of the water's surfa
e in the o
ean(measured from A = 0 at \sea level") and x isthe distan
e toward the East, in whi
h dire
-tion waves are moving a
ross the o
ean's sur-fa
e.1 Now imagine that we stand on a skinnypiling and wat
h what happens to the waterlevel on its sides as the wave passes: it goes1Te
hni
ally speaking, I 
ouldn't have pi
ked a worseexample, sin
e water waves do not behave like our idealizedexample | a 
ork in the water does not move straight upand down as a wave passes, but rather in a verti
al 
ir
le.Nevertheless I will use the example for illustration be
auseit is the most familiar sort of easily visualized wave formost people and you have to wat
h 
losely to noti
e thedi�eren
e anyway!

Figure 14.1 Two views of a wave.up and down at a regular frequen
y, exe
utingSHM as a fun
tion of time. Next we standat a big pi
ture window in the port side of asubmarine pointed East, partly submerged sothat the wave is at the same level as the win-dow; we take a 
ash photograph of the waveat a given instant and analyze the result: thewave looks instantaneously just like the graphof SHM ex
ept the horizontal axis is distan
einstead of time. These two images are dis-played in Fig. 14.1.14.1.1 Traveling WavesHow do we represent this behaviour mathe-mati
ally? Well, A is a fun
tion of posi-tion ~r and time t: A(~r; t). At any �xed po-sition ~r, A os
illates in time at a frequen
y!. We 
an des
ribe this statement mathemat-i
ally by saying that the entire time depen-den
e of A is 
ontained in [the real part of℄a fa
tor e�i!t (that is, the amplitude at any�xed position obeys SHM ).2The os
illation with respe
t to position ~r atany instant of time t is given by the analo-2Note that e+i!t would have worked just as well, sin
ethe real part is the same as for e�i!t. The 
hoi
e of signdoes matter, however, when we write down the 
ombinedtime and spa
e dependen
e in Eq. (4), whi
h see.



2gous fa
tor ei~k�~r where ~k is the wave ve
-tor;3 it points in the dire
tion of propagationof the wave and has a magnitude (
alled the\wavenumber") k given byk = 2�� (1)where � is the wavelength. Note the analogybetween k and ! = 2�T (2)where T is the period of the os
illation in timeat a given point. You should think of � asthe \period in spa
e."We may simplify the above des
ription by
hoosing our 
oordinate system so that the xaxis is in the dire
tion of ~k, so that4 ~k � ~r =k x. Then the amplitude A no longer dependson y or z, only on x and t.We are now ready to give a full des
ription ofthe fun
tion des
ribing this wave:A(x; t) = A0 eikx � e�i!tor, re
alling the multipli
ative property of theexponential fun
tion, ea � eb = e(a+b),A(x; t) = A0 ei(kx�!t): (3)To a
hieve 
omplete generality we 
an restorethe ve
tor version:A(x; t) = A0 ei(~k�~r�!t) (4)This is the preferred form for a general de-s
ription of a plane wave, but for present3The name \wave ve
tor" is both apt and inadequate |apt be
ause the term ve
tor expli
itly reminds us that itsdire
tion de�nes the dire
tion of propagation of the wave;inadequate be
ause the essential inverse relationship be-tween k and the wavelength � [see Eq. (1)℄ is not suggestedby the name. Too bad. It is at least a little more des
rip-tive than the name given to the magnitude k of ~k, namelythe \wavenumber."4In general ~k � ~r = xkx + yky + zkz. If ~k = k {̂ thenkx = k and ky = kz = 0, giving ~k � ~r = k x.

purposes the s
alar version (3) suÆ
es. UsingEqs. (1) and (2) we 
an also write the planewave fun
tion in the formA(x; t) = A0 exp �2�i�x� � tT �� (5)but you should strive to be
ome 
ompletely
omfortable with k and ! | we will beseeing a lot of them in Physi
s!14.1.2 Speed of PropagationNeither of the images in Fig. 14.1 
apturesthe most important qualitative feature of thewave: namely, that it propagates | i.e. movessteadily along in the dire
tion of ~k. If we wereto let the snapshot in Fig. 14.1b be
ome amovie, so that the time dependen
e 
ould beseen vividly, what we would see would be thesame wave pattern sliding along the graph tothe right at a steady rate. What rate? Well,the answer is most easily given in simple qual-itative terms:The wave has a distan
e � (one wavelength)between \
rests." Every period T , one fullwavelength passes a �xed position. Thereforea given 
rest travels a distan
e � in a time Tso the velo
ity of propagation of the wave isjust 
 = �T or 
 = !k (6)where I have used 
 as the symbol for the prop-agation velo
ity even though this is a 
om-pletely general relationship between the fre-quen
y !, the wave ve
tor magnitude k andthe propagation velo
ity 
 of any sort of wave,not just ele
tromagneti
 waves (for whi
h 
 hasits most familiar meaning, namely the speed oflight).This result 
an be obtained more easily by not-ing that A is a fun
tion only of the phase � ofthe os
illation, � � kx� !t (7)



14.2. THE WAVE EQUATION 3and that the 
riterion for \seeing the samewaveform" is � = 
onstant or d� = 0. Ifwe take the di�erential of Eq. (7) and set itequal to zero, we getd� = k dx � ! dt = 0 or k dx = ! dtor dxdt = !k :But dx=dt = 
, the propagation velo
-ity of the waveform. Thus we reprodu
eEq. (6). This treatment also shows why we
hose e�i!t for the time dependen
e so thatEq. (7) would des
ribe the phase: if we usede+i!t then the phase would be � � kx +!t whi
h gives dx=dt = �
, | i.e. a wave-form propagating in the negative x dire
tion(to the left as drawn).If we use the relationship (6) to write (kx �!t) = k(x� 
t), so that Eq. (4) be
omesA(x; t) = A0 eik(x�
t);we 
an extend the above argument to wave-forms that are not of the ideal sinusoidal shapeshown in Fig. 14.1; in fa
t it is more vivid ifone imagines some spe
ial shape like (for in-stan
e) a pulse propagating down a string atvelo
ity 
. As long as A(x; t) is a fun
tion onlyof x0 = x�
t, no matter what its shape, it willbe stati
 in time when viewed by an observertraveling along with the wave5 at velo
ity 
.This doesn't require any elaborate derivation;x0 is just the position measured in su
h anobserver's referen
e frame!14.2 The Wave EquationThis is a bogus \derivation" in that we startwith a solution to the Wave Equation andthen show what sort of di�erential equation itsatis�es. Of 
ourse, on
e we have the equation5Don't try this with an ele
tromagneti
 wave! The ar-gument shown here is expli
itly nonrelativisti
, althougha more mathemati
al proof rea
hes the same 
on
lusionwithout su
h restri
tions.

we 
an work in the other dire
tion, so this isnot so bad. . . .Suppose we know that we have a travelingwave A(x; t) = A0 
os(kx� !t).At a �xed position (x = 
onst) we see SHMin time:  �2A�t2 !x = �!2A (8)(Read: \The se
ond partial derivative of Awith respe
t to time [i.e. the a

eleration ofA℄ with x held �xed is equal to �!2 times Aitself.") I.e. we must have a linear restoringfor
e.Similarly, if we take a \snapshot" (hold t �xed)and look at the spatial variation of A, we �ndthe os
illatory behaviour analogous to SHM, �2A�x2 !t = � k2A (9)(Read: \The se
ond partial derivative of Awith respe
t to position [i.e. the 
urvature ofA℄ with t held �xed is equal to �k2 times Aitself.")ThusA = � 1!2  �2A�t2 !x = � 1k2  �2A�x2 !t :If we multiply both sides by �k2, we getk2!2  �2A�t2 !x =  �2A�x2 !t :But ! = 
k so k2!2 = 1
2 , giving the WaveEquation: �2A�x2 � 1
2 �2A�t2 = 0 (10)In words, the 
urvature of A is equal to 1=
2times the a

eleration of A at any (x; t) point(what we 
all an event in spa
etime).



