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ABSTRACT

The behavior of muonium on the surface of fine (35 A mean radius) §i0,
powders has been studied using the techniques of muon spin rotation (uSR).
Results indicate diffusion and trapping behavior of the muonium atoms on the
silica surface, which is strongly influenced by the concentration of surface
hydroxyl groups. Specifically, the presence of the surface hydroxyl groups
has been shown to inhibit the motion of muonjum on the silica surface.

These studies have also provided information regarding the origin of the
relaxation of the muon spin polarization for muonium on the silica surface.
Specifically, a random anisotropic distortion of the muonium hyperfine
interaction, induced by the local surface environment of the muonium atom,
has been shown to be a principal contributor to the relaxation of the muon
ensemble spin polarization, whereas the random local magnetic fields due to
the neighboring hydroxyl protons were found to play only a minor role. From
this result, the observed strong dependence of the relaxation on the surface
hydroxyl concentration has been attributed to an assocjiated hyperfine
distortion, induced by the neighboring hydroxyls. A new spin relaxation
theory, for the case of random anisotropic hyperfine distortions, has also
been developed to explain the data.

Gas adsorption isotherm studies were also performed, with “YHe at 6 K,
which show the muonium asymmetry to be strongly influenced by the fractional
surface coverage. These.results clearly indicate that the muonium formation
probability decreases with increasing surface cbverage, suggesting that the
charge exchange cross section at the silica surface is significant. The

implication of these results with regard to the origins of muonium formation
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(i.e., surface or bulk formation) is as yet unclear, however, since the
precise role played by the adsorbed helium atoms is not known.
These investigations have also been extended to platinum loaded silica,
where the first surface reaction of muonium has been observed; the reaction
rate of muonium with the éurface of oxygen—covered platinum microcrystals

was found to be 3.5 * 0.15 ps~l.
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CHAPTER I — INTRODUCTION

The work presented in this dissertation concerns the interactions of
positive muons (p*) and muonium atoms (p+e—, Mu) with the surfaces of finely
divided silica powders (35 A mean radius). This research represents the
first detailed investigation of the diffusion and trapping behavior, and the
relaxation mechanisms, for muonium on surfaces.

Positive muons and muonium atoms have proven to be ideal microscopic
probes of magnetic systems as well as isotopic probes of proton/hydrogen
diffusion mechanisms and chemical reactions [1-3]. The motivation for the
present work arises because of these features, and the desire to extend the
studies of muons and muonium to interactions with a surface environment.
This work develops a basic qualitative understanding of the behavior of
muonium on surfaces and could conceivably lead to the study of surface
magnetism and the extensive use of muonium as an isotopic probe of hydrogen
catalysis. Experimental methods such as NMR, ESR, LEED, etc., which are
widely used in the study of adatom adsorption, generally require a fairly
high density of atoms, which has obvious ramifications with regard to the
statistical mechanics of adsorption. In contrast, the uSR (muon spin
rotation) techniques [1-3] employed in the present work require observation
of one muon (or Mu atom) at a time. This feature of the experimental method
allows no possibility for any study of p+—p+, p+—Mu or Mu-Mu interactions;
indeed, at presently achievable stopped muon densities, the mutual encounter
of two muons or muonium atoms must be an extremely rare océurrence.

Specifically, the present work has provided information concerning the

diffusion and trapping behavior of muonium on the silica surface, as well as
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the effect of the local surface enviromment on the hyperfine interaction of
the muonium atom. In the case of the latter, a theory has been developed
describing the time evolution of the p+ spin polarization in muonium for a
generally anisotropic hyperfine interaction, which can adequately explain
the muonium relaxation data. The behavior of muonium on the silica surface
was also found to exhibit a strong dependence on the concentration of
surface hydroxyl groups.

A great deal of interest has been generated concerning the interaction
of hydrogen atoms with catalytic surfaces. The silica powder used in the
present study is typical of those used as support materials for catalysts.
Because muonium can be thought of as a light chemical isotope of hydrogen,
it is ideally suited for this type of study. In fact, the present work has
provided the first study of muonjum on platinum loaded silica surfaces, in
which the reaction rate of muonium with the oxygen—coated surfaces of the
platinum microcrystals was meésured.

This dissertation is organized into five chapters and two appendices.
The present cﬁapter, Chapter I, is primarily introductory. It provides
background information regarding the properties of muons and muonium, the
effect of the local environment on the time evolution of the u+ spin
polarization for both charge states, a brief synopsis of previous
experimental and theoretical pSR studies which are pertinent to the present
work and a discussion of relevant hydrogen atom experiments.

In Chapter II, the discussion focuses on the specific experimental
techniques employed in the present investigation. Included are descriptions
of muon production and transport, the uSR apparatus, electronics and data

acquisition, target preparation and the methods of data analysis employed.
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Chapter III provides a general theoretical discussion concerning the
time evolution of the u+ spin polarization for the five known muonium spin
"relaxation” mechanisms, and the associated spin relaxation functioms. Of
particular importance are the relaxation functions, for both zero and
applied magnetic field, which arise from a random anisotropic distortion of
the muonium hyperfine interaction (see Appendix I). These functions are
used in the analysis and interpretation of some of the data.

The experimental results are presented and discussed in Chapter IV.
These results indicate diffusion and trapping behavior of muonium on the
silica surface and suggest a random anisotropic distortion of the muonium
hyperfine interaction as a principal contributor to the depolarization of
the pt spin on the silica surface.

Finally, Chapter V provides a brief summary of the subject to date,
along with a discussion of possible future directions.

Appendix I contains the detailed derivations of the time evolution of
the p+ spin polarization in muonium subject to a generally anisotropic
hyperfine interaction, along with the associated spin relaxation functions
described in Chapter III.

Lastly, Appendix II outlines an experiment which is designed to study
the interactions of muons and muonium atoms with “"macroscopic” surfaces, and
draws heavily on knowledge already gained in the study of positrons (e*) and

positronium (e+e', Ps).

I.A Muons and Muonium
Some of the characteristics of muons and muonium are discussed in the

following few pages.



I.A.1 Muon Characteristics

The muon (u+,p') was first observed [4,5] as a component of cosmic rays
in 1937. Muons are unstable leptons, having a rest mass of about 105.7
MeV/c2, and apart from their finite lifetime can in nearly every respect be
considered heavy electrons (or positrons). Some of the properties of muons
are given in Table I.l.

The most common source of muons is from the decay of chargéd pions
(n+,n'). Pions (spin = 0) decay via weak interaction in the parity
nonconserving processes [6]

n+ > p+ + VP and T > p- + ;u (1.1)
with a free mean lifetime of 26.030(23) nanoseconds (ns). In the rest frame
of the pion, the decay is spatially isotropic with the muon and neutrino
being emitted in opposite directions. In the case of wt decay the muon and
néutrino both have negative helicity (i.e., spin antiparallei to momentum),
whereas for n~ decay they are both emitted with positive helicity (i.e.,
spin parallel to momentum). Since neutrinos possess zero (or near zero)
rest mass, the momentum of.the emitted muon in the rest frame is 29.8 MeV/c,
which translates into a kinetic energy of 4.1 MeV.

Like the pion, the muon also decays via the weak interaction, according

to the parity violating reactions [6]

+ o+ - - -, -

u »e + Vo + vp and p »>e + Ve + vp (1.2)
with a free mean lifetime of Tu = 2.19695(6) us [7]. In contrast to pion

decay, muon decay is spatially anisotropic in the center of mass frame; the

muon provides a preferred direction (its spin orientation) as a reference.
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Table I.1 Properties of Muons (pt,pn™)

Property (symbol) Value
Charge e pt,u™ = £1.60225 x 10-19 Coulombs
Spin s 1/2
Rest Mass m 105.6596 MeV/c2 = 206.76859(29) m_ (a)
) e
0.7570 m
0.1126123(6) mp (a)
Mean Free Lifetime Tp 2.19695(6) us (b)
g-Factor g, -2[1.001165895(27)] (c)
Magnetogyric Ratio Y ZEEE— = 8.5165 x 104 s_1 G_1
U m c
b = 2m x 13.5544 kHz/G
Magnetic Moment " h |s_| %ﬁ = 28.0272(2) x 10718 Mev/c
n z! In
= 0.00484 u,
= 3.1833417(39) Bp (a)
Compton Wavelength Xg EEE = 1.86758 fm
u
M -1/2  _
de Broglie Wavelength Ay h(anka) 2.99 & (300 K)

25.29 & (4.2 K)

(a) D.E. Casperson, et al., Phys. Rev. Lett. 38, 956 (1977).
(b) K.L. Giovanetti, et al., Phys. Rev. D 29, 343 (1984).

(c¢) J.M. Bailey, et al., Phys. Lett. 55B, 420 (1975j.
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The maximum momentum of the decay electron is given by the relation

2 [pi 2 i U240 pot¥ = 52.827 MeV/c (1.3)

This maximum occurs when both the neufrino and antineutrino are emitted in
the same direction, opposite to that of the decay electron. For this case
the spins of the neutrino (negative helicity) and the antineutrino (positive
helicity) cancel, leaving the positron(electron) to balance the spin of the
ptu™). In weak interactions, the momentum of the et(e™) tends strongly to
be (anti)parallel to its spin, so that the high energy et(e”™) tends to exit
along(opposite) the p*t(p~) spin.

Since the topic of this dissertation concerns only positive muons, the
discussions henceforth will be constrained accordingly. By neglecting the

mass of the positron in comparison with the mass m 6 of the muon, the

i
probability per unit time dW(e,0) for the emission of a positron of energy E
in the elemental solid angle dw at an angie 6 with respect to the muon spin

direction can be expressed as [6]

ai(e,0) = z== [2(3-26)][1 + P 3725 cos(0)] dedu (1.4)
i _
where s=E/Emax = 2E/muc2 and P represents the degree of polarization of the

p+ ensemble. Equation I.4 is written in terms of an isotropic average

energy spectrum C(e)=e2(3-2¢) and an asymmetry factor D(e)=P(2e-1)/(3-2¢),
both of which are shown in Figure I.l1 for a muon ensemble polarization of

P=]- .

I.A.2 Thermalization of Positive Muons in Matter

The slowing down of a pt in matter involves several stages of énergy
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Figure I.1 Positron energy spectrum from muon decay (upper curve) and
energy dependence of the asymmetry factor for 1004 polarized (P=1) muons
(lower curve). The positron energy is given in units of the maximum

possible emission energy E . = 52.827 MeV.
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loss mechanisms [1]. A'high energy u+ interacting with matter will first
lose energy by scattering‘with electrons. When the p* velocity approaches
that of the valence electrons of the target atoms (corresponding to a p*
kinetic energy of 2-3 keV), the energy loss per unit time occurs primarily
through ionization, in accordance with the Bethe equation [8]. Below ~2
keV, energy loss still occurs through collisions with electrons, except in
this case the Bethe equation does not hold since the electrons now behave as
a degenerate gas. In this energy region, a muon can also capture and lose
electrons in its interactions with the target medium, forming short-lived
neutral hydrogen—1like muoniumv(p+e') atoms; Iin many cases, the neutral
muonium atom is the favored charge state as the p* velocity drops below the
threshold for this capture/loss cycle. The final muonium atom then slows
down through subsequent non-ionizing collisions with atoms and/or
molecules.

The effect of the slowing down process on the u+ spin polarization has
been given extensive consideration by many authors [9,10], and found to be
negligible in solids, where the charge exchange cycles are much shorter than
the hyperfine period. This is, of course, good news if one wishes to study
the interaction of the p+ spin with its environment. In gases, however,
depolarization can indeed occur since the charge exchange cycles may be

comparable to the hyperfine period [11,12].

I.A.3 Muonium Formation and Characteristics
The details of muonium (Mu) formation were first discussed in 1952
[13], but it was not until 1960 that direct experimental evidence of its

formation was obtained [l4]. Some of the properties of muonium are given in
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Table I.2. The reduced mass-of the electron in muonium is about 0.996 that
for hydrogen, making the Bohr radii and ionization potentials of muonium and
hydrogen essentially the same. Consequently, muonium behaves chemically
like a light isotope of hydrogen [1,15,16], having a rest mass T equal to
0.1131 the rest mass my of hydrogen. Unlike hydrogen, however, muonium is a
purely leptonic system whose properties are calculable to extreme precision
entirely from first principles. As a result, the muonium atom is an ideal
system to be used for tests of quantum electrodynamics, and has been widely
employed as such.

A completely general Hamiltonian for the hyperfine interaction between
the u+ and e~ spins, in the presence of a magnetic field B and allowing for

effects due to an anisotropic environment, can be written

- e _ By, . (s® sk
H,, = (W/2m)(y, Sop ™ Tu gop) B+ (0/2m) §: (8, 8. ) (L1.5)

where Ye = Zn(;e) and yu = Zn(;u) are the respective magnetogyric ratios of
the electron and the muon, §§P and §ﬁp are the corresponding dimensionless
spin operators and W is a second rank tensor representing the contact
hyperfine interaction, which has been explicitly generalized here to include
the possibility of an anisotropic Mu atom, as might be imposed by a solid
medium. In vacuum, of course, W reduces to a constant multiplying the unit
second rank tensor.

For isotropic muonium (i.e., having a spherically symmetric hyperfine
interaction), the eigenvalues of the spin Hamiltonian (Equation I.5) are
given in terms of their respective weak-field quantum numbers (F,mF) by

the Breit—-Rabi formula {17], namely
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Table 1.2 Properties of Muonium (Mu)

Property (symbol) Value

Rest Mass Oyva 0.1131 my = 207.8 m,

Reduced Mass myy 0.9952 m, = 0.9956 my

Bohr Radius (ag)mu 0.5315 A = 1.0044 (ay)y

Ground State Energy (Rm)Mu -13.54 eV = 0.9956 (Rm)H

Magnetogyric Ratio YMu triplet; = 8.8 x 106 s71 g7t

~ 21 x 1.4 MHz/G

Hyperfine Frequency Voo theo. = 4463.3185(6.5) MHz (a)

expt. = 4463.30235(52) MHz (a)

de Broglie Wavelength A\ 2.979 A (300 K) = 2.967 Al (300 k)

(a) D.E. Casperson, et al., Phys. Rev. Lett. 38, 956 (1977).
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where E; is the zero field hyperfine energy splitting between the triplet

(F=1) and singlet (F=0) states, 8e and gu are the respective g-factors and
uiand pg are the electron and muon Bohr magnetons. Denoting Voo = Eo/h to
be the hyperfine-structure interval (~4463.3 MHz [18]), evaluation of

Equation I.6 for the four existing spin coupling states then gives

1. 1 _1. __1 1.2 2.1/2

ViTREL T T Voot - 5 VTR Ey Z Voo T [4 Voo T V4 (1.7)

_1 _ l_ _ . - 1 - l_ - l_ 2 241/2

V3T 1@ E3 % Yoo Vo 5 Yy 4 E4 % Yoo [4 Voo + V+]

with the definition
B|
1 e |~ 1 > >
v, =5 (8, n, ¢ g, w) = = 3 (I5,] ¢ |Vu|) (1.8)

Choosing the axis of quantization to be along the magnetic field, the
energy eigenstates |j> of isotropic muonium can be represented in terms of

the individual spin eigenfunctions |mu,me> as

1> = |+,+ 3 2> = s|+,-> + c|-, >
(1.9)
3> = |-,—> 3 4> = c|+,> - s|-, P>
where the amplitudes s (sine) and ¢ (cosine) are defined as
s = é [1 - —ﬁ—xz T 2]1/2 and ¢ = é 1+ -———————-xz 1/2]1/2
V2 (1 + x%) V2 (1 + x°)
. (1.10)
. o IBL 1Bl .
X = (ge ho = gp uo) —E: = -—§; = Specific Field Parameter

where one has the normalization condition s2 + ¢2 = 1, and Bo (= 1585 G) is

the hyperfine field. Note that in zero field, s = ¢ = 1//2 and Vo = Voo
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I.B Time Evolution of the Muonium Spin'State

The four hyperfine states are, in general, unequally populated since
the muons arrive with a preferred polarization (directed opposite to the
direction of emission from pion decay), while the captured electrons are
normally unpolarized. Thus, choosing the spin quantization axis along the
initial ﬂ+ spin polarization direction, half of the Mu ensemble forms in the
state |ag> = |+,+> and the other half in the state |by> = |[+,->. In a
longitudinal field, where the external magnetic field B is directed along
the initial muon polarization, the orientation energy is quantized along
this same direction such that the state |a;> = |+,+> = |1> is an eigenstate
of the Hamiltonian, but the state |by> = |+,-> = s|2> + c|4> is not. With

these designations, half of the muonium ensemble is formed in the "polarized
triplet” state |ay> while the remaining half is formed in the "mixed” state
|b0>, and the initial relative populations of the four hyperfine states are

given by the probabilities

1 s2 c2
P, =% Py =73 Pg =0 3 P, =5 (I.11)

Although the Coulomb interaction which governs the electron capture process
has a negligible effect on the p+ spin polarization in soiids, the hyperfine
interaction between the p* spin and the spin of the electron in muonium does

give rise to phase oscillations in the superposition |b0> of the hyperfine

states at frequencies on the order of the hyperfine-structure interval Voo

I.B.1 Muonium in Vacuum
Consider the time evolution of the muon spin polarization in free

muonium. In longitudinal field, the polarized triplet eigenstate |a;> is a
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stationary state, while the mixed state |b0> is a superposition of two
eigenstates. Since the state |a0> is stationary, one must only determine
the time dependence of state |b0>. Recalling Equation I.7, and defining
wj = vaj and wij = Zn(vij) = 21t(vi - vj), one then finds [1]

|b(t)> = e_iw2t{[s2+c2exp(im24t)]|+,—>" + sc[l—exp(iw24t)]|-,+>“} (1.12)

In zero field, where s = ¢ = 1//2 and Wy = Wgg = 2mvy,, the state | b(t)>
oscillates with a frequency w;, between the initial hyperfine state |+,—>“
and the state |-,+>", in which the muon spin direction is reversed. The
spin polarization of the muons in the state |b(t)> is given by the relation
E%"(x,t)z = <b(t)|dg|b(t)>;, where cg is the muon Pauli spin matrix for
projectigns along the quantization axis (z—axis) and % is the

corresponding unit vector. By combining this with the 100% polarization of
the muons in the stationary state |a0>, the time dependence of the total
muon ensemble in longitudinal field is given by [1]

< + cos(w,, t)

1 + x2

Bty = 5 [1+ B 0] = 5+ 5 (1.13)

bl

In transverse field (TF), where the external magnetic field B is
applied perpendicular to the initial muon polarization, the states |a0> and
‘b0> are not eigenstates and neither ome is stationary. In this case, the
initial state vectors |a;> and |by> can be written in terms of the
longitudinal field basis |mu,me>". By expanding these states in terms of
the isotropic muonium energy eigenstates |j>, given in Equation I.9, the

time dependence for each of these two states is found to be [1]
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T N G Y
(I.14)

bo(t)> = o[- & 151> + (s - e 282>
+ e 19335 4 (5 + o)e T9uE 4]
Because the magnetic field (Bz) is oriented perpendicular to the injtial
muon polarization, and since the muonium electron is only interacting with
the muon spin, all of the motion of the u+ spin in the muonium state is
confined to the x—y plane. This being the case, the time evolution of the

muon polarization for the entire muonium ensemble is given by the complex

quantity
*
Bl(x,t) = %{(a(t)|(c¥ + igh)|a(e)> + <b(e) (o} + 1)) [b()>] (I.15)
where UT and cg are the x and y Pauli spin operators. Here the real part is

the p* polarization along the initial % direction and the imaginary part
represents the u+ polarization along the ; direction, perpendicular to both
>

> > > >
x and z (i.e., x x y = z). Substituting the expressions for the state

vectors given in Equation I.14 into Equation I.15 then gives the result

Eizx’t) = %_[CZ(eiwlzt + e—iw3”t) + sz(eiw23t + eiwlkt)]
“o0 w Yoo
= exp(iw_t) cos(—i— t) [cos(—§2-+ Q)t - i&sinQTZ—-+ Q)t] (1.16)
85 = (C - 8 ) = _(1_+ xz)l/z and Q = E(w23 - wlz) - go[(l + x ) / _ 1]
X .

Most of the experiments reported in this dissertation were performed in the

low field limit (x << 1). 1In this limiting case, the real part of
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Equation I.16 simplifies to give [1]

Re{gizt)} z-% cos(w_t) [cos(@t) + cos(wy, + @)t] (1.17)

where w— = 2nv_ as defined in Equation I.8. Since the frequency (m00+ Q) is
in general too high to be observed experimentally, except in high transverse
fields, Equation I.17 describes a signal with half of the initial p+ spin
polarization amplitude (asymmetry) which oscillates at the Larmor frequency
w-, modulated at a beat frequency equal to Q. A more elaborate formalism is
developed elsewhere [19,20] for cases where the muonium electron interacts

with its environment.

I.B.2 Interactions with the Eanvironment

The interaction of the g* spin with its environment may in some cases
result in a depolarization or a relaxation of the p* spin ensemble. It is
instructive at this point to define what is meant by depolarization versus
relaxation. The term "depolarization” encompasses all varieties of spin
dynamics, including interactions in which the phase coherence of the spin
ensemble could in principle be recovered at some later time (e.g., by spin
echo techniques); whereas "relaxation” applies to those interactions which
result in a strictly irreversible loss of ensemble polarization, such as in
the case of a diffusing magnetic probe. Conventionally, however, the term
“relaxation” is applied in a somewhat generic fashion and will generally be
applied herein in the same manner.

In the case of a bare p+, spin relaxation occurs via the interaction of
the p+ spin with the local magnetic field distribution. 1In the case of

muonium, however, the p+ is strongly coupled to the electron so that in weak
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magnetic fields the fraction (50%) of muonium that forms in the polarized
triplet (F=1, m, = +1) state behaves magnetically like a polarized spin-one
object with a magnetic moment on the order of the electron's and is thus
about 103 times more sensitive to local magnetic fields than a bare p+.
Because of the rather strong hyperfine coupling, the p+ spin polarization is
also sensitive to electric field gradients or other mechanisms that may
distort the muonium electron wavefunction and thereby induce anisotropies
into the muonium hyperfine Interaction. It was for this reason that W was
generalized in Equation I.5. Thus, in addition to interactions with the
local magnetic fields, which can cause depolarization for both bare p* and
Mu, there are four other mechanisms that can induce depolarization or

relaxation of the pu¥ spin in a Mu atom. The five known mechanisms are:

(1) Random Local Magnetic Fields (depolarization).
(2) Random Anisotropic Hyperfine Distortions (depolarization)

(3) Chemical Reactions (relaxation, for TF)
(4) Spin Exchange (relaxation)

(5) Superhyperfine Interactions (depolarization)

Here the designation of "depolarization" applies only in the case of a
static (non-diffusing) probe (Mu atom). These mechanisms, along with the
corresponding spin relaxation functions, are discussed in more detail in
Chapter III. Of particular importance to the present study are the static
relaxation functions associated with random anisotropic hyperfine
interactions. These functions are derived in detail in Appendix I.

Owing to its relatively light mass, the muon (or Mu atom) may be very
mobile in the stopping medium. This motion or hopping may result in an
effective relaxation rate which differs in magnitude in comparison to the
static value. This difference comes about because the effects of the

interaction(s) governing the time evolution of the p+ spin polarization are
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averaged by the motion, hence the term "motional averaging”. Depending upon
the specific interaction(s) and the time scales involved, the motion can
produce an effective relaxation rate that has either a reduced magnitude
("motional narrowing”) or an increased magnitude ("motional broadening”) in
comparison to the static value. Relaxations due to chemical reactions or
spin exchange are not affected by motional averaging, but relaxations
arising from random dipolar fields, random anisotropic hyperfine distortions
and superhyperfine interactions are indeed affected.

The traditional example is a p* hopping stochastically in the presence
of static nuclear dipoles. Assuming a Gaussian distribution of random local
fields, and defining ©, to be the correlation time of the field
fluctuations as sensed by the p+, the spin relaxation rate in the limit of

fast fluctuations becomes [21]
2
Ao <{Aw D T (1.18)
B c

where <Aw2> is the second moment of the frequency distribution for the
random local field [22];

The effect of hopping on the shape of the relaxation functions arising
from random anisotropic hyperfine distortions or superhyperfine interactions
is not as straightforward to determine. However, a detailed discussion of

this in the case of the former is given in Chapter III.

I.C The Interactions of Muonium with Silica
Much of the work presented in this dissertation stems from earlier
studies involving both muonjium in bulk silica and on silica surfaces. A

brief summary of these studies is therefore presented here, along with
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discussions on those points of particular relevance to the present work.

I.C.l1 Muonium in Bulk Silica

Extensive studies have been made on muonium in bulk quartz [23-27],
where most of the phenomena of interest arise from anisotropic distortions
of the muonium hyperfine interaction. Zero field measurements of muonium in
single crystal quartz have revealed three frequencies at low temperatures (<
77 X). These frequencies, which obey the sum rule vy3; = v;, + V,3, remain
constant but have amplitudes that vary, as the crystal is rotated about the
initial muon spin polarization. This result is consistent with an effective
spin Hamiltonian in which the hyperfine tensor has three principal axes of
symmetry. With this picture, the three observed frequencies then correspond
to transitions between three levels, and as such are labelled accordingly.
At higher temperatures (near room temperature), the muonium hyperfine
interaction has an anisotropy which is symmetric about the c—axis of the
crystal due to motiomal averaging. In this (high temperature) case, the
hyperfine tensor W can be broken down into an isotropic part <W> = w;; and a
term éwc = éwc assoclated with a distortion along the c—axis. By denoting
Si and St as the projections of the e  and p+ spins along the c—axis,
respectively, the axially symmetric contact hyperfine Hamiltonian becomes

1" = (n/27) W:(so) $h) = (/am{ap(sg - sh) + ou (sS sk)) (1.19)

In zero field, with the c—axis oriented perpendicular to the initial muon
polarization, an oscillation of 0.412(4) MHz is observed; however, with the

c—-axis oriented parallel to the initial muon polarization, the oscillation
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disappears, as predicted by Equation I.19.

In fused quartz, the zero field hyperfine oscillations are suppressed
and the depolarization of the p+ spin is enhanced via ensemble dephasing,
owing to the the random magnitude, symmetry and orientation of the muonium
hyperfine distortion with respect to the initial muon spin. A more general
discussion of random anisotropic hyperfine distortions and their efféct on
the time evolution of the p+ spin polarization for static muonium is given

is Appendix I.

I.C.2 Muonium on Silica Surfaces

It has long been known that fine insulating powders, such as Mg0 and
Si0,, can be used in the production of positronium in vacuum [28], even at
low temperatures [29]. It is thought that positronium is formed in the
powder grains, diffuses rapidly to the surface and finally escapes into the
voilid between the grains.

The analogous phenomena for muonium was first reported in 1978 for fine
(35 A mean radius) evacuated Si0, powder [30], where the emergence of
muonium into the extragranular region was verified by the introduction of 0,
gas. The Mu spin depolarization rate was observed to increase linearly with
0, concentration, due to spin exchange interactions with the paramagnetic O,
molecules, in a manner consistent with results obtained with 0, in an argon
gas moderator at one atmosphere [31], thus demonstrating that the 510,
powder acts like a very coarse moderator gas. Later investigations [32-34]
concerning Mu in fine oxide powders, namely Si0,, Al,0; and MgO, show that a
certain fraction of the muonium formed finds its way to the extragranular

region for all three oxides. Of all the oxides tested, Si0, was found to
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have the highest formation probability for Mu, (possibly because it was
available in the smallest grain size); and the 35 A 3102 powder was found to
produce the highest yield of extragranular muonium (>97% of Mu formed [30]),
regardless of the ambient temperature of the powder. This last point made
the 35 A silica powder the obvious candidate for further studies of the

interaction of p+ and muonium with surfaces, the subject of this thesis.

I.C.3 Muonium Formation in Fine Silica Powders

The muonium fractions for bulk fused quartz as well as for 35 A and 70
A mean radius silica powders are given in Table I.3. As in the case of
positronium formation, muonium formation in fine oxide powders may involve
thermal, epithermal, spur and/or surface processes. Because the atomic
binding energy of positronium is about half that of muonium, it is difficult
to draw a simple analogy between the formation probabilities for the two
atoms. First let us ask whether muonium formation in fine oxide powders is
a bulk or a surface phenomenon; surface formation of positronium has, for
instance, been observed for low energy positrons incident on metal and
metal-oxide surfaces [35]. If muonium formation is indeed surface related,
one would expect the Mu fraction to increase with increasing specific
surface area. From the values given in Table I.3, this effect does not
appear to be particularly dramatic, if it exists at all, suggesting that the
formation of muonium in silica powders takes place primarily in the bulk.
The possibility of some charge exchange ocurring at the silica surface is
not however ruled out.

The next question is whether Mu formation occurs via thermal,

epithermal or spur processes. In the spur model [36], muonium formation
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Table I.3 Muonium Fractions (FM ) and Transverse Field Relaxation ‘Rates
(Klu) for Bulk and Powdered Silica.

Sample T (K) Fypy (%) A (ps™h)
Bulk fused 5i0, 6 79 £+ 3 3.3 + 0.5 (a)
295 79 + 3 0.20 + 0.05 (a)
$i0, powder (70 R) 6 bulk 35+ 5 4.1 + 0.7 (b)
surface 35 *+ 5 0.16 + 0.05 (b)
295 45 + 20 0.18 + 0.03 (c)
$10, powder (35 A) 6 49 + 3 0.46 + 0.03 (b)
295 61 + 3 0.18 + 0.03 (b)

(a) J.H. Brewer, Hyperfine Interactions 8, 375 (1981).
(b) R.F. Kiefl, Ph.D. Thesis, University of British Columbia (1982).
(c) G.M. Marshall, et al., Phys. Lett. 65A, 351 (1978).

The measurements on the 70 A mean diameter powder were performed in a helium
atmosphere.
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comes about when a thermalized p+ combines with an electron from the
radiation track that it itself produced while stopping. It has been shown,
for positronium formed via a séur mechanism, that the application of an
electric field inhibits the combination of e with the spur e~ [37].
Similar experiments concerning muonium formation have shown the Mu formation
probability in bulk Si0, to be independent of applied electric fields of up
to 60 kV/cm [38], suggesting that Mu formationm in bulk 8i0, is probably not
governed by a spur mechanism. However, the analogous experiments using fine
silica powders have not as yet been performed.

For the case of epithermal (or hot atom) formation, the p* undergoes a
series of charge—exchange processes as it slows down, as discussed earlier.
Recent results [39] on the formation of muonium and "muonated” radicals in
liquids, where the spur model is most popular [40], suggest that epithermal
processes play a significant role, even in the presence of spurs.

Finally, recent experiments [41] on muonium formation in Al,05 show
clear evidence that p+ + Mu on a thermal basis over times as long as
microseconds at low temperatures (T < 10 K), shortening to picoseconds near
room temperature. This process, however, does not seem likely for silica
powders since, from Table I.3, the muonium fraction 1s observed to be
temperature independent in bulk fused quartz.

One last point can be made by drawing attention to the fact that there
exists a statistically significant discrepancy in the muonium formation
probability between fine silica powders and bulk fused quartz. From Table

I.3, the muonium fractions F,, measured at 295 K for the 35 A radius 510,

Mu
powder and bulk fused Si0, are 61 + 3% and 79 + 3%, respectively. In

addition, F for bulk fused Si0, is found to be independent of temperature

Mu
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whereas for the 35 A powder FMu decreases to 49 + 37 at 6 K. These results
may be explained by the fact that in powders the Mu atoms have the
possibility of interacting with the grain surfaces. There are two possible
mechanisms associated with the surface that might account for the reduction
of the muonium fraction; covalent bonding, which in zero and longitudinal
field causes no depolarization of the pt spin but which in transverse field
removes muons from the muonium ensemble, or ionization of the muonium atom
at the surface, which has the same effect.

First consider the possibility of covalent bonding. Generally, the
silica surfaces are covered with hydroxyl groups [42,43] and are likely
chemically inert for muonjum of thermal energies. It may be energetically
possible for a stopping u+ to exchange with a hydroxyl proton; because this
type of process requires non-thermal energies, however, one would not expect
it to be temperature dependent, making it inconsistent with observations.

Now consider the possibility of ionization at the grain surfaces.
Recent positron experiments [44] show that when et of keV energies are
implanted into ionic crystals they are reemitted isotropically from the
solids with a continuum of energies having a maximum approximately equal to
the band gap energy of the solid. This phenomenon has further been shown to
be associated with positronium diffusing to the surface and subsequently
dissociating.

In 1972 it was postulated that Ps could be field-ionized in the process
of leaving a surface [45]. This, however, does not adequately account for
the anomalously large emission energies or the correlation with the band gap
energy of the solid. An alternate explanation [44] is that the positron is

Auger-emitted when the Ps electron falls into an acceptor state at the
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surface of the crystal.

It is quite possible that the same mechanism(s) governing et emission
may be involved in the interactions of muonium with ionic surfaces such as
fine silica powders. A detailed discussion of this particular phenomenon is
given in Appendix II, and thus no elaborate explanations will be given here.
Suffice it to say that with the model just described the maximum energy of
the emitted p+, corresponding to the Mu electron recombining with a hole at
the bottom of the valence band, can be written as

Mu

= (Eg +AE) - @ - R+ 2° (1.20)

where Eg is the band gap energy, AEv is the width of the valence band, R is
the binding energy of muonium in vacuum, @f is the electron affinity at the
bottom of the conduction band and @Mu is the muonium work function at the
surface. In analogy with positronium studies, the maximum kinetic energy
for Mu emission is the negative of its work function, which is given by

Mu

® - (EMu

o= R)) + (2 + el) (I.21)
where Egu is the binding energy of muonjium at the surface and @ﬁ is the p+
work function. A negative work function has been postulated for muonium on
510, surfaces [30,33,34]. For S§i0,, Eg = 10.7 eV [46] and one may assume a
conservative estimate for @Mu of 0 £ 1 eV. Substituting these values, along
with R_ and rather conservative estimates for AEv and @f, into Equation
I.20, one can conclude that Mu jionization at the surface of fine silica
powders is energetically feasible. However, since one does not expect
long-lived holes in the valence band, Equation I.20 is an overestimate.

Assuming this model to be correct, it can be easily argued that this

process would indeed be temperature dependent simply because at lower
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temperatures a Mu atom will spend a larger fraction of its life on the
surface, thereby enhancing the probability of encountering a hole. More
extensive measurements of the muonium formation probability have been made
as part of this dissertation, for SiO, powders as well as for helium coated

Si0, powders. This is discussed in Chapter IV.

I.C.4 Extragranular Muonium Production

Two models concerning the production of Mu in the extragranular region
in fine oxide powders have been put forth; one termed the thermal diffusion
(TD) model [30] and another which will be referred to as the direct
thermalization (DT) model [33,34]. Both models assume Mu formation to be a
bulk phenomenon, but present differing explanations of how the Mu atoms end
up in the extragranular region.

The TD model is an adaptation of a model originally applied to
positronium diffusion [47], which assumes that the Mu atoms thermalize in
the powder grains and then diffuse to the surface where they may be ejected
from the surface via a negative work function mechanism. As mentioned
earlier, Mu is static in bulk fused Si0, below about 50 K [26]. If one
assumes that the silica grains are of the same structure as bulk fused 510,
and that the grain in which the p+ stops remains at the ambient temperature,
then the reduced diffusion expected at low temperatures appears to cast
doubt on the TD model since it would predict a temperature dependence in the
probability for the production of extragranular Mu, in contradiction with
existing data. However, local heating of the grains due to the energy
deposited by the stopping p* may play an important role in the bulk

diffusion and subsequent ejection of the Mu atoms from the oxide grains.
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Calculations [48] of this effect estimate an energy deposition of 0.3 keV
for muons stopping in a 35 R radius 8i0, powder grain; assuming a uniform
temperature distribution within the grain, this translates into an average
temperature increase of ~300 K. Bear in mind that these calculations are
crude and thusAonly indicate an order of magnitude. At this temperature, Mu
is known to diffuse very rapidly (at least in crystalline quartz [26]),
Thus the muonium has a high probability of arriving at the surface in a
shorter period of time. Furthermore, this temperature corresponds to an

average energy of E = (3/2)kT ~ 0.04 eV for the muonium atom, which may

k

assist in the ejection of Mu from grain surfaces. If the muonium work
function @Mu is indeed negative at the silica surface, the muonium atoms

will escape the powder grains with kinetic energy E, + |®Mu . Once outside

k

the powder grains (extragranular region), a muonium atom will likely remain
outside since it would require only a few elastic collisions for the

condition Ek <KL |@Mu|

to be met. Thus the TD model can indeed explain the
existing data on extragranular muonium production, subject only to the
validity of the grain heating hypothesis.

The DT model was originally proposed to circumvent the question of
temperature dependent diffusion. This model postulates the existence of a
relatively large (@Mu ~ =2 eV) negative Mu work function at the surface of
the powder grains, which provides the possibility of direct thermalization
of the Mu atoms in the extragranular region. This model predicts the
extragranular Mu fraction to be temperature independént, in better agreement

with experiments, but it is difficult to explain the origin of such a large

negative work function.
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Recall the expression for the muonium work function @Mu given in
Equation I.21. The negativity of @Mu is of course influenced by many
factors, however there are two phenomena which are of particular interest.
One involves the distortion of the muonium hyperfine interaction and the

other involves what is termed the "photoelectric size effect”. Let us first
consider the effect of the former. If the muonium hyperfine interaction is

distorted by virtue of being on the silica grain surfaces, so that the

isotropic part of the hyperfine interaction is reduced (i.e., Voo less than

Mu

the vacuum value), the atomic binding energy of muonium on the surface Eb

would decrease accordingly with respect to the vacuum value Rw; thereby
enhancing the negatiVity of @Mu. Now consider the latter case of
photoelectric size effect. Both the electron work function and
photoelectric yield for small (£ 50 R radius) Ag particles were studied with
results indica;ing an decrease of a few percent in the electron work
function along with a corresponding increase in the photoelectric yield by a
factor of 102 over the macroscopic surface value for the smallest particle
sizes [49]. Depending upon the origin of the interaction, this decrease in
the electron work function may act to enhance the negativity of the muonium
work function @Mu for the same material. Thgs this effect may also assist
in increasing the probability of extragranular muonium production; however,

no conclusion can be drawn at this time.

I.D The Interactions of Hydrogen and Deuterium with Silica
Although muons are considered to be heavy electrons (or positrons), the

behavior of positive muons and muonjum in matter is more reminiscent of
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protons and hydrogen than of positrons and positronium. The interactions of
hydrogen and deuterium with silica surfaces has been extensively studied; a
brief synopsis of what i1s presently known about the behavior of both
hydrogen and deuterium in bulk silica (fused and single crystal) and on

silica surfaces will be presented here.

I.D.1 Hydrogen Diffusion in Bulk Silica

Results [50] obtained for hydrogen in single crystal quartz at low (<
120 K) temperatures, indicate hyperfine anisotropies along three principle
axes. Like the observations made for muonium in quartz [23-27], the
observed frequencies for hydrogen are assumed to arise from transitions
between three levels. This correspondence between muonium and hydrogen
suggests that they occupy the same site at low temperatures.

Experiments (ESR) involving the diffusion of protons in single crystal
quartz have shown that the recovery of a gamma pulse-induced frequency shift
at 306 K follows a t~1/2 dependence over an extended period of time (up to
50 seconds), indicative of one-dimensional diffusion [51]. Analysis of this
data [52] indicates that protons diffuse preferentially along the optical
axis (c—axis) with an activation energy of about 0.25 eV and a diffusion
constant of about 5 x 107® cm?/s. As mentioned earlier, one-dimensional
diffusion is suspected for muonium in single crystal quartz at this

temperature [23-27].

I.D.2 Hydrogen and Deuterium on Silica Surfaces
The effects of ionizing radiation (gamma-rays) on the surface

properties of silica—-gel have been extensively investigated using ESR
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[53,54]. Silica-gel has a rather different structure than powdered silica;
it is comprised of large porous particles, whereas the powdered material is
composed of non-porous 810, grains, which are in general much smaller in
size. In these studies, radiation induced dissociation of the surface
hydroxyl (OH) groups was observed along with the subsequent formation of
hydrogen atoms which can be stabilized on the silica-gel surface at low
temperatures. As the temperature was raised from 123 K to 153 K the
hydrogen ESR signal intensity decreased, corresponding to a reduction in the
stable H atom population. The adsorbed H atoms were also found to be highly
reactive. In particular, chemical reactions wiﬁh oxygen and ethylene were
observed in the temperature range from 123 K to 153 K, which suggests that
the H-ethylene reaction involves the formation of an ethyl radical.
Measurements of the spin—lattice relaxation time and line width in the
presence of oxygen indicate that the average separation between adsorbed H
and an oxygen molecule is about 10 A. The authors suggest that the hydrogen
atoms are located in deep "microslits” where the oxygen molecules cannot
penetrate. Weak ESR sidebands, possibly due to hyperfine interactions
between unpaired electrons and the hydroxyl protons, were also observed and
found to be dependent upon pretreatment of the silica-gel. In particular,
samples degassed at 200-300 °C for 8 hours prior to irradiation were found
to exhibit a signal with a g-value identical to that of the diphenylpicryl
hydrazyl radical, and a structure apparently due to the hyperfine
interaction between the odd electron of the radical and the hydroxyl
protons. This was verified by replacing the hydrogen atoms of the surface
OH groups by deuterium. The signal obtained for samples degassed at 500 °C

prior to irradiation was indicative of an enhancement in the bulk formation
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of F-centers due to the capture of electrons by oxygen lattice vacancies.

In 1975, measurements [55] were made of the hyperfine interval Voo for
both hydrogen and deuterium adsorbed on the surface of fused quartz at room
temperature. Results indicate reductions in v,, of 0.12% and 0.13% for
hydrogen and deuterium, respectively. In addition to the reduction in the
isotropic hyperfine interaction, an anisotropic hyperfine interaction
(distortion) was also introduced, producing hyperfine splittings differing
by < 0.4% from the vacuum values; this anisotropy has been attributed to an
electric field at the surface. The perturbation of the hydrogen atom
hyperfine interaction due to an electric field has been discussed in some
detail elsewhere [56,57].

The interactions of gas—phase deuterium atoms with silica surfaces have
been studied [58] with results showing evidence for a chemical reaction of D
atoms with with these surfaces, signaled by the formation of S$iO-D bonds.
Both Cab-0-Sil and porous Vycor glass (amorphous) surfaces were studied.

For Cab-0-Sil, the formation of SiO-D groups was accompanied by.a
corresponding decrease in SiO-H groups, suggesting an exchange reaction
favoring liberation of the lighter isotope. In the case of Vycor glass,
however, no significant decrease in the SiO-H group population was observed.
The Cab-0-Sil surface used in the ESR studies of deuterium on silica was the
same surface used in the present work on muonium.

The text up to this point has been a general introduction to muons and
muonium atoms and their characteristics, and has provided a review of the
results of previous studies involving muonium and hydrogen in bulk silica
and on silica surfaces. The present work will now be considered in more

detail, beginning with a discussion of the experimental technique.
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CHAPTER II —— EXPERIMENTAL TECHNIQUE

II.A Accelerators and Beamlines

At the present time, there are three "meson factories” in existence:
(1) Los Alamos Meson Physics Facility (LAMPF), (2) Schweizerisches Institut
fir Nuklearforschung (SIN) and (3) Tri-University Meson Facility (TRIUMF).
All three facilities currently support rather large scale pSR research
programs. In addition, CERN, Brookhaven, JINR, Gatchina (Leningrad) and the
BOOM facility at KEK also support ongoing uSR research. The experiments
described in this dissertation were conducted on the M9 and M20 secondary

channels of the TRIUMF cyclotron facility.

II.A.1 The TRIUMF Cyclotron Facility

The present layout of the TRIUMF facility is shown in Figure II.l. The
TRIUMF accelerator [1-6] 1s a sector focussed H™ cyclotron capable of
accelerating protons to energies ranging from 180 to 520 MeV at maximum
currents of 170 pA at 520 MeV [7]. The proton beam has a 100%Z "macroscopic”
duty cycle and a microscopic time structure consisting (normally) of a 5 ns
burst every 43 as.

The proton beam is extracted with essentially 100% efficiency by
passing the H™ ions through a thin carbon "stripper" foil thus stripping
off the two electrons and effectively reversing the charge of the ions. The
extracted proton energy is selected by the radial position.of the stripper
foils. The resulting protons then swerve out of the machine through three
~ available extraction ports. A more detailed discussion of the recombination

magnet and beam optics associated with the extraction system is given
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elsewhere [8].

During high intensity (unpolarized) operation, a proton beam is
extracted down Beam Line 4 and then transmitted at currents as low as 1 nA
down Beam Line 4B (maximum 1 pA) or 4A (maximum 10 pA). Both of these
channels are utilized for nucleon experiments at energies between 180 and
520 MeV. In addition, a 20 to 30 pA proton beam can be extracted down Beam
Line 2C for isotope research and production. Finally, a 130 to 140 pA, 500
MeV proton beam is extracted down Beam Line 1A and passed through two pion
production targets (1lA-Tl1 and 1A-T2) and ultimately dumped into a molten
lead target at the T.N.F. (Thermal Neutron Facility). Low intensity
(polarized) beam operation is usually shared between 4B, 4A and 1B.

Typically, the pion production target at 1A-Tl is a 10 mm thick (long)
water cooled pyrolitic graphite strip and the one at 1A-T2 is a 100 mm thick
(long) water cooled beryllium strip. Pions are produced at these targets
via nuclear reactions. Six secondary channels are currently operational
along Beam Line 1A. Three channels simultaneously extract m—mesons Or muons
at lA—Tl:‘M13 [9], M1l and a newly commissioned channel, M15, that extracts
positive muons in the momentum range 21 - 29.8 MeV/c. The length of the ML5
channel prohibits pion transport. Three secondary channels simultaneously
extract f-mesons or muons at 1lA-T2: M8, is dedicaéed to w cancer therapy,
M9 [10] primarily (in recent years) to the TPC (Time Projection Chamber) and

M20 [14] is used principally for pSR experiments.

II1.A.2 Muon Production and Transport
To begin this discussion of muon production and transport, we focus our

attention on the M20 secondary channel [l4]. The M20 channel (shown in
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Figure II.2) is mainly a decay muon channel which views the lA-T2 target at
55° with respect to the primary proton beam direction. It consists of a
injection system incorporating two quadrupole doublets (QL&2, Q3&4)
separated by a 42.5° bending magnet (Bl), which has an acceptance of 12 msr.
In addition to providing the particle collection, this system selects the
momentum of the particles emitted from the pion production target at 1A-T2
and focuses them at the slits (SL1). The injection system is followed by a
ten quadrupole decay section which is designed to collect and transport
muons produced by pions that decay in flight along its length. The
particles that emerge from the decay section are collected by a quadrupole
doublet (Q7 & Q8) and focused through a second bending magnet (B2) which has
two exit ports, one (M20-A) at 75° and the other (M20-B) at 37.5° to the
secondary beam direction before the B2 bender. A Wien filter or
crossed-field velocity separator is incorporated into M20-B and used to
reduce the positron contamination of the beam and may also be used as a
"spin rotator”.

Muons can be transported through M20 in any one of three operational
modes; “"conventional”, "cloud", or "surface / subsurface". Conventional
muons (ut or ) are produced by pions decaying in flight along the length
of the decay section between Bl and B2. In its rest frame, the pion decay
is spatially isotropic and the resulting muons have a momentum of 29.8
MeV/c. The decay muons born in the direction of the pion momentum in the
lab frame are termed "forward muons"” and those born in a direction opposite
to the pion momentum are called "backward muons™. From relativistic
kinematics, the lab frame momenta are typically ~140 MeV/c and ~86 MeV/c,

respectively. The decay section of M20 is designed to transmit only those
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muons having a small angular divergence from the initial pion momentum
(i.e., backward and forward muons). This feature not only narrows the two
available conventional momenta, but also gives rise to a high (85%)
polarization. The M20 channel can be tuned to transport backward muons
through either M20~A or M20-B with low positron contamination. In addition,
a "simultaneous” tune is available which simultaneously delivers "low -
contamination” backward and forward decay muons to M20-A and M20-B,
respectively. Because conventional muons are produced from an extended
source (pions decaying in flight along the length of the decay section) the
beam spot size at the final focus is generally rather large. The measured
beam parameters [l11] for M20 operating in backward mode and simultaneous
mode are given in Tables II.l(a) and II.1(b), respectively.

Cloud muons (put or p~) are produced by pions decaying in flight between
the production target at iA—TZ and Bl. In this mode, both backward and
forward muons are present. However, because the injection system does not
discriminate on the angular divergence of decay muons as much as does the
decay section between Bl and B2, the beam polarization 1s relatively low
(50-60%). At present, there are no calculated or measured beam parameter
values for cloud muons on the recently rebuilt version of M20; but on M9 the
beam polarization for cloud muons at 77 MeV/c is ~30%.

Surface muons [12] (only p+) are produced from n* that decay at rest on
the surface of the pion production target. Muons produced in this manner
have several advantages over cloud or conventional muons. Unlike cloud
muons, for example, surface muons include only the forwardly-decaying
component. Thig feature, coupled with the acceptance of the injection

system and the kinematics of nt decay, gives rise to two important



- 37 -

Table IT.1(a) Backward Decay Muons at 75° (M20-A) and 37.5° (M20-B)

Beam Parameters M20-A M20-B
Total Flux 2.5 x 106/sec —
5.9 x 10°/sec -
Central Luminosity 2.9 x 10%/sec/cm? —
Central Momentum (P) 86 .4 MeV/c -
Momentum Spread (AP/P) 9.6% -—-
Electron Contamination 0.3% -
1 . 300 -
Polarization 85% -
Beam Spot (fwhm) 7.2 cm -—
9.5 cm —
Divergence 63 mr -
70 mr —_—
Table II.1(b) Simultaneous Decay Muons on M20
Beam Parameters M20-A M20-B
Total Flux . 106 /sec

Central Luminosity

Central Momentum (P)

Momentum Spread (AP/P)

1.6 x
3.6 x 10%/sec

1.6 x 10%/sec/cm?

85.5 MeV/c

6.7%

1.6 x 10%/sec
4.6 x 10%/sec

3.0 x 10%/sec/cm?

All rates are for a 100 pamp proton beam incident on a 10

cm Be target
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characteristics of surface p*: (1) surface pt are at least 99.9% polarized
in a direction opposite to the beam momentum and (2) the surface u+ bean
momentum distribution has a sharp "edge” at a momentum of 29.8 MeV/c, which
translates into a kinetic energy of 4.1 MeV. Because of their low and well
defined energy, surface u+ have a high (~140 mg/cm?) stopping density and a
rather small range spread.

Another advantage of surface p+ arises because the u+ originate
directly from the pion production target. This feature provides a rather
small source for surface p+ in comparison to the extended conventional muon
source. In the case of surface p+, the production target is imaged at the
final focus thereby producing a small (~2 cm diameter) beam spot. Owing to
the low energy and monochromatic nature of the surface muon beam, surface
muons have a high stopping density as well. The small beam spot and high
stopping density of surface u+ make it possible to stop muons in small
and/or low density targets. In particular, the work described in this
dissertation involves the use of low density 510, powder targets and could
. not have been carried out without a high intensity surface p+ beam. The
measured beam parameters for M20 operating in surface mode are given in
Table II.Z2.

By tuning the channel to lower momenta, it is possible to collect and
transport p+ which are produced by nt decaying inside the pion production
target. These muons are, for lack of a better term, called subsurface
muons. Consider the cross section in the pion stopping distribution having
a width Ay and located inside the production target a distance y from the
enitting surface. The decay u+ emitted from 7 stopped in this region, must

traverse the distance y through the production target before reaching the
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Table 1I1.2 Surface Muons at 75° (M20-A) and 37.5° (M20-B)

Beam Parameters M20-A M20-B
Total Flux 2.7 x 10%/sec 1.5 x 108/sec
Central Luminosity 1.6 x 10°/sec/cm? -—
Central Momentum (P) 29.4 MeV/c —
Momentum Spread (AP/P) 6.47% 7.1%
Electron Contamination (et/ut) 40/1 40/1
Polarization 1007 1007%
Beam Spot (fwhm) X 4.5 cm ——

y 4.3 cm -
Divergence X —-—= -

y _— _—

All rates are for a 100 pamp proton beam incident on a 10 cm Be target
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emitting surface. Thus the p+ are degraded by the production target before
being collected and transported down the beamline. The range R, of the

decay ut is approximated by [13]

R = kP (I1.1)

where P, is the initial p+ momentum (in this case, 29.8 MeV/c) and k, is
a constant that depepds upon the stopping medium (i.e., the production
target). It can then be easily argued that the subsurface p+ rate is
proportional to the range R, multiplied by the appropriate decay factor.

The utility of subsurface muons is easily understood by now considering
the stopping distribution of the transported subsurface p+ beam of momentum
P < 29.8 MeV/c. Similar to p* in the production target, the range R of the

transported beam is given approximately by [13]

(11.2)
where the constant k depends on the sample in which the beam is stopped,
(i.e., k = 140mg/cm?2 (29.8 MeV/c)~7/2, for surface u+). For a given spread
in momentum and taking range straggling into consideration (typically ~10%
of the range [l4]), an estimate of the total stopping spread AR is then
given by

1/2 R

AR = [(0.1)% + (3.5 ap/P)?]

(11.3)
= k[(0.1)2 + (3.5 ap/p)2]Y/2 p7/2

From this it is obvious that decreasing the momentum bite results in only a
limited reduction in the stopping spread AR, while decreasing the momentum

yields a dramatic decrease in AR. Thus the use of subsurface muons makes it
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possible to tune for a desired stopping range spread AR.
An attempt is now being made to produce a low energy (0 to ~10 keV) p+
beam by utilizing the knowledge gained in low energy positron production
research and drawing the appropriate analogies. Recent measurements [15]

show that when et

of keV energies are implanted into LiF and NaF, they are
reemitted isotropically from the solids with a continuum of energies having
a maximum approximately equal to the alkali halide band gap. Details

regarding the physics involved and a description of the prototype apparatus

to test for the analogous u+ phenomenon are given in Appendix II.

II.B The uSR / MSR Technique

The experiments reported in this dissertation were performed using the
conventional time-differential uSR technique [16-18]. -In this type of
measurement one records the arrival time tu of the u+ and its subsequent
decay at time t,, and then constructs a time histogram for the intervals

defined by At = (te - t.). This technique requires the ability to

U
unambiguously associate a given et with the muon from which it was emitted.
Normally, this requirement is satisfied by allowing only one muon at a time
to be present in the sample.

In general, the time-differential pSR spectrum observed in a direction
defined by the unit vector n with respect to the beam momentum can be

expressed as

-t/=
_ vl > 2 s
N(t) = N_e [1+4 B (0m+ay B ()R] + B (I1.4)

where Nj 1s a normalization constant, T, is the mean muon lifetime, Ap

B

and Ay, are the initial instrumental asymmetries for the p+ and muonium
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signals, respectively, 3p(t) represents the muon spin polarization for the
p+ signal and §Mu(t) is the corresponding quantity for the muonium state and

the constant B is a time independent background.

I1.B.l1 Zero and Longitudinal Field (ZF and LF)

In zero field, one acquires information regarding the time dependence
of the p+ spin polarization by observing and comparing the pSR spectra at
angles ©=0° and 6=180° with respect to the initial muon spin direction. A
schematic representation of this is given in Figure II.3(a). In these
directions, the observed uSR spectra are

~t/%

= o, 0 - Y [ 0 B 0 Mu 0
) 0°; N (t) N e 1+ A, G, (B +A, G ()] +B
(I1.5)
180 180 ~t/7, 180 1 180 _Mu 180
0 = 180°% N (t) = N_ [1 - A G, () — A TG (t)] + B

where the time evolution of the muon spin for the pyt and Mu signals are
represented by the two zero field relaxation functions, GZz(t) and Gfi(t),

respectively.

I1.B.2 Transverse Field (TF)

In weak transverse fields (Bl <L Bo), the evolution of the muon
spin polarization in muonium can be treated using perturbation theory [16].
In this approximation, triplet muonium |a(t)> = |1> precesses in a sense
opposite to that of a free p+ in the same field, with a Larmor frequency
Wy~ 103$u, while for Mu in the mixed state |b(t)> = s|2> + c|4> the ut

spin polarization oscillates at a high frequency which is on the order of
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Figure II1.3 Schematic representations of the uSR techniques; Figure II.3(a)
shows the zero and longitudinal field configuration and Figure II.3(b) shows
the corresponding diagram for transverse magnetic field. Figures taken from
Y.J. Uemura, Ph.D. Thesis, University of Tokyo, 1981.
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- the hyperfine frequency’uygy . "However, siﬁce the experimental timing
resolution is typically about 2 ns, the hyperfine oscillation is generally
not observable, making this half of the muonium ensemble appear to be
completely depolarized. The tFansverse field geometry is schematically
represented in Figure II.3(b). 1In very weak fields (B; <10 G), the

transition frequencies vlzland vV,3 are approximately equal and thus the uSR

positron spectra take the simple form

i -t/x

N =N e M1+ Al

) _ &1
" Gxx(t) cos(mut o)

K (11.6)
+ A;u Gzi(t) cos(wMut + @;u)] + B

where @i and @&u are the muon and muonium phase angles, defined by the
orientation of the particular telescope with respect to the initial muon
spin direction, Gix(t) is the transverse field relaxation function for the

p+ signal and Gﬁ;(t) is the corresponding function for muonium.

IT.C Experimental Apparatus and Data Acquisition

During the course of these experiments, both the experimental apparatus
and data acquisition system have evolved. Since it is not possible to
describe the different stages of development here, only the present state of

affairs 1s discussed in any detail.

I1.C.1 The uSR Spectrometer
The pSR ("Eagle”) spectrometer, shown in Figure II.4, was designed to
take full advantage of the properties of surface muons. One of the most

important design constraints arises because of the relatively short range
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(~140 mg/cmz) and large multiple scattering of surface p+, which dictates
the requirement of minimizing the amount of mass in the beam path. To this
end, the spectrometer is evacuated to a pressure of ~5 microus with both the
counter array and sample situated inside. The spectrometer vacuum is
isolated from the beam line and cyclotron vacuum by a 76 pm (0.003") mylar
window through which the p+ enters the spectrometer.

After entering the spectrometer, the positive muons pass through a
variable collimator and are detected by a 0.305 mm (0.012") thick
scintillator ("D" counter) before finally stopping in the target assembly.
Four positron telescopes, each comprised of two 6.35 mm (0.25") plastic
scintillators (B1-B2, F1-F2, R1-R2, L1-L2), are arranged around the target
assembly, perpendicular (B and F telescopes) and parallel (R and L
telescopes) to the beam direction. The B telescope (up stream) is provided
with a 5 cm hole in its center to pass the pt beam. The F telescope (down
stream) is also provided with a 5 cm hole, primarily intended to pass beam
positrons thereby reducing possible backgrounds due to beam contamination.
The positron telescope array subtends a total solid angle of about %(4n)
steradians. The two counters comprising each of the four positromn
telescopes are separated by a 2.5 cm thick graphite moderator. This has the
effect of increasing the positron asymmetry by cutting off the low energy
end of the of the Michel spectrum [16] and helps prevent scattered beam
(29.8 MeV/c) positrons from firing one of the positron telescopes. The
light produced in the counters (scintillators) is transmitted thfough the
bottom of the vacuum chamber via UVT Lucite light guides and then detected
and amplified by RCA 8575 photomultipliers.

The variable collimator (2.5 cm thick brass), immediately upstream of
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the D-counter, provides four easily selectable collimator diameters (5.2,
8.0, 10.8 and 18.0 mm) and serves to define the incoming pt beam. The
collimator is positioned between the Bl and B2 counters such that decay
positrons from pt stopped in the collimator have only a small probability of
firing both counters of the B-telescope, which would result in a bad event.

The present spectrometer has four pairs of coils which provide
magnetic fields in three orthogonal directions. A pair of water—cooled
Helmholtz coils, having a mean diameter of 56 cm and a B/I factor of 4.63
G/A, provides a magnetic field in the "transverse-vertical" direction (i.e,
transverse to the incident muon momentum and vertical in the lab frame). In
principle, these coils can produce 6.5 kG, however because of the small
turning radius of surface muons in a magnetic field and the geometry of the
spectrometer itself, the apparatus is limited to fields below about 500 G.

A pair of air-cooled coils, not in Helmholtz configuration, provide a
field in the "longitudinal” direction (i.e., along the incident muon
momentum) from 0-12 G. When connected in series, the coils have a B/I
factor of about 1 G/A. With this arrangement, one can study the
longitudinal polarization of the p+ spin as a function of time by observing
the decay spectrum in the F and B telescopes.

The remaining two pairs of coils are air-cooled and provide small
(~1 G) bucking fields in the "transverse—horizontal” (i.e., transverse to
the incident muon momentum and horjizontal in the lab frame) and longitudinal
directions. These bucking coils are used to achieve zero field plus or
minus ~100 mG; however, they do not automatically compensate for time
dependent drifts which may introduce small field fluctuations (~0.2 G) over

several hours.
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The limitations of the Eagle spectrometer, namely the inability to do
research in a high (> 500 G) field or a stable zero field enviromment, will
be overcome with the commissioning of a new apparatus dubbed "Omni" which is
currently under construction. This apparatus has three pairs of water-—
cooled Helmholtz coils that produce magnetic fields in three orthogonal
directions; longitudinal, transverse-vertical and transverse~horizontal.

The longitudinal coils are capable of producing high fields (< 6 kG) while
the other two can produce maximum fields of only ~ 100 G. The longitudinal
orientation of the high field coils makes possible research in high fields,
since the p+ enter the spectrometer along the field lines and thus their
trajectories, except for focusing effects, remain unaffected. The two low
field Helmholtz pairs can of course be operated independently to produce
fields of up to ~ 100 G in the two transverse directions; however, they will
be utilized primarily as bucking coils. A feedback system coupling all
three Helmholtz pairs along with two strategically placed 3-dimensional Hall
probes will be used to produce a stable, time Iindependent zero field
environment with a stability of ~1074 G, limited by the sensitivity of the

Hall probes.

I1.C.2 Electronics and Logic

The time-~differential data acquisition electronics has evolved during
the course of the present study, primarily due to the introduction of the
LeCroy 4204 TDC. From a pSR point of view, the 4204 possesses several
attractive features. Two of the more important attributes are its buffer
memory and a nominal time resolution of 156.25 ps. With the incorporation

of a buffer memory, the 4204 TDC effectively combines all the functions
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performed by the TRIUMF BO80 1 GHz TDC and EG&G C212 pattern unit, as
employed in the previous system [19]. This feature greatly reduces the
event processing dead time.