4Whenever you see this di�erential equationgoverning some quantity A, i.e. where the a
-
eleration of A is proportional to its 
urvature,you know that A(x; t) will exhibit wave mo-tion!14.3 Wavy Strings
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Figure 14.2 A small segment of a taut string.One system that exhibits wave motion is thetaut string. Pi
ture a string with a uni-form mass per unit length � under tensionF . Ignoring any e�e
ts of gravity, the undis-turbed string will of 
ourse follow a straightline whi
h we label the x axis. There are a
-tually two ways we 
an \perturb" the quies-
ent string: with a \longitudinal" 
ompres-sion/stret
h displa
ement (basi
ally a soundwave in the string) or with a \transverse" dis-pla
ement in a dire
tion perpendi
ular to thex axis, whi
h we will label the y dire
tion.The sket
h in Fig. 14.2 shows a small stringsegment of length d` and mass dm =� d` whi
h makes an average angle � with re-spe
t to the x axis. The angle a
tually 
hangesfrom � � d�=2 at the left end of the segmentto � + d�=2 at the right end. For small dis-pla
ements � � 1 [the large � shown in thesket
h is just for visual 
larity℄ and we 
an usethe small-angle approximationsdx = d` 
os � � d`

dy = d` sin � � � d`dydx = tan � � � (11)Furthermore, for small � the net for
edF = 2F sin(d�=2) � 2F (d�=2) = F d� (12)a
ting on the string segment is essentially inthe y dire
tion, so we 
an use Newton's Se
-ond Law on the segment at a �xed x lo
ationon the string:dF � dmay = �y dm orF d� � �y � d` or �2y�t2 !x � F d�� d` � F�  d�dx! : (13)Referring now ba
k to Eq. (11) we 
an use � �dy=dx to set  d�dx! �  �2ydx2!t (14)| i.e. the 
urvature of the string at time t.Plugging Eq. (14) ba
k into Eq. (13) gives �2y�t2 !x � F�  �2ydx2!t � 0 (15)whi
h is the Wave Equation with1
2 = �F or 
 = sF� : (16)We may therefore jump right to the 
on
lusionthat waves will propagate down a taut stringat this velo
ity.14.3.1 PolarizationOne ni
e feature of waves in a taut string isthat they expli
itly illustrate the phenomenonof polarization: if we 
hange our notationslightly to label the string's equilibrium dire
-tion (and therefore the dire
tion of propaga-tion of a wave in the string) as z, then there



14.4. LINEAR SUPERPOSITION 5are two orthogonal 
hoi
es of \transverse" di-re
tion: x or y. We 
an set the string \wig-gling" in either transverse dire
tion, whi
h we
all the two orthogonal polarization dire
tions.Of 
ourse, one 
an 
hoose an in�nite numberof transverse polarization dire
tions, but these
orrespond to simple superpositions of x- andy-polarized waves with the same phase.One 
an also superimpose x- and y-polarizedwaves of the same frequen
y and wavelengthbut with phases di�ering by ��=2. This givesleft- and right-
ir
ularly polarized waves; Iwill leave the mathemati
al des
ription of su
hwaves (and the mulling over of its physi
almeaning) as an \exer
ise for the student. . . ."14.4 Linear SuperpositionThe above derivation relied heavily on thesmall-angle approximations whi
h arevalid only for small displa
ements of the stringfrom its equilibrium position (y = 0 for allx). This almost always true: the simple de-s
ription of a wave given here is only stri
tlyvalid in the limit of small displa
ements fromequilibrium; for large displa
ements we usu-ally pi
k up \anharmoni
" terms 
orrespond-ing to nonlinear restoring for
es. But as longas the restoring for
e stays linear we havean important 
onsequen
e: several di�erentwaves 
an propagate independently throughthe same medium. (E.g. down the samestring.) The displa
ement at any given timeand pla
e is just the linear sum of the displa
e-ments due to ea
h of the simultaneously propa-gating waves. This is known as the prin
ipleof linear superposition, and it is essentialto our understanding of wave phenomena.In general the overall displa
ement A(x; t) re-sulting from the linear superposition of twowaves A1ei(k1x�!1t) and A2ei(k2x�!2t) is givenbyA(x; t) = A1ei(k1x�!1t) + A2ei(k2x�!2t): (17)

Let's look at a few simple examples.14.4.1 Standing Waves

Figure 14.3 Traveling vs. standing waves.A parti
ularly interesting example of superpo-sition is provided by the 
ase where A1 =A2 = A0 , k1 = k2 = k and !1 = �!2 = !.That is, two otherwise identi
al waves propa-gating in opposite dire
tions. The algebra issimple:A(x; t) = A0 hei(kx�!t) + ei(kx+!t)i= A0eikx he�i!t + e+i!ti= A0eikx[
os(!t)� i sin(!t)+ 
os(!t) + i sin(!t)℄= 2A0 
os(!t)eikx: (18)The real part of this (whi
h is all we evera
tually use) des
ribes a sinusoidal waveformof wavelength � = 2�=k whose amplitude2A0 
os(!t) os
illates in time but whi
h doesnot propagate in the x dire
tion | i.e. thelower half of Fig. 14.3. Standing waves arevery 
ommon, espe
ially in situations where atraveling wave is re
e
ted from a boundary,sin
e this automati
ally 
reates a se
ond waveof similar amplitude and wavelength propagat-ing ba
k in the opposite dire
tion | the very



6
ondition assumed at the beginning of this dis-
ussion.14.4.2 Classi
al QuantizationNone of the foregoing dis
ussion allows us touniquely spe
ify any wavelike solution to thewave equation, be
ause nowhere have wegiven any boundary 
onditions for
ing thewave to have any parti
ular behaviour at anyparti
ular point. This is not a problem for thegeneral phenomenology dis
ussed so far, butif you want to a
tually des
ribe one parti
ularwave you have to know this stu�.

Figure 14.4 The �rst three allowed standingwaves in a \
losed box" (e.g. on a string with�xed ends).Boundary 
onditions are probably easiest toillustrate with the system of a taut stringof length L with �xed ends, as shown inFig. 14.4.6 Fixing the ends for
es the wavefun
tion A(x; t) to have nodes (positionswhere the amplitude is always zero) at thosepositions. This immediately rules out travel-ing waves and restri
ts the simple sinusoidal\modes" to standing waves for whi
h L is aninteger number of half-wavelengths:7�n = 2Ln ; n = 1; 2; 3; � � � (19)6The Figure 
ould also des
ribe standing sound wavesin an organ pipe 
losed at both ends, or the ele
tri
 �eldstrength in a resonant 
avity, or the probability amplitudeof an ele
tron 
on�ned to a one-dimensional \box" of lengthL. 7Note that the nth mode has (n � 1) nodes in additionto the two at the ends.

Assuming that 
 = !=k = �� = 
onst, thefrequen
y � [in 
y
les per se
ond or Hertz(Hz)℄ of the nth mode is given by �n = 
=�n or�n = n 
2L; n = 1; 2; 3; � � � (20)For a string of linear mass density � undertension F we 
an use Eq. (16 to write whatone might frivolously des
ribe as the guitartuner's equation:�n = n2L sF� ; n = 1; 2; 3; � � � (21)Note that a given string of a given length Lunder a given tension F has in prin
iple an in-�nite number of modes (resonant frequen
ies);the guitarist 
an 
hoose whi
h modes to ex-
ite by plu
king the string at the position of anantinode (position ofmaximum amplitude) forthe desired mode(s). For the �rst few modesthese antinodes are at quite di�erent pla
es, asevident from Fig. 14.4. As another \exer
isefor the student" try dedu
ing the relationshipbetween modes with a 
ommon antinode |these will all be ex
ited as \harmoni
s" whenthe string is plu
ked at that position.Exa
tly the same formulae apply to soundwaves in organ pipes if they are 
losed at bothends. An organ pipe open at one end musthowever have an antinode at that end; thisleads to a slightly di�erent s
heme for enu-merating modes, but one that you 
an easilydedu
e by a similar sequen
e of logi
.This sort of restri
tion of the allowed modes ofa system to a dis
rete set of values is knownas quantization. However, most people arenot a

ustomed to using that term to des
ribema
ros
opi
 
lassi
al systems like taut strings;we have a tenden
y to think of quantizationas something that only happens in quantumme
hani
s. In reality, quantization is anubiquitous phenomenon wherever wave mo-tion runs up against �xed boundary 
ondi-tions.



14.6. WATER WAVES 714.5 Energy DensityConsider again our little element of string atposition x. We have shown that (for �xedx) the mass element will exe
ute SHM as afun
tion of time t. Therefore there is an ef-fe
tive linear restoring for
e in the ydire
tion a
ting on the mass element dm =�dx: dF = F d� = F (�2y=�x2) dx. But fora simple traveling wave we have8 y(x; t) =y0 
os(kx�!t) so (�2y=�x2) = �k2y, givingdF = � [k2 F dx℄ y. In other words, the e�e
-tive spring 
onstant for an element of stringdx long is �e� = k2 F dx where I haveused the un
onventional notation � for the ef-fe
tive spring 
onstant to avoid 
onfusing itwith the wavenumber k, whi
h is something
ompletely di�erent. Applying our knowledgeof the potential energy stored in a stret
hedspring, dU = 12�e� y2, we have the elasti
potential energy stored in the string per unitlength, dU=dx = 12k2 F y2 or, plugging iny(x; t),dUdx = 12 k2 F y20 
os2(kx� !t) (22)| that is, the potential energy density is pro-portional to the amplitude squared.What about kineti
 energy? From SHM weexpe
t the energy to be shared between po-tential and kineti
 energy as ea
h mass ele-ment os
illates through its period. Well, thekineti
 energy dK of our little element ofstring is just dK = 12dmv2y. Again dm =� dx and now we must evaluate vy. Work-ing from y(x; t) = y0 
os(kx � !t) we havevy = �! y0 sin(kx � !t), from whi
h we 
anwritedKdx = 12 �!2 y20 sin2(kx� !t): (23)The total energy density is of 
ourse the sum8I have avoided 
omplex exponentials here to avoid 
on-fusion when I get around to 
al
ulating the transversespeed of the string element, vy. The a

eleration is thesame as for the 
omplex version.

of these two:dEdx = dUdx + dKdx ordEdx = 12 y20 hk2 F 
os2 � + � !2 sin2 �iwhere � � kx � !t. Using 
 = !=k =qF=� we 
an write this asdEdx = 12 y20 h�!2 
os2 � + �!2 sin2 �i ordEdx = 12 �!2 y20 : (24)You 
an use F k2 in pla
e of �!2 if you like,sin
e they are equal. [Exer
ise for the student.℄Note that the net energy density (potentialplus kineti
) is 
onstant in time and spa
e forsu
h a uniform traveling wave. It just swit
hesba
k and forth between potential and kineti
energy twi
e every 
y
le. Sin
e the averageof either 
os2 � or sin2 � is 1/2, the energydensity is on average shared equally betweenkineti
 and potential energy.If we want to know the energy per unit time(power P ) transported past a 
ertain point xby the wave, we just multiply dE=dx by 
 =dx=dt to getP � dEdt = 12 �!2 
 y20 : (25)Again, you 
an play around with the 
on-stants; instead of �!2 
 you 
an use!2pF� and so on.Note that while the wave does not transportany mass down the string (all physi
al motionis transverse) it does transport energy. This isan ubiquitous property of waves, lu
ky for us!14.6 Water WavesAlthough all sorts of waves are ubiquitous inour lives,9 our most familiar \wave experi-en
es" are probably with water waves, whi
h9Indeed, we are made of waves, as quantum me
han-i
s has taught us!



8are unfortunately one of the least simple typesof waves. Therefore, although water wavesare routinely used for illustration, they arerarely dis
ussed in great depth (heh, heh) inintrodu
tory Physi
s texts. They do, how-ever, serve to illustrate one important featureof waves, namely that not all waves obey thesimple relationship 
 = !=k for their propa-gation velo
ity 
.Let's restri
t ourselves to deep o
ean waves,where the \restoring for
e" is simply gravity.(When a wave rea
hes shallow water, the bot-tom provides an immobile boundary that 
om-pli
ates matters severely, as anyone knows whohas ever wat
hed surf breaking on a bea
h!)The motion of an \element" of water in su
h awave is not simply \up and down" as we pre-tended at the beginning of this 
hapter, buta superposition of \up and down" with \ba
kand forth" in the dire
tion of wave propaga-tion. A 
ork 
oating on the surfa
e of su
h awave exe
utes 
ir
ular motion, or so I am told.(It is a
tually quite diÆ
ult to 
on�rm this as-sertion experimentally sin
e it requires a �xedreferen
e that is not moving with the water| a hard thing to arrange in pra
ti
e with-out disturbing the wave itself.) More impor-tantly, the propagation velo
ity of su
h wavesis higher for longer wavelength.14.6.1 Phase vs. Group Velo
ityThe pre
ise relationship between angular fre-quen
y ! and wavenumber k for deep-waterwaves is ! = sg k2 (26)where g has its usual meaning. Su
h a fun
-tional relationship !(k) between frequen
yand wavenumber is known as the dispersionrelation for waves in the medium in ques-tion, for reasons that will be 
lear shortly.If we have a simple traveling plane waveA(x; t) = A0 exp[i(kx � !t)℄, with no begin-ning and no end, the rate of propagation of a

point of 
onstant phase (known as the phasevelo
ity vph) is still given by Eq. (6):vph � !k (27)However, by 
ombining Eq. (27) with Eq. (26)we �nd that the phase velo
ity is higher forsmaller k (longer �):vph = r g2k : (28)Moreover, su
h a wave 
arries no information.It has been passing by forever and will 
on-tinue to do so forever; it is the same ampli-tude everywhere; and so on. Obviously ourplane wave is a bit of an oversimpli�
ation.If we want to send a signal with a wave, wehave to turn it on and o� in some pattern; wehave to make wave pulses (or, anti
ipating theterminology of quantum me
hani
s, \wavepa
kets"). And when we do that with wa-ter waves, we noti
e something odd: the wavepa
kets propagate slower than the \wavelets"in them!
Figure 14.5 A wave pa
ket moving atvg with \wavelets" moving through it at vph.Su
h a pa
ket is a superposition of waves withdi�erent wavelengths; the k-dependen
e of vph
auses a phenomenon known as dispersion,in whi
h waves of di�erent wavelength, ini-tially moving together in phase, will drift apartas the pa
ket propagates, making it \broader"in both spa
e and time. (Obviously su
h a dis-persive medium is undesirable for the trans-mission of information!) But how do we deter-mine the e�e
tive speed of transmission of saidinformation | i.e. the propagation velo
ity of