The signals from the photomultipliers are transmitted along ~30 m of
coaxial cable before being discriminated and routed through the NIM logic
shown in Figure IIL.5. A u+ entering the spectrometer first passes through
the D~counter thereby generating a pulse at a time t 6 which both starts

B
the TDC and also triggers a pileup gate that defines the time window T for

the subsequent decay'e'+

event. At a later time t, the p+ decays, emitting
a positron preferentially along its spin direction. If the decay et is
detected by one of the four positron telescopes, within the preselected time
window T (typically 10 us), a pulse is generated which stops the TDC. 1If a
decay et is not detected within the time T, the TDC is automatically reset.
Constant fraction discriminators (CFD) were used on the critical timing
signals. The discriminated pulses from the counters comprising the four
positron telescopes are routed iﬁto four separate coincidence units. The
two—fold coincidences (e"'Ei = Eil'EiZ, etc.) ensure that accepted events
correspond to decay positroms that pass through both telescope counters and
the carbon degrader separating them. The third coincidence, shown in Figure
II.5, was not employed in the present study. The outputs of the four
coincidence units are logically "OR-ed”, with the resulting pulse serving as
the TDC stop. Simultaneous with stopping the TDC, pulses from each of the
four telescopes are also routed to set identification bits in NIM-ECL
converter units, thereby identifying which et telescope was fired. The data

are written into the PDP-11 memory via a CAMAC computer-logic interface

which is serviced by a Bi-Ra Microprogrammed Branch Driver (MBD-1l). The
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MBD reads the memory buffer of the 4204 TDC, identifies the telescope that
generated the event, and then performs the necessary functions required to
increment the histogram bin corresponding to the measured timé interval

(tg - t,). To guard against possible loss of data due to computer

B
failure, the data are periodically updated on an RLO2 disk.

The requirement of having only one p* present in the sample at a time
is fulfilled with the use of the pileup gate (model: GP 100/N EG&G Ortec).
The pileup gate (data gate) is triggered on an incident p+ pulse in the
D-counter and latched for a preset time T (nermally set to 4-8 muon
lifetimes). If a positron is detected during the data gate period T, a
"good" event is logged and the appropriate histogram updated. There are
however "bad" events that, if left unsuppressed, would introduce distortions
into the spectra. The two most iﬁportant processes that produce "bad”
events are early second p* events (u-u—e), where the second p+ arrives
during the period T but before ty, and late second u+ events (p-e—pn),
where the second p+ arrives after t,. 1In earlier versions of the data
aquisition electronics [19] the u-p—e events were rejected in logic by
vetoing multiple clock stops, thereby causing the clock to time out. The
u—e-p events on the other hand, which must be rejected after the clock has
stopped, were rejected in software by setting a fake pattern in the now
obsolete €212 unit when the second p+ was detected. The C212 and TDC were
then read and cleared by the MBD. With the new system incorporating the
4204 TDC, the p—u-e events are still rejected in the same manner as in the
earlier version. The pu—e-p events, however, are rejected in the TDC itself
which rejects multiple hit events. Thus the incorporation of the 4204 TDC

into the data aquisition electronics has made it possible to process all
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"bad™ event rejection in hardware thereby greatly reducing the event
processing dead time.

The rejection of the p-u-e events places a restriction on the maximum
rate at which one can take data using the time-differential technique.
Since the time structure of the TRIUMF cyclotron has a period of 43 ns,
which i1s much smaller than the muon lifetime, one can assume that the
incident muons arrive with a time distribution closely described by Poisson
statistics. From this assumption, and denoting the incident rate p+ by R,

the "good” event rate R.g is given by [19]

R, = R, exp(~2R T) (11.7)

For R, = 1)L, the "good"” event rate Rg is maximized. With a typical

gate width of 8 pus, the maximum "good" event rate occurs for a pt stop rate
R, of about 62 kHz. This translates into a positron event rate of 2k-3k
et/s per positron telescope. The logic level diagram for a “"good” event is
shown in Figure II.6, and a more detailed discussion of bad events and their

effect on uSR spectra can be found elsewhere [19].

I1.C.3 Targets

The Si0, powder used in these experiments was chosen because of its
high specific surface area (390 + 40 m?/g [20]) and high yield (61 * 3%) of
extragranular muonium previously observed at 300 K [21] and at 6 K [22,23].
Some of the physical characteristics of this powder are given in Table II.3.
The surfaces of these powders normally have ~4.5 chemisorbed hydroxyl (OH)

2

.groups per nm“, corresponding to about half of the surface Si atoms being

associated with a surface hydroxyl [20]. When evacuated at room temperature
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Table II.3 Physical Characteristics of the Si0, Powder

Property Value
Supplier Cabot Corporation, 125 High Street, Boston,
MA., 02110 (U.S.A.)
Serial Number EH-5
Density (unpacked) 0.033 gram/cm3
Specific Surface Area 390 +/- 40 m2/gram
Mean Grain Size 35 Angstrom (mean radius)
Major Impurities Na 20-40 ppm
P < 300 ppm
Other < 30 ppm
Hydroxyl Concentration average 3.5-4.5 groups per nm?
maximum (calc.) 7.8 groups per nm?

The above values are taken from reference [20].
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(in a vacuum equal to 102 Torr) or heated above 110°C, the powder surfaces
undergo “reversible dehydration”. In this process, the surface hydroxyls
combine to form H,0 which, when released, leaves behind additional siloxane
groups (Si-0-Si). Above about 800 °C this hydrolysis is completed and the
powder begins to sinter. The term reversible dehydration means that the
powder surfaces can be restored to their original state by either exposure
to air or immersion in water; with the target geometry used in the present
study, this restoration process takes about 24 hours in air, subject to the
ambient atmospheric moisture. It is therefore possible to vary the surface
density of hydroxyls, and indeed study the reactions of various molecules
with the surface hydroxyl groups [24-26]. The thermogravimetric analysis
curve (measured at one atmosphere), for the Si0, powder used in the present
study, is shown in Figure II.7.

Four targets were prepared with the SiO, powder essentially unaltered
from the manufacturer's specifications. Five other targets were prepared
with the same SiO, powder, but in this case hydrogen-reduced, with four of
these having a non—zero platinum loading. The platinum loaded samples were
prepared at Arizona State University, according to procedures described
elsewhere [27]. Briefly, the loading procedure iﬁvolves first physisorbing
H,PtCl, onto the Si0, powder surfaces. This molecule is then reduced in a
hydrogen atmosphere at 500 °C, via the reaction H,PtCl, + 2H, » Pt + 6HC1,
to produce surface Pt atoms. Because of the high temperatures, the Pt atoms
move about on the silica surface and eventually begin aggregating. Five
levels of platinum loading were chosen for the catalyst samples; 0.0%,
0.001%, 0.01%, 0.1% and 1.0% by weight. All samples were characterized by

well-known gas adsorption techniques at Stanford University. The specific
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surface area of the 5i0, support, which had been hydrogen-reduced during the
sample preparation, was measured using the B.E.T. adsorption isotherm
technique [28] (in this case, N, at 77 K) and found to be 320 + 20 m?/g.
This is somewhat smaller than the manufacturer's specification of 390 + 40
m?/g for the unreduced $i0, powder. Platinum dispersions (# of Pt atoms at
surface / total # of Pt atoms in sample) were measured in both the 0.1% and
1.0% Pt loaded samples by hydrogen chemisorption [29], and were found to be
1.0 £ 0.02 and 0.39 + 0.02, respectively. The percentage of the total
surface érea of the loaded catalysts which is attributable to the Pt atoms
is then 0.08% for the 0.1% sample and 0.34% for the 1.0% sample.

The targets were prepared by compressing the 8i0, powder into stainless
steel vacuum vessels, onto which a 25 um or 50 um stainless window was then
TIG (Tungsten Inért Gas) welded or electron beam welded. Welded stainless
steel targets were used both for cleanliness and because of the need to
prepare some of the samples by baking in vacuum at high temperatures. All
heat treatments were performed in vacuum for a period of 10-12 hours prior
to the experiments. The targets were evacuated through a 110 cm length of
0.635 em (0.25") outer diameter (0.4 cm I.D.) stainless steel tubing, using
a diffusion pump. The pumping system was isolated from the target assembly
by a liquid nitrogen cold trap, to reduce the possibility of contamination
arising from backstreaming. The pressure at the input of the diffusion pump
was measured to Be 10—% Torr, whereas the ultimate pressure at the target
(after bakiﬁg at T » 110 °C) was measured to be 10’5 - 1076 Torr. Although
“"low-magnetic” steels (types 316-L and 321) were uéed, there still existed
some remnant magnetization, which was found to introduce a small relaxation

of the muonium spin due to induced field Inhomogeneity. Specific details
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regarding the targets used in this work are given in Table II.4. All but
one of the targets used in the present study héd 25 pm TIG welded windows.
The exception was target 5i0,(3), which had a 50 pm electron beam welded

window.

1I1.C.4 Cryogenics

The evacuated samples were inserted through the top of a Janis “He
gas—flow cryostat (model: 10DT Super-VariTemp) which provides a uniform
low—temperature environment, variable from 1.8 to 300 K. The Janis cryostat
is mounted through the top of the Eagle spectrometer with the cryostat tail
extending down between the four positron telescopes. To minimize the mass
in the beam path the tail outer vacuum shield is removed, making the
cryostat insulating vacuum contiguous with the Eagle vacuum chamber. The
muons enter the cryostat by first passing through a 76.2 pm (0.0003")
aluminized mylar heat shield and then a 0.127 mm (0.005") mylar window
separating the helium gas thermal bath of the "sample space"” from the
insulating‘vacuum.

The temperature is regulated by adjusting the vaporizer heater current
and the *He flow rate through a needle valve. The heater is incorporated
into a PID [30] temperature feedback system along with the thermometer
(mounted on the outside of the target vessel) which monitors the sample
temperature. For temperatures in the range 300 K - 75 K, a calibrated
platinum resistor was used, and for the range 100 K - 1.8 K, a calibrated
germanium resistor was employed. Some question may arise as to whether the
thermometers measure the "true" temperature of the sample (i.e., is the

sample at thermal equilibrium with the helium thermal bath). This was
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Targets Characteristic Value
$i0,(1) Mass of Powder 1.50 + 0.05 .g
(Vol. = 4.48 % 0.05 cm3) Packing Density 0.335 + 0.015 g/cm3
Surface Area 585 + 79.5 m?
8102(2) Mass of Powder 0.50 + 0.05 ¢
(Vol. = 4.48 + 0.05 cm3) Packing Density 0.112 + 0.012 g/cm3
Surface Area 195 + 39.5 m?
$10,(3) Mass of Powder 0.72 + 0.05 ¢
(Vol. = 6.63 + 0.05 cm3) Packing Density 0.109 + 0.008 g/cm3
Surface Area 281 + 48.3 m?
8102(4) Mass of Powder 1.76 + 0.05 g
(Vol. = 6.08 + 0.05 cm3) Packing Density 0.289 + 0.011 g/cm3
' Surface Area 686 + 89.8 m?
Table II.4(b) Platinum Loaded 510, Targets
Targets Characteristic Value
Pt(1) (0.0% loading) Mass of Powder 1.50 + 0.08 g
(Vol. = 4.38 + 0.05 cm3) Packing Density 0.61 + 0.03 g/cm3
Surface Area 480 + 25.6 m2
Pt(2) (0.001%Z loading) Mass of Powder 1.50 + 0.08 g
(Vol. = 4.38 *+ 0.05 cm3) Packing Density 0.61 0.03 g/cm3
Surface Area 480 + 25.6 m?
Pt(3) (0.01% 1loading) Mass of Powder 1.50 + 0.08 g
(Vol. = 4.38 + 0.05 cm3) Packing Density 0.61 + 0.03 g/cm3
Surface Area 480 + 25.6 m?
Pt(4) (0.1% loading) Mass of Powder 1.50 + 0.08 ¢
(Vol. = 4.38 + 0.05 cm3) Packing Density 0.61 + 0.03 g/cm?
Surface Area 480 + 25.6 m?
Pt(5) (1.0% loading) Mass of Powder 1.50 + 0.08 g
(Vol. = 4.38 + 0.05 cm3) Packing Density 0.61 + 0.03 g/cm3
Surface Area 480 + 25.6 m?
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tested experimentally by first stepping through the temperature range in
increasing steps, and then repeating these measurements in reverse order.
The data were found to be quite insensitive to the order in which the
temperature points were taken, indicating that the sample was indeed in

thermal equilibrium with the helium bath of the cryostat.

III.C.5 Gas Handling

Figure I1.8 shows the gas handling system used for physisorbing or
chemisorbing controlled amounts of different gases onto the sample surface.
By altering the surface characteristics in this fashion, and observing the
associated change in the muonium behavior, one gains further insight into
the relaxation and diffusion behavior of muonium on surfaces. 1In the
present study, “He is deposited on the silica surfaces. The gas handling
apparatus is quite typical for the purpose at hand and consists of a doser
volume Vi (three different doser volumes were used for these experiments,
41.9 + 0.16 cm?, 36.5 + 0.6 cm3 and 28.2 * 0.5 cm3), a standard volume Vg
(1331 + 28 cm3) and a metering valve V, on the output. The pressure in the
system is monitored by a Baratron gauge (MKS model: 220BHS-2A1-B-1000)
capable of measuring pressures in the range 0-100 Torr. This gauge is
accurate to within 0.15% of the reading and is also temperature compensated
with an associated error of 0.01% F.S./A°C. The latter source of error was
not taken into account in the data analysis, and no "zero drift” in the
gauge was observed. The dead volume in the output section after valves V,

and Vg was measured to be 35 + 2 cm3

» not including the targets.
During gas deposition, the sample temperature was kept low enough to

ensure that any gas atoms reaching the surface would be adsorbed; for “He on
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Si0,, the temperature was typically kept below 10 K. To estimate the amount
of gas required for fractional or complete monolayer coverage, one
calculates the change in pressure AP in the doser volume, according to the

simple equation

AP = £ —6—-‘7—— RT (II-S)
x d

where f is the fraction of the surface area to be covered, A is the surface
area of the sample, R is the gas constant (1.036 x 10719 torr cm3 K1), Ox
is the area covered by an adsorption atom or molecule X (~10-15 cm?, for
helium on silica), Vq 1s the doser volume of the system and T is the doser
volume temperature.

For physisorption of atoms and molecules, the following gas handling
procedure was used:

(1) With Vis V3, Vy, V5 and V¢ closed, open v, and evacuate the
system using the turbo pump.

(2) Once the system is evacuated, close V,.
(3) Open V, to pressurize doser volume to desired level.

(4) Once.the desired pressure is. attained, close A and note pressure
on the Baratron gauge.

(5) Open V, or V; (depending on requirements placed on flow rate).

(6) Open V. and wait for the system to come to equilibrium, (may take
6
30 minutes).

(7) Note pressure on Baratron gauge.
(8) Take data.

(9) Note pressure once again to ensure that the system was near
equilibrium.

(10) Repeat this procedure as many times as necessary to achieve the
desired surface coverage.
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Because one is normally dealing with small quantities of gas and small flow
rates, the temperature of the sample is only briefly perturbed by this

procedure; such temperature fluctuations were normally unobservable.

1I.D Data Analysis
The MINUIT (31] minimization package was used to provide least—squares
fits to the data and to generate the statistical errors on the function

parameters.

II1.D.1 Transverse Field Spectra

For the transverse field data, the raw spectra were fit separately,
with the function given in Equation II.6. 1In these fits, the transverse
field muonium relaxation function was assumed to be of the form

Mu

Gro(e) = exp[-(A}

+ xo)t] (11.9)

where Ko (K KT“) is the relaxation rate due to field inhomogeneity and was
determined by a measurement at low temperature (~6 K) with several
monolayers of “He on the grain surfaces; earlier experiments [22,23] on fine
alumina powders have shown that Mu is protected from the depolarization
centers on the oxide surface by just such a helium film. The two parameters
of interest to the present study are the initial muonium asymmetry A;u and
the relaxation rate hTu. The fitted asymmetries for each positron telescope
were treated independently, whereas the relaxation rates were combined in a

weighted average.
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I1.D.2 Zero and Longitudinal Field Spectra
For the zero and longitudinal field data, the F and B spectra were
first treated separately by removing the respective backgrounds using the
"t<0" time bins. After this, they were combined to form an asymmetry

spectrum defined by

asy = () - B°] - ['(e) - B'] (11.10)
[NB(t) - BB] + [NF(t) - BF]

in which the muon lifetime is automatically divided out. The resulting
spectrum was then fit using Equation II.10 with the appropriate relaxation
function assumed.

In practice, the two telescopes do not in general have the same solid
angle, with respect to the target, or efficiencies. These differences are
parameterized in terms of a relative efficiency parameter a, = Nleﬁ. The
associated correction is given by the equation

(1 + ao)ASY -1 - ao)

ASY(corr) B a+ ao) - (1 - ao)ASY

(I1.11)

The resulting asymmetry spectrum is then referred to as a "corrected

asymmetry”.
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CHAPTER 111 —— THEORY OF MUONIUM RELAXATION

To obtain a clear interpretation of the experimental results, it is
important to understand the different relaxation mechanisms through which
the p+ spin may be depolarized. For muonium, the ensemble spin polarization
can be lost through interactions with the environment by means of the five
relaxation mechanisms:

(1) Random Local Magnetic Fields

(2) Random Anisotropic Hyperfine Distortions

(3) Chemical Reactions

(4) Spin Exchange

(5) Superhyperfine Interactions
In this chapter, these mechanisms, along with the associated spin relaxation
functions, are discussed. The effect of diffusion on these relaxation
functions is also considered. Since the mixed state |b0> is normally

unobservable, this discussion will be restricted to the half of the muonium

ensemble initially in the polarized triplet state |a0>.

IIT.A Spin Relaxation Functions
For a muonium atom, the expectation value of the g+ spin polarization

is defined by the equation

1
<§gp(c)> Tr{gﬂp(t) (7 o + (§zp(0) - 84 Ve p (0}

(1I11.1)

1 B b B . ok
7 Tr{§°p<c> p (O} + Tr{(gop(t) Sop(0) 05€0)) -« 85}
where UM and U® are the unit operators for the p+ and e~ spins,

respectively, [%-Up + (gﬁp(O) . §?n)]Ue is the initial spin density operator

associated with the spin dynamics of the muon, pS(O) is the initial spin

b

density matrix for the environment and Ei

= 2.5¥ is the incoming muon spin
n ~in
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polarization vector. In general, the first term in Equation III.l reduces
to zero because the tface over any spin vector operator is zero. This makes
it possible to express the expectation value, <§gp(t)>, in terms of a second

rank spin-spin autocorrelation tensor g(t), defined as

g(t) = Tr{sh (t) 8% (0) p (0}

(I11.2)

Tr{exp| tHt(27/h)] g‘;p(O) exp[-1Ht(2n/h)) g%p(O) p (0}

where H is the spin Hamiltonian of the system. With this, Equation III.l

can be written as
v - T
§§op(t)> g(t) gin (II1.3)

where the time evolution of the p* spin polarization is completely
determined by the motion tensor g(t). In zero and longitudinal field, g(t)
is defined as the relaxation tensor. 1In transverse field, however, this
tensor includes oscillatory terms corresponding to Larmor precession which

are omitted in the definition of the transverse field relaxation tensor.

II1.A.1 Random Local Magnetic Fields (RLMF)

In the context of the spin-spin interaction between a magnetic probe
and some weak dipolar field distribution, the spin Hamiltonians for triplet
muonium and for posifive muons are mathematically equivalent, except that
the former has a magnetic moment which is ~103 times greater than the
latter.

The general spin Hamiltonian for a muonjium atom, in the polarized
triplet state, interacting with N nuclear spins is given by the equation

d

q z
.+ H) +H
(1 + 1)

H =
3

(III.4)

[ k=1

1
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where H? represents the dipolar interactions between the muonium atom and
the N neighboring nuclei, Hg represents the quadrupoiar interactions of the
nuclear spins (due for instance to electric field gradients induced by the
presence of the muonium atom) and H” are the Zeeman terms. Note that any
dipolar interactions among the nuclear spins have been neglected. Because
of the desire to treat triplet muonium the same as a positive muon, one
defines §op to be the spin operator of the magnetic probe (p* or Mu, etc.)
and Y (= Zn;s) as the corresponding magnetogyric ratio. By further
defining ggp as the spin operator of the jth nucleus, and Y3 (= Zn;J) as the

corresponding magnetogyric ratio, the Zeeman term is written as

N .
- B) - ] (w/2m) vy(3) ) ¢ B) (IIL.5)

Z —
B = (n/2%) v (8,
=1

p

In addition, the dipolar terms can be written

d = 2 _3 L4 j - > . > . j
1S = 2m? (v, v )00 )7 gy, 23, - 30y 8By 22,01 aunee)

and the quadrupole terms are

nd
j

w
475302 . 3332 _
(h/2m) —= [3(nj gop) J(3 +1)] (111.7)

where ;j is the unit vector in the direction from the muonium spin to the
jth nucleus located at a distance rj, J(J + 1) 1s the eigenvalue of the
operator ggp and wq represents the strength of the quadrupolar interaction.
The zero and low field (external field << local field) spin relaxation
functions for a magnetic probe interacting with a random local magnetic
field were first discussed in 1967 [1,2]. 1In this formulation, the
quadrupole interactions are assumed to be negligible and the dipolar
interactions, which are in general described by a quantal local magnetic

field operator, are approximated by a static (continuous) effective local
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dipole field H. With these assumptions, the dipolar interaction term takes
the simple form

q = (h/27) Ys(gop . ﬁ) (111.8)

N

) H

F1
The effective field distribution is further assumed to be isotropic, with

the magnitude of each component being distributed according to a continuous

Gaussian distribution function of width A/ys, given by

2 i
fG(Hi) = 2. exp[- = 21 ] 3 i=x9, z (II1.9)
/21 A 2A
and
2
£ () = [ == 1 exp[- =—— 1] [4n |n|°] (1I1.10)
V/2n A 2A

where A is the second moment of the field distribution [3]. Assuming this
distribution, the zero field spin relaxation function of a magnetic probe in
a system of static local dipolar fields is found to be [1,2]

2
ggz(t) = %-+ %— (1-a tz) exp(- %Aztz)

(III.11)
which is the familjar static Gaussian Kubo-Toyabe function. In Equation
I1I.11, The 1/3 component corresponds to the component of the local field
directed parallel to the initial p* spin polarization (i.e., the beam
direction, z—axis), while the damped oscillation of the 2/3 component arises
from the x and y components (i.e., normal to the incident muons
polarization) of the random local field.

The application of a longitudinal field BL (directed along the z—axis)
can be used to effectively "decouple” the magnetic probe spin from the

static local fields, thereby quenching the depolarizing effects of the

dipolar interaction. For small longitudinal fields, one obtains the
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expression [1,2]
2

G 2A 1 .22
gzz(t,wL) =1- wz [1 - exp(- 7 At )cos(th)]
L (I11.12)
4 t
2A 1,22
+ = [ dt exp(- 7 AT ) sin(er)
w, o
L
where, W, = YsBL' This function is shown for various values of wp in Figure

III.1. Positive muons and the techniques of uSR are ideally suited for
studying relaxation functions in any (or zero) external magnetic field, and
thus provided the first experimental observation [4] of the Kubo-Toyabe
function given in Equation III.1ll.

In the limit of "randomly ordered” moments (i.e., distributed randomly
in the lattice), the local magnetic field distribution at the pt site
approximates a Lorentzian distribution [5-7]. The Lorentzian field

distribution (HWHM = a/ys), can be written as

i=x,vy, z (II1.13)

Hh
[
VoY
jas]
=
p—
n
0
|
)
N
—_—
we

and

3

y
£(|u}) = 5 [ [4n]u|?] (III.14)
(a® + v |H])
For the case of static local fields, the zero field spin relaxation function

takes the form [8]
gr (£) = ++ 2(1 - at)exp(-at) (1II.15)

As in the case of the Gaussian Kubo~Toyabe function, given in Equation
I11.11, the static Lorentzian function giz(t) exhibits the characteristic

time dependent 1/3 component. Furthermore, an applied longitudinal field
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Figure ITI.1 Static longitudinal field spin relaxation function for a
Gaussian random local field, plotted for various values of wL/A.
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BL > Hi will effectively "decouple” the spin—spin interaction between the

magnetic probe and the random fields according to the equation {8]

g (tyw) =1 - %L[ 3y (w t) exp(-at)] = (2)%[5,(w,t) exp(-at)]

9L
a 2 t (II1.16)
- a1+ (2)7] ] av [55(uy7) enp(-av)]
L (o}
where j0 and j1 denote Spherical Bessel functions, and w = YsBL' This
function is shown in Figure III.2 for selected values of Wy

The exact quantum mechanical solution for the time dependence of the p+
spin polarization, assuming the Hamiltonian of Equation III.4, has also been
investigated [9-11]. The zero field relaxation functions gzz(t) obtained
are found to deviate from the Kubo-Toyabe function, given in Equation
I11.11, at long times (t >> 2/A). This deviation, whichbmanifests itself as
extra oscillations in the long time tail, can be understood intuitively by
noting that the exact quantum mechanical solutions allow spin—-flip
transitions involving the pt and neighboring nuclei which, in the dilute
limit, appear as coherent oscillations. This type of relaxation function
has recently been observed experimentally for p+ in alkali fluorides [12],
with results suggesting the u* to be localized along the <110> axis, between
two 19F nuclei.

The corresponding transverse fileld function, for a magnetic probe
interacting with local magnetic fields, is discussed in both the static and

dynamic limits in section III.B.

III.A.2 Random Anisotropic Hyperfine Distortions (RAHD)
In condensed media, the muonium hyperfine coupling may be perturbed due

to the electrostatic interaction between the muonium electron and the



—

9
8

C

Qo 7

©

N B

5

° 5

o
4
3
2
A

Figure III1.2 Static longitudinal field spin relaxation function for a
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lattice. As discussed in section I.C.l, a classic example of this
interaction is the case of muonium in bulk quartz. The resulting change in
the ground state wavefunction is transmitted to the p+ via the magnetic
dipole-dipole coupling of the u+ and e~ spins. The contribution to the
total Hamiltonian due to the hyperfine-lattice interaction is implicitly

included in the W tensor of the hyperfine term of the Hamiltonian

- e _ By, . (g® gk
H = (h/21)(y, Sop ™ Yy gop) B + (h/2n) W : (gop gop) (111.17)

If the distortion of the hyperfine coupling is isotropic, a shift in the
hyperfine-structure interval vg, will occur, along with a corresponding
shift in the energy eigenvalues. The zero field eigenfunctions for the
system will however remain functionally unaltered from the vacuum hyperfine
states so that no additional time dependence of the pt spin polarization is
induced. In general, however, the distortion may have some anisotropic
components, and in this case one observes dramatic effects even in zero
field.

The time evolution of the u+ spin polarization for a generally
anisotropic muonium hyperfine interaction is discussed in some detail in
Appendix I. The approach that is taken involves expanding the hyperfine
tensor W in terms of spherical harmonics and using the expansion
coefficients wr o to parameterize the distortion. Because the hyperfine
tensor W involves only dipole-dipole and contact interactions, both of which
have reflection symmetry, the antisymmetric part of the expansion is
identically zero. Although interactions of this type may produce different
distortions in the electron wavefunction of each muonium atom, they do not

lead to a true (irreversible) relaxation of the muon spin vector for the

individual muonium atoms. For an ensemble of muonium atoms, however,
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depolarization can occur via ensemble dephasing, provided that there is a
random distribution in the distortions of individual muonium atoms in the
enemble. To describe the ensemble relaxation, an approximation of Tr{pS(O)}

is adopted, where each of the w, 's is assumed to be distributed according

2m

to some distribution function me(me)' With this approximation, one has

©

Tf{pS(O)} ' dw, me(me) (I11.18)

The motion tensor for the ensemble is then approximated by

~ B B
g(t) =~ I _i dw, £, (w, ) Tr{gop(t) §op} (I1I1.19)
where the trace over the muon spin operators is included in the integral.

The spin relaxation functions associated with a specific distortion symmetry

are then calculated by averaging over the appropriate Wy distributions.

Of particular interest to the present study are the zero and transverse
field spin relaxation functions for a randomly oriented system such as in
the case of muoﬁium in bulk fused quartz or on the surface of fine silica
powders. To calculate these functions, one must also average over all
possible orientations. Consider the combination of a cylindrical distortion

coupled with a planar distortion, which are parameterized by the frequencies

M

w and Woos respectively. Assuming each of these frequencies to be

20

distributed according to a Lorentzian or Lorentzian-like distribution with
zero average, as discussed in Appendix I, one has

(o} GM (.\)M
M 1 20 4 22 “22 -1
£( ) = { (2n) 7}

P02 ()T () ()P + ()]

(111.20)

where %0 and ng represent the respective widths (HWHM) of the frequency

distributions. Ignoring the mixed state component of the muonium ensemble,
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the polarized triplet muonium static relaxation function in zero field is

found to be

rh 1 1 M 1
g () == (1-%0,,t) exp(- > o,,t)
zZZz 6 2 722 2 22 (1II.21)
1 1 M 1, M —
+ 5—(1 - Z-czzt) exp[— Z{GZZ + 3/2/3 ozo)t]

This result can be better understood by considering the two cases of a
purely cylindrical distortion and a purely planar distortion, separately.
If one neglects the planar component of the hyperfine distortion, Equation

I1I.21 becomes
rh _ 1,1 _3 o=
8,,(t50,0) = ¢ + 5 exp[- = V273 o,,t] (111.22)

Notice that as t + «, this function tends to 1/6, (or 1/3 of the initial
polarization of the triplet muonium ensemble). The time independent 1/6
component of the total ensemble spin polarization (residual polarization)
arises because there exists a non-trivial zero frequency. This can be
understood intuitively by drawing an analogy with random dipolar fields and
noting that for a random hyperfine interaction, the cylindrical distortiomn
axis will be directed along the z-axis (i.e., along the initial muon spin
polarization) 1/3 of the time on average.

If on the other hand one neglects the cylindrical component of the

hyperfine distortion, Equation II.21 becomes

rh M 1 1 M 1 M
g (t;o,,) =+ (1 - %0, t) exp(- = o, t)
zz® 722 6 2 722 2 722 (1II.23)
1 1 M 1 M
+ 5 (1 - 7 oy,t) exp(- 7 o, t)

Notice here that as t » =, this function approaches zero. This result
simply reflects the fact that, unlike a cylindrical distortion, a planar

distortion generates no non—trivial zero frequencies.
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From considering these two limiting cases, it is obvious that the
planar component of the distortion is responsible for driving the function
g;:(t) in Equation III.21 to zero at long times. A typical example of this
function, along with the two limiting cases is plotted in Figure III.3.

In an external magnetic field B, the-problem of calculating the
relaxation functions for a random anisotropic hyperfine interaction becomes
somewhat more difficult, especially for a randomly oriented system. There
are, however, a few simple limiting cases that can be treated. Cousider,
for example, triplet muonium in the limit of "high fields” ({i.e., w u >> o,

M
and x < 1). In this limit, the isotropic frequencies dominate so that the

m

Hamiltonian can be approximated by its diagonal elements alone (secular
approximation). These calculations are given in Appendix I for the case of
a randomly oriented system. Results for the longitudinal field case show
that, in this 1imit, a longitudinally applied field will completely decouple
the random anisotropic hyperfine interaction. In the transverse field case,

one obtains (omitting the Larmor precession part) the relaxation function

n n/2
(22)7 [ dp sing [ do
o] o

rh
g__(t)
= (IIL.24)

X

cos(8)t] exp[—-% V273 %0 |3coszﬁ - 1t]}

3 2, M
{exp[- §-sin B %59

For early times (t » O), one can expand the integrand to obtain the short
time behavior and approximate the relaxation function with the expression

h 1 V2 2 M
g;X(t) = 5 exp[-( T %0t ;;E czz)t]

The exact solution of Equation II1I.24, calculated numerically, as well as

(II1.25)

the expansion approximation given in Equation III.25 are plotted for
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Figure III.3 Static- zero field RAHD relaxation functions assuming
Lorentzian frequency distributions with zero averages. The cylindrical
component of the distortion is represented by the long-dashed curve (620 =
10 pus~l), whereas the planar distortion component’(cgz = 10 us~1) is
represented by the short-dashed curve. The solid line is the combined
relaxation function for equal cylindrical and planar components (020 = 099 =
10 pus™1). All three curves have been normalized to equal 1l at t=0.
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comparison as a function of time in Figure III.4. Notice that at early
times, these two functions are virtually indistinguishable in shape.

The assumption of a Lorentzian (or Lorentzian-like) distribution may
not in general be appropriate, simply because a Lorentzian distribution has
an infinite second moment. A more appropriate approximation may be made by
assuming a modified Lorentzian, with a Gaussian damping. The affect of
assuming this frequency distribution will of course be reflected in the
shape of the calculated relaxation function, and can most easily be
understood by considering the simple example of a purely cylindrical
hyperfine distortion. 1In this case one defines the distribution

%20

2 -1
f(wzo) = (n et erfc(\)) Ljf—f:—ji—] exp[-(wio/cgo)xz] (111.26)
W0 T %0

where A\ is a damping parameter (typically less than one), and erfc(A) is a
complimentary error function. Using this definition, the static zero field

relaxation function is found to be

rh 1 -1, "%t
gzz(t,K;czo) = 3-+ (6 erfc(k)) {e erfc(l - oéot/(ZX))
(11I.27)
. +céot :
+ e erfc(A + oéot/(ZX))}
where oéo = y/2/3 Tp* This function has been calculated and is plotted in

Figure IIL.5 for A = 0.0 and 0.1l. Note that for small values of A\, this
function is virtually indistinguishable from the function derived using a
standard Lorentzian distribution (Figure III.3). However, as A is
increased, the initial decay begins to mimic a Gaussian shape. Because of
this, one should be able to put an upper limit on A for data exhibiting an

exponential-~like initial decay shape.
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Figure II1.4 Static transverse field RAHD relaxation function. The solid
curve is the exact solution of Equation II.24, calculated numerically, and
the dashed curve is the expansion approximation of Equation I1I.25. Both
functions have been evaluated for opy = ng = 10 ps™l and have been
nomalized to equal 1 at t=0.
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Figure III.5 Static zero field RAHD spin relaxation function for a pure
~cylindrical distortion, assuming the form of Equation III.27. The function
is plotted for two values of the damping parameter A, 0.0 and 0.1, for the
case of g,5 = 10 us”l. The curves have been normalized to equal 1 at t=0.




_81_.
An interesting point can now be made by comparing the initial slopes of
the zero field relaxation function given in Equation IITI.21 and the high
transverse field function of Equation III.24. By defining moe and m to be

the initial slopes of the zero and transverse field relaxation functions,

one can define the ratio

— r M
m v+ 4//6 (o,,/0,,)] _
2L . —— 2 0 .3 (111.28)
tf [1+ /12 %-(022/520)]

Thus, one finds that m . >m indicating that the depolarization rate is

tf’
faster in zero field than in transverse field. This important result can be
understood by considering the problem in terms of dimensionality; in zero
field, all three components (x,y,z) of the hyperfine distortion contribute
to the relaxation of the u+ spin, whereas in high transverse field, one is
able to make a secular approximaEion to the Hamiltonlian and effectively
ignore all but the isotropic and cylindrical (z-axis) components.

For Mu in bulk silica, the u+ spin polarization relaxes via random
anisotropic hyperfine distortions (RAHD) [13]; interactions with 29Si nuclei
(4.6%, isotopic) are relatively insignificant. In an amorphous environment
such as bulk fused silica, the hyperfine distortions are distributed
randomly both in orientation and magnitude. It is also known that muonium
is static in bulk quartz below about 50 K [13]. Because of these two
features, Mu in bulk fused silica provides an excellent test case for the
zero and transverse field RAHD spin relagation functions developed here.

The zero and longitudinal field spectra for muonium in bulk fused
quartz at 7.0 + 0.1 K are plotted in Figure III.6. The curve through the

zero field data is a fit of Equation II.1l0 to the data, assuming the static

RAHD function of Equation III.21. The fit gave a Chi-square of 86.2 for 53
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Figure I11.6 Zero and longitudinal field data for muonium in bulk fused
quartz at 7+l K. The line through the zero field data (circles) is a fit of
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degrees of freedom and the fitted results for the cylindrical and the planar
distortion parameters were 5.7 (+1.5/-1.2) ps_l and 6.2 (+0.54/-0.52) ps—l,
respectively. The triplet muonium asymmetry parameter was allowed to vary
in the fit and found to be 0.118 (+0.0030/-0.0030). Recall that the muonium
asymmetry reflects the fraction of muonium formed in the sample; the result
obtained here is consistent with the corresponding value obtained in low
transverse field.

As has been discussed, a random hyperfine interaction can be almost

completely decoupled in longitudinal field for w, >> Som® From the fit of

Mu
the zero field.7 K data, this translates into a longitudinal field on the
order of a few Gauss. As can be seen in Figure I11.6, the decoupling
behavior is consistent with this.

Finally, by substituting the values for %50 and o?z obtained in the
zero‘field fit into the approximation for the transverse field function
given in Equation III.25, one obtains a transverse field relaxation rate
XT“ of 2.9 * 0.5 ps'l, which is consistent with existing transverse field
data [13].

Although a Lorentzian distribution of frequencies does reproduce the
basic features of the quartz data, it is probably not the most realistic
assumption. Perhaps using the type of distribution defined in Equation
II1.26 would be better, but there is at present no obvious physical argument

or model that can be used to help decide what the correct distribution

should be.

I1I.A.3 Chemical Reactions (CH)

The coherence of the spin polarization of the p+ in the muonium state
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can (in transverse field) be lost through collisions of the muonium atoms
with molecules which result in chemical reactions forming diamagnetic
products [14]. With this mechanism, the muon spin polarization must decay
exponentially. In the gas phase, the transverse field relaxation function

is given by the expression

i) = exp[- AS" t] = exp[-(n v o) t] (II1.29)

where mn is the number of-interacting molecules per unit volume, v is the
mean relative velocity between the muonium atom and the molecules and S is
the cross section for the reaction.

In transverse field, a p'* precesses about 103 time slower than triplet
muonium in the same field, such that if a chemical reaction produces a p+ in
a diamagnetic environment, the u+ is effectively removed from the precessing
muonium ensemble. 1In zero and longitudinal field, however, such reactions
produce no observable relaxation since the p+ spin remains polarized along

the z-axis regardless of whether the pt is in the muonium state or in a

diamagnetic state.

IITI.A.4 Spin Exchange (SE)

In collisions with paramagnetic molecules, hyperfine tramnsitions such
as |mu,me> = |+,+> > |+,-> can take place. As in the case of chemical
reactions in transverse field, the decay of the muon spin polarization due
to spin exchange is found to Qary exponentially with time so that, in

transverse field, the relaxation function is written

f
gii(t) = exp[- xfe t] = exp[—(i-n v ose)t] (111.30)
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where n is again the number density of interacting molecules, v is the mean
relative velocity between the muonium atom and the molecqles, Oge is the
spin exchange cross section and f is a factor which depends on both the spin
of the paramagnetic molecules and the orientation of the external magnetic
field with respect to the initial muon spin polarization.

In longitudinal field, where the quantization axis is along the initial
muon spin polarization, spin exchange causes hyperfine transitions with a
probability of s2c¢2 = (1 + x2)~!. Thus in terms of the specific field
parameter x, the spin exchénge relaxation function for muonium in a
longitudinal field is written as [14,15]

se

g, (t,x) = exp[- A€ t] = exp[-(3z n Vv o )(1+ )71 t] (I1I.31)

| Hh

Transverse field studies [16] of the temperature dependence of the spin
exchange reaction of muonium with 0, (S=1) and NO (5=1/2) have shown that
the factor f to equal 8/9 for 0, and 3/4 for NO, whereas in longitudinal
field studies [15] the factor f was found to equal 64/27 and 2 for 0, and

NO, respectively.

III.A.5 Superhyperfine Interactions (SHF)

The time evolution of the muon spin polarization in the muonium state
can also be influenced by the superhyperfine interactions between the
unpajired electron of the muonium atom and neigboring nuclei with
non~zero magnetic moments. To describe this interaction, one first defines
a coordinate system\with the muon located at the origin, the electron
positioned at radius 3, the interacting nucleus located at radius R

(directed along the z'-axis), and the distance between the electron and the
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nucleus defined by the vector T which originates from the electron. A
schematic diagram of this is shown in Figure III.7. With these
designations, the Hamiltonian for the superhyperfine (SHF) interaction
between the electron and a nucleus of spin gop can be written as [17]

shf _ _ e e
H ' = (a - b) (gop gop) +3b (s, J,) (111.32)

where S:, and Jz' are the respective z'-components of the electron and the
nuclear spins and the superhyperfine parameters (a & b), corresponding to a

"contact"-1like term and dipole-dipole term, respectively, are defined as

b 8y uy) ¥d|?

and (II1.33)

a=3%q(
3 e

2
J) Id3'; |w(;)lz [3 CcOSs (‘L') - 1]

o 3
r

_1 e -
b =3 (ge By, 85 B

Here and pi are the g-factor and Bohr magneton of the neighboring

g3

nucleus, respectively, and Tt 1s the angle defined by the vectors T and R.
Take as an example an isotropic superhyperfine interaction of muonium

with a single nucleus of spin J (»1), in zero magnetic field. 1In this case

one has b=0 and z=z' such that the total Hamiltonian can be written in the

form

=w-

hf
a) =g (s

)+ a(s€ . g ) (III.34)

H = (th +
~op ~Op

gk
NOP

The four eigenvalues of this Hamiltonian are

1 a 1 a :
A, == (W/2m)w,, + = J ; Ay =+ (h/21)w,, — = (3 + 1)
4 00 " 2 3% 00 ~ 2 (II1.35)

>
|

[(n/2n)ugy + a] *+ = {[(n/2m)uy, = 21 + 3(3 + 1)a?} /2

N

where w,;, is the hyperfine-structure interval of the perturbed muonium atom,
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Figure I11.7 Diagram representing the superhyperfine interaction. Taken
from reference [17]. ‘
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and the corresponding transition frequencies between the eigenstates are
defined as Wy 5 (2n/h)(xi - hj). Since to a first approximation, AMom Ay
Ay = (1/4)(h/2n)w00, the transition frequencies w;,, wy, and w,; are of
order wg,+ Frequencies of order wgo are generally not experimentally
observable in zero field due to timing limitations. Bearing this in mind,
an approximation can be made by ignoring the oscillatory terms involving
these frequencies, which simply implies ignoring the singlet state.
Assuming a relatively large value of J, one then obtains an approximate

relation for the zero field relaxation function of the observable muonium

ensemble, namely
g::f(t) z‘% {1+ cos(wlzt) + cos(m23t)} (III.36)

Comparison to muonium in vacuum shows that the time-independent part of
g::f(t) (residual polarization) is reduced from 1/2 to 1/6.

The contact term of the superhyperfine interaction requires the
interacting nucleus to be within about one Bohr radius of the muon. Because
of this, one would expect a superhyperfine interaction to be much stronger
than a simple dipole—~dipole interaction, and therefore more difficult to

decouple in longitudinal field.

III.B Dynamical Relaxation Functions

Up to now the discussions on spin depolarization for a magnetic probe
in a solid have assumed the magnetic probe to be static with respect to its
environment. Owing to its relatively light mass, however, the muon (or
muonium atom) may be very mobile in the stopping medium. This motion or
hopping may alter the shape of the relaxation function in comparison to the

static case. This phenomenon comes about because the effects of the
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interaction(s) which govern the time evolution of the p* spin polarization
in the solid are averaged by the motion of the probe (pt, Mu, etc.), hence

the term "motional averaging”.

III.B.1 Gaussian-Markovian Process

In the case of a magnetic probe hopping stochastically in the presence
of static nuclear dipoles, the motion induces a modulation or fluctuation of
the local field as sensed by the magnetic probe. 1In the original research
of Kubo and Toyabe [1,2] the modulation of the local field is assumed to
follow a "Gaussian—Markovian” process, where the correlation of the

fluctuating field is characterized by the equation

2
<H (1) B (0) > = - exp(-t/7 ) (11I.37)
Y c
n
where T, = 1/v is the correlation time of the field fluctuation. Assuming

a Gaussian random process automatically implies that the fluctuation of the
local field is determined by the cumulative effect of a large number of
random processes, each of which induces a gradual change in the local field.
The Gaussian-Markovian assumption has also been applied to the case of a
magnetic probe interacting with a Gaussian local field in a strong external

transverse external magnetic field, yielding the analytic result
G 2,2
Gxx(t,v) = exp{—A /v [exp(—tv) -1+ tv]} (II1.38)

which is the familiar formula of Kubo and Tomita [18]. It is obvious that
this expression behaves properly in the slow modulation limit (v/A << 1),

where the relaxation function exhibits a Gaussian shape, as well as in the
fast modulation limit (v/A >> 1), where the shape resembles an exponential

decay. This function is plotted for various values of A/v in Figure III.8.
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Figure II1.8 Dynamic Kubo-Tomita high transverse field spin relaxation
function (Gaussian-Markovian process) plotted for various values of A/v.
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The assumption of a Gaussian-Markovién process may not, however, be a
good one, particularly for the case of diffusion in the presence of traps.
This is because a magnetic probe jumping from site to site with a hopping
frequency v would likely sense a sudden change in the local field
distribution and not an adiabatic or gradual one. This type of behavior is

idealized by the "Strong Collision Model” [19].

III.B.2 Strong Collision Model

In the strong collision model, the local field sensed by the magnetic
probe 1s assumed to change abruptly upon collision, with the local field
distribution before and after this collision being completely uncorrelated.
In this approximation, the time evolution of the dynamical relaxation
function Gii(t,v) is constructed from an infinite series of discrete static

relaxation functions according to the equation

© _
= (n)
G (V) = ] gy 0 (t,V) (1XI.39)
n=o
where g(n)(t,v) is the relaxation function for the magnetic probes that jump

ii
n times in time t. The first term (n=0) in the series of Equation III.39 is

easily understood to be

gg:)(t,V) = exp(-vt) g, (t) (III.40)

where exp(-vt) is the probability that the magnetic probe does not hop in
time t, and gii(t) is the static relaxation function. The following term in
the series describes the process in which the magnetic probe hops at time t;

(0 < t; < t) and is expressed as

ggi)(t.v) = v [ a, V(TR gy (t-t)) eVl g, (1)) (III.41)
o)
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By introducing the Laplace transforms

[e~] @

_ -st - -st
£,4(8) = £ dt e gii(t) and F,;(8) £ dt e

Gii(t) (1I11.42)

the exact solution in the frequency domain becomes

fii(s+v)
1 - vfii(s+v)

n .ntl _
fii (stv) =

o~ 8

Fii(s;v) = (111.43)

n=o0
To obtain the time domain dynamical relaxation function Gii(t,v), for a
specific static relaxation function gii(t)’ one must calculate the inverse
Laplace transform of Equation III.43.

The time domain dynamical transverse field relaxation function
Gix(t,v), for the case of a magnetic probe interacting with a Gaussian
random local field, has been numerically calculated [20] using a stroﬁg
collision formula similar to that of Equation IIT.43. This calculation was
performed using the "Korrektur-Verfahren" (Iteration Procedure) method
[21,22]. Comparison of the relaxation functions obtained in this manner
with the Gaussian—~Markovian approximation of the Kubo-Tomita formalism [18],
given in Equation III.38, reveals that the two cases are nearly identical
except that the strong collision function exhibits a slightly slower decay
rate. This discrepancy is particularly noticable in the limit of slow
hopping (v/A or v/a <K 1, for a Gaussian or Lorentzian distribution,
respectively). However, the difference between the relaxation function
obtained using the strong collision approximation and that obtained assuming
a Gaussian—-Markovian process is so small that the simple analytic expreseion
of Equation IIL.38 is generally preferred for data analysis.

The dynamical zero field spin relaxation function Giz(t,v) for the case
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of a magnetic prqbe interacting with a Gaussian random local field has also
been calculated [4] using the strong collision model given in Equation
I1I.43. This function is plotted in Figure III.9 for various values of A/v.
Comparison of Figure III.9 with the Gaussian—Markovian curves of Kubo-Toyabe
[1,2] indicates that, as in the case of the transverse field function
Gix(t,v), the zero field curves generated with the strong collision model
decay at a slightly slower rate than those based on the Gaussian—Markovian
approximation, particularly in the limit of slow hopping (v/A <K 1).

The modulation of the local field has a marked effect on the shape of
the long time tail of the relaxation function as well. As has already been
discussed, the zero field static relaxation functions for both Gaussian and
Lorentzian random local field distributions, exhibit a 1/3 recovery of the
asymmetry at long times. For slow modulations of the local field, this
recovery is suppressed, and for Gaussian random local field, follows the

asymptotic form

G 1 2
G (t,v) == exp(- §-vt) ; for t >> 3/A (I11.44)

where the factor of 2/3 in the exponent can be understood intuitively by
noting that, on average, 1/3 of the longitudinal (z-axis) polarization is
preserved for each hop. In the limit of fast fluctuations (v/A >> 1), the
Gaussian line shape begins to mimic an exponential, due to motional

narrowing, such that
G 2
G, (t,v) = exp(-24"t/v) (I1I.45)

which tends to zero at long times.
Application of the strong collision model of Equation III.43 to the

problem of a magnetic probe interacting with a Lorentzian local field
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Figure III.9 Dynamic zero field Gaussian Kubo-Toyabe spin relaxation
function (Strong Collision Process) plotted for various values of A/v.
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yields the corresponding dynamical zero field relaxation function Gtz(t,v).
This function is shown in Figure III.l0 for various values of a/v. A major
feature to make note of is that, unlike its Gaussian counterpart, the
function Giz(t,v) does not exhibit a motional narrowing effect. In fact,
the initial decay rate is quite independent of the hop frequency. In the
limit of slow hopping, and for t >> 3/A, one obtains an equation similar to
Equation III.44, whereas in the limit of fast fluctuations, (v/a >> 1), the

relaxation function takes the form
L
Gzz(t,v) s exp(—4at/3) (III.46)

This, like the Gaussian case, tends to zero at long times; however, it has
the peculiar feature of being independent of v, as explained above.

Thus, the zero field technique has been shown to be a powerful tool for
studying the diffusion and trapping behavior of a magnetic probe interacting
with a random local field (Gaussian or Lorentzian) distribution. Comparison
of Figures III.9 and III.8 also reveals the advantage provided by the zero
field technique, as opposed to the transverse field (precession) method, for
such studies.

Additional discrimination between static and dynamic systems can also
be obtained using longitudinal field, where the relaxation function would
still exhibit an exponential decay at long times, even in relatively high
magnetic fields. This behavior can be understood by considering the case of
muonium in the intermediate and high field limits, in the context of the
strong collision assumption of Equation III.43. The static longitudinal
field relaxation function can be obtained by combining Equations AI.109 and

AI.110 with the definitions of Equation AT.21. For longitudinal fields of



Figure II1.10 Dynamic zero field Lorentzian Kubo-Toyabe spin relaxation
function (Strong Collision Process) plotted for various values of a/v.
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intermediate strength (0 € A < m/2), the observable static longitudinal
"relaxation function" (omitting the modulating time part) is written
2.1/2

)]

gzz(t,K) « %{1 + coszk) 3 A = arcsin[1/(1l+x

(I1I.47)
where x (= ]E[/Bo) is the specific field parameter, defined in Equation
I.10. From the strong collision model, one then writes in frequency space

1 + coszk
2(s+v) - v(l—coszk)

Fzz(s+v) = (I11.48)

and by taking the inverse Laplace transform of Equation II1.48, one obtains

the relaxation function

Gzz(t,v,x) = %{1+coszx) exp[— %Kl-coszx)t] ' (III1.49)

Notice that only for the extreme high field limit (A » 0, x » =), is the
relaxation completely decoupled for muonium, unless v = O. This argument
can be extended to any relaxation mechanism, as long as the "high field"
(secular approximation) limit applies. In the present work, x << 0.0l.
Since the strong collision model can be applied to any static
relaxation function, the dynamical spin relaxation functions for the case of
a random hyperfine interaction can also be obtained using Equation III.43.
Taking the Laplace transform of the static zero field relaxation function of

Equation III.21 gives

£y = s + 3 0,17 = 5 ohy)[s + = o, 17

%22 2 %22 2 %22 (11.50)
1 1, M — -1 1,1 M 1, M -2
+3ls + oy, + 37273 0y0)] " = 37 0y)[s + Fopy+ 37273 ay4)]

Substituting this expression into Equation III.43, one can numerically
calculate the inverse Laplace transform to obtain the time domain relaxation

function GZZ(t,v). This function 1s shown in Figure IIL.ll for selected
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Figure III.1ll1 Dynamic zero field Lorentzian RAHD spin relaxation function
(Strong Collision Process) plotted for selected values of the hop rate v,
where oy = ogz =10 ps'l. The function is normalized to equal 1 at t=0.
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values of v, where both %0 and 6?2 are equal to 10 ps~l. As in the case
of a magnetic probe interacting with a Lorentzian random local field
distribution (Figure III.10), the initial decay rate of the function shown
in Figure III.ll1 is completely unaffected by the hop rate v. This feature,
which is somewhat counter—intuitive, arises directly from the assumption of
Lorentzian or Lorentzian-like frequency distributions. This behavior is
also independent of the dimensionality of the distribution since in the case
of a Lorentzian random local field the distribution is three-dimensional,
whereas for random hyperfine distortions one has both a one-dimensional
cylindrical component distribution plus a two-dimensional planar component
distribution. Thus the behavior shown in Figure III.l1 implies that for
Lorentzian and Lorentzian—-like distributions (of all dimensions), the shape
at early times is independent of the motion of the magnetic probe. It is
particularly instructive to consider the two limiting cases of either a
totally cylindrical or totally planar distortion. In Figure III.12 the
relaxation function generated by assuming only a cylindrical distortion of

?2 = 0) is plotted. The effect of

the muonium hyperfine interaction (i.e., o
motion on this component of the relaxation function is to suppress the long
time tail, even for small hop rates; for sufficiently high hop rates, this

long time tail tends to zero. The case of a purely planar distortion (i.e.,

Onn = 0) 1s shown in Figure III.13. Since in the static limit this function

20
already tends to zero, the effect of hopping is not very noticeable at long
times. Instead, the effect of hopping on the relaxation function is more

evident at early times, where it serves to reduce the depth of the minimum.

This same procedure can be applied to calculate the dynamical

transverse field relaxation function Giz(t,v). Taking the Laplace transform
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Figure II1.13 Dynamic zero field Lorentzian RAHD spin relaxation function
for a pure planar distortion (Strong Collision Process) plotted for selected
values of the hop rate v, where 6%2 = 10 ps'l. The curves have been
normalized to equal one at t=0.
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of the approximation in Equation III.25, one obtains

72 2 o 11 (III.51)

= Opnt — 0
6 20 s 2

) < 3 Lo+ |
Substituting this into Equation III.43 and numerically calculating the
inverse Laplace transform yields a time domain function which is completely
independent of the hop frequency v.

The dynamical relaxation functions corresponding to random anisotropic
hyperfine interactions have thus far been calculated assuming the distortion
parameters to be distributed according to Lorentzian (or Lorentzian—like)
distributions of dimension less than three. These functions have been found
to exhibit no motional dependence at early times, owing to the assumption of
Lorentzian and Lorentzian—ljke distributions. If instead one assumes the
same distortion symmetries, but chooses a different frequency distribution
which has a finite second moment, such as the distribution defined in
Equation III.26, one would expect the resulting functions to eventually
motionally narrow. The strong collisjon dynamical function derived by
assuming the "modified Lorentzian” distribution of Equation III.26 has been
calculated numerically and is shown in Figure II11.l14 for various values of
the hop rate v. Notice that for small hop rates, this function exhibits no
v dependence at early times, but as v is increased, motional narrowing
becomes more apparent. As mentioned, however, there is no obvious physical

argument that can enable one to decide which distribution is most suitable.

ITI.B.3 Diffusion in the Presence of Traps
Thermally activated diffusion and trapping of positive muons at defects

and impurities has been observed by many authors [23,24]. Two theories have
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function for a pure cylindrical distortion (Strong Collision Process)
plotted for selected values of the hop rate v, where g90 = 10 ps_l and the
parameter A = 0.l. The functions are normalized to equal one at t=0.
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been proposed to explain the effect of such phenomena on the pt spin
polarization, one suggested by Kehr et al. [20] and another put forth by
McMullen and Zaremba [25] and Petzinger [26,27]. Both of these theories can
be extended to a muon in the muonium state as well. In the case of the
former theory, a strong collision process is assumed, making this formalism
applicable to any relaxation mechanism, whereas the latter case only applies
to muons or triplet muonium interacting with a local dipolar field.

The latter theory has been used in the present work in the analysis of
some of the transverse field data; It assumes a Gaussian approximation for
the frequency distribution due to.dipolar fields and expresses the spin
relaxation function in terms of time dependent site occupation probabilities
and autocorrelation functions. The inclusion of the time dependent site
occupation probabilities allows for the possibility that the muons are not
in thermal equilibrium with respect to their site occupancy. Using
second-order time dependent perturbation theory, the transverse field spin
relaxation function for a multi-state system can be written as [26,27]

Mu n o, t .t
Gxx(t) = exp[—P(t)] = exp[- E oy f de'[ de” Ni(t")¢ii(t'—t")] (I11.52)
i=1 o o
Here the sum extends over m states; oi is the second moment of the frequency

distribution for the ith state, N, is the time dependent probability for the

i

occupation of the ith state and ¢ii(t) is the corresponding site
autocorrelation function.
The evaluation of Equation III.52 can be facilitated by introducing a

dimensionless linewidth parameter a [28], defined as

a = [ dt exp(-t/rp)[df(t)/dt] (111.53)
(o]
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where Tu is the mean muon lifetime. For simplicity, stochastic hopping is
assumed so that the functions ¢ii(t) are given by an exponential of the form
exp(-t/ti), where T is the mean dwell time in the ith state. By combining

Equations III.52 and III.53, one obtains the simple result

n -
e= ) ot e} (& +2)7
i=1 ¥

(III.54)

where £{Ni(t)} is the Laplace transform of the ith state occupation
probability, with the implicit transform variable s = 1/ru. For the case
of an exponential relaxation, T'(t) = at/ru, and fdr a Gaussian relaxation,
T(t) = %-atz/Ti. Thus, the problem of calculating the relaxation function

for a multi-state system has been reduced to determining the £{Ni(t)},

which are in general the solutions to a specified set of rate equations.
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CHAPTER IV —- EXPERIMENTAL RESULTS AND INTERPRETATIONS

Previous to the present work it was shown [1-3] that muonium escapes
the grains of fine oxide powders, including the silica powders used in the
present study, and resides in the extragranular region and on the grain
surfaces. This phenomenon was further shown to be totally independent of
the ambient temperature of the powder grains (see section I.C). Because of
the large specific surface area (390 * 40 m2/g [4]) and the high yield of
extragranular muonium, provided by the 35 A silica powder, this material was
chosen for the present study of the interactions (i.e., surface diffusion,
desorption and spin relaxation mechanisms) of muonium with surfaces.

Zero, longitudinal and transverse field pSR techniques have been used
in the present work to study the behavior of muonium on silica surfaces
(section IV.A). In the initial stages of this work (section IV.A.l),
transverse field (< 10 G) data were taken to investigate the temperature
dependence of the transverse field muonium relaxation rate for several
surface hydroxyl concentrations. These studies were prompted by the
hypothesis that a dipole~dipole interaction between muonium and the hydroxyl
protons might be a principal contributor to the relaxation of the pu* spin
polarization for muonium on the silica surface. Assuming this hypothesis to
be correct, a three—-state model was also developed, which describes the
diffusion and trapping of muonium on the silica surface and includes the
possibility of desorption. A second set of exﬁeriments were then performed
(section IV.A.2), using zero and longitudinal field techniques, to obtain
information on the shape of the relaxation as well as the decoupling

behavior. This information was used to discriminate between different
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relaxation mechanisms, and prompted the development of a new relaxation
theory, involving random hyperfine anisotropies, which is used to interpret
some of the data. A third set of experiments (section IV.B), again in
transverse field, were done to study the effect of fractional surface
coverages of helium on the surface diffusion and trapping behavior of
muonium. Finally (section IV.C), transverse field data were taken to
investigate the interactions of muonium with the surfaces of platinum loaded
catalysts. These experiments provided the first observation of the chemical
reaction of muonium with surfaces (in this case platinum), and also
suggested a possible origin for one of the surface sites for muonium on the
silica surface.

The results of these experiments are individually subtle; however, they
do allow one to construct an unbroken chain of logic leading to some clear
deductions concerning which spin relaxation mechanism(s) are operable for

muonium on the silica surface.

IV.A Muonium on Silica Surfaces

As in bulk quartz, the u+ spin polarization for muonium on the silica
surface may experience relaxation due to random anisotropic distortions of
the muonium hyperfine interaction. However, significant contributions to
the total spin relaxation may also arise from other relaxation mechanisms
such as random local magnetic fields (due mainly to the surface hydroxyl
protons) or perhaps spin exchange interactions (with any paramagnetic
impurities). In this section, data are presented and arguments are put
forth to extract information concerning the motion of the muonium atoms on

the silica surface as well as the origin of the relaxation interaction.
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IV.A.1 Transverse Field Results

The transverse field muonium relaxation rate xTu is shown as a function
of inverse temperature for two sample preparations in Figure IV.l; the
circles are the data obtained for sample SiOz(l) prepared at 110 °C‘and the
squares represent the date taken with sample Si0,(3) prepared at 600 °C.
Let us first consider the 110 °C data. Qualitatively, these data are
interpreted as follows: The plateau below about 8 K is due to muonium
"localized" in a host adsorption site (by which is meant a very common
shallow potential well), and the peak which occurs at about 25 K is taken to
be due to trapping at less common depolarization centers (trap sites). From
the low temperature plateau to the minimum at about 16 K, ATU(T) decreases
because of motional narrowing due to hopping of the muonium atom between
host sites. Between the minimum and the 25 K peak, the hopping becomes
sufficiently rapid for the muonium atom to reach the trap sites before it

(1)

decays. As the temperature is increased beyond the peak temperature, KT
is seen to decrease monotonically. This decrease is attributed to
detrapping and eventual desorption of the muonium atom from the grain
surfaces.