14.7. SOUND WAVES 9the pa
ket itself, 
alled the group velo
ityvg?Allow me to defer an explanation of the fol-lowing result until a later se
tion. The generalde�nition of the group velo
ity (the speed oftransmission of information and/or energy ina wave pa
ket) isvg � �!�k . (29)For the parti
ular 
ase of deep-water waves,Eq. (29) 
ombined with Eq. (26) givesvg = 12r g2k : (30)That is, the pa
ket propagates at half thespeed of the \wavelets" within it. This be-haviour 
an a
tually be observed in the wakeof a large vessel on the o
ean, seen from highabove (e.g. from an airliner).Su
h exoti
-seeming wave phenomena areubiquitous in all dispersive media, whi
h areanything but rare. However, in the follow-ing 
hapters we will restri
t ourselves to wavespropagating through simple non-dispersivemedia, for whi
h the dispersion relationis just ! = 
 k with 
 
onstant, for whi
hvph = vg = 
.14.7 Sound WavesPi
ture a \snapshot" (holding time t �xed) of asmall 
ylindri
al se
tion of an elasti
 medium,shown in Fig. 14.6: the 
ross-se
tional areais A and the length is dx. An ex
ess pres-sure P (over and above the ambient pres-sure existing in the medium at equilibrium)is exerted on the left side and a slightly dif-ferent pressure P + dP on the right. Theresulting volume element dV = Adx has amass dm = � dV = �A dx, where � isthe mass density of the medium. If we 
hoosethe positive x dire
tion to the right, the net

Figure 14.6 Cylindri
al element of a 
ompressiblemedium.for
e a
ting on dm in the x dire
tion isdFx = PA� (P + dP )A = �AdP .Now let s denote the displa
ement of parti-
les of the medium from their equilibrium po-sitions. (I didn't use A here be
ause I am usingthat symbol for the area. This may also dif-fer between one end of the 
ylindri
al elementand the other: s on the left vs. s + ds onthe right. We assume the displa
ements to bein the x dire
tion but very small 
ompared todx, whi
h is itself no great shakes.10The fra
tional 
hange in volume dV=V ofthe 
ylinder due to the di�eren
e between thedispla
ements at the two ends isdVV = (s+ ds)A� sAAdx = dsdx=  �s�x!t (31)where the rightmost expression reminds usexpli
itly that this des
ription is being 
on-stru
ted around a \snapshot" with t held �xed.Now, any elasti
 medium is by de�nition 
om-pressible but \�ghts ba
k" when 
ompressed(dV < 0) by exerting a pressure in thedire
tion of in
reasing volume. The bulkmodulus B is a 
onstant 
hara
terizing howhard the medium �ghts ba
k | a sort of10Note also that any of s, ds, P or dP 
an be eitherpositive or negative; we merely illustrate the math usingan example in whi
h they are all positive.



103-dimensional analogue of the spring 
on-stant. It is de�ned byP = �B dVV : (32)Combining Eqs. (31) and (32) givesP = �B  �s�x!t (33)so that the di�eren
e in pressure between thetwo ends isdP =  �P�x !t dx = �B  �2s�x2!t dx: (34)We now use PFx = max on the mass ele-ment, giving�AdP = AB  �2s�x2!t dx= dmax = �A dx  �2s�t2 !x (35)where we have noted that the a

eleration ofall the parti
les in the volume element (assum-ing ds� s) is just ax � (�2s=�t2)x.If we 
an
el Adx out of Eq. (35), dividethrough by B and 
olle
t terms, we get �2s�x2!t � �B  �2s�t2 !x = 0 or �2s�x2!t � 1
2  �2s�t2 !x = 0 (36)whi
h the a
ute reader will re
ognize as thewave equation in one dimension (x), pro-vided 
 = sB� (37)is the velo
ity of propagation.The fa
t that disturban
es in an elasti
medium obey the wave equation guaranteesthat su
h disturban
es will propagate as sim-ple waves with phase velo
ity 
 given byEq. (37).

We have now progressed from the stri
tly one-dimensional propagation of a wave in a tautstring to the two-dimensional propagation ofwaves on the surfa
e of water to the three-dimensional propagation of pressure waves inan elasti
 medium (i.e. sound waves); yet wehave 
ontinued to pretend that the only sim-ple type of traveling wave is a plane wave with
onstant ~k. This will never do; we will needto treat all sorts of wave phenomena, and al-though in general we 
an treat most types ofwaves as lo
al approximations to plane waves(in the same way that we treat the Earth's sur-fa
e as a 
at plane in most me
hani
s prob-lems), it is important to re
ognize the mostimportant features of at least one other 
om-mon idealization | the spheri
al wave.14.8 Spheri
al WavesThe utility of thinking of ~k as a \ray" be-
omes even more obvious when we get awayfrom plane waves and start thinking of waveswith 
urved wavefronts. The simplest su
hwave is the type that is emitted when a peb-ble is tossed into a still pool | an exam-ple of the \point sour
e" that radiates wavesisotropi
ally in all dire
tions. The wavefrontsare then 
ir
les in two dimensions (the sur-fa
e of the pool) or spheres in three dimen-sions (as for sound waves) separated by onewavelength � and heading outward from thesour
e at the propagation velo
ity 
. In this
ase the \rays" k point along the radius ve
-tor r̂ from the sour
e at any position and we
an on
e again write down a rather simple for-mula for the \wave fun
tion" (displa
ement Aas a fun
tion of position) that depends only onthe time t and the s
alar distan
e r from thesour
e.A plausible �rst guess would be just A(x; t) =A0 ei(kr�!t), but this 
annot be right! Whynot? Be
ause it violates energy 
onservation.The energy density stored in a wave is pro-portional to the square of its amplitude; in



14.8. SPHERICAL WAVES 11the trial solution above, the amplitude of theoutgoing spheri
al wavefront is 
onstant as afun
tion or r, but the area of that wavefrontin
reases as r2. Thus the energy in the wave-front in
reases as r2? I think not. We 
an getrid of this e�e
t by just dividing the amplitudeby r (whi
h divides the energy density by r2).Thus a trial solution isA(x; t) = A0 ei(kr�!t)r : (38)whi
h is, as usual, 
orre
t.11 The fa
tor of1=r a

ounts for the 
onservation of energy inthe outgoing wave: sin
e the spheri
al \wavefront" distributes the wave's energy over a sur-fa
e area 4�r2 and the 
ux of energy per unitarea through a spheri
al surfa
e of radius r isproportional to the square of the wave ampli-tude at that radius, the integral of jf j2 over theentire sphere (i.e. the total outgoing power)is independent of r, as it must be.We won't use this equation for anything rightnow, but it is interesting to know that itdoes a

urately des
ribe an outgoing12 spheri-
al wave.The per
eptive reader will have noti
ed by nowthat Eq. (38) is not a solution to the waveequation as represented in one dimension byEq. (10). That is hardly surprising, sin
e thespheri
al wave solution is an intrinsi
ally 3-dimensional beast; what happened to y and z?The 
orre
t ve
tor form of the wave equa-11I should probably show you a few wrong guesses �rst,just to avoid giving the false impression that we alwaysguess right the �rst time in Physi
s; but it would use upa lot of spa
e for little purpose; and besides, \knowingthe answer" is always the most powerful problem-solvingte
hnique!12One 
an also have \in
oming" spheri
al waves, forwhi
h Eq. (38) be
omesA(x; t) = A0 ei(kr+!t)r :

tion is r2A � 1
2 �2A�t2 = 0 (39)where the Lapla
ian operator r2 
an beexpressed in Cartesian13 
oordinates (x; y; z)as14 r2 = �2�x2 + �2�y2 + �2�z2 : (40)With a little patient e�ort you 
an show thatEq. (38) does indeed satisfy Eq. (39), if youremember that r = px2 + y2 + z2. Or you
an just take my word for it. . . .