If one pictures the silica powder target as a uniform distribution of
spherical particles of radius R and mass demnsity p,, packed to an overall
mass packing density p, the maximum collision frequency of the Mu atoms with
the grain éurfaces is easily shown to be (see Appendix III)

- P -
(nRZ) v = %( LS )1/2 (=°-1) L gi/2 (Iv.1)

F(T) = ——
f anMu P

<|=z

where N is the number of spherical particles in the sample, Vcuis the free
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Figure IV.l Transverse field muonium relaxation rate as a function of
inverse temperature for muonium on the surfaces of fine silica powders (mean
grain radius 35 R) with samples prepared at 110 °C (filled circles) and at
600 °C (open squares). The lines shown are fits of the three-state model
described in the text. :



- 110 -

volume of the sample (V - ) and v is the mean thermal velocity of the

Vsolid
muonium atom. In the case of SiO0,, Py ™ 2.2 g/cm3. From Equation IV.l, one
might expect XTU(T) to exhibit some dependence on the packing density p,
which would presumably be more evident at higher temperatures. In order to
test for a possible packing density dependence of hTu(T), transverse field
measurements were made using sample 8102(2), which has a mass packing
density of about 1/3 that of sample Si0O,(1), prepared at 110 °C. Comparison
of the these results with those obtained for the higher packing density
reveals no significant differences below ~65 K, leading one to conclude that
the relaxation rate is largely independent of the target packing density in
the temperature and packing ranges studied. This result is consistent with
the idea that at low temperatures, the muonium atoms are constrained
primarily to motion on the surfaces of the silica grains. These data are
tabulated in Appendix IV.

Now consider the temperature dependence of xTu for sample 8102(3)
prepared at 600 °C, also shown in Figure IV.l, for which the surface
hydroxyl concentration is reduced. These data indicate the same general
diffusion and trapping behavior as originally observed for sample Si0,(1l)
prepared at 110 °C; however, there are some important differences. In

particular, one observes that the reduction in the concentration of surface

Mu
L

seems to be more evident at lower (£ 30 K) temperatures. In addition to the

hydroxyl groups is accompanied by a decrease in A, . Moreover, this effect

observed general reduction in KMu, the position of the "trapping peak” is
seen to shift to higher temperatures with reduced hydroxyl concentration.

This shift in position can for instance be attributed to a decrease in the
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detrapping frequency, arising in turn from the hydrolysis process. These
results clearly indicate that the surface hydroxyls play an important role
in the depolarization of the p* spin for muonium on the silica surface. The
precise role played, however, may not be simply to provide a dipole-dipole
interaction. A few data points were also taken with sample 8102(4),
prepared at 600 °C, which reproduce the same behavior as observed for sample
8i0,(3) prepared at the same temperature.

The temperature dependence of the average muonium hyperfine-structure
interval ;00 was also studied, using the same silica powder prepared at
about 110 °C, over the temperature range i7 K <T <300 K [5]. These
measurements were made in high transverse field (~500 G) and are shown in
Figure IV.2. Above ~100 K, the values obtained for ;00 are consistent with
the vacuum value (~4463.3 MHz), indicating that the muonium atoms spend the
majority of their time in the extragranular region. Below ~100 K, ;00
decreases rapidly to a value of 4437 + 4 MHz at 17.0 + 0.1 K, a change of
about -0.6Z%Z. This effect has been attributed to adsorption of muonium on
the silica surface and may be compared to the room temperature results of
-0.12% and -0.13% observed for hydrogen and deuterium, respectively (see
section I.D.2). . Thgse measurements are sensitive only to the isotropic part
of the hyperfine interaction and thus provide no information regarding any
anisotropic components. However, if one is correct in assuming that the
observed distortion is due to muonium adsorbed onto the silica surface, it
is easily argued that the resulting hyperfine interaction would be
anisotropic, and thus induce a relaxation of the u+ spin polarization.

Operating under the assumption that a dipole~dipole interaction between

the hydroxyl protons and the muonium atoms is a major contributor to the
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Figure IV.2 Hyperfine-structure interval versus temperature for muonium

interacting with the silica surface (~110 °C preparation). The curves
through the points are fits to the data using Equation IV.6.
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spin depolarization of the muonium ensemble, a three-state model was
developed [6,7]. This model utilizes a previously developed multi-state
diffusion and trapping theory [8-10], which is described in Chapter III.

To describe the transverse field data shown in Figure IV.1l, one chooses
a model which characterizes the muonium occupation sites on the surface in
terms of equivalent trapping sites of relative concentration Ct and a
remaining fraction l-Ct of equivalent host sites. Since there is also a
finite temperature dependent probability for desorption, the situation can
be represented by a three-state model in which muonium atoms have the
possibility of occupying either of the two adsorbed states or the desorbed
state. By denoting the occupation probabilities for the host sites, the

trap sites and the desorbed state as No’ N_and N respectively (which obey

t £
the normalization condition N° + Nt + Nf = 1) one can define the following
set of coupled rate equations:
No -(VOCt + Vof) vt(l—Ct) vfo(l—Ct) NO
N | = v,C, —[vt(l—ct) +v ] Ve Co N, | (1V.2)
3 N LY Vee  T[Vgo(17Ce) * veeCel || Mg

and v are

Here Vo and v, are the surface hop rate and detrapping rate, Veo £t

and v are the desorption

the host and trap site adsorption rates and Vof tf

rates. In Equation IV.2, the hop rate from a host site to a trap site is
assumed to be equal to the hop rate vV, between hos£ sites. Applying the
normalization condition, one can then obtain the Laplace transform solutions
to Equation IV.2. Assuming Arrhenius behavior, the surface hopping and

detrapping rates are respectively
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v, = vlexp(—Eo/kT) and v _ = vzexp(—Et/kT) (1v.3)

where E; and E, are the respective activation energies. Similarly, the

desorption rates are defined as

Vog = v3exp{—(Eo + Ef)/kT} and v . = v4exp{—(Et + Ef)/kT} (1IV.4)

where the quantity E1+Ef is the desorption energy for the ith state.

Finally, the associated adsorption rates are defined as

Veo T F(T) Po(T) and Vee = F(T) Pt(T) (Iv.5)

Here PO(T) and Pt(T) are the trapping probabilities for the host and

trap sites, respectively, and F(T) is the collision frequency of the muonium
atoms with the grain surfaces, given in Equation IV.l. This three—state
model was used to fit the transverse field data for both the 110 °C and 600
°C preparations, assuming an initial condition of N0 = Nt = 0 and Nf = 1.
Other initial conditions were tried as well, but the fitted parameters were
found to be independent of the initial conditions assumed. The resulting
curve 1s shown in Figure IV.l and the fitted parameters are given in Table
Iv.1(a). Because of the expected low concentration of trap sites, the
effect on KTu(T) of direct desorption from the traps was assumed negligible
(i.e., v, = 0). 1In addition, the trapping probabilities P (T) and P (T)
were both set equal to unity. This model has also been used to fit the data
for the 600 °C preparation. The resulting curve is shown in Figure IV.l and
the fitted parameters are given in Table IV.1(b). In this fit, some of the
parameters were not well determined, owing to the lack of data above 85 K.
Because of this, only a few error estimates were obtained.

As can be seen from Figure IV.l, this simple model describes the data
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Table IV.1(a) Fit Results for Sample Si0O,(1l) Prepared at 110 °C

Parameter . Value Error (x2/deg.fr. = 10.5/11)
vy 87 +86 / -37 ps~t
v, 11.2 +6.6 / -2.8 ps~1
V3 441 +889 / -230 us~1
E, 63 +10 / -8 K
E, 118 +25 / -17 K
Eg 212 +108 / -43 K
o2 1.02 +0.06 / —0.06 us~2
o2 18.9 +3.6 / -5.8 us=2
C, 0.66 —- %

Table IV.1(b) Fit Results for Sample 8102(3) Prepared at 600 °C

Parameter Value Error (x2/deg.fr. = 11.6/8)
vy 0.548 -—- us™!
vy 4.21 +0.42 [ ——- ps~t
v, 1557 +2.3 [ ——- us~!
E, 8.37 +0.021 / ——- K
E, 93 +3.5 / == K
Eg 97 — K
o2 0.61 +0.12 / -0.12 ns~2
6%' 4.39 - us~2

Ce 0.52 - %
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quite well. Of course, the relaxation interaction assumed here is much
simpler than the actual interaction, and some of its features may obscure
the physical parameters (hop rates, activation energies, etc.) deduced from
this model. However, the qualitative explanation afforded by this model is
satisfactory. For example, by comparing the fit results obtained for the
two preparations (see Table IV.1l), one observes that the activation energies
are significantly reduced for the 600 °C preparation as compared to the 110
°C preparation. This is particularly noticeable for Ey. In addition, v,
for the 600 °C preparation is smaller than that for the 110 °C preparation.
To understand what implications this has with respect to the motion of the
muonium atoms on the silica surface, it is instructive to plot the surface
hop rates v, (defined in Equation IV.3) as a function of temperature, for
both sample preparations. The resulting curves are are shown in Figure
IV.3. Comparison of the two curves in Figure IV.3 suggests that the
presence of the hydroxyl groups serves to inhibit surface diffusion of the
Mu atoms at low temperatures. Another important difference is that v, is
significantly smaller for the 600 °C preparation as opposed to the 110 °C
preparation, indicating a reduction in the detrapping rate. The reduced
detrapping rate is responsible for the observed shift of the trapping peak
to higher temperatures, as suggested earlier.

The data in Figure IV.2, showing the temperature dependence of the
hyperfine—structure interval, have been fit assuming the model of a Mu atom
thermalized in a system with total area A and total free volume V¢. This
situation is represented by the equation [2]

Ve
A

A

Ve

= v 1+ (1/x§“)exp(—E/kT)] +v [1+ (xgu)exp(E/kT)]‘ (IV.6)

00
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Figure IV.3 Surface hop rate v, versus temperature, calculated from
Equation IV.3, using the fitted parameters of Table IV.l. The solid line
corresponds to the 110 °C preparation, and the dashed curve corresponds to
the 600 °C preparation.
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where vio is the hyperfine-structure interval for muonium on the silica
surface, Voo is the vacuum value, Agu is the thermal de Broglie wavelength
and E is the activation energy for desorption. In the fits, Vio was fixed
at 4437 MHz, the value measured at the lowest temperature. The dashed curve
is obtained by fixing the ratio A/Vf at a value of 6.24 x 10° cm™}
(calculated using the model of Appendix III) and fitting the activation
energy E. This fit gave a Chi-square of 5.66 for 5 degrees of freedom and
an activation energy of 76 (+35.4/-12.8) K. The solid line is obtained by
setting the activation energy E equal to the sum Ef + Ej (= 275 K),
calculated usiné the values from the three-state model fit given in Table
Iv.1(a), and fitting the ratio A/Vf. This fit gave a Chi-square of 4 for
5 degrees of freedom and a value of A/Vf = 3587 (+2865/-1960) cm~!, two
orders of magnitude less than that given by the model calculation. This
result is not surprising since the model calculation is an overestimate,

owing to the tendency for the silica powder grains to aggregate.

IV.A.2 Zero and Longitudinal Field Results

The zero and longitudinal field asymmetry spectra taken at 7.0 + 0.2 K
for sample Si0,(4), prepared at 110 °C, are shown in Figure IV.4. According
to the interpretation of the associated transverse field data of Figure
IV.l, these data correspond to the static limit. Notice that the zero field
spectrum exhibits an initial exponential-like decay and tends to zero at
long times. Notice also that the relaxation is almost completely decoupled
for longitudinal fields of only a few Gauss. From the discussions in

Chapter III one recalls that, for relaxations due to random local magnetic
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Figure IV.4 Zero and longitudinal field asymmetry spectra for muonium on
the silica surface (110 °C preparation) at 7.0 + 0.2 K. The zero field data
are represented by the square symbols and are compared to data taken at
three different longitudinal fields; the circles correspond to 1.0 G, the
triangles to 3.0 G and the diamonds to 10.0 G. The curve through the zero
field data is a fit to the data using the static zero field relaxation
function of Equation III.21.
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fields (RLMF), the relaxation function exhibits an initial Gaussian shape
unless one is in the fast hopping limit or in the limit of “"randomly
ordered” moments. It has also been shown in Chapter III that in the static
limit, any form of relaxation due to random local magnetic fields woﬁld
.exhibit a 1/3 recovery of the initial p+ spin polarization at long times.
Since the data for muonium on the silica surface below about 7 K shows no
long time recovery, one has only two possibilities:

(1) The dipole moments (hydroxyl protomns) are randomly ordered,
and the muonium atoms are not static on the silica surface.

(2) A dipole-dipole coupling is not the principal interaction
governing the time evolution of the p+ spin polarization.

The first of these possibilities is difficult to reconcile with the fact
that there are about 4 hydroxyl groups per mm? on the silica surface, which
translates into one hydroxyl for every other Si atom. With such a large
concentration, the limit of randomly ordered moments would be difficult to
justify. Moreover, even if this were accepted, along with the concomitant
Lorentzian distribution of random local magnetic fields, the postulation of
diffusing muonium is inconsistent with the observed shape of the relaxation
function in longitudinal field. Recall from Chapter III that for a static
muonjum atom interacting with a random local field, the spin relaxation can
be completely decoupled in a longitudinal field on the order of the local-
- dipolar field; whereas for a dynamic system,’the relaxation would continue
to exhibit a decay at long times, even in high longitudinal fields. The
data shown in Figure IV.4 show the reléxation to be almost completely
decoupled for very small fields, which is inconsistent with what one would
expect for a dynamic probe. From this argument one may conclude that a

random dipolar interaction is not the principal relaxation mechanism for
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muonium on the silica surface. The fact that the data in Figure IV.4 shows
the relaxation to be easily quenched in low field, however, leads one to
suspect a random anisotropic hyperfine distortion (RAHD) as a likely
candidate. One can easily argue that the relaxation function for a dynamic
muonium atom, interacting via a random anisotropic hyperfine interaction,
would also exhibit a decay at long times, even in high longitudinal fields.
Thus if one assumes a relaxation due to RAHD, the low temperature zero and
longitudinal field data shown in Figure IV.4 indicates muonium to be in the
static limit, in agreement with the interpretation of the transverse field
data of Figure IV.l.

Let us now consider whether a random anisotropic hyperfine interaction
alone can adequately explain the data. In this case, an exponential-like
decay is expected as long as the frequencies are distributed according to a
Lorentzian distribution function. As discussed in Appendix I and in Chapter
I1I, a 1/3 residual polarization is expected in the static limit for a
cylindrically distorted random hyperfine interaction. Thus, as in the case
of random local fields, a cylindrical distortion of the muonium hyperfine
interaction is not sufficient to explain the data. 1If, however, one
includes a planar distortion component as well, one obtains a function which
has the required exponential-like initial decay, and also tends to zero at
long times (Equation IIT.21). The curve in Figure IV.4 is a fit of Equation
I1.10, assuming the relaxation function of III.21, to the data. The fit
gave a Chi-square of 45.1 for 28 degrees of freedom, and the fitted results
for the cylindrical and planar distortion frequencies (distribution widths)
were found to be 12.1 (+1.59/-1.33) ps~! and 0.86 (+0.085/-0.090) ps~1,

respectively. The muonium asymmetry (for triplet muonium) was allowed to
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vary in the fit and was found to equal 0.103 (4+0.0047/-0.0042). This value
is consistent with that obtained for the corresponding transverse field data
(taken with the same sample and preparation). |

As has already been discussed, the effects of a random anisotropic
hyperfine interaction can be effectively decoupled for W >> Som® From the
results of the zero field fit, this translates into a field on the order of
a few Gauss, which is consistent with the data in Figure IV.4.

By substituting the values of %0 and 0?2 obtained in the zero field
fit, into the transverse field approximation of Equation III.25, one obtains
a transverse field relaxation rate kTu of 3.1 + 0.38 us~l. This result is
consistent with the relaxation rate determined for the associated transverse
field data, shown in Figure IV.1l.

The zero and longitudinal field asymmetry spectra taken at 3.6 + 0.2 K,
using sample 8i0,(3) prepared at 600 °C, are shown in Figure IV.5. As in
the case of the data for the 110 “C preparation, the zero field spectrum
exhibits an exponential-like decay and also tends to zero at long times.

The curve through the zero field data is a fit of Equation II.10 to the
data, assuming the static random anisotropic hyperfine distortion function
of Equation III.21. The fit gave a Chi-square of 87.3 for 53 degrees of
freedom, and the fitted results for the cylindrical and the planar
distortion parameters were found to be equal to 4.4 (+0.8/-0.9) ps‘l, and
1.8 (+0.2/-0.15) ps‘l, respectively. The muonium asymmetry was allowed to
vary in the fit and found to equal 0.069 (+0.0023/-0.0022). This value is

consistent with that obtained for the corresponding transverse field data,

but it is significantly less than that found for sample Si0,(4) prepared at
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Figure IV.5 Zero and longitudinal field asymmetry spectra for muonium on
the silica surface (600 “C preparation), at 3.6 * 0.2 K.  The zero field
data are represented by the square symbols and are compared to data taken at
two different longitudinal fields; the circles correspond to 0.2 G and the
triangles to 0.5 G. The curve through the zero field data is a fit to the
data using the zero field static relaxation function of Equation III.21.
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110 °C. This difference arises simply because the window on sample 8102(4)
is 25 pum thick, whereas the window on sample $i0,(3) is 50 pm thick. More
muons are therefore stopped in the window for sample $i0,(3), thereby adding
to the diamagnetic fraction observed. A comparison of the distortion
parameters obtained here with those obtained for the 110 “C preparation
indicates a correspondence between the muonium hyperfine distortion and the
concentration of surface hydroxyl groups; the cylindrical component ¢ |

20

increases, while the planar component 022

hydroxyl concentration. This result is rather interesting because it

decreases, with increasing

suggests that the presence of the hydroxyl groups affects the local
environment of the muonium atom in a manner which induces an ?ssociated
distortion symmetry in the muonium hyperfine interaction. Moreover, the
fact that the observed distortion for the 110 °C preparation is shown to
have an enhanced cylindrical component and a diminished planar component,
relative to the 600 °C preparation, suggests that the electrostatic
interaction between the muonium atom and the hydroxyl groups is repulsive.
Although this interpretation does adequately explain the observed behavior,
one cannot exclude the possibility that this result could merely be a
manifestation of a combined relaxation involving both random hyperfine
anisotropies and random dipolar fields.

By substituting the values of %0 and cgz for the 600 °C preparation
into Equation III.25, the transverse field relaxation rate ATU is calculated
to be 1.5 + 0.25 ps'l. This result is again consistent with the associated

transverse field data.

Data were also obtained with sample 8102(3) (prepared at 600 °C), in
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the dynamic region from 6 K to 20 K. The zero and longitudinal field data
taken at 16.0 * 0.1 K (where the muonium atoms are believed to be hopping
between the host sites) are shown in Figure IV.6. The zero field data for
this temperature exhibit a slight decrease in the initial decay (motional
narrowing) as compared to the static case of Figure IV.5, but there is no
indication of the c?z minimum. The absence of a minimum is predicted by the
dynamical model derived from the static formula of Equation III.21 and the
strong collision model of Equation II1.43 (see Figures III.10 - III.12);
however, the observed motional narrowing effect is inconsistent with this
function. This inconsistency merely reflects the fact that the distortion
frequencies are only approximately distributed according to a Lorentzian
distribution, and this approximation breaks down when motion is introduced.

The trénsverse field results indicate two different types of adsorption
sites (host and trap sites) for muonium on the silica surface. Thus far it
has been concluded that the depolarization of the p+ spin for muonium in
the host sites (at low temperatures) is largely due to random anisotropic
hyperfine distortions, with possibly a small contribution arising from the
random local magnetic fields produced by the hydroxyl protons.

To decipher which relaxation mechanism(s) are operating at the trap
sites, zero and longitudinal field data were taken at the high temperature
peak, where muonium is presumed trapped. The data taken at 25 * 0.5 K, for
sample Si0,(4) prepared at 110 °C, are shown in Figure IV.7. A comparison
of this data with the low temperature data of Figure IV.4, where the muonium
atoms are thought to be primarily in the host sites, shows two distinctly
different. decoupling behaviors for the two sites. Specifically, the

relaxation at the host sites is almost completely decoupled (quenched) for a
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Figure IV.6 Zero and longitudinal field asymmetry spectra for muonium on
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the silica surface (600 °C preparation), at 16.0 + 0.1 K.
data are represented by the square symbols -and are compared to data..taken at
three different longitudinal fields; the circles correspond to 0.2 G, the
triangles to 0.5 G and the diamonds to 1.0 G.
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Figure IV.7 Zero and longitudinal field asymmetry spectra for muonium on
the silica surface (110 “C preparation), at 25.0 *+ 0.5 K. The zero field
data are represented by the square symbols and are compared to data taken at
four different longitudinal fields; the circles correspond ‘to 4.0 G, the
triangles to 10.0 G, the diamonds to 25.0 G and the crosses to 45.0- G. The
curve through the zero field data is a fit to the data using the zero field
static relaxation function of Equation III.2l.
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longitudinal field of only 2.0 G, whereas at the trap sites there remains a
small unquenched component, even up to 45 G. The curve through the zero
field data is a fit of Equation II.10 to the data, assuming the static zero
field relaxation function of Equation III.21. The fit gave a Chi-square of
83.8 for 28 degrees of freedom, and the cylindrical and planar components
were found to be equal to 13 (+1.4/~1.2) ps’l.and 1.47 (+0.098/0.096) ps'l,
respectively. The triplet muonium asymmetry was also fitted and found to be
0.11 (+0.0043/-0.0041). The corresponding data taken at 30 + 0.5 K, for
sample $i0,(3) prepared at 600 °C, is shown in Figure IV.8. A compérison of
Figures IV.7 and IV.8 indicates that the relaxation may be more easily
quenched for the 600 °C preparation than for the 110 “C preparation. The
curve through the zero field data is a fit of Equation II1.10, assuming the
static zero field function of Equation III.21. The fit gave a Chi-square of
39.1 for 38 degrees of freedom, and the cylindrical and planar distortion
parameters were found to be 7 (+1/-0.9) ps‘l and 1.04 (+0.075/-0.074) us‘l,
respectively. The triplet muonium asymmetry was also fitted and found to be
0.076 (+0.0063/-0.0059). The associated transverse field relaxation rates,
calculated from Equation III.25, are also consistent with the respective
transverse field data for both the 110 “C and 600 “C preparations.

These results suggest that the nature of the relaxation in the trap
sites may be a function of the surface preparation. A paramagnetic ion, for
instance, which is somehow neutralized by baking at high temperatures, might
explain this data. The most likely candidate for this is an Fe3t ion. 1In
the Cab—O—Sil EH-5 material, iron impurities are quoted as being less than 2
ppm [l1]}; however, recent measurements have set this level at ~6 ppm [12].

This possibility is discussed further in section IV.C.
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Figure IV.8 Zero and longitudinal field asymmetry spectra for muonium on
the silica surface (600 “C preparation), at 30.0 + 0.5 K. The zero field
data are represented by the square symbols and are compared to data taken at
two different longitudinal fields; the circles correspond to 0.5 G and the
triangles to 2.0 G. The curve through the zero field data ia a fit to the
data using the static zero field relaxation function of Equation III.Z21.
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IV.B Muonium on the Surface of Helium Coated Silica
Gas adsorption isotherms were measured using “He at 6.0 + 0.1 K,
concomitant with measurements of the transverse field muonium relaxation
rate and the muonium formation probability. The gas deposition was

performed according to the procedure given in Chapter II.

IV.B.1 Relaxation Rate Versus “He Coverage at 6 K

The transverse field relaxation rate kTu for sample Si0,(4) prepared at
110 °C and for sample S5i0,(3) prepared at 600 °C is plotted as a function of
the specific volume Vg in Figure IV.9. By definition, the specific volume
is the volume of gas, measured at STP, divided by the surface area of the
target. From this data, it is obvious that the dependence of KTu on surface
coverage is a strong function of the sample preparation. In particular, the
110 °C data are observed to decrease monotonically with increasing coverage,
while the 600 uC'data show a peak in the coverage dependence. Furthermore,
this peak has a maximum which is equal (within the uncertainties) to the
trap site relaxation rate for the 600 °C data, shown in Figure IV.l.

Interpretation of the 110 °C data is straightforﬁard. At zero
coverage, the muonium atoms are stationary in the host sites on the silica
surface. As the coverage i1s increased from zero, the probability of a Mu
atom interacting with the silica surface decreases because there is less
exposed surface area.

Interpretation of the 600 “C data is not so trivial. A model can be
developed around the assumption that the baking procedure produces fissures

in the surfaces of the silica grains. These fissures are further assumed to

act as deep potential wells which have the same relaxation mechanism as the
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Figure IV.9 Transverse field muonium relaxation rate at 6.0 * 0.1 K versus
¥He coverage (measured in terms of specific volume V_) for silica prepared
at 110 °C (circles) and at 600 °C (squares). The filled symbols correspond
to the relaxation rate and the open symbols correspond to ‘the vapor pressure
(right hand scale). Notice that the vapor pressure increases rapidly at
monolayer completion. x
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host sites. With these assumptions, one can adopt the following model: At
zero coverage the muonium atoms are presumed stationary, but in this case
the muonium atoms may occupy either the host sites or the deep potential
wells. As the coverage is increased from zero, the helium is adsorbed
preferentially into the deep potential wells. At some critical coverage,
which looks to be about 20% of a monolayer, the helium atoms fill up the
fissures sufficiently to form “"bridges” over which a muonium atom may

diffuse rapidly until it reaches a "normal” trap site. As the coverage is

Mu
1

decreases monotonically with increasing coverage because the chance of

increased beyond this point, the behavior mimics the 110 °C data; A

encountering the silica surface decreases with increasing coverage.

IV.B.2 Muonjum Asymmetry Versus YHe Coverage

Measurements of the muonjum asymmetry were also made as a function of
surface coverage at 6.0 + 0.1 K. The relative asymmetry (for one of the
positron telescopes) is plotted against the specific volume Vg of “He
adsorbed onto the silica surface in Figure IV.10. The data show that the
muonium asymmetry decreases with increasing surface coverage, suggesting
that the charge exchange cross section 1s significant at the helium-silica
interface. Unfortunately, it is not possible to draw any conclusions from
these data regarding the origins and mechanics of muonium formation in the
silica powders (i.e., surface or bulk formation), since the precise role
played by the adsorbed helium atoms in the charge exchange interaction at
the He-5i0, interface is not as yet known. Two possibilities for this

phenomenon are put forth in Chapter V.
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IV.C Muonium on the Surface of Supported Platinum Catalysts

The behavior of muonium on the surface of platinum loaded silica was

Mu as
1

function of temperature, over the temperature range 5 K < T < 100 K, for

studied by measuring the transverse field muonium relaxation rate A a
samples prepared with varying levels of Pt loading. Since a great deal of
information has already been acquired concerning the Eehavior of muonium on
the surface of the 35 A Cab-0-Sil (EH-5) powder, this material was selected
as the support material for the Pt loaded catalyst samples. These samples
were prepared following the procedures described elsewhere [13], which
include reduction in a mixture of H, and He at 500 °C for a perioé of one
hour (see section II.C.3). Four levels of Pt loading were chosen for these
initial tests; 0.001%, 0.01%, 0.1% and 1.0%, by weight. A control sample
containing no Pt (unloaded), but otherwise prepared following the same
procedures, was also measured. Some of the specifics of these samples and
the target vessels are given in Table II.4(D).

As already discussed in Chapter II, these samples were evacuated and
warmed to a temperature of about 100 “C for a period of ten hours prior to
the experiment. This was done to remove physisorbed water from the silica
surface. Since no other surface treatment was done, the supported platinum
particles, which average 10 A or less in radius, were presumed to be covered

with approximately a monolayer of chemisorbed oxygen.

IV.C.1 Unloaded Silica Support

Mu

The temperature dependence of the transverse field relaxation rate kl

was measured for the H-reduced control sample, containing no Pt loading.

The results of these measurements are shown in Figure IV.1ll, along with the
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Figure IV.ll1 Transverse field muonjium relaxation rate versus temperature
for unreduced and hydrogen-reduced silica. The filled circles represent the.
data taken with the reduced material (sample Pt(l) prepared at 100 “C), and

the open squares are the data taken with unreduced silica (sample 8102(1)
prepared at 110 °C).
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corresponding results for the unreduced material (sample SiO,(l) prepared at
110 °C). Comparison of these data suggests roughly the same diffusion and
trapping behavior for the H-reduced sample as observed for the unreduced
sample. Without evidence to the contrary, the two surface sites observed
for the reduced sample can be assumed to be of the same nature as the
corresponding sites of the unreduced material, but the greatly increased
width of the high temperature peak in the latter is indicative that the
hydrogen reduction affects the high temperature sites (traps) more than the
low temperature sites (host sites). The data in Figure IV.ll are
interpreted following the same line of reasoning as presented for the
unreduced silica.

The assumption that the muonium atoms are stationary at low (£ 8 K)
temperatures, for both the reduced and the unreduced silica, is based on two
observations. First, the physisorption of helium gas at 6 K sharply
decreases xT“ as one nears monolayer completion, indicating that the muonium
atoms are outside the powder grains and spending a large portion of their
lives on the surface. Second, KTU(T) for the H-reduced silica was found to
be totally independent of the Pt loading at low temperatures. The absence
of a Pt loading dependence at low temperatures implies that during their
lifetime, the muonium atoms cannot diffuse over distances comparable to the
mean separation between Pt particles. With the loadings that have been
studied, the mean separation between Pt particles corresponds to spacings of
50 or more SiO-H groups. These distances can easily be spanned by a
diffusing muonium atom moving at thermal velocities, for temperatures as low
as 5 K; their failure to do so provides further evidence that the muonium

atoms are indeed stationary on silica surfaces at low temperatures.
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IV.C.2 Platinum Loaded Silica: 0.001Z and 0.01%

The effects of extremely light (0.001% and 0.01%) Pt loading on the
transverse field muonium relaxation rate is shown in Figure IV.12. For the
reasons discussed previously, the muonium atoms are again assumed to be
frozen in a surface host site at low temperatures. As the temperature is
increased above about 10 K, XTU(T) decreases, presumably due to motional
narrowing, in the same manner as for the unloaded sample. At higher
temperatures, one observes that for both samples xT“(T) continues to
decrease monotonically with only the 0.001% loading still indicating a
slight hint of a trapping peak. The relaxation rates for these two samples
eventually become indistinguishable, leveling off at about 0.5 ps‘l.

These results can be understood by first recalling that only with a
loaded silica catalyst can H, molecules be dissociated to form atomic
hydrogen. It is clear also that the high temperature peak observed at about
25 K in both the unreduced and reduced, unloaded samples, can be expected to
be a trap for atomic hydrogen as well as muonium. Bearing this in mind, one
can postulate that this trap site might be filled, or othérwise neutralized,
by the atomic hydrogen generated in the reduction step of the loading
procedure. If this model is correct, it would explain the lack of a
trapping peak for the Pt loaded samples, in which large quantities of atomic
hydrogen can be genergted upon H-reduction, whereas for the case of the
unloaded H-reduced sample, where there is very little atomic hydrogen
generated, the trapping peak is quite pronounced.