13The Lapla
ian operator 
an also be represented inother 
oordinate systems su
h as spheri
al (r; �; �) or 
ylin-dri
al (�; �; z) 
oordinates, but I won't get 
arried awayhere.14The Lapla
ian operator 
an also be thought of as theinner (s
alar or \dot") produ
t of the gradient operator~r with itself: r2 = ~r � ~r, where~r = {̂ ��x + |̂ ��y + k̂ ��zin Cartesian 
oordinates. This ve
tor 
al
ulus stu�is really elegant | you should 
he
k it out sometime |but it is usually regarded to be beyond the s
ope of anintrodu
tory presentation like this.



1214.9 Ele
tromagneti
 WavesWe have some diÆ
ulty visualizing a wave 
onsisting only of ele
tri
 and magneti
 �elds. How-ever, if we plot the strength of ~E along one axis and the strength of ~B along another (perpen-di
ular) axis, as in Fig. 14.7, then the dire
tion of propagation k̂ will be perpendi
ular to both~E and ~B, as shown.
Figure 14.7 A linearly polarized ele
tromagneti
 wave. The ele
tri
 and magneti
 �elds ~E and ~Bare mutually perpendi
ular and both are perpendi
ular to the dire
tion of propagation k̂ (~k is thewave ve
tor).14.9.1 PolarizationThe 
ase shown in Fig. 14.7 is linearly polarized, whi
h means simply that the ~E and ~B �eldsare in spe
i�
 �xed dire
tions. Of 
ourse, the dire
tions of ~E and ~B 
ould be inter
hanged,giving the \opposite" polarization. Polaroid sunglasses transmit the light waves with ~E verti
al(whi
h are not re
e
ted eÆ
iently o� horizontal surfa
es) and absorb the light waves with ~Ehorizontal (whi
h are), thus redu
ing \glare" (re
e
ted light from horizontal surfa
es) withoutblo
king out all light.There is another possibility, namely that the two linear polarizations be superimposed so thatboth the ~E and ~B ve
tors rotate around the dire
tion of propagation k̂, remaining alwaysperpendi
ular to k̂ and to ea
h other. This is known as 
ir
ular polarization. It too 
omesin two versions, right 
ir
ular polarization and left 
ir
ular polarization, referring to the handwhose �ngers 
url in the dire
tion of the rotation if the thumb points along k̂.14.9.2 The Ele
tromagneti
 Spe
trumWe have spe
ial names for ele
tromagneti
 (EM) waves of di�erent wavelengths and frequen-
ies.15 We 
all EM waves with � >� 1 m \radio waves," whi
h are subdivided into various rangesor \bands" like \short wave" (same thing as high frequen
y), VHF (very high frequen
y), UHF(ultra high frequen
y) and so on.16 The dividing line between \radar" and \mi
rowave" bands(for example) is determined by arbitrary 
onvention, if at all, but the rule of thumb is that ifthe wavelength �ts inside a very small applian
e it is \mi
rowave." Somewhere towards theshort end of the mi
rowave spe
trum is the beginning of \far infrared," whi
h of 
ourse be
omes\near infrared" as the wavelength gets still shorter. The name \infrared" is meant to suggest15If the wavelength � in
reases (so that the wavenumber k = 2�=� de
reases), then the frequen
y ! must de
rease tomat
h, sin
e the ratio !=k must always be equal to the same propagation velo
ity 
.16One 
an dete
t a history of proponents of di�erent bands 
laiming ever higher (and therefore presumably \better")frequen
y ranges. . . .



14.10. REFLECTION 13frequen
ies below those of the red end of the visible light spe
trum of EM waves, whi
h extends(depending on the individual eye) from a wavelength of roughly 500 nm (5000 �A) for red lightthrough orange, yellow, green and blue to roughly 200 nm (2000 �A) for violet light. Beyondthat we lost sight of the shorter wavelengths (so to speak) and the next range is 
alled \nearultraviolet," the etymology of whi
h is obvious. Next 
omes \far ultraviolet" whi
h fades into\soft x-rays" and in turn \hard x-rays" and �nally \gamma rays" as the frequen
y in
reasesand the wavelength gets shorter. Note all the di�erent kinds of \rays" that are all just otherforms of light | i.e. EM waves | with di�erent wavelengths!

Figure 14.8 The ele
tromagneti
 spe
trum. Note logarithmi
 wavelength and frequen
y s
ales.14.10 Re
e
tionThe simplest thing waves do is to refle
t o� 
at surfa
es. Sin
e billiard balls do the samething quite ni
ely, this is not a parti
ularly distin
tive behaviour of waves | whi
h was probablyone of the reasons why Newton was 
onvin
ed that light 
onsisted of parti
les.17 The re
e
tionof waves looks something like Fig. 14.9.The in
oming wave ve
tor ~k makes the same angle with the surfa
e (or, equivalently, with thedire
tion normal to the surfa
e) as the outgoing waveve
tor ~k0:� = �0 (41)This is the most important property of re
e
tion, and it 
an be stated in words thus:The in
ident [in
oming℄ angle is equal to the re
e
ted [outgoing℄ angle.17He was a
tually 
orre
t, but it is equally true that light 
onsists of waves. If you are hoping that these apparently
ontradi
tory statements will be re
on
iled with 
ommon sense by the Chapter on Quantum Me
hani
s, you are in fora disappointment. Common sense will have to be beaten into submission by the utterly implausible fa
ts.
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Figure 14.9 Re
e
tion of a wave from a 
at surfa
e.14.11 Refra
tion

Figure 14.10 Refra
tion of a wave at a boundary between two media where the propagation velo
ity(
) of the wave in the �rst medium is greater than that (
0) in the se
ond medium. The diagram on theleft shows the wavefronts (\
rests" of the waves) and the 
orresponding perpendi
ular waveve
tors~k (in
oming wave), ~k0 (transmitted wave) and ~k" (re
e
ted wave). The diagram on the right showsthe angles between the waveve
tors and the normal to the interfa
e.When a wave 
rosses a boundary between two regions in whi
h its velo
ity of propagationhas di�erent values, it \bends" toward the region with the slower propagation velo
ity. Thefollowing mnemoni
 image 
an help you remember the qualitative sense of this phenomenon,whi
h is known as refra
tion: pi
ture the wave front approa
hing the boundary as a yardsti
kmoving through some 
uid in a dire
tion perpendi
ular to its length. If one end runs into athi
ker 
uid �rst, it will \drag" that end a little so that the trailing end gets ahead of it, 
hangingthe dire
tion of motion gradually until the whole meter sti
k is in the thi
ker 
uid where it willmove more slowly.18Conversely, if one end emerges �rst into a thinner 
uid (where it 
an move faster) it will pi
k upspeed and the trailing end will fall behind. This pi
ture also explains why there is no \bending"if the wave hits the interfa
e normally (at right angles). The details are revealed mathemati
ally18Boy, is this ever Aristotelian!



14.11. REFRACTION 15

Figure 14.11 Refra
tion of a wave at a boundary between two media where the propagation velo
ity(
) of the wave in the �rst medium is less than that (
0) in the se
ond medium.(of 
ourse) in Snell's Law:19 sin(�)sin(�0) = 

0 (42)where � is the angle of in
iden
e of the in
oming wave (the angle that ~k makes with the normalto the interfa
e), �0 is the angle that the refra
ted waveve
tor ~k0 makes with the same normal,
 is the propagation velo
ity of the wave in the �rst medium and 
0 is the propagation velo
ityof the wave in the se
ond medium.

19Snell's Law is normally expressed in terms of the index of refra
tion n in ea
h medium:n sin(�) = n0 sin(�0);where (we now know) the index of refra
tion is the ratio of the speed of light in va
uum to the speed of light in themedium: n � 
0
 :The reason for inventing su
h a semi
ir
ular de�nition was that when Willebrord Snell dis
overed this empiri
al rela-tionship in 1621 he had no idea what n was, only that every medium had its own spe
ial value of n. (This is typi
al ofanything that gets the name \index.") I see no pedagogi
al reason to even de�ne the dumb thing.



16Another semi-obvious 
onsequen
e of the fa
tthat the \
rests" of the waves remain 
ontinu-ous20 is that the wavelength gets shorter as thewave enters the \thi
ker" medium or longer asit enters a \thinner" medium. Another wayof putting this is that the frequen
y stays thesame (and therefore so does the period T ) asthe wave 
rosses the boundary. Sin
e 
 = �=Tthis means that if the velo
ity de
reases, sodoes the wavelength. One 
an follow this ar-gument a bit further to derive Snell's Lawfrom a 
ombination of geometry and logi
. Ihaven't done this, but you might want to. . . .There is also always a re
e
ted wave at any in-terfa
e, though it may be weak. The re
e
tedwave is shown as dotted lines in Figs. 14.10and 14.11, where its waveve
tor is denoted ~k".This phenomenon is familiar as a sour
e of an-noyan
e to anyone who has tried to wat
h tele-vision in a room with a sunny window fa
ingthe TV s
reen. However, it does have someredeeming features, as 
an be dedu
ed from athoughtful analysis of Eq. (42). For instan
e, ifthe wave is emerging from a \thi
k" mediuminto a \thin" medium as in Fig. 14.11 (likelight emerging from glass into air), then thereis some in
oming angle �
, 
alled the 
riti
alangle, for whi
h the refra
ted wave will a
tu-ally be parallel to the interfa
e | i.e. �0 = �=2(90Æ). This implies sin(�0) = 1 so that Snell'sLaw reads sin(�
) = 

0 (43)whi
h has a solution only if 
0 > 
 | i.e.for emergen
e into a \thinner" medium witha higher wave propagation velo
ity, as spe
i-�ed earlier.What happens, qualitatively, is that as � getslarger and larger (
loser and 
loser to \graz-ing in
iden
e") the amplitude (strength) ofthe transmitted wave gets weaker and weaker,while the amplitude of the re
e
ted wave getsstronger and stronger, until for in
oming an-gles � � �
 there is no transmitted wave20A \
rest" doesn't turn into a \trough" just be
ause thepropagation velo
ity 
hanges!

and the wave is entirely re
e
ted. This phe-nomenon is known as total internal re-fle
tion and has quite a few pra
ti
al 
on-sequen
es.Be
ause of total internal re
e
tion, a �sh 
an-not see out of the water ex
ept for a lim-ited \
one" of vision overhead bounded bythe 
riti
al angle for water, whi
h is aboutsin�1(1=1:33) or 49Æ. Lest this lend re
klessabandon to �shermen, it should be kept inmind that the light \rays" whi
h appear to
ome from just under 49Æ from the verti
alare a
tually 
oming from just a
ross the wa-ter's surfa
e, so the �sh has a pretty goodview of the surrounding environment | it justlooks a bit distorted. To observe this phe-nomenon with your own eyes, put on a gooddiving mask, 
arefully slip into a still pool andhold your breath until the surfa
e is perfe
tly
alm again. Looking up at the surfa
e, youwill see the world from the �sh's perspe
tive(ex
ept that the �sh is probably a good dealless anoxi
) | inside a 
one of about 49Æ fromthe verti
al, you 
an see out of the water; butoutside that 
one, the surfa
e forms a perfe
tmirror!How total is total internal re
e
tion? To-tal! If the surfa
e has no s
rat
hes et
., thelight is perfe
tly re
e
ted ba
k into the densermedium. This is how \light pipes" work |light put into one end of a long Lu
ite rodwill follow the rod through bends and twists(as long as they are \gentle" so that the lightnever hits the surfa
e at less than the 
riti-
al angle) and emerge at the other end attenu-ated only by the absorption in the Lu
ite itself.Even better transmission is a
hieved in fiberopti
s, where �ne threads of spe
ial glassare prepared with extremely low absorptionfor the wavelengths of light that are used tosend signals down them. A faint pulse of lightsent into one end of a �ber opti
 transmissionline will emerge many kilometers down the linewith nothing \leaking out" in between. (Thisfeature is espe
ially attra
tive to those whodon't want their 
onversations bugged, or so I



14.13. INTERFERENCE 17am told.) Another appli
ation was invented byLorne Whitehead while he was a UBC Physi
sgraduate student: by an ingenious tri
k he wasable to make a large-diameter hollow LightPipe [trademark℄ whi
h avoids even the smalllosses in the Lu
ite itself! Using this tri
k he isable to \pipe" large amounts of light from sin-gle (eÆ
ient) light sour
es [in
luding rooftopsolar 
olle
tors℄ into other areas [like the inte-riors of oÆ
e buildings℄ using stri
tly passive
omponents that do not wear out. He foundeda 
ompany 
alled TIR | see if you 
an guesswhat the a
ronym stand for!14.12 Huygens' Prin
ipleAt the beginning of this 
hapter we pi
turedonly plane waves, in whi
h the wavefronts(\
rests" of the waves) form long straight lines(or, in spa
e, 
at planes) moving along to-gether in parallel (separated by one wave-length �) in a 
ommon dire
tion k̂. One goodreason for sti
king to this des
ription for aslong as possible (and returning to it every
han
e we get) is that it is so simple | we
an write down an expli
it formula for the am-plitude of a plane wave as a fun
tion of timeand spa
e whose qualitative features are read-ily apparent (with a little e�ort). Anothergood reason has to do with the fa
t that allwaves look pretty mu
h like plane waves whenthey are far from their origin.21 We will 
omeba
k to this shortly. A �nal reason for our loveof plane waves is that they are so easily relatedto the idea of \rays."In geometri
al opti
s it is 
onvenient topi
ture the waveve
tor ~k as a \ray" of light(though we 
an adopt the same notion for anykind of wave) that propagates along a straightline like a billiard ball. In fa
t, the analogybetween ~k and the momentum ~p of a parti
leis more than just a metaphor, as we shall see21This is sort of like the mathemati
al assertion that alllines look straight if we look at them through a powerfulenough mi
ros
ope.

later. However, for now it will suÆ
e to bor-row this imagery from Newton and 
ompany,who used it very e�e
tively in des
ribing the
orpus
ular theory of light.22However, near any lo
alized sour
e of wavesthe outgoing wavefronts are nothing like planewaves; if the dimensions of the sour
e are small
ompared to the wavelength then the outgo-ing waves look pretty mu
h like spheri
alwaves. For sour
es similar in size to �, things
an get very 
ompli
ated.Christian Huygens (1629-1695) invented thefollowing gimmi
k for 
onstru
ting a
tualwavefronts from spheri
al waves:Huygens' Prin
iple:\All points on a wavefront 
an be 
onsid-ered as point sour
es for the produ
tion ofspheri
al se
ondary wavelets. At a latertime, the new position of the wavefrontwill be the surfa
e of tangen
y to thesese
ondary wavelets."This may be seen to make some sense (tryit yourself) but its profound importan
e toour qualitative understanding of the behaviourof light was really brought home by Fresnel(1788-1827), who used it to explain the phe-nomenon of di�ra
tion, whi
h we will dis
ussshortly. But �rst, let's familiarize ourselveswith the simpler phenomena of interferen
e.14.13 Interferen
eTo get more quantitative about this \additionof amplitudes," we make the following assump-tion, whi
h is 
ru
ial for the arguments to fol-low and is even valid for the most important22\Corpus
les" are hypotheti
al parti
les of light thatfollow traje
tories Newton 
alled \rays," thus starting along tradition of naming every new form or radiation a\ray."