Similarly pronounced effects of catalyst loading, using hydrogen
reduction techniques, have been observed in magnetic susceptibility studies

[14] of palladium loaded silica catalysts, as well as in ESR studies [15] of
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Figure IV.l2 Transverse field muonium relaxation rate versus temperature
for 0.001% (filled circles) and 0.0l% (open squares) platinum loaded 8i0,.
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platinum loaded silica catalysts. In both of these two cases, the observed
effect was attributed to Fe3t impurities (10 - 100 ppm) présent in the
silica support, which were reduced to metallic iron by the hydrogen
treatment. As has already been mentioned, the iron contamination for the
Cab—0-Sil EH-5 material has been measured to be ~6 ppm [12]. Since one
might also expect a similar effect (although not as pronounced) when the
unreduced silica is baked at 600 “C, it may be possible to attribute the
high temperature trap site to iron impurities. The beauty of this
hypothesis is twofold; not only does it explain why, upon hydrogen
reduction, the trapping peak disappears (H atoms occupy the traps), but it
also provides a paramagnetic ion which can interact with the Mu atoms
through spin exchange processes. Because relaxations arising from spin
exchange interactions are in general not decoupled in small longitudinal
fields, this hypothesis provides an explanation for the unquenched component
in the longitudinal field data of Figure IV.7. The possibility of an

interaction with an electronic dipole moment also exists.

IV.C.3 Platinum Loaded Silica: 0.1% and 1.0%

In Figure IV.13, the muonium relaxation rate AT“ is shown as a function
of temperature for platinum loadings of 0.1% and 1.0%Z. Of particular
interest are the data obtained‘for the 0.1% sample. At low temperatures,
KTU(T) is essentially the same as for the other four samples, indicating
that the muonium atoms are stationary. As the temperature is increased
beyond about 10 K, AT“(T) experiences a sharp decrease and reaches a minimum

at about 20 K. Between 20 K and 30 K, XTU(T)_rises sharply, and thereafter

continues to rise slowly with temperature toward the value obtained for the
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Figure IV.13 Transverse field muonium relaxation rate versus temperature
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1.0% sample in the same temperature region. In a similar fashion, the data
obtained for the 1.0%Z sample indicate a slight minimum in x?“(T) at about 20
K, which is followed by a sharp rise to a value of about 3.6 ps'l at 30 K.
Above 30 K, XTU(T) fluctuates with an average value of about 3.5 ps'l.

The interpretation of these results is relatively straightforward if
one assumes the possibility of a chemical reaction between the muonium atoms
and the oxygen-covered platinum surface. Bearing this in mind one can
assume that at 0.1% loading, the muonium atoms do not diffuse fast enough
during their lifetime to encounter a platinum partical until the temperature
reaches about 30 K, above which ATU(T) continues to increase in a manner
which can be described by the T!/2 behavior expected for thermal diffusion.
One can continue this line of reasoning and assume then that the 1.0%7 sample
contains a sufficiently high concentration of platinum particles that the
muonium atoms have a very high probability of encountering a platinum atom
or aggregate even at extremely low hop rates. Believing this model to be an
accurate description of the relevant physics, one then concludes that the
effectively constant relaxation rate above 30 K, observed for the 1.0%
sample, arises from a chemical reaction of muonium at the platinum surface.
The rate for this reaction is found to be 3.5 * 0.15 us~! which, owing to
the isotopic relationship between muonium and hydrogen, should constitute an
upper bound for the reaction rate of atomic hydrogen with oxygen—coated
platinum.

This interpretation should be susceptible to experimental tests with
zero and longitudinal field methods, since (as mentioned in Chapter III)
chemical reactions leading to diamagnetic molecular species do not cause

relaxation of the u* spin polarization in zero or longitudinal field.
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CHAPTER V — CONCLUSIONS AND FUTURE DIRECTIONS

V.A.' Summary of Results

The results and discussions presented in this dissertation have
provided information regarding the diffusion and trapping of muonium atoms
on the surface of fine silica powders, as well as the nature of the spin
relaxation mechanisms involved. Experiments have also provided evidence
indicating charge exchange processes ocurring at the silica surfaces for

sub—monolayer “He coverages.

V.A.l1 Diffusion and Trapping

Measureménts of the temperature dependence of the transverse field
muonium relaxation rate, have indicated the existence of two different types
of sites (host and trap sites) for muonium on the silica surface. The host
sites were defined to be the most common. The interpretation of the data
follows accordingly; at low temperatures, two—dimensional diffusion and
trapping of muonium is observed, with desorption occuring at high (>100 K)
temperatures. This diffusion and trapping behavior was further shown to be
a strong function of the surface hydroxyl concentration. A three-state
model was subsequently developed [1,2], which assumes the relaxation’ at
every site to be due entirely to random local magnetic fields. A comparison
of the data for high and low surface hydroxyl concentrations was then made
using this model. One of the more important observations arising from this
was that as the surface hydroxyl concentration is reduced the surface hop
rate for muonjum is enhanced at low temperatures (see Figure IV.4). The

interpretation of this suggests that the surface hydroxyls serve to inhibit
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surface diffusion of the muonium atoms. This hypothesis is substantiated
further by a recent hydrogen chromotography study [3] in which similar
behavior for hydrogen atoms on silica surfaces was reported.

The host site desorption energy (i.e., the activation energy for
desorption of a Mu atom from a host site on the silica surface), obtained by
summing the host site activation energy EO and the énergy Ef, was also found
to be strongly dependent upon the sample preparation. From the results
given in Table IV.1l, the host site desorption energies for the 110 “C and
600 °C preparations are 275 (+118/-51) K and ~105 K, respectively.

Although the assumption of random local magnetic fields was later shown
to be somewhat inappropriate, the semi-quantitative understanding afforded
by the three-state model proved quite valuable. Studies were later
conducted to ascertain the true nature of the relaxation mechanisms for
muonium at both surface sites. The resulting conclusions are summarized in

the following section. -

V.A.2 Relaxation Mechanisms
Using zero and longitudinal field puSR techniques, it was shown that a

dipole-dipole interaction (presumably between the muonium atom and the
hydroxyl protons) is in fact not the predominant relaxation mechanism for
muonium on the silica surface. This was deduced by first noting that the
relaxation for muonium in the host sites can be easily decoupled by a
longitudinal field on the order of a few Gauss, thereby leaving only two
possibilities; random local magnetic fields (RLMF) or random anisotropic
hyperfine distortions (RAHD). Further discrimination was then done by

considering the observed zero and longitudinal field long time behaviors in
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the context of a static versus dynamic muonium atom; it was found that if
one assumes RLMF, the zero field long time behavior is inconsistent with a
static muonium atom, and the longitudinal field decoupling behavior is
inconsistent with a dynamic system. From these arguments then, a random
anisotropic distortion of the muonium hyperfine interaction was deduced to
be the principal contributor to the relaxation, especially for muonium in
tﬁe host sites.

A theory was developed which describes the time evolution of the p+
spin polarization for a completely anisotropic muonium hyperfine
interaction. The approach taken here involves expanding the hyperfine
tensor in terms of spherical harmonics and using the expansion coefficients
to parameterize the distortion. Expressions for the static pt spin
relaxation functions, both in zero and "high" external magnetic field, were

"

then calculated assuming "zero average” Lorentzian and Lorentzian-like
distributions of the distortion parameters. By comparing this theory with
the data, it was shown that both a cylindrical distortion (normal to the
silica surface) and a planar distortion (in the plane of the surface) are
required to fully explain the data. The zero field relaxation function,
assuming both cylindrical and planar distortions, was used to fit the low
temperature (static limit) data. The quality of the fits obtained for both
the 110 °C and 600°C preparations was reasonable (typically, 1 < x2/deg.fr.
< 2), but not excellent. In these fits, the muonium asymmetry was allowed
to vary and was found to be consistent with the associated transverse field
data. The relatively high x2 values may be directly related to the

Lorentzian approximation adopted for the frequency distributions, which

allows infinite distortions. It is also important to remember that the
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Lorentzian distributions assumed in the calculations had zero averages. If
the actual distributions have non—-zero averages, one would expect an
oscillation superimposed on the relaxation. It is, however, impossible to
tell from the data whether there is a small amplitude oscillation, but if
present it could also account for the high x2 values.

The fits of the zero fiéld random anisotropic hyperfine relaxation
functions to the data indicate that the cylindrical component o,. increases

20

while the planar component 6?2

concentration. Assuming this phenomenon to be due entirely to the

decreases with increasing surface hydroxyl

electrostatic interaction between the muonium electron and the electrons of
the neighboring. hydroxyl groups, one can in principle extract information
regarding the effect of the induced electrostatic Interaction on the muonium
site symmetry. For instance, the fact that the hyperfine distortion
observed for high hydroxyl concentrations (110 °C preparation) is shown to
have an enhanced cylindrical component and a diminished planar component, as
compared to the case of low hydroxyi concentrations (600 °C preparation),
suggests that the electrostatic interaction between the muonium atom and the
hydroxyl groups is repulsive. Although this interpretation does indeed
provide a satisfactory explanation for the observed behavior, one cannot
disregard the possibility that this result could merely be a manifestation
of a combined relaxation interaction involving both random anisotropic
hyperfine distortions and random local magnetic fields due to the hydroxyl
protons at the surface.

Dynamical relaxatién functions were also calculated by substituting the
static functions into the strong collision model [4]. The resulting dynamic

functions, for Lorentzian and Lorentzian—like distributions, were found to
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be completely independent of the hop frequency at early times, which is
inconsistent with the motional narrowing behavior observed for muonium in
bulk fused SiO, and on the surface of fine silica powders. A modified
Lorentzian distribution was therefore tested and found to provide the
appropriate motional narrowing behavior. However, since the "correct”™ form
of the distribution cannot be deduced from existing knowledge, the data

cannot yield "absolutely calibrated” quantitative values for the hop rates.

The nature of the relaxation mechanism(s) at the trap sites was also
investigated and found to be partially consistent with relaxation due to
random ansisotropic hyperfine distortions. However, longitudinal field
decoﬁpling measurements have indicated a small component of the relaxation
which is largly unaffected by the fields applied. This component is further
seen to be more prominent in the data taken with the 110 “C preparation than
in that obtained for the 600 °C preparation. The most likely candidate for
this unquenched component is a spin exchange or perhaps a dipole-dipole
interaction between the Mu atom and an Fe3% ion. Moreover, Fedt would be
reduced to metallic iron upon hydrogen reduction. The baking procedures
employed in the present study might well produce enough atomic hydrogen to
significantly reduce the paramagnetic content in the silica powder which
would then be reflected in the decoupling behavior in longitudinal field.
This possibility has been further substantiated by the platinum loaded

silica studies, which are summarized in section V.A.4.

V.A.3 Muonium Formation Probability
Transverse field measurements of the muonjium asymmetry versus helium

coverage (at 6.0 + 0.1 K) have shown that the muonium asymmetry decreases
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with increasing surface coverage. Although these data suggest that the
charge exchange cross section is significant at the silica surfaces, it is
impossible to say at this time what role the helium atoms play in the charge
exchange process. One possibility is that the helium atoms are relatively
passive and only serve to cover up the surface, thereby impairing surface
muonium formation. If this interpretation is correct, these data clearly
show that muonium formation is partially surface related, as postulated in
Chapter I. There is, however, another possibility which casts the helium
atoms in a more active role, where they might act to dissociate the muonium
afoms at the surface. Consider, for instance, the scenario in which the
helium jions, produced in the ionization trail of the stopping p+, are able
to capture the electrons of newly formed muonium atoms. This process would
indeed leave the muons in a diamagnetic state, thereby removing them from
the precessing muonium ensemble. Because of these two possibilities, one
can say nothing about the origins of muonium formation, since one cannot
distinguish between muonium formed at the silica surface and subsequently
dissociated, or muonium which is formed in the grains and diffuses to the

surface where it is then dissociated.

V.A.4 Catalytic Chemistry

These investigations were also extended to the study of the interactions
of muonium with the surface of a silica-supported platinum catalyst. From
the results obtained for the temperature dependence of the transverse field
muonium relaxation rate, an upper limit of 3.5 * 0.15 ps‘l was deduced for
the reaction rate of muonium with an oxygen—covered platinum surface. These

experiments have also provided information concerning the nature of the
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trapping site observed for muonium. Specifically, it was observed that the
relaxation at.the trap sites is completely neutralized for small (~0.01% Pt)
platinum loadings, whereas for an unloaded sample (0% Pt), the trapping peak
is quite pronounced. This effect was found to be correlated with the large
amount of atomic hydrogen which is generated by the hydrogen reduction
methods employed in the preparation of the platinum loaded silica catalyst.
Similarly pronounced effects of catalysts loading, using hydrogen reduction
techniques, have been observed both in magnetic susceptibility and ESR
studies of metal loaded silica catalysts. In these cases, the observed
effect was attributed to Fe3t impurities, which were reduced to metallic
iron by the hydrogen treatment. The utility of adopting the hypothesis that
the trap site is an Fe3t ion not only affords one with an explanation why,
upon hydrogen reduction, the trapping peak disappears, but it also provides
a paramagnetic ion which can interact with the muonium atoms through spin
exchange or dipole—-dipole (electronic dipole) processes. This hypothesis
can thus account for the unquenched relaxation component observed at the
trap site for the sample prepared at 110 “C, and perhaps also explain why
the effect may be less prominent for the sample prepared at 600 °C, where
enough atomic hydrogen may be generated by the baking procedure to partially

neutralize the Fe3T centers.

V.B. Future Directions

The work presented in this dissertation has provided the ground work
for many new investigations, both experimental and theoretical, ranging from
surface catalysis to surface physics. A few of the more immediately

accessible avenues are discussed here.
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V.B.l. Theoretical
The spin relaxation theory for a random anisotropic hyperfine

interaction (RAHD), derived in Appendix I, was developed to explain the data
obtained for muonium in bulk fused quartz and for muonium on the surface of
fine silica powders. However, only a few appropriately selected distortion
symmetries were considered, and the functions were derived only for the zero
and "high" external field limits. Further calculations assuming a non—zero

w component should therefore be done, and the low external field limit

21
investigated, before a complete understanding of the static relaxation
functions for a random anisotropic hyperfine distortion can be obtained.
Moreover, these functions should be derived allowing for non—zero averages
for the distortion parameter distributions, since some of the data do seem
to exhibit small amplitude oscillations which are superimposed on the
relaxation.

The dynamic zero field RAHD model discussed in Chapter III was found to
be unsuitable for fitting the data because it exhibits no early time
dependence on hop rate (i.e., no motional narrowing), while the data exhibit
motional narrowing with increasing hop rate. This behavior was found to be
a manifestation of assuming Lorentzian and Lorentzian—-like distributions,
for the distortion parameters. More thought must therefore be given to the
choice of distribution function so that a proper motional narrowing theory
can be developed. The modified Lorentzjian distribution, discussed in
Chapter III does have the required features (finite second moment and an
exponential-like initial decay), and could be used for this purpose. Once

this is done, extensions can be made to a multi-state model for diffusion in

the presence of traps.
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V.B.2 Experimental

This research has laid the foundations for future experimental studies
along two complimentary paths; one involving the study of chemical reactions
of muonium with various reactants on the silica (or other) powder surfaces
and another concerning the interactions of positive muons and muonium with
macroscopic surfaces.

Consider first the study of muonium reactions. In this line of study,
the silica powder plays the role of an inert substrate which simultaneously
provides a way of producing muonium in vacuum as well as an inert surface
on which reactants can be stabilized. There are two distinct aspects of
this study which should be considered. The first of these aspects is the
reaction of muonium with physisorbed molecules, such as ethylene and oxygen,
with the prime goal being to measure and compare the two—dimensional and
three—dimensional reaction rates. The second aspect concerns the reaction
of muonium yith metal loaded catalysts. Because of the enormous interest in
hydrogen ca%alysis with metal loaded catalysts, the study of a hydrogen—like
probe such %s muonium interacting with a metal loaded catalyst should
provide an Excellent opportunity for pSR to make a significant contribution
to a rapidly expanding field. An immediate benefit that can be forseen is
that muonium can provide information about the intermediate reactions that
occur at short times, which are currently not observable by any other
technique.

Preliminary studies of both of these aspects have already been made,
with the results obtained for muonium on the surface of a platinum loaded
catalyst being reported in this dissertation. All of the studies to date,

however, were made in a low (< 10 G) transverse magnetic field. If one's
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goal is to measure the reaction rate of muonium with a reactant stabilized
on the silica surface, it will be necessary to distinguish between
relaxation due to chemical reactions and relaxation due to the interactions
of muonium with the silica substrate itself. This could be accomplished by
repeating these measurements in zero and longitudinal field.

The observed functional dependence of the muonium formation probability
on the fractional surface coverage begs further investigation aimed at
determining the origins of muonium formation in these powders. Indeed, the
two possibilities mentioned earlier for the role played by the physisorbed
helium atoms are both very interesting, if only from an atomic physics point
of view. To determine the true role played by the physisorbed atoms in the
charge exchange process, it will be necessary to repeat these experiments
using different adsorbates. It would also be interesting to alter the
substrate in a systematic‘way, such as changing the surface hydroxyl
concentration.

Now consider the possibility of investigating the interactions of p+
and muonium atoms with macroscopic crystalline surfaces. A particularly
interesting topic to lead of these investigations arises from a recent
positron experiment [5]. This experiment shows that when et of keV energies
are implanted into ionic single crystals, they are reemitted isotropically
from the solids with a continuum of energies having a maximum approximately
equal to the band gap energy (typically ~10-20 eV). Positronium (Ps) was
also observed to be emitted. Results also indicate that the emission of
both et and Ps is associated with positronium diffusing to the surface of

+

these crystals where there exists some branching ratio for €' as opposed to

Ps emission. An explanation for this phenomenon has been proposed which
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assumes a finite concentration of acceptor sites at the crystalline surface,
such that the et is Auger-emitted when the Ps electron combines with such a
site. Assuming that one can draw certain analogies between the behavior of
positrons and positive muons, and that the mechanism(s) responsible for the
re—emission of positrons would also be involved in the analogous phenomenon
for positive muons, this line of research would have the added benefit that
one can draw guidance from earlier positron experiments. In addition, this
research could conceivably lead the way to producing an ultra-low energy
(0-10 kev) u+ beam. A detailed description of the physics involved, along

with a possible test case experiment, is given in Appendix II.
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APPENDIX I — THE TIME EVOLUTION OF THE put SPIN POLARIZATION IN MUONIUM

FOR A GENERALLY ANISOTROPIC HYPERFINE INTERACTION

In this Appendix, the tiﬁe evolution of the p+.spiq pq}arization for a
positive muon in the neutral atomic state (muoniunm, p+e') is discussed for
the case of an anisotropically distorted muonium hyperfine interaction. The
associated static spin relaxation function is also calculated for a few
selected symmetries. Because the research presented in this dissertation is
primarily concerned with muonium on the surface of powders, where there is
no well defined crystal orientation, the discussion will be directed

accordingly.

Al.A Observables — Crystal and Detector Frames

There are two frames of reference associated with solid state pSR
experiments, the crystal frame (designated by the coordinates x', y', z')
and the detector frame (x, y, z). Observations are of course made in the
detector frame; however, the time evolution of the observables is generally
more readily described in terms of the crystal frame, where the symmetries
of the problem can be explicitly incorporated. These two reference frames
are related by the Euler angles («,B,y) through the second rank rotation
tensor

R(Q) = exp(—igza) . exp(—igyﬁ) . exp(—igzy)
and the inverse rotation tensor - (AIL.1l)

R(Q) = exp(+1] ,v) ° exp(+igy,s) « exp(+1]_,a)

where the J. are the respective infinitesimal rotation generators [l]. With

i
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these defintions, one can define the unit vector transformations and inverse

transformations as x, = g(ﬁ)-;i and X! = 5(9)-§i, respectively.

i i

AI.A.1 Spin Relaxation Functions
As for any observable, the time evolution of the pt spin polarization
for a generally anisotropic muonium hyperfine interaction is, in the

Heisenberg picture, given by the equation

[

P (t) exp[i(2n/h)Ht] P exp[-i(2n/h)Ht
Zop ] ~op ( I (AL.2)

2 exp[i(2n/h)Ht] §%p exp[-1(2n/h)Ht ]

where H is the spin Hamiltonian of the system and Eﬁp is the muon spin
operator. The time evolution of the spin polarization for an individual
muon, is then represented by the second rank time autocorrelation tensor

defined as

e I

g(t) Tr{R,,(t) Bop!

Tr{exp[i(2n/h)Ht] P exp[-i(2n/h)Ht] P_}
~op ~op

(AI.3)

Defining the eigenstates of the Hamiltonian as |¢i> with the corresponding
eigenenergies £i= (h/Zn)wi, and recalling the definition of a trace of an

operator product, Equation AI.3 can be written as

1
g(t) = & }i:jexp(iwijt) <yl By 10<051 By 10 (AL.4)
where we define the transition frequencies wij = (wi - wj). By separating

the expression given in Equation AI.4 into the diagonal and off diagonal

parts one obtains
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g(t) = Pop |4;>

Y <4 B b [4><0;1 B
i 1 i (AI.5)

IH‘ bhﬂ

*
i . P .
i;JRe{exp( w, Jt) <¢ | 98 |¢J><¢i| Eop |¢J> }

By definition, <¢i| Eop l¢j> =

N

X

P +3pP. +2pP? h that, in ter
1 y . z 15 suc at, in ms

1]

of its cartesian components, g(t) can be written as

g(t) = Z g xx (» ?i)z + 3y (Pii)2 + 2z (P’ii)2
v (3 + SRR+ (B + WpLpE, + (52 + )Y Rl )
+%1§JCOS(‘” O P31° 4 55 17 4 B e (AL.6)
+ (kv + yx)Re(P" JP{J) + (%2 + ;§)Re(P§jPi;) + (yz + ;;)Re(Pi iJ)}
) %;szin(iwijt){(;; - )Im(PiJPZJ) + (%2 - Z)m(e] 2 *)
+ (yz - ;;)Im(P{J iJ)}

Since g(t) is a second rank tensor in three-dimensional space, it can
be expanded in terms of (1) the second rank unit tensor U, (2) a set of
traceless antisymmetric second rank tensor, constructed from the dot product
of the Levi-Cevita tensor £ and the detector frame spherical vectors E;, and
(3) the traceless symmetric second rank detector frame spherical tensors Ei'

The resulting expansion gives
B(O =84 - =) g E 08 v 1 g, E (A1.7)

The transformation to spherical tensors is made in order to provide a more

convenient set of vectors and tensors for the rotational transformations
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between the crystal frame and the detector frame. In terms of their

> > > ) 1
cartesian components (x, y and z), the spherical covariant vectors Em and

*
the corresponding contravariant vectors glm = (Ei) are given as
1 i /> > 11 i /> >
El = :(x-iy) H E =-—_—(x+iy)
V2 /2
E =- 12 ; g0 - 12 (AI.8)
Eh=-iG+s) 5 BT ia-4)
/2 /2

By definition of the Levi-Cevita operator g, the antisymmetric spherical

tensors can be written as

B g = L[(3-3)-iE-8)
- Y2
1
By ee =-1[(x- )] (AI.9)
Eee =-2[(2-%)+ (- R)]

V2

The symmetric spherical temsors can also be written in terms if their

cartesian components with the result

Bo = /273 [- 3+ 7 (B + 33))
gfl =+ _;_ [(%xz + zx) 7 i(3z + zy)] (AI.10)
By, = -2 [(3x-3%) 7 1(% + 3%)]

At this point it is convenient to define a few identities. From

Equation AI.9, one can write

; = i (Eé) = -4 (Elo)

x="2 (Ei - Eil) = LMt (AI.11)
V2 V2

= L +r) - ZEM+EH
V) )
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Combining the identities given in Equation AI.ll with the definitions of
Equation AI.10, the second rank symmetric spherical tensors can be

constructed from the spherical vectors such that one has

2 _ s7rr(et gl) + L (gl gl 11

Ep = 7273 [(Eg Ep) + 5 (B, Eyy +Ey E)]
2 1 1.1 1 .1

£ = = [(E; E,;) + (E,; E;)] (AI.12)
2 11

Eiz - [(E_l E_l)]

The covariant and contravariant spherical vectors, which now define the

physical space, obey the following cross product relations

(0« £9) = (g1 x M) = (Elxgh) = o
EV ") 2 x (BE+9) - H3+%H - M
v2 V2 (AI.13)
(ExET) =X (DE-8) = A5-%) =7
v2 V2
(g = ') = %-(% +iy) x (% - iy) = -iz - '

By combining Equations AI.6 and AI.7, and utilizing the results of Equations
AI.8 - AI.12, the nine detector frame‘components glm(t) of the relaxation

tensor are defined as

goo(t) = %-g : g(o) (1/12){ g [(Pii)z + (py )2 + ( z )2]

P
11 i (AI.14)

2 2 2
+2  cos(w ) [127417 + 123517 + 1234171}
i<j
i (.10 1 x _y*
8 (t) =-=(E «g):gt) =-= 7 sinfw, . t)[In(P] P7.)]  (AI.15)
10 ) £ E vz i<y 13°1)
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_ il - y p%"
8,,(t) === (E"+g): gt) =% 5 ] sin(w, t)[In(P) P¥.)
1£1 /Z 2 E iy Y o (AL.16)
_ x _z*%
F iIm(PijPij)]
S 20 g(ey = Lvamm 7 MR )% (7)) - (¢2,)2
g,0(t) = E° : g(t) = 7 V273 { }i' [31(p3,)% (P37 - (35,)7] (AL.17)
1 x 2 y 2 z 2
+ 2 RIS Pyl ) = IRy,
izjcos(wiJ )[2(| 1J| | 1J| ) - | 131 Il
ES -4 1 LrpX pZ 4 4pY p?
thl(t) =E : g(v) t A { g 7 [PiiPii - 1PiiPii] (AI.18)
x _z* X y p2z*
* zichos(wij)[Re(PijPiJ) t iRe(P; ;) ]}
_ 242, oLy LorpX 20 (pY )2 5 5pX pY
thz(t) = E : g(t) A { :}L‘ P [(Pii) (Pii) + PiiPii] (AI.19)
X 2 _ oY (27 - X Ly*
+ ichos(wijt)[ll’ijl P3517] 7 ire(R; Py )]}

Because all observations are made in the detector frame, whereas the

symmetries are defined in the crystal frame, it is
detector frame observables glm(t) to the crystal £
This is done via the rotation operation, such that

(L)
Roim

where Réﬁ)(ﬁ) are the matrix elements of the rotat

g y(t) = g g () @

in Equation AI.l.

With these definitions, the dynamics of the pt

necessary to relate the

rame observables gim(t).

(AI.20)

ion tensor 5(5), defined

spin is found to involve

nine observable detector frame relaxation functions, which are constructed

from the nine detector frame components glm(t) of

the relaxation tensor
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[2,3]. Specifically, there are three longitudinal (1) relaxation functions,

in the direction of the local field, defined as

8] () = g5 (£) — 273 g, (t)

g1 (£) = Im{g); (D)} + Re(g, (1)} (AL.21)

g] (£) = = Re{g) (D)} + Im{g, ()}

three coplanar-transverse (ct) relaxation functions, which are in the plane

defined by the field direction and the incoming muon spin polarization

g5, () = - Infg (D)} + Relg, (©)}
855(6) = gyo(t) + 3 /273 g (1) - Re{gy,(t)} (AI.22)
8o (t) = = VI/Z g ((t) - In{g,, ()}

and three perpendicular-transverse (pt) relaxation functions, which are

directed perpendicular to both the field and the incoming muon spin

polarization.
g5, (1) = Re(g), (0} + In{g,, (0]
goo(6) = /I72 g ((t) - Im{gy) (D)} (A1.23)

1 ——
Bop(8) = 8oo(t) + 7 V273 gy (t) + Re{g,y (D)}
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It is convenient to work in the vector space spanned by the
detector frame eigenfunctions |mu,me> of the unperturbed (vacuum)
“muonium‘isotropic hyperfine Hamiltonian. Defining the axis of quantization

.. to be along the magnetic field, one has

1> = |+,+ 5> = |-,
: (AI.24)
|3> = s|+,> + c|-,P> s 4> = |+, - 5|,
where ¢ = cos(A/2), s = sin(A/2) and A = arcsin[1/(1+x2)1/2]. The
dimensionless quantity x = |B|/B; is the specific field parameter where B,

(= 1585 G) is the hyperfine field for isotropic muonium in the ground state
in vacuum. The labels of the second and third eigenfunctions given in
Equation Al.24 have been interchanged with respect to the standard notation
[4-6] in order that the hyperfine Hamiltonian can be partially written down
in block diagonal form. In general the eigenfunctions |¢i> of a specific
hyperfine Hamiltonian can be expressed as linear combinations of the
isotropic muonium basis vectors |k> given in Equation AI.24, such that one
may write

B¢ > = 0> = &y g ¢y 10 (AI.25)

Utilizing this result, one can then write

> X > .y > 2 *
<, |P o= xP,.,+yP,.+zP . |=)c, c. <klP k1>
¢1|~opl¢J [ i3 7 7 Tij iJ] E ik "k I”°P (AI.26)

+ 3 [ k[P D+ o
c,. ¢, c,
k<1 ik i1 ~0p i

Solving for the three detector frame polarization components, one then has

< "
1 gk SKlEepl D]

P?j = cos(k/Z)[Al3 + A24] + sin(l/Z)[A23 - A14]
Pﬁj = 1{cos(r/2)[B,4 - B,, ] - sin(rn/2)[B,, + B, 1} (AI.27)
Pij = [Clz] - cos(x)[C34] + sin(h)[A34]
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defined A . = [cr c.+ ¢ * *
where we have define k1l = cikcjl cilcjk]’ Bkl = [cikcjl Cilcjk]
Note that in zero field, A = /2.

and
_ [ * *
= Lo el

AI.B The Spin Hamiltonian for Isolated Muonium
The spin Hamiltonian for an isolated muonium atom in a magnetic field
B, assuming a generally anisotropic muonium hyperfine is given by

H = Hzee + th

(A1.28)

e _ . sy . . (g® gP
(/2m) (v Sop = ¥, Sop) © B+ (W/2m) Wi (S, 8]

where Ye and yu are the respective magnetogyric ratios of the electron and
the muon, §§p and §2p are the spin operators and Wis a second rank tensor
(in three-dimensional space) representing the contact hyperfine interaction.
Although this Hamiltonian 1is discussed in some detail elsewhere [7], a
somewhat different but equivalent evaluation is given here which facilitates
the calculation of the time evolution of the p+ spin polarization, for a
generally ansisotropic muonium hyperfine interaction, and the corresponding

zero, longitudinal and transverse field spin relaxation functions.