18kinds of waves, namely EM waves, under allbut the most extreme 
onditions:Linear Superposition of Waves:As several waves pass the same point inspa
e, the total amplitude at that pointat any instant is simply the sum of theamplitudes of the individual waves.For water waves this is not perfe
tly true (wa-ter waves are very pe
uliar in many ways) butto a moderately good approximation the am-plitude (height) of the surfa
e disturban
e at agiven position and time is just the sum of theheights of all the di�erent waves passing thatpoint at any instant. This has some alarm-ing impli
ations for sailors! If you are sailingalong a 
oastline with steep 
li�s, the in
om-ing swells are apt to be re
e
ted ba
k out tosea with some eÆ
ien
y; if the re
e
ted wavesfrom many parts of the shoreline happen to in-terfere 
onstru
tively with the in
oming swellsat the position of your boat, you 
an en
ounter\freak waves" many times higher than themean swell height. Experien
ed sailors staywell out from the 
oastline to avoid su
h un-predi
table interferen
e maxima.14.13.1 Interferen
e in TimeSuppose we add together two equal amplitudewaves with slightly di�erent frequen
ies!1 = �! + Æ=2 and !2 = �! � Æ=2 (44)where �! is the average frequen
y and Æ is thedi�eren
e between the two frequen
ies. If wemeasure the 
ombined amplitude at a �xedpoint in spa
e, a little algebra reveals the phe-nomenon of beats. This is usually done withsin or 
os fun
tions and a lot of trigonomet-ri
 identities; let's use the 
omplex notationinstead | I �nd it more self-evident, at leastalgebrai
ally:

Figure 14.12 Beats.
 (z; t) =  0 hei!1t + ei!2ti=  0 hei(�!+Æ=2)t + ei(�!�Æ=2)ti=  0 ei�!t he+i(Æ=2)t + e�i(Æ=2)ti= 2 0 ei�!t 
os[(Æ=2)t℄ (45)That is, the 
ombined signal 
onsists of an os-
illation at the average frequen
y, modulatedby an os
illation at one-half the di�eren
e fre-quen
y. This phenomenon of \beats" is fa-miliar to any musi
ian, automotive me
hani
or pilot of a twin engine air
raft.One seemingly 
ounterintuitive feature ofbeats is that the \envelope fun
tion"
os[(Æ=2)t℄ has only half the angular frequen
yof the di�eren
e between the two original fre-quen
ies. What we hear when two frequen-
ies interfere is the variation of the sound in-tensity with time; and the intensity is pro-



14.13. INTERFERENCE 19portional to the square of the displa
ement.23Squaring the envelope e�e
tively doubles itsfrequen
y (see Fig. 14.12) and so the dete
tedbeat frequen
y is the full frequen
y di�er-en
e Æ = !1 � !2.This is a universal feature of waves and in-terferen
e: the dete
ted signal is the averageintensity, whi
h is proportional to the squareof the amplitude of the displa
ement os
illa-tions; and it is the displa
ements themselvesthat add linearly to form the interferen
e pat-tern. Be sure to keep this straight.14.13.2 Interferen
e in Spa
e

Figure 14.13 A repli
a of Thomas Young's orig-inal drawing (1803) showing the interferen
e pat-tern 
reated by two similar waves being emitted\in phase" (going up and down simultaneously)from two sour
es separated by a small distan
e.The arrows point along lines of 
onstru
tive in-terferen
e (
rests on top of 
rests and troughsunderneath troughs) and the dotted lines indi
ate\lines of nodes" where the 
rests and troughs
an
el.Suppose spheri
al waves emanate from twopoint sour
es os
illating in phase (one goes\up" at the same time as the other goes \up")23A
tually the intensity is de�ned in terms of the av-erage of the square of the displa
ement over times long
ompared with the average frequen
y �!. This makes senseas long as the beat frequen
y Æ � �!; but if !1 and !2 di�erby an amount Æ � �! then it is hard to de�ne what is meantby a \time average". We will just du
k this issue.

at the same frequen
y, so that the two wave-generators are like syn
hronized swimmers inwater ballet.24 Ea
h will produ
e outgoingspheri
al waves that will interfere whereverthey meet.The qualitative situation is pi
tured inFig.14.13, whi
h shows a \snapshot" of twooutgoing spheri
al25 waves and the \rays" (~kdire
tions) along whi
h their peaks and val-leys (or 
rests and troughs, whatever) 
oin-
ide, giving 
onstru
tive interferen
e. Thisdiagram a

ompanied an experimental obser-vation by Young of \interferen
e fringes"" (apattern of intensity maxima and minima ona s
reen some distan
e from the two sour
es)that is generally regarded as the �nal proof ofthe wave nature of light.26If we want to pre
isely lo
ate the angles atwhi
h 
onstru
tive interferen
e o

urs (\inter-feren
e maxima") then it is most 
onvenientto think in terms of \rays" (~k ve
tors) as pi
-tured in Fig. 14.14.The mathemati
al 
riterion for 
onstru
tiveinterferen
e is simply a statement that the dif-24This notion of being \in phase" or \out of phase" isone of the most ar
hetypal metaphors in Physi
s. It is so
ompelling that most Physi
ists in
orporate it into theirthinking about virtually everything. A Physi
ist at a 
o
k-tail party may be heard to say, \Yeah, we were 90Æ outof phase on everything. Eventually we 
alled it quits."This is slightly more subtle than, \. . . we were 180Æ out ofphase. . . " meaning diametri
ally opposed, opposite, 
an-
elling ea
h other, destru
tively interfering. To be \90Æout of phase" means to be moving at top speed when theother is sitting still (in SHM , this would mean to have allyour energy in kineti
 energy when the other has it all inpotential energy) and vi
e versa. The ~E and ~B �elds in alinearly polarized EM wave are 90Æ out of phase, as are the\push" and the \swing" when a resonan
e is being driven(like pushing a kid on a swing) at maximum e�e
t, so inthe right 
ir
umstan
es \90Æ out of phase" 
an be produ
-tive. . . . Just remember, \in phase" at the point of interestmeans 
onstru
tive interferen
e (maximum amplitude) and\180Æ out of phase" at the point of interest means destru
-tive interferen
e (minimum amplitude | zero, in fa
t, ifthe two waves have equal amplitude).25OK, they are 
ir
ular waves, not spheri
al waves. Youtry drawing a pi
ture of spheri
al waves!26Young's 
lassi
 experiment is in fa
t the ar
hetype forall subsequent demonstrations of wave properties, as shallbe seen in the Chapter(s) on Quantum Me
hani
s.
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Figure 14.14 Diagram showing the 
ondition for
onstru
tive interferen
e of two \rays" of thesame frequen
y and wavelength � emitted inphase from two sour
es separated by a distan
ed. At angles for whi
h the di�eren
e in pathlength �` is an integer number (m) of wave-lengths, m�, the two rays arrive at a distant de-te
tor in phase so that their amplitudes add 
on-stru
tively, maximizing the intensity. The 
aseshown is for m = 1.feren
e in path length, �` = d sin#m, for thetwo \rays" is an integer number m of wave-lengths �, where the m subs
ript on #m is areminder that this will be a di�erent angle forea
h value of m:d sin#m = m� : (46)(
riterion for Constru
tive Interferen
e)Conversely, if the path length di�eren
e is ahalf-integer number of wavelengths, the twowaves will arrive at the distant dete
tor ex-a
tly out of phase and 
an
el ea
h other out.The angles at whi
h this happens are given byd sin# destrm = �m + 12� � : (47)(
riterion for Destru
tive Interferen
e)