Al.B.1 Evaluation of the Hyperfine Term

Because the isotropic muonium basis given in Equation AI.24 is defined
with respect to the detector frame, it is easiest to evaluate the hyperfine
Hamiltonian in this frame. Since W is a second rank tensor in three
dimensional space, it can also be expanded in terms of (1) the second rank

unit tensor g, (2) a set of traceless antisymmetric second rank tensors,
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constructed from the dot product of the Levi-Cevita tensor £ and the
detector frame spherical vectors E;, and (3) the traceless symmetric second
rank detector frame spherical tensors Ei. However, because the hyperfine
tensor W involves only dipole-dipole and contact interactions, both of which

have reflection symmetry, the antisymmetric part of the hyperfine tensor is

identically zero (i.e., Vio = Y941 T 0). The resulting expansion gives
2
W=w,, U + ) w g (AI.29)
3 00 = =2 2m =m

where the symmetry of the anisotropic hyperfine tensor E is defined by the
crystal frame coefficients w o’ which are related to the detector frame
coefficients via the rotational transformation

Wi y @ Réi)(é) (AI.30)
m

The spin operators for the electron and the muon can be written in

terms of the contravariant spherical vectors as

aQ > >
Sop = Sxy X+t S y+S z
P y (AI.31)
- :% Si (Ell _ E1—1) + ‘% g% (Ell + E1-1) _ iSZ E10
) /z 7
, 11 1-1
where a = { ,e}. By combining like terms in E and E , one obtains
o _ Lgllygr o Lpltly e ooy (10 6@ (AI.32)
~0op ./—2- ~ - ’/-i— ~ + ~ z

where we define

s = (s¥ - is;) and si = (s} + is;) (AI.33)
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a .
The three operators 8_, S: and SZ completely define the vector operator §gp
and turn out to be more convenient. They obey the commutation relations

[s¥, s¥] =5

z* O+ (AI.34)

o . .
+ ’ z - b

Utilizing the operations given in Equation AI.13, one obtains the cross

product of the electron and muon spin operators, namely

1,11 _1-1 1,11 10
(560 * Sop) =l (B7 < ET)sDsir ~ (87 xx )se s
1 ,.1-1 11 1 ,.1-1 10
+ 7 (B xE )8y st - (BT xE )s] st (AI.35)
/2
1,10 11 yee u_ 1,10  _1-ly.e .
+ =(E" xE " )s” st - = (E xE )s’ st}
vz " z jz ~ - z

Using the identities for the cross products of the spherical vectors given

in Equation AI.l13, one can rewrite Equation AI.35 as

1 10 y.e o 1 11 "
(2 xst)y={;:(E" )sSskt + =(-£" )ss
op op 2 + /7 z
1 10 1 1-1
+ (£ )spsP - = (4 )s; st (AI.36)
V2
T C B D N € A Py
V2 V2

This cross product relation is not used in the present work because the
antisymmetric part of the hyperfine tensor ¥ is identically zero.

At this point we have a set of convenient spin operators, expressed in
terms of the crystal frame spherical vectors, and so we can rewrite the
hyperfine Hamiltonian in terms of these operators. First consider the
isotropic part of the hyperfine Hamiltonian. In terms of the spherical
vectors, the second rank unit tensor is written

1 .1 1
U = -EjE, + (E]

1 1 1
E, + E, El) » (A1.37)

Thus the trace part of the hyperfine Hamiltonian becomes
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hf _

1.1 1.1 1 1
00 = )]

(n/2n) wy, [~ E; Eg + (E) E.; + E| E

H Eo Bt \E  E,*YELE

(gzp g‘;p) (AI.38)

and substituting the expressions for the electron and muon spin operators
given in Equation AI.32 into Equation Al.38, yields the result

hf _

Hyg =

1
(n/2m) wy, [s5 sh + = (sp st + s sb)] (AI.39)

By combining the definitions of Equation AI.l2 and the expressions for
the electron and muon spin operators, given in Equation AI.32, the five

terms of the symmetric traceless part of the hyperfine Hamiltonian become

Hgg =7 % (h/2n) LY (s sH) (AL.40)
hf 1

Hyy = 7 (b/2n) wy, (s; s+ 7 sh) (AI.41)
1 = /273(n/27) [- s s¥ + = (s s* + s s¥] AT.42
20 ™) ¥20 z G \Sy S_ T A5y (AI.42)
hf 1

Hy-) = = 5 (b/2m) wy_, (5] 8§ + 5. 8}) (AL.43)
Hgfz =" % (n/2x) w,_,(s; s}) (AI.44)

The result of operating on the space spanned by the isotropic muonium

¢4

, and Sf can be easily understood

eigenvectors |k> with the operators S:, S

by first considering their effect on the single particle eigenkets, |j,m>a

(equal to [%,-% >a or r%,j% >a for spin 1/2). Thus one can write [1]

a . - :
s, |J,m>a =m, |J,m>a (AI.45)

o . rya . .
sy 13w, = Yi(F1) - m (m +1) = |j,ml> ; for m

(AL.46)

-1

2

i . +L
= 0 ; for ma 5
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|j,m—1>a ; for m

0

Returning now to the two—spin eigenstates of

the operations

s s¥ 1> =
Z Z

s€ st |3> =
z

s€ st 1> =

s€ s |3> =

st 1> =

wn
[¢]

7))
f

13> =

s¢ st 1> =

s€ st 3> =

s€ st 1> =

s€ s* |3> =

S

ISR

N w

N o

|1>

13>

|2>

13> -

12>

[3> +

|2>

o

|4>

| 4>

12>

| 4>

|2>

| 4>

|2>

|4>

|2>

|4>

|2>

| 4>

(AL.47)

; form = =
a

Equation AI.24, one can define

- 72
(AL.48)
1
==L
7 |
= 0
(AL.49)
= 0
SN
(AI.50)
= 0
= 0
(AI.51)
Cc
--< 2
7 |
= 0
(AL.52)
S
- S
75 |



e .u _ e .u s c
s®sP 1> = o ; sest > =-2 -5 e
= 2 2 2 (AL.53)
€ gk = < . o€ gk __ S
s° s 3> = 2|1 I 5 11>
e U _ e i c s
s 1>= o0 ; sost D> =S D+ o
v T 2 2 (AL.54)
€ gk = £ . o gk _ c
sy s8> = 3| ;osp st = 2|
e e .
s; st 1> = 0 ; sp st > = 0
(AI.55)
e 2 e 2
S, SE 3> = sc|3> - s7|4> ; S, sE [4> = ¢“|3> - sc|4>
e e
s st j1>= o0 ; osSst>= 0
(AI.56)
s s 3> = sc|3> + 4> ;sSSP 4> = - &P - seld>

With these operations defined, the matrix elements of the generally
anisotropic hyperfine Hamiltonian in the isotropic muonium representation

can be derived. We begin with the isotropic part th and calculate the

00
matrix elements to obtain
1 0 0 0
hf Y00 0 1 0 0
H.~ = (h/21) —— . (A1.57)
00 4 0 0 —(1-4sc) 2(c*-s?)
0 0 2(c2—s2) -(1+4sc)

In a similar manner, the matrix elements of the five terms of the
symmetric traceless part of the generally anisotropic hyperfine Hamiltonian

can be calculated giving



hf Y22
H22 = (h/2‘ﬂ:) T
hef Y21
HZ]. = (h/Z’HI) T

hf _ h /273 "20
20 2n 4

]

hf
H,_ .= (h/2n)

2-1

bl

hf _ v

Hy o=

(h/Z‘lt) %

2-2

© O O ©

o O O ©
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o O O ©

o O O ©

Al.B.2 Evaluation of the Zeeman Term

o O O ©

o O © ©

o O O o

o O o ©O

(AL.58)

(AI.59)

(AI.60)

(AI.61)

(AI.62)

To evaluate the Zeeman Hamiltonian, it is again easier to work in the
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detector frame with the magnetic field B directed along the z—axis.
Recalling the expressions for the electron and muon spin operators given in
Equation AI.32, the Zeeman Hamiltonian becomes

zee

H = (n/2x) [Ye S: -y SZ] |B| (AI.63)

H

Operating on the eigenstates of the isotropic muonium basis, given in

Equation AI.24, one has for the electron spin operator

e _ 1 . e - _ 1

Sz |1> =+ 5 |1> H Sz |2> = 5 |2>

e 1 2 e 1 2

s, 13> = (5= 87)I3> - sc|4> ;5 s_ |4 = (5- )[4 - sc|

and for the muon spin operator (A1.64)

W S 4 — -- 1

Sz |1> =+ 3 |1> H Sz |2> 5 |2>

Sz |3> = (%-- c2)|3> + scl|4> Sg |4> = (%-— sz)|4> + sc|3>

With these operations defined, the Zeeman Hamiltonian in the detector frame

is given by
w0y 0 0 0 -
1%®® = (n/27) 0 My 0 0 (AI.65)
0 0 oy Tselyety,)
B 0 0 —sc(ye+yu) Wy, P
1 2 2 2 2
where w, =5 (v, - yp)lgl, a= (ys™+ Y,e )|B| and b = (y_c"+ Y8 )IB]-

Al.C 1Isolated Muonium in Zero Field
In zero field, one has s = ¢ = 1//2. 1In this case, one can transform

to the crystal frame and write the total Hamiltonian in terms of the crystal
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frame coefficients w,_, namely

Lm
— ) ., _
(wggw30) Wo-2 Wo-1 0
-— —yy P |
H = (h/2%) % wyy  (wggmw3) 921 0 (AT.66)
L} ] L
Wa1 wp_y  (wggt2wy,) 0
B 0 0 0 -3w00 ]
v = /o vt o /572
where we have defined 0 V2 W g0 with the exception that wy, v/2/3 Wy *

Deriving the crystal and detector frame relaxation functions for a
specific hyperfine Hamiltonian is in general straight forward. To calculate

the relaxation due to some random distortion of the muonium hyperfine

interaction, one averages over the associated wp o

s. However, since ®90 is

in general quite large and unobservable due to timing limitations, one can
ignore the oscillatory terms containing Wog which simply implies ignoring

the singlet component of the muonium ensemble, and only take an average over

the appropriate Wy

s, each of which have some distribution fzm(wzm). With
the data presented in this dissertation, it is in general not possible to

discriminate between an w distortion as opposed to w contributions.

21 22

This being the case, the possible contribution of an w,,component to the

21
relaxation of the p+ spin polérization is omitted in the remaining
~ discussions.

In the case of powders in zero applied field, the axis of symmetry of
the hyperfine distortion for each muonium atom is oriented randomly. When
taking an ensemble average one averages over the Euler angles which, by
definition of spherical harmonics, forces all of the detector frame ng(t)

to zero except goo(t). Because of this averaging, only three of the nine

detector frame observable relaxation functions, given in Equations AL.21 -
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c sc ss
AI.23, survive; gl(t), gct(t) and gpt(t). Furthermore, these three
functions are identical and equal to goo(t), which simply reflects the fact
that the spin relaxation function is isotropic in the detector frame. With
this understanding, the general form of the zero field spin relaxation
function, due to random anisotropic hyperfine distortions, for the case of
powders, is then given by the equation

w o]
rh
Boo(t) = [ dupfyluyy) woe [ duwy iy i (wgne) Bogltsuyyseeswype) (AL-67)
- -0
Since all of the zero and transverse field spin relaxation data presented in
this dissertation appear qualitatively to exhibit an exponential decay at
early times, the wzm's are assumed to be distributed according to Lorentzian
and Lorentzian—-like distributions. This choice of distribution function is

purely phenomenological, since the actual function is not known.

Al.C.1 Relaxation Due to a Cylindrical Distortion

Take as an example a cylindrical distortion of the muonium hyperine as in
the case of anomolous muonium [8]. In this case, the hyperfine distortion
is cylindrically symmetric about some given axis. Assuming that all of the
muonium atoms in the ensemble have hyperfine distortions that are symmetric

about the z—axis, the Hamiltonian of Equation AI.66 becomes

(wo0=w30) 0 0 0
H = (h/2m) + 0 (wgg-u3o) 0 0 (AL.68)
0 0 (wog+2uwse) 0
0 0 0 -3w00

As stated earlier, the eigenfunctions |¢i> of a specific hyperfine

Hamiltonian can be expressed as linear combinations of the isotropic muonium
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basis vectors |k> given in Equation AI.24. Since the Hamiltonian in
Equation AIL.68 is diagonal in the isotropic muonium representation, one has
the coefficients c, -= §,. with the eigenvalues gi equal to the diagonal

ik ik

elements, namely

g, = (h/8n)(woo - V273 wzo) 3 &, = (h/8n)(m00 - /§7§'w20) (AL.69)
gy = (h/BW)(wOO + 2v/273 w20) H 54 = (h/Sn)(—SwOO)
with the corresponding transition frequencies
Wy, =0 Whn = l-(-3/§7§ w, )
12 ’ 23 4 20

_ 1/ _1 _ a7

w4 = Z-( 3273 w,,) 5wy, = Z-(Awoo V273 w,,) (AI.70)
=1 - . -1 . 2/373

Wy, = Z—(4w00 Y273 w20) 3wy, T g (4w00 + 2/2/3 w20)

Using Equation AI.27 one can then calculate the crystal frame polarization

components, namely

Py = O ;P O s Pt L Pyy = = 1
; P§3 = COsA, PZA_ cbsx
Plp= O s Py = O 3 Pl = O
PT3 = c H P{3 = ic H Pf3 = 0
pf4 = -s ; P{A = -is ; Pfa = 0 (AI.71)
P§3 = ; P§3 = -1ig ; P§3 = 0
P§4 = c s P§4 = ~ic 5 P;A = 0
P§4 = 0 ; p§4 = 0 ; p§4 = sim\

which simplify further in zero field where A = /2, thus ¢ = s = 1//2.

Since all of the crystal frame coefficients in the cylindrically
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distorted Hamiltonian are set equal to zero except w

00 and w

20° the only

non—-zero crystal frame relaxation functions are géo(t) and géo(t). By

Substituting the values of Equation AI.71 into Equation AI.l4, and using the

definitions of Equation AI.70, the former becomes

' =1 L ! > )
8hot) = 3-{1 + cos[(wyy + 5 wzo)t] + 2cos[ (- wy,)t] (AI.72)
1, )
+ ZCOS[((A)OO - % wzo)t]}

Similarly substituting the values of Equation AI.71 into Equation AI.1l7,

along with the transition frequencies defined in Equation AI.70, the

expression for the latter can be derived, namely

1 1 3
gl (t) = = V273 {-1 - cos[(w,, + 5 w!.)t] + cos[(5 w! )t
20 2 00 2 720 4 720 ] (AI.73)

- 1 !
+ cos[(woo Z-wzo)t]}
To derive an expression for the observable relaxation due to random

hyperfine distortions, we treat the terms oscillating at or near woo 28

averaged to zero and only average over Woq* In this case, the frequency
distribution is one-dimensional and, assuming a Lorentzian distribution, is

given by

(e}

1 20
£o0lwy0) = 5 [ +"'2"]
W0 T Y20

where %50 is the width parameter of the distribution, and the factor of 1l/x

(AI.74)

is a normalization constant. In the case of a powder, averaging over the
Euler angles forces all of the detector frame gzm(t) components to zero
except goo(t). By combining Equations AI.72 and AI.74 with the definition

of Equation AI.67, one can then write for powders
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o]

h 2 %20 -1 3 7
gSU(t) = = £ dw, [wo, + o5, ] [1+ 2cos(z-/2/3 wZOt)] (AI.75)

20 20
Performing the integration in Equation AI.81, then yields

rh _ 1 1 _3 o7
Boolt) = % + 3 exp(- = V273 o, t) (A1.76)

Notice that as t + =, this function tends to 1/6 (or 1/3 of the initial
polarization of the triplet muonium ensemble). The time independent 1/3
component of the ensemble spin polarization (residual polarization) arises
because there exists a non—-trivial zero frequency. This can be understood
intuitively by noting that for a random hyperfine interaction, 1/3 of the
time the cylindrical distortion axis is directed along the z—axis of the

detector frame, (i.e., along the initial muon spin polarization).

AI.C.2 Relaxation Due to a Planar Distortion
Now consider the time evolution of the p+ spin for the case of a planar

distortion of the muonium hyperfine interaction. In this case, one has the

Hamiltonian
@50 ~Wy_o 0 0
H = (h/21) & "2 ©g0 0 0 (AL.77)
4 0 0 w 0
00
0 0 0 —3w00

Since this Hamiltonian is block diagonal, the first two energy eigenvalues
can be calculated by diagonalizing the 2x2 block

- w) -w,
2-2 2 2 M 2
=0=w - Z(woow) + wyg - (wzz) (AI.78)

(“’oo

W2 (“’oo' w)

M —— R 2 I +291/2
where we define w = £(8n/h), and Wy, = /(wzz)(wz_z) = [(wzz) + (wzz) ]
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Solving Equation AIL.78 for w then gives

= (n/2m) 3 [0y * wy,] (AI.79)

21,2
To compute the eigenfunctions |¢,> and |¢,> corresponding to these

eigenvalues, one solves the set of coupled linear equations

(woo—w)u, + (~w, ,Ju, =0
00 1 2-2/72 (AI.80)

( -mzz)ul + (woo—w)uz 0
where u; and u, are the components of the eigenvectors. Solving Equation

AI.80 for w = w; and w = w,, one obtains respectively

w i w id
u, = - ;ég u =-e 22 v and u, = + ;%E u = + e 22 Uy (AI.81)
22 22
where ¢,, = arccos(mR J ) = arcsin(wI Juol ). From Equation AIL.81 and the
22 22° 722 22° 722

usual normalization conditions, one can obtain expressions for both |¢,> and

|¢,>. Thus one can write

o> = L[>+ 22 ] 5 ey = D[ - &2z 2]
V2 V2 (AI.82)

| 4>

0> = 3> e,

with the corresponding eigenvalues

1 M 1 M
g, = (h/2m) Z-(woo + w22) ; 52 = (h/2m) Z'(wOO - w22)
1 1 (AI.83)
§3 = (h/2n)'z (woo) H 54 = (h/Zn) Z-(—3w00)
The transition frequencies are therefore given as
1 M 1 M
wyy = 7 (20y) s wgy = 7 (Fuy,)
1 M 1 M
w3 = 7 (95,) 5wy, = 7 (4ugg — wyy) (AL.84)
1 M 1
wyy = 7 (bugg + wyy) s wy, = 7 (4ugg)



- 175 -
Again utilizing the expressions given in Equation AI.27, one can calculate
the crystal frame polarization components. To do this we first write down

the eigenstate expansion coefficients ¢ K? namely

i
= 1 . =4+ L 165 . - ) -
Cll /_2_ ’ c12 +/7 e H C13 0 3 014 0
= _1_ . = - L i¢22 . = . -
C21 /7 H c22 /7 e ’ c23 0 » C24 - 0 (AI.BS)
Ca = O3 3 S T Oy

Substituting these coefficients into Equation AI.24 then gives

X _ . y - . -
Pig= 0 3 Py = 0 3 Pgy = O
X _ . y - . z 2
P12 0 ; P12 0 5 P12 1
Pf3 = :é [c+ se-i¢22] ; P{3 = ;% [c - se_i¢22] H Pf3 = 0
V2 V2
Px = _!'_ [S - ce—i¢22] ; Py = _}. [S + Ce_i¢22] ; Pz = 0 (AI.86)
4 = 14 = 14
V2 /2
pgs = :£ [c - se_l¢22] : Pg3 = -é [c + se—i¢22] ; P§3 = 0
V2 V2
P§4 = ié [s + ce_1¢22] ; PZ4 = ?% s - ce_i¢22] H P;4 = 0
V2 Y2
X _ . y - . z 2
P34 0 ; P34 ‘0 ; P34 sin)\

1//2. By substituting the

where, in zero field, A = n/2 and ¢ = s
expressions given in Equation AI.86 into Equation AL.l4, and recalling the
definitions of the transition frequencies given in Equation AI.84, one

obtains for zero field

1 1 M 1 M
gl (t) = = {cos[(—-w Je] + 2cos[(—-w Jt]
00 6 2 722 4 722 (AI.87)

+ cos[(woo- Z-wzz)t] + cos[(w00+ %-wzz)t] + cos[(woo)t]}
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Similarly substituting the values of Equation AI.86 into Equation AIL.19, the

zero field expression for gzz(t) is found to be

1 M
géz(t) =-Z{cos[(w00 + wzz)t] - cos[(woo - Z-wzz)t]}exp(—i¢22) (AI.88)
To obtain the relaxation function for random planar anisotropies, one

once again ignores the w terms and only averages over w In this case,

00 22°

22(w22,¢22) is two—dimensional and, assuming a

Lorentzian-like distribution, is of the form given by

the frequency distribution f

GM wM
M 4 22 722 -1
£0(W92009) = 7 —73 w77 (27) (AI.89)
[(u)? + (o))
where ogz is the width of the frequency distribution, and 2/n2 is a

normalization constant. The distribution defined in Equation AI.89 assumes

M
a zero average, even though w

om is positive-definate. At first this might

seem inconsistent, except that Equation AI.89 is the distribution function
for a complex number; although the magnitude wgm is positive—definate, the
orientations of the associated vector are distributed over all directions in
a plane. In the case of powders, an ensemble average is made by averaging
over the Euler angles, which as earlier stated, forces all of the detector
frame relaxation tensor components to zero except for goo(t). By combining
Equations AI.87 and AI.89 with the definition of Equation AI.67, and

ignoring the w terms, one then obtains for powders

00

M
rh, . 4 %2 [~ M 1 M
800(t) = 7 & £ duw, 5 {cos[7 wy,t]

M 2 M2
[(wy5)" + (09,)7] L (AI.90)
+ 2cos[z-w22t]}

where the integration over the phase angle ¢22 has been done, and the extra

factor of wg is the Jacobian arising from the coordinate transformation

2
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from the coordinate R wI and to M B erforming the
§ Wyps Wy 099 tO Wy, By P 8

integration, one finally obtailns

M M M M
h 1 %22 %22 1 %22 922
ggo(t) = E-(l - = t)exp(- - t) + 3-(1 - —Z—-t)exp(— % t) (AI.91)

Notice that as t + o, this function tends to zero. This result reflects the
fact that, unlike in the case of a cylindrical distortion, there are no zero
frequency terms in géo(t). The simple analytic result of Equation AI.91
arises from the assumption of a "Lorentzian-like" distribution. If instead

a true two—dimensional Lorentzian is assumed, the result is not analytic.

AI.C.3 Cylindrical and Planar Distortions Combined
Now consider the time evolution of the pt spin assuming both a

cylindrical and a planar distortion. In this case, one has the Hamiltonian

(woo'wéo) “Wo_2 0 0
H = (nh/2m) ¢ ~wyy  (wggmw30) 0 -0 (AI.92)
0 0 (wggt204) 0
0 0 0 —3w00

Because this Hamiltonian is of the same form as that of the simple planar

distortion, given in Equation AI.77, its eigenfunctions |¢i> are the same

|o)> = :% (11> + el®22 |12>] |4,> = é;[|1> - et022 [2>]
V2 V2 (AI.93)
]¢3> = |3> s le> = |4

Since this Hamiltonian is block-diagonal, the first two energy eigenvalues

can of course be calculated by solving the secular equation

(wggwp0)=w 0y =0 = u? - 20(0 w0l )
® %0720 (AI.94)
M 2
(wzz)

W22 (wggmwpq)-w
+ (uggugg)” -
00 20

Solving Equation AI.94, the four eigenvalues of this Hamiltonian are
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1 M
£ = (n/2n) = [(w,y = V273 w,,) * w,,]
1,2 4 L\¥0 20 22 (A1.95)
1 1
gy = (h/Zn)-Z (wOO + 2 /273 wZO) 5 g, = (h/Zn)-Z (-3 wOO)
with the corresponding transition frequencies
1., M . . - ot
wyy = 7 (205,) by = g (37273 wygm wy,)
-1 . =1 - JT3 . -
Wiy =7 ( -3v273 W, + w22) 3wy, = 7 (4w00 v2/3 Wy w22) (AI.96)
w,, = l-(4w - VI3 w, + wo ) 5wy, = l-(4w + 2/273 w,,)
14 4 00 20 227 2 34 4 00 20

Because the eigenstates of the combined Hamiltonian are the same as those of
the planar distortion Hamiltonian, the eigenstate expansion coefficients Cik
of the combined Hamiltonian are equal to those quoted in Equation AIL.85.
Consequently, the crystal frame polarization components, which are derived
through the use of Equation Al.27, are the same as those given in Equation
AI.86. By substituting the the results of Equation AI.86, as well as the

transition frequencies of Equation AI.96, into Equation AIL.l4, one obtains

an expression for gbo(t) in zero field, namely

1 1 1
géo(t) =% {cos[(i-wgz)t] + cos[z( 3wé0+ wM )t]

1 M 1 M
+ cos[z{woo- wé0+ wzz)t] + cos[z{-3w20 wzz)t] (AI.97)
1 1 M 1
+ cos[(woo— 5 wéo i wzz)t] + cos[( ot E-méo)t]}
where w' = /2/3 w,.. In a similar manner one can obtain expressions for

20

the crystal frame components géo(t) and géz(t), such that one has

850 () =-% V273 {- cos[(é gZ) ]+ cos[z{ =3wy ot w22) t]
1 M 1 M
+ cos[(w W~ 4 é0+ Y 22) t] + cos[z{—3wéo- mzz)t] (AI.98)
+ cos| (v ol = = ot Vt] + cos[ (wyt = w! )]}
Yoo~ 4 20" F Y22 2 720



- 179 -

and
1 3 1 M 1 1 M
832(t) = 7{= cos[(= 7 wgt 7 wy,)t] + coslugy= 7 wygt 7wy, )]
3 M 1 1 M
+ cos[(--z wéo— wzz)t] - cos[(moo- Z-wéo— Z-wzz)t]} (AI.99)

x {exp(-i¢,,)}
respectively.

The relaxation function for the combination of random cylindrical and
planar anisotropies can be calculated by ignoring the unobservable wg terms
and averaging over Wy and wgz. In this case, the frequency distribution
f(wzo,wgz) is simply given by the producf of the wzoand wgz distributions as

defined in Equations AI.74 and AI.89, respectively, namely
My M
Elwggauyy) = £lugg) + £(uy5,05,)

(AI.100)

_ ik %20 b 92 %22 (22)7%
" (wyg)% + (0,9)° & [(uh,)? + (ohy)?1? )

For powders, one averages over the Euler angles, and by combining Equations -

AI.97 and AI.100 with the definition of Equation AI.67, and ignoring the w

00
terms, one then obtains the expression
RH 2 Moy 2 2,-1
800(® 77 (030 032) T duyg [(uyg)" + (050)°]
TOM (M2 o M2 M y27-2 1
x | dwzz (wzz) [(mzz) + (022) ] {cos[i-wz2 t] (AI.101)
o
1 M 1 T M
+ cos[z(—3/§7§ Wy + wzz)t] + cos[z(—3/2/3 Wy ~ wzz)t]}

where the integration over the angle ¢22 has already been performed, and
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where the extra wgz factor is again the Jacobian of the coordinate
M yields the
22 7

transformation. Performing the integrations over w and w

20

simple analytic result

rh 1 1 M 1 M
gn(t) == (1 -0, t) exp(—«— 0o, t)
00 6 2 722 2 722 (AI.102)
1 1 M 1, M e
+-§ (1 = 7 999 t) exp[- Z{GZZ + 3/2/3 czo)t]

A check of the limiting cases shows that as wM

o9 * 0, Equation AI.102

approaches the expression for a cylindrical distortion given in Equation

AI.76, and that as w,, > 0, Equation AI.102 simplifies to Equation AI.91 for

20
a planar distortion. Furthermore, because of the planar contribution to the
hyperfine distortion, the spin polarization of the muonium ensemble tends to

zero at long times.

AlI.D Isolated Muonium in an External Magnetic Field

In the presence of an external magnetic field, the frequencies as well
as the amplitudes are dependent upon the Euler angles. Assuming both a
cylindrical and a planar distortion of the muonjum hyperfine interaction,

the total Hamiltonian is

(oo e, ™Wa0) ~Wy_y “Wy_p 0
'/ (wnn—tw, —w, ) -w 0
H = %; 22 00" “Mu 20 21 (A1.103)
- J— )
w21 wz_1 (woo+4P+(1+25c)w20) CWZO
B 0 0 szo (-3w00-4I‘+(1-23c)w2014

x2)1/2 - l], g = 2(c2— 32) and the w are the detector

1
where I' = E-woo[(l + om
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frame hyperfine coefficients which are related to the crystal frame
coefficients Wy o through the rotational transformation defined in Equation
AI.30. Calculating the applied field spin relaxation function from the
Hamiltonian of Equation AI.103, for all applied fields is a somewhat
difficult problem. However, this problem becomes considerably easier for
certain limiting cases

Consider the problem in the limit of “high fields"”, (i.e., w, >> o, ).
2m

Mu

In this 1limit, one can approximate the total Hamiltonian by its diagonal

components and write

-Iwoo+4wMu—w20) 0 0 0
0 (w “bw,  ~w ) 0 0
H = g—n 00™ hu™"20 (AI.104)
0 0 (wygtsI+(1+2sc)w, ) O
| o 0 0 (=3wgy=4T+(1~2sc)w,q )
where w,, is the detector frame coefficient which is related to the crystal

20

frame coefficients through the rotational transformations defined in

Equation AI.30, namely

wyo = /I3 T w, R$D) (AI.105)
m

Since this Hamiltonian is diagonal, the energy eigenvalues are simply given

by the diagonal elements, namely

1 1
gy = (W/2m) Zluggthuy, =wyo] 3 &y = (/2m) Zlugg=buy, ~wq ]

(AI.106)

53 (h/2n) %{w00+4r+(1+25c)w20] H 54 = (h/Zn) %{—3m00-4r+(1-23c)w20]

and the corresponding transition frequencies are then
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- . = -y -[- L

Wyp = 20y, by =~y T (lsc)wy,
= r- 1 . = - - L4

wyq = 0y T 2(1+sc)w20 3wy, = wygTwy 4T 2(1 sc)w20 (A1.107)
— -1- . —3

Wy, = w00+wMu+F 2(1 sc)wzo 3 Wg, w00+2r‘+scw20

The eigenfunctions of this Hamiltonian are of course the isotropic
eigenstates give in Equation AI.24 and so the eigenfunction expansion

coefficients are just c Combining this with the expressions for

ik = Sik*

the detector frame polarization components given in Equation AIL.27, gives

X z z

Pgg= 0 ;3 Pl =0 s Py = L By, =l

z z
P33 = —~CcosA, P44 = COSA

x = . y = . Z =
P12 0 s P12 0 H P12 0

X = . y = 5 . z =
P13 c H P13 ic H P13 0

X . y - _ . -

Pl4 s 3 P14 is 3 P14 0 (AI.108)
X = . y = - . z =
P23 s H P23 is H P23 0

X = . y = =1 . 4 =
P24 c 5 P24 ic 3 P24 0

X = . y = . Z =
P34 0 H P34 0 3 P34 sin)\

Substituting the results of Equation AI.1ll4 into Equations AI.l4, ATI.15 and

Al.17, one obtains for the detector frame

1 ' 2 1 2
Bpo(E) = 5-(1 + cos“\) + 3-{cos (K/Z)[cos(wl3t) + cos (wzét)] (AL.109)
+ sinZ(K/Z)[cos(wIAt) + cos(m23t)] +-% sinzk[cos(w34t)]}
and
1 2 . 2 2
g20(t) =3 V273 {-(1 + cos“)) - 51n,k[cos(w34t)] + cos“(\/2)
g , (AI.110)

x [cos(ml3t) + cos(szt)] + sinz(h/Z)[cos(mlat) + cos(w23t)]}

Evaluating Equation AI.ll2, one writes
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r$2)(2) + w )@ (AI.111)

_ (2) =z
Wog = 7273 {wyy Roo” (@) + wyy Rpy 2-2 Ro-2

00

From the definition of the rotation matrix elements R(L)(Q], Equation AI.1lll

mM
becomes
| M e T2
Woo = V273 {wyg Po(cosB) + w,, /4n/5 [e ¥y9(=8>7a) (AI.112)
_i¢22 *
+ e YZ—Z(-B’—G)]}

where Pz(cosB) is the Legendre polynomial and the YLM(—B,—a) are the
spherical harmonics which define the rotational transformation. Recalling

the associated complex conjugate relationships, Equation AI.l112 becomes

U} sinz(s) cos(¢,,+ 2a)} (AI.113)

-1 _ M
20 = 7'{/273 Wy (3cos(B) - 1) + Wyy 99
Because we now have cylindrical symmetry, the relaxation functions for

a random anisotropic hyperfine interaction for powders are calculated by
h ® Z MM M
r _ -
gLO(t) —_i dw,yq £ dwzz(wzz) f(wzo, wzz) [ aQ gLO(t) (AI.114)

where L = 0 and 2 and f(w is the combined distribution function

22)
20° %22
defined in Equation AI.100. If it is further assumed that the applied field
is low with respect to the hyperfine field (i.e., x <K 1), one has ¢ = s =
1/¥2, T = 0 and cos\ = O. With this one can ignore the singlet state,

(i.e., ignore the w,, terms in the gLo(t)'s), and derive an expression for

00

the triplet muonium relaxation function. For the case of L=0, Equation

AT.114 becomes

rh 1.1 TM M2 M
g n(t) ==+ % [ dw [ dwy, (w5,)" £(w,nsw,,)
00 6 3 _] 20 o 22 2722 207722 (AI.115)
x [ aQ cos(wMut) cosf% wzot)
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and for the case L=2 in Equations AI.ll4 gives

rh, . _ _ 1 1 ® M M2 M
80(t) = = 7 V2/3 + 3 V2T3 [ duyy [ duy, (wy,)" £wygr0y,)
- o (AI.116)
= 3
x f dQ cos(wMut) cosﬂz wzot)
By integrating over the wzm's first, Equation AI.1l15 becomes
27 2%
h 1,1 -1¢, -1 K
ggo(t) =zts3 (2m) ~(4n) cos(wMut) [ dp sinB [ da | oo,
o - o) o (AI.117)

x exp{--% /273 620|3COSZB - 1]t --% sinZB cgzlcos(¢22+ 2a) |t}

which can be written as

h 11 cos(wM t) = /2

{exp[—-% sinZB ngt cosf| exp|- %-/775 S0t |3coszﬂ -1]]}

In a similar manner, the case L=2 gives

cos(w /2

t) =w
Bag(t) = = 3 /23 + 3 /273 [——2] [ ap sing [ do L1199
o o I.

{exp[—-% sinZB cgzt cos®] exp[- %—/77§ Toqt |3coszﬁ - 1/]}

Now one can consider the motion of the p+ spin polarization in the context

of the conventional field geometries; longitudinal and transverse field.

‘Al.D.1 Longitudinal Field Relaxation Function

The longitudinal relaxation function can be easily calculated from the
definitions of the longitudinal relaxation functions given in Equation
AI.21. In the limiting case under discussion, the only non-zero

longitudinal relaxation function is gi(t). Since this function is a
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rh rh
linear combination of both goo(t) and gZO(t)’ one has

gi(t) = g(r)g(t) - Y273 ggg(t) = % (AI.120)

which simply means that the hyperfine interaction of the triplet muonium

ensemble is completely decoupled for w, >> Som®

Mu
AI.D.2 Transverse Field Relaxation Function

The detector frame observable transverse relaxation functions are
defined in Equations AI.22 and AI.23. For the "high field" limiting case
under consideration, one observes that there is only one non-zero
coplanar~-transverse and one non-zero perpendicular-transverse relaxation
function, gii(t) and g::(t), respectively, which are equivalent. Thus one

can write

gsc(t) = gss(t) = (Zn)—lcos(w t) fndB sinf ?/29
ct pt Mu™2 o (AI.121)

{exp[--% sinzs cgzt cost | exp(—.% /273 oyt |3c0525 -1}
which can be calcuiated numerically. For early times (t + 0), one can

expand the integrand to obtain the approximate expression

gop(t) = gzi(t) = -21- cos(w, t) eXp[-(/% 090 * Z cl;{z)t] (AI.122)

5
As a matter of convention, the cos(wMut) part of Equation AI.122 is usually
omitted from the definition of the transverse field relaxation function.
By comparing the initial slope (mzf) of the zero field relaxation
function given in Equation AI.102, with the initial slope (mtf) of the

transverse field function of Equation AI.122, one can define the ratio



= M

m _[1+ 4//6 (o,,/0,,)]

-3 — 2B 3 (AI.123)
tf [1+ /12 ;(022/020)]

Thus, one finds that m ¢ > m indicating that the rate of depolarization

tf?

is greater in zero than in transverse field.
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APPENDIX II - ULTRA-LOW ENERGY MUON PRODUCTION (uSOL)

In recent years, the development of high flux positron beams has made
it possible to study atomic scattering cross sections, the interaction of
positrons with surfaces as well as the spectroscopy of positronium atoms in
vacuum [1-4]. The analogous experiments with positive muons are at present
impractical since comparable u+ beams do not as yet exist. The state of the
art method for producing slow p+ involves tuning the secondary channel to
lower momenta P, thereby collecting and transporting u+ which originate from
nt decaying inside the pion production target. These muons are, for lack of
a better term, called subsurface muons. It can be easily argued that the
subsurface p+ rate R is proportional to p7/2 multiplied by an appropriate
decay factor. For 10 keV (1.5 MeV/c), the subsurface p¥ rate at 100 pA for

the M13 secondary channel at TRIUMF would be approximately

1.4 x lOésec_1 7/2 —tf/Tp

R = 772 P e s 8.0 sec—1 » (AII.1)
(29.8 Mev/c)

where tg is the time of flight through the channel (3.66 x 1076 sec for
M13) and Ty is the mean muon lifetime (~ 2.2 ps). Clearly, this rate is
not acceptable from a practical experimental perspective.

The need for an ultra-low energy (0 to ~l0 keV), high flux pt beam is
somewhat self evident. Such a beam if developed can be immediately utilized
in the study of:

(1) Electron—Muon Capture Spectroscopy — By scattering slow pt at

grazing iuncidence to a surface, one can study electron pick—up
processes involved in pYe™ and pte”e™ formation as a function of

the surface properties and magnetic ordering. This type of
experiment has already been done for DV ions [5].




(2)

(3)

(4)
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Adatom Adsorption on Surfaces — The ability to adsorb p+ or Mu on
well characterized surfaces will provide information regarding
surface properties as well as the effect of a reduced
dimensionality on the evolution of the muon spin polarization.

Charge Exchange Cross Sections - Measurements of the muonium
formation probability as a function of incident p+ energy (down to
thermal energies) would provide valuable information to help
discriminate between spur and hot atom mechanisms.

Molecular Ion Formation - Muon molecular ion formation has been
observed in He and Ne [6], but it is not as yet known at what stage
of thermalization the molecular ion is formed. The correlation
between the u+ incident energy (down to thermal energies) and
molecular ion formation would help decipher the mechanisms
involved.

A slow Mu beam could be produced by passing the low energy p* beam

through a thin foil (or gas jet) and taking advantage of the large electron

capture cross section. The resulting slow Mu beam could then be utilized in

experiments such as:

€Y)

(2)

Muonium Lamb Shift ~ Recently measured to an accuracy of 1%

at TRIUMF [7], this experiment becomes a significant test of QED
if an accuracy of 100 ppm can be obtained. Slow p+ fluxes in
excess of 103/sec at 1 MeV/c would make a precision experiment
possible.

Muonium to Anti-Muonium Conversion — A low energy Mu beam

would of course benefit these studies, but to be competitive
with existing experimental scenarios the Mu flux would have
to be in excess of 10%/sec.

In what follows, the investigation of possible p* emission from

surfaces

positron

is proposed which utilizes the knowledge gained in low energy

production research with the appropriate analogies drawn between

positrons and positive muons. The ultimate goal of this research would of

course be the development of an ultra-low energy (0 to ~10 keV) p+ bean.

All.l Current Status of Slow Positron Production

The

beam moderation techniques employed in the production of slow et
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beams involve single crystal metal moderators and utilize the existence of a
negative work function for positrons at the moderator surface. Normally a
backscattering geometry is used where the high energy positrons originate
from a radioactive source (22Na for instance) which is mounted facing the
moderator surface. The beta—-decay positrons are implanted into the crystal
and become thermalized with a stopping distribution corresponding to an
exponential attenuation law [8]. Some of the implanted et are able to
diffuse back to the surface before annihilating, and a fraction of those are
then emitted from the moderator surface as a result of a negative work
function mechanism. The conversion efficiency £ for present day moderated
beams, defined as the ratio of the slow et yield to the total number of fast
positrons emitted from the source, is generally on the order of 1073.

By analogy with the electron case, the work function &; of the

A

positron in a metal is given by

&, = -D -y , (AII.2)

where D is a potential due to the surface dipole layer and kp is the
.positron chemical potential inside the metal. The positron chemical
potential incorporates two terms. The first contribution to u, arises
from the positron—ion interaction (Bloch wave energy). This interaction
along with the surface dipole layer act to expel the positron from the
metal. The second contribution to Hp is the electron-positron correlation
energy, which is of course an attractive potential acting to bind the
positron to the metal surface.

Considering the mass of the muon in comparison to that of the positron,

one can conclude that for a metal moderator a p* negative work function is



not such a likely candidate to
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be used in the production of an ultra-slow pt

beam, primarily because the attractive e‘—p+ correlation energy would be

about 1 R, rather than the 1/2
Also, the added kinetic energy
on the order of a few electron
heavier pt. From this one can
the u* affinities are probably

u+ affinities may very well be

Ro as 1is the case for e —et

correlations.
arising from Bloch wave kinematics, which is
volts for e', becomes negligible for the
conclude that, at least for metal moderators,
not negative. For insulators, however, the

negative because in this case the e'—p+

correlations are in general small. Another emission process, which has been

observed for et implanted in ionic single crystals, produces e having

kinetic energies on the order of the band gap energy of the solid. This

mechanism and its possible application to p+ emission is discussed in detail

in the following pages.

AII1.2 Band Gap Emission of et

from Ionic Crystal Surfaces

Recent positron experiments [9] show that when et of keV energies are

implanted into ionic single crystals they are reemitted isotropically from

the solids with a continuum of

energies having a maximum approximately equal

to the band gap energy (typically on the order of 10 to 20 eV). Operating

under the assumption that the mechanism(s) responsible for the reemission of

positrons would also be involved in the analogous phenomena for p+, a brief

synopsis of the et

experiments, along with the current understanding of the

mechanism(s) involved, are given here.

Five alkali-halides (LiF,

NaF, NaCl, KCl, KBr) and four other ionic

solids (5102, A1203, MgO, CaF2) were studied in all. The alkali halide

samples were oriented with the

(100) axis normal to the emitting surface, as
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was the MgO crystal. The SiO, crystal was z-cut, the Al,0; sample was
oriented with the c—axis normal to the emitting surface and the CaF,
orientation was believed to be (110). The experiments were performed in a
vacuum of 5 x 10”10 Torr, with the samples heated to about 330 °C, and the
surface contamination was estimated to be somewhat less than a monolayer.

A beam of 500 eV positrons was incident on the surface of the samples
and the axial component of the reemitted positron spectrum was measured.
The energy spectra obtained for each of the nine ionic crystals show a
characteristic continuum of energies with the maximum energy approximately
equal to the band gap of the individual solids. These experiments were
repeated for 1500 eV incident positrons, with the results showing no
statistically significant deviation from the 500 eV data. The angular
distribution of the emission spectra was also studied and found to be
approximately isotropic.

In addition to emitting positrons, it was found that all nine samples
also emit positronium (Ps). To discriminate between different possible
emission processes, for both et and Ps, the dependence of the Ps formation
probability on the incident et energy was studied. Results from these
studies as well as from positron diffraction experiments, have lead to the
conclusion that at least for LiF and NaF, the emission of both et and Ps can
be associated with Ps diffusing to the surface of the crystal moderator.
Approximately 60% of the incident et form Ps in these samples, with about
60% of the Ps atoms that diffuse back to the surface being dissociated,
thereby re—emitting the positron.

In 1972 it was postulated that Ps could be field-ionized in the process

of leaving a surface [10]. This, however, does not explain the anomalously
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large emission energies or the correlation with the band gap energy of the
solid. An alternate explanation [9] is that the positron is Auger—emitted
when the Ps electron falls into an acceptor state at the surface. With this
model, the maximum energy E;ax of the emitted é+, corresponding to the Ps
electron recombining with a hole at the bottom of the valence band is given
by the expression

_ _ (wPSs e
E. _ = (Eg + A ) - (E° + o) (AII.3)

where Eg is the band gap energy, AEy is the width of the valence band,

EES is the binding energy of Ps on the surface of the solid and @i is the
positron work function. Plugging the values for NaF into Equation AII.3
gives Eﬁax = 11.8(6) eV, which agrees well with the experimental result [9]
of 12.3 +/- 0.7 eV. Since one does not normally expect long-lived holes in
the valence band, however, Equation AII.3 represents an overestimate.

The origin of the surface acceptor states is not yet known. Normally,
one would not expect holes below the the Fermi energy E¢ (about 4.5 eV
below the bottom of the conduction band for air cleaved NaF at 300 °C [9]).
However, electron—hole pairs are produced in the ionization trail of the
incident et beam, and possibly some of the holes survive long enough to

migrate to the surface. In any case, the branching ratio for et

emission as
opposed to Ps emission is equal to the surface density of acceptor states
multiplied by the electron capture cross section. As mentioned earlier the

branching ratio for et

vs Ps emission has been found [9] to be about 60%.
For these initial experiments the alkali halide samples were prepared

by cleaving in air. Subsequent experiments on vacuum—cleaved samples of NaF

and LiF were also performed [9] with the results indicating the same general
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positron emission spectra as found for the air-cleaved samples,
except for a few slight differences. In particular, @i for the air-cleaved
NaF and LiF crystals is equal to +0.5 eV and -0.7 eV, respectively [9].
However, for the vacuum-cleaved samples of both NaF and LiF, @i was found to
be positive. Thus even though the positron work function is not negative,
positron emission of band gap energies is still observed. This is important
to note in light of the fact that the p* work function for these materials

is expected to be positive.

AII.3 Comparison of et and pt WRT Band Gap Emission

Although some tend to view the muon as a heavy electron, the behavior
of muonium (Mu) in solids is more reminiscent of hydrogen rather than Ps.
The diffusion constant D for Mu in these materials can be estimated by
considering experiments involving Mu emission from fine 510, powders [l1].
Using a diffusion model [12] originally applied to posifronium, it was found
that D ~ 10~7 cm?/s at room temperature. The diffusivity in single crystals
would of course be greater than this with a good room temperature estimate
beigg D~ 107° cm?/s. In comparison, the diffusion constant for positrons
in the same materials is about 103 cm?/s. With a diffusion constant of
10“5, the diffusion length (’cp‘D)l/2 is then about 5 x 107¢ cm. Heating to
higher temperatures would of course enhance the diffusion. The stopping
distribution of surface p+ in these materials has a range of about 0.05 cm.
Clearly, tuning to subsurface momenta would increase the probability for the
pt to reach the surface within their lifetime, but considering the loss in

incident flux as the beam momentum is reduced, no net increase in the
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reemitted beam flux is forseen.

In addition to diffusivity, the formation probability for Mu as opposed
to Ps must be considered. As mentioned earlier, roughly 60% of the incident
positrons form positronium. In comparison the muonium formation
probabilities for single crystals of NaF and LiF at room temperature,
deduced from the observed missing fractions in the p¥ spectra, are 98 + 5%
[13) and 44 * 6% [13,14], respectively. The muonium fraction will be
reflected in the slow p* moderation efficiency.

To estimate the maximum emission energy for u+ one requires values for
the muonium binding energy E%u on the surface of the solid and the
p+ work function @E, which are as yet not well known. However, in

analogy with Ps studies, the maximum Mu kinetic energy is the negative of

its work function &MY, which is given by
e
- R )+ (25 + o) (AIT.4)

where @f is the electron affinity at the bottom of the conduction
band. Using Equation AII.4, one can rewrite Equation AII.3 as

E* = (E +AE) - o
max g v

-R_+0a° (AIL.5)
A negative muonium work function has been postulated to explain the emission
of Mu from finely divided SiO, powders. A conservative estimate of gy
would be ®™ ~ 041 eV. For NaF and LiF, E, s 11.5 eV and 13.7 eV,
respectively [15]. The width of the valence band is AEv = 4.,0(5) eV [9] and

@f = 0*1 eV for both crystals. Thus, the maximum kinetic energies of the

emitted pt for NaF and LiF are estimated to be
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EY (NaF) = 1.9 + 2 eV
max
(AII.6)
EY (LiF) = 4.1 + 2 eV
max

The branching ratio ¥, for u+ emission as opposed to Mu emission is
difficult to estimate. However, the problem is somewhat simplified since
the surface density of acceptor states is likely to be a property of the
sample preparation. Thus one is left only with evaluating the electron
capture cross section at the surface for Mu as opposed to Ps. Because the
binding energy of Mu is approximately twice that of Ps, one would expect the
electron capture cross section at the surface to decrease accordingly. As
has already been mentioned, the higher binding energy and mass of Mu as
compared to Ps also shifts the maximum energy for p+ emission to lower
energies with respect to the et spectra. From these considerations the
branching ratio y, for p+ vs Mu should be roughly equal to one half times
the branching ratio for et vs Ps emission weighted by the fraction of et
emitted in the energy range (Enelax - Eiax) to Eiax. Thus, a good estimate
for the p+ branching ratio would then be 5-10%. In any case, measurement of
Yo is one of the goals of these experimeﬁts. One last point to be made is
that in both NaF and LiF the p+ spin in the muonium state depolarizes due to

superhyperfine interactions of the Mu electron with néighboring nuclei.

AII.4 Calculations for Positive Muon Emission Yield

To make a theoretical estimate of the slow p+ conversion efficiency

Eu for p+ emission, one needs to know:
(1) The stopping distribution f(x) of the incident beam
(2) The bulk diffusion constant D for thermalized muonium
(3) The fraction F(T) of muonium formed (formation probability)
(4) The branching ratio y, for energetic pt emission
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Consider the random walk problem where the muons are incident on the surface
of a homogeneous moderator of thickness d as shown in Figure AII.l, and
subsequently thermalize in the muonium state. Once thermalized, the Mu
atoms diffuse approximately randomly through the lattice until they reach
one of the moderator surfaces where there exists some finite probability for
p+ emission. With this geometry and taking into account the finite lifetine

of the muon, the conversion efficiency 5“ can be written [16]

1 © -t/ d

g, =7 (F(Dy,) [ at e B[ dx £(x) R(t;%) (AIL.7)
(o] [o]

where R(t;i) is the rate at which a Mu starting at ;o at time t=0 appears at
the surface. The factor of 1/2 arises since we are neglecting the other

surface. It can be shown that [16,17]

N -1 =172 —x2/4pt -(d~x)3/4Dt
R(t;x) = (2t) (4mDt) [x e + (d-x) e ] (AII.8)

A beam of 30 MeV/c muons with a momentum spread of AP/P =~ 107 will stop
approximately uniformly over a distance r defined by the minimum and maximum

mean ranges of the beam particles, namely
r = Range(30 MeV/c) — Range(27 MeV/c) = 2.35 x 10_2 cm (AI1.9)

With this approximation, the stopping distribution f(x) in Equation AIIL.7
can be assumed to be uniform and given by f(x) = 1/r. Since the mean
stopping distance r is large compared to the diffusion length (tpD)l/z,
the expression for R(t;;) given in Equation AII.8 clearly breaks down into

two components of equal magnitude corresponding to the arrival rate of Mu at
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Figure AI1.1 Target geometry showing both reflection and transmission
modes. In transmission mode degrading is provided by the target itself.
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each of the two surfaces. Thus R(t;§) for each surface can be simplified to
give

—1/2[x e—X2/4Dt]

R(0) = 20)"L (4D (AIT.10)

Substituting this expression into Equation AII.7 and letting d + = (i.e.,

ignoring the second surface), the slow p+ conversion efficiency gp is

written
® -t/% _ _ ® .2
g, - Hemy ] fare  * @o T umn™? [ axx ™ /40
o o
AIT.11)
1 1 1/2 — (
= i{F(T)yo] ;-(ru D) =, (9.78x10 5); for NaF

Y, (4.4x107%) ; for LiF

This efficiency (~10~% for a conservative value of yo) is of course not
very good, it does, however, translate into 10 such muons per second for
muon intensities such as available from M13 or M20 and ~103 per second if
the moderator could be placed close to the pion production target. If the
proposed emission process exists for p+ it should be observable using one of
TRIUMF's surface muon beams, and once observed steps can be taken to improve
the above efficiency. These steps could include the development of high
surface area moderators, investigating ways of increasing the density of
surface acceptor states, increasing the muonium diffusion length as well as
investigating other moderators. Producing a polarized p+ beam, which
utilizes surface emission processes, will require the application of a large
(~10 G) magnetic field to quench the effects of superhyperfine

interactions.
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AIT.5 Prototype Apparatus

The apparatus designed for the initial search for the emission of ut
from solid surfaces is shown in Figure AII.2. It consists of a scattering
chamber and target assembly, combined with a DQQ spectrometer which is
designed to momentum select the extracted muons and focus them onto a
channeltron detector. Although all of the vacuum components have been
designed to be consistent with ultra-high vacuum requirements, the initial
experiments will employ borrowed, non—-bakable components which will limit
the attainable vacuum to about 107° Torr. The scattering chamber is
designed in such a way as to allow the spectrometer section to be mounted in
either a transmission or reflection geometry, simply by rotating the
apparatus by 180°.

The target assembly will be held at a potential V,; of about +10 kV with
respect to a grounded grid thereby providing an electric field to accelerate
muons which are emitted from the surface. A second grid, which lies between
the target and the grounded grid will have an independently wvariable
potential V, applied to it which will allow a first order measurement of the
emission energy spectra. Provisionsvhave also been made for heating the
targets to enhance the Mu diffusion rate. The initial target assembly will
be relatively simple and target changes will require venting the system
using dry nitrogen. In the future a bakable, remotely controllable target
ladder will be introduced with more sophisticated temperature control

capability.

All.6 Measurements

In transmission mode the pt beam is incident on a moderator of suitable
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Figure AII.2 pSOL scattering chamber and DQQ spectroﬁetep (shown here in
transmission geometry).
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thickness such that the muons are stopped at or near the downstream surface.
In reflection mode the incident u+ beam must be degraded upstream of the
extraction grids to such an energy that the u+ will stop at or near the
upstream surface of the moderator. Multiple scattering in the degrader will
clearly reduce the effective incident beam rate in reflection geometry,
however background rates, especially due to beam positrons, may also be
reduced. In some cases, single crystal samples having the appropriate
thickness for transmission geometry may not be readily available. In light
of these considerations, both .transmission and reflection geometries will
have to be tested.

The basic measurement to be made is the time of flight (TOF) between an
incident beam pt which fires the beam counter and the subsequent detection
of a slow pt in the channeltron. Surface emitted p* should give a
characteristic spectrum which begins about 370 ns after the p+ start pulse.

From Equation AIT.ll, the shape of this spectrum is expected to be

-t/t
B
R(t) = —(23 (D/n)l/z 3—/—:—- « exp(-At) ; C = [F(T) v, —i-] (AII.12)
t
with the number of events observed within a finite gate width To given by
Tg
N(t) = C [ dt R(t) = % pl/2 A+ % ]'1/2 erf[/rg(xﬂ/rp)] (AII.13)
o B

Here the A parameter represents the rate of loss of Mu from the diffusing
muonium ensemble, and is included to account for possible losses of Mu due
to chemical reactions, etc., in the crystal.

Epithermal u+ or p+e”e' which are produced by multiple scattering and
charge exchange processes in the target and accepted by the spectrometer
system, will gennerally be distributed at higher velocities as compared to

p+ arising from surface emission, and will therefore give rise to prompt
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events. Measurement of the epithermal pt of Mu~ (ptee™) yield will likely
require the development of an electrostatic lens injection system to
increase the acceptance of the spectrometer section. Finalization of an
injection system design will depend on the spectra observed with the
presently proposed apparatus. Simultaneous with the collecting of the TOF
histogram, a p+—decay histogram between the channeltron and the positron
telescopes, gated by an incident p+, will also be accumulated.

The detection efficiency, €.p of the channeltron for 10 keV p+ is
expected to be ~0.75, but this needs to be better determined. A
measurement of this will therefore be made, possibly as a function of
energy, using the three Nal detectors placed strategically around the cone
of the channeltron to provide the maximum possible detection solid angle.
The Nal detectors will detect the decay positrons from p+ stopped in the
channeltron and thus determine the absolute flux of stopped muons. These
measurements will of course require appropriate veto and coincidence
scintillators to correctly define the solid angles and sensitive volume.

The Nal detectors can also be used in coincidence with the channeltron
to reduce backgrounds in the TOF spectrum, but with a loss in event rate.

With these considerations, the experimental rate Rexp is then

R = Ro Eu erf(/rg/tu) € for A =0 (AII.14)

exp d %ch ®Nal 3
where R, is the incident pt flux, €q 1s the probability that the u+ do

not decay in flight, . is the detection efficiency of the channeltron and

h

€Nal is the detection efficiency and solid angle of the NaIl crystal array.

For the proposed experiment and apparatus, Ro ~ 108/s, €p ™ 0.75, ¢

h Nal =
0.2 and €4~ 0.85:. For a gate width of 2 us, erf(/rg/ru) is approximately
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equal to 0.84. From this, conservative estimates of Rexp’ for both NaF and
LiF, are then

Rex =Y, (10/second) ; for NaF
P (calculated for A=0) (AII.15)

~ Y, ( 5/second) ; for LiF

where the value of Yo 1is of course different for the two crystals

AII.7 Backgrounds

There are three major sources of backgrounds to be considered; beam
positrons, positrons from muons stopped in the moderator and positrons from
muons which decay in flight through the spectrometer system. Beam positrons
will pass through the moderator and scatter downstream producing
bremsstrahlung and annihilation radiation. These beam related backgrounds
will reflect the RF structure of the cyclotron and will probably be greater
in transmission than in reflection geometry. Because of this, a separated
beam is highly desirable. The positrons which arise from p+ decaying in the
moderator have some probability of being emitted into the acceptance of the
spectrometer. These positrons are too energetic to be transported through
the spectrometer, but collisions with the walls of the vacuum chamber will
produce background radiation which is flat in time. Positrons from pt
decaying in flight will also collide with the vacuum chamber walls producing
background radiation. 1In this case, however, the background will not be
flat, but will decay with the muon mean lifetime multiplied by some position
dependent function. These backgrounds are difficult to estimate but will
clearly have to be minimized by shielding the detectors from all sources
other than the target, reducing the beam contamination and if feasible

reducing the momentum bite of the beam.
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This experiment should closely parallel the earlier positron experiment
at first using NaF and LiF in the <100> orientation. Depending on the
results obtained with the alkali halides, these investigations may be
extended to other crystal orientations as well as other materials such as
quartz (Eg = 9 eV) and solid rare gases such as argon (Eg = 19 eV).

This appendix (with modifications) was submitted as an experimental
proposal (E-325) to the December 1984 meeting of the TRIUMF Experimental
Evaluation Committee and was accepted at high priority. Preliminary results
[18] of the first experiments have indeed shown positive indications of a

low energy (<10 eV) component for LiF.



- 205 -

APPENDIX III — COLLISION FREQUENCY OF THERMAL MUONIUM

AITII.A Derivation
Consider a point particle of mass m and mean thermal velocity ;, moving
freely in a uniform distribution of N spherical particles of radius R. If
one defines the number density to be N/V, where V is the total volume of the
sample, the mean free path L is then written
2 )—1

L=V (nR°N (AIII.1)

By dividing the mean free path L by the mean thermal velocity ;, one obtains

the average time t between collisions, namely

t=2=v(r VN (AIII.2)
v

Taking the reciprocal of Equation AIII.2 then gives the collision frequency,

and substituting the definition of the mean thermal velocity, one has

(x&8) v = X (x RZ)[§§£]1/2 (AIII.3)

F(T) = \' T m

=
|
<=

where k is Boltzmann's constant and T is the temperature.

AIII.A.1 Low Density Limit
For low packing densities (neglecting the volume of the solid), the

number density is simply given by the equation

=[o

<|=

3

= (4 3 ),% (AIII.4)
T R o

where M is the mass of one grain (particle), p is the mass packing density
(i.e., after compression) of the target particles and p, is the mass

density of the bulk material (for 8i0,; p, = 2.2 g/cm?). Thus in the low
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density limit, the collision frequency is

3 1/2 _1/2
D) = (3) & ()2
(¢}

(AIII.5)
This equation is, however, not correct if the volume of the solid (i.e., the

volume of the N particles) is significant with respect to the total volume

of the sample.

AIIT.A.2 High Density Limit
In the high packing density limit, the volume of the solid is no longer
negligible, so that one must redefine the number density to be the number of

particles (grains) per unit “"free volume” V¢, namely

=V - N(inR3) = v[1 - %(%mé)] (AIIL.6)

v.=(v-v 3

solid)
By combining Equations AIII.4 and AIII.6, one obtains

N 33"_0_1
£ 4nr P

Using this "corrected"” number density, the collision frequency for the high

(AIII.7)

<3

density limit is

p -
F(T) - _3_ (__k__)1/2 [_0_ 1] 1 T1/2

R 5o 5 (AIII.8)

Notice that for low densities, Equation AIII.8 reduces to the expression of

Equation AIII.S5.

Q.E.D.
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APPENDIX IV —— TABULATED TRANSVERSE FIELD DATA

$i0,(1) Prepared at 110 °C; KT“ Vs Temperature

T (K) AT (K) M (us™h) sl (us™h
4.1 0.10 2.59 0.180
5.8 0.20 2.49 0.137
9.0 1.00 2.11 0.186
9.5 0.20 2.02 0.118

10.2 0.20 2.00 0.154

11.5 1.50 1.82 0.142

12.5 0.20 1.72 0.112

14.0 0.30 1.50 0.101

16.8 0.20 1.63 0.118

19.3 0.20 2.48 0.135

22.0 0.20 2.58 0.145

25.0 0.20 2.99 0.336

32.5 3.50 2.55 0.135

40.3 2.30 2.13 0.270

47.5 12.50 1.85 0.153

59.0 11.00 1.38 0.153

60.0 2.00 1.02 0.072

86.0 1.00 0.62 0.046

128.0 1.00 0.51 0.037

300.0 3.00 0.40 0.028
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5102(3) Prepared at 600 °C; AT“ Vs Temperature

T (¥) AT (K) M (us™) amf® (us™h
4.6 0.05 1.18 0.033
6.0 0.10 1.08 0.052
8.0 0.10 1.01 0.045

10.0 0.10 0.90 0.060

12.0 0.10 0.73 0.035

16.0 0.10 0.51 0.026

18.0 0.10 0.57 0.035

20.0 0.30 0.84 0.036

22.0 0.10 1.13 0.053

24.0 0.30 1.42 0.086

25.0 0.20 1.38 0.052

26.0 0.10 . 1.68 0.098

28.0 0.10 1.85 0.107

30.0 ©0.20 2.11 0.108

40.0 2.00 1.97 0.082

50.0 3.00 1.85 0.065

85.0 5.00 1.37 0.074
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8102(2) Prepared at 110 °C; ATU Vs Temperature

T (K) AT (K) AMe (us™h e (us™h)
5.8 0.20 2.49 0.137
10.1 0.20 2.13 0.089
13.5 0.20 1.76 10,086
25.0 0.20 3.31 0.206
45.0 0.20 1.59 0.089

58.5 5.50 0.99 0.078

64.0 0.20 1.03 0.057
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