PhasorsWhat happens when 
oherent light 
omesthrough more than two slits, all equally spa
eda distan
e d apart, in a line parallel to the in-
oming wave fronts? The same 
riterion (46)still holds for 
ompletely 
onstru
tive interfer-en
e (what we will now refer to as the prin
i-pal maxima) but (47) is no longer a reliable
riterion for destru
tive interferen
e: ea
h su
-
essive slit's 
ontribution 
an
els out that ofthe adja
ent slit, but if there are an odd num-ber of slits, there is still one left over and the
ombined amplitude is not zero.Does this mean there are no angles where theintensity goes to zero? Not at all; but it isnot quite so simple to lo
ate them. One wayof making this 
al
ulation easier to visualize(albeit in a rather abstra
t way) is with thegeometri
al aid of phasors: A single wave

Figure 14.15 A single \phasor" of length  0(the wave amplitude) pre
essing at a frequen
y! in the 
omplex plane.
an be expressed as  (x; t) =  0ei� where� = kx� !t+ � is the phase of the wave at a�xed position x at a given time t. (As usual,� is the \initial" phase at x = 0 and t = 0. Atthis stage it is usually ignored; I just retainedit one last time for 
ompleteness.) If we fo-
us our attention on one parti
ular lo
ation inspa
e, this single wave's \displa
ement"  atthat lo
ation 
an be represented geometri
allyas a ve
tor of length  0 (the wave amplitude)in the 
omplex plane 
alled a \phasor" As
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tion" of the phasor ro-tates at an angular frequen
y ! in that ab-stra
t plane.There is not mu
h advantage to this geomet-ri
al des
ription for a single wave (ex
ept per-haps that it engages the right hemisphere ofthe brain a little more than the algebrai
 ex-pression) but when one goes to \add together"two or more waves with di�erent phases, ithelps a lot! For example, two waves of equal

Figure 14.16 Two waves of equal amplitude  0but di�erent phases �1 and �2 are representedas phasors in the 
omplex plane. Their ve
-tor sum has the resultant amplitude � 0 and theaverage phase ��.amplitude but di�erent phases 
an be addedtogether algebrai
ally as in Eq. (45)� =  0 hei�1 + ei�2i= 2 0 ei�� 
os(Æ=2)= � 0 ei�� (48)where � 0 = 2 0 
os(Æ=2)�� � 12(�1 + �2)Æ � �2 � �1 : (49)That is, the 
ombined amplitude � 0 
an beobtained by adding the phasors \tip-to-tail"like ordinary ve
tors. Like the original 
om-ponents, the whole thing 
ontinues to pre
ess

in the 
omplex plane at the 
ommon frequen
y!.We are now ready to use phasors to �nd theamplitude of an arbitrary number of waves ofarbitrary amplitudes and phases but a 
om-mon frequen
y and wavelength interfering at agiven position. This is illustrated in Fig. 14.17for 5 phasors. In pra
ti
e, we rarely attempt
Figure 14.17 The net amplitude of a wave pro-du
ed by the interferen
e of an arbitrary numberof other waves of the same frequen
y of arbi-trary amplitudes  j and phases �j 
an in prin-
iple be 
al
ulated geometri
ally by \tip-to-tail"ve
tor addition of the individual phasors in the
omplex plane.su
h an arbitrary 
al
ulation, sin
e it 
annotbe simpli�ed algebrai
ally.Instead, we 
on
entrate on simple 
ombina-tions of waves of equal amplitude with well de-�ned phase di�eren
es, su
h as those produ
edby a regular array of parallel slits with an equalspa
ing between adja
ent slits. Figure 14.18shows an example using 6 identi
al slits witha spa
ing d = 100�. The angular width of theinterferen
e pattern from su
h widely spa
edslits is quite narrow, only 10 mrad (10�2 ra-dians) between prin
ipal maxima where all 6rays are in phase. In between the prin
ipalmaxima there are 5 minima and 4 se
ondarymaxima; this 
an be generalized:The interferen
e pattern for N equallyspa
ed slits exhibits (N � 1) minima and(N � 2) se
ondary maxima between ea
hpair of prin
ipal maxima.
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Figure 14.18 The intensity pattern produ
ed by the interferen
e of 
oherent light passing throughsix parallel slits 100 wavelengths apart. Phasor diagrams are shown for sele
ted angles. Notethat, while the phase angle di�eren
e Æ between rays from adja
ent slits is a monotoni
ally in
reasingfun
tion of the angle # (plotted horizontally) that the rays make with the \forward" dire
tion, thelatter is a real geometri
al angle in spa
e while the former is a pure abstra
tion in \phase spa
e".The exa
t relationship is Æ=2� = (d=�) sin# � (d=�)# for very small #. Note the symmetry aboutthe 3rd minimum at # � 5 mrad. At # � 10 mrad the intensity is ba
k up to the same value it hadin the 
entral maximum at # = 0; this is 
alled the �rst prin
ipal maximum. Then the wholepattern repeats. . . .It may be 
on
eptually helpful to show the geometri
al explanation of the 6-slit interferen
epattern in Fig. 14.18 in terms of phasor diagrams, but 
learly the smooth 
urve shown there is notthe result of an in�nte number of geometri
al 
onstru
tions. It 
omes from an algebrai
 formulathat we 
an derive for an arbitrary angle # and a 
orresponding phase di�eren
e Æ = (2�d=�) sin#between rays from adja
ent slits. The formula itself is obtained by analysis of a geometri
al
onstru
tion like that illustrated in Fig. 14.19 for 7 slits, ea
h of whi
h 
ontributes a wave ofamplitude a, with a phase di�eren
e of Æ between adja
ent slits.
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Figure 14.19 Phasor diagram for 
al
ulat-ing the intensity pattern produ
ed by the interfer-en
e of 
oherent light passing through 7 parallel,equally spa
ed slits.

Figure 14.20 Blowup of one of the isos
elestriangles formed by a single phasor and two radiifrom the 
enter of the 
ir
ums
ribed 
ir
le to thetip and tail of the phasor.After adding all 7 equal-length phasors inFig. 14.19 \tip-to-tail", we 
an draw a ve
torfrom the starting point to the tip of the �nalphasor. This ve
tor has a length A (the netamplitude) and makes a 
hord of the 
ir
um-s
ribed 
ir
le, inter
epting an angle� = 2� �N Æ ; (50)where in this 
ase N = 7. The radius r of the
ir
ums
ribed 
ir
le is given bya2 = r sin Æ2! ; (51)

as 
an be seen from the blowup in Fig. 14.20;this 
an be 
ombined with the analogousA2 = r sin��2� (52)to give the net amplitudeA = a 24sin ��2�sin � Æ2�35 : (53)From Eq. (50) we know that �=2 = ��N Æ=2,and in general sin(� � �) = sin �, soA = a 24sin �N Æ2�sin � Æ2� 35 (54)where Æ = 2�  d�! sin# (55)Although the drawing shows N = 7 phasors,this result is valid for an arbitrary number Nof equally spa
ed and evenly illuminated slits.


