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Abstract
Muon Spin Relaxation Measurements of the Magnetic System with
Itinerant Electrons in MnSi

Ioana M. Gat

This dissertation presents a detailed 4SR study of MnSi, a magnetic
system with itinerant electrons. The magnetic metals have received a
considerable amount of attention from theorists as well as experimen-
talists in the last 30 years. The conduction band electrons, which are
the d-band electrons in most of the cases, are responsible for mag-
netism in these systems. The degree of itinerancy of the electrons, or
their atomic character, strongly affects the magnetic properties. It has
been shown by comprehensive studies on numerous materials that as
the itinerancy of the electrons is increasing, the critical temperature
of the magnetic transition and the value of the ordered magnetic mo-
ment at T = 0 K are decreasing. In the most itinerant limit, the system
does not order down to the lowest temperature, becoming a correlated

paramagnet. At present, the theory which is most successful in ex-



plaining the behavior of the itinerant magnets is the Self Consistent
Renormalization theory by Dr. Toru Moryia and his collaborators.
The technique we used for the present study is muon spin rotation
and relaxation (uSR). This dissertation contains a review of the uSR
technique, as well as a general description of the magnets with itinerant
electrons, with an emphasis on the MnSi system. A detailed analysis
of our findings and the relevant facts supporting the SCR theory are
presented. Also, we make an important point to explain when the SCR
theory becomes inappropriate for interpreting our results, considering

the special helical magnetic structure of the MnSi system.
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1

1 Theoretical studies of the magnetic systems

with itinerant electrons!

1.1 Introduction

The problem of magnetism has always been a subject of interest
and controversy. The magnetic systems in which electron-electron cor-
relations play an important role, such as magnets with itinerant elec-
trons, have received a considerable amount of attention in the last 30
years. They exhibit very special properties, which were hard to explain
in the frame of the existent theories. For example, systems such as
Mng 2Crp sSb and FePd; ¢Pt; 4 exhibit coexistent ferromagnetic and an-
tiferromagnetic phases. In systems such as MnsSb, transitions between
the ferromagnetic and the antiferromagnetic phases were discovered.
Other systems such as ZrZns show coexistence of superconductivity
and magnetism under high pressures, when the critical temperature of

the ferromagnetic transition is considerably reduced [2].

'This review is inspired from the work of Dr. Toru Moriya, “Spin Fluctuations in
Itinerant Electron Magnetism™ [1].



1.2 Classical theories of magnetism

The theory of magnetism started with the concept of localized mag-
netic moments. Using this concept, Langevin [3] predicted the Curie
law of paramagnetism for systems with noninteracting local moments.

The temperature dependent magnetic susceptibility is given by:

C . IV()’I'I'I.2
X =g with C = T (1)

C is the Curie constant and depends on N,, the number of atoms in
the system considered, and m, the magnetic moment/atom.
Subsequently, the occurrence of ferromagnetism in a system of inter-
acting magnetic moments is explained by the Langevin-Weiss theory
[4]. The average effect of the interaction between the moments is to
generate a mean molecular field I' < m >. At temperatures below
the critical temperature, T, = m?I'/3kp, the system is in a ferromag-
netic state. Above the critical temperature the magnetic susceptibility

obeys a Curie-Weiss law:

C
X—T_Tc' (2)

Figure 1 shows the temperature dependence of the magnetization



1/x

0 T, T

nesic susceptitility according to Weiss theory [1] o Of the inverse mag:
and of the inverse susceptibility, as commonly observed in ferromag-
nets.

These theories describe the essential properties of ferromagnets both
below and above the critical temperature, but there are two difficul-
ties intrinsic to the classical theory of physics. Firstly, it is difficult
to classically justify the existence of a magnetic moment of constant
magnitude. Also, the Bohr van Leeven theorem [5] shows the absence
of magnetism within purely classical statistics. Secondly, the magni-
tude of the Weiss molecular field, as determined from the dipole-dipole
interaction, is inconsistent with the value calculated from T..

Both of the above theoretical descriptions are improved by using

the principles of quantum mechanics. An electron bound in an atom



has quantized orbital angular momentum, Al, and spin, ks, where h is
Planck’s constant. The atom’s magnetic moment is also quantized in
units of Bohr magnetons, m = pg(l + 2s), with ugp = eh/2me. The
total angular momentum of the atom and the total magnetic moment
are obtained from J = L+ S and M = ug(L +2S), where L and S are
given by the Russel-Saunders scheme in most of the cases: L = ;1
and S = ¥;s. The eigenstates of the atom are determined by the Hund
rules. If the lowest energy state is well separated from the others, one

can redefine the total magnetic moment as:

M = g;usd, (3)

where g; is the gyromagnetic Lande factor.

By applying quantum statistical mechanics to a system of Ny non-
interacting localized magnetic moments, a quantum mechanical coun-
terpart for the Langevin theory is obtained. The Curie law for the

magnetic susceptibility is rewritten as:

3kp ]

ng-, with C =

The ferromagnetic state of a system with localized magnetic mo-



ments can be described in a frame of models such as the Heisenberg
model [6]. The origin of the Weiss molecular field was attributed
by Heisenberg to the exchange interaction between spins. The cor-
responding Hamiltonian is H = —¥;; Jju(S; - S;), where j,! specify
atomic sites in the crystal and Jj is the inter-atomic exchange in-
teraction constant. The mean molecular field takes the expression:
Heeen = 2(gus) ' i Jji < Si >, where g is the gyromagnetic ratio.

The Curie temperature can be calculated from:

_ 2J(0)S(S+1)

L. 3kp ’ (5)

where J(0) = ¥; Jji. The magnetic susceptibility in the paramagnetic

state has a Curie-Weiss law dependence on temperature:

_c . _ Nog?usS(S +1)
X = T with C = 3kg . (6)

The above pictures work well for the case of magnetic systems with
localized moments, such as the magnetic insulators or the rare earth
compounds. But the Heisenberg model in this simple form does not
describe the ferromagnetic transition metals. Generally speaking, the

s or p electrons are responsible for the crystal bonding, while the f or



d electrons are responsible for the magnetic properties. In the case of
the rare earth atoms, for example, the 4f electrons do not alter their
atomic state much at the formation of the crystal and the total angular
momentum, J, is a good quantum number. The same can be stated of
the localized d electrons in the magnetic insulators. On the other hand,
in the case of the magnetic systems with itinerant electrons like the
transition metals, the atomic spin is not well defined and the problem

of magnetism must be solved using a different approach [1].



7
1.3 Particularities of magnets with itinerant elec-
trons

System @ pesr(us) Po(us) Pess/ps To(K) To(K) To/To

NizAl 1.3 0.075 17.3 41.5 3590 0.0116
SczIn 0.66 0.045 14.7 5.5 565 0.0097
ZrZn, 1.44 0.12 12.0 17 321 0.053
ZrZn, g 1.57 0.16 9.8 26 400 0.065
MnSi 2.2 0.4 5.3 30 231 0.13
AusV 1.48 0.41 3.62 44 259 0.17

Ni.Pt;—, .429 1.59 0.051 31.2 23 2160 0.0106
452 1.59 0.104 15.3 o4 2160  0.025
476 1.59 0.143 11.1 74 2160 0.034

.502 1.59 0.179 8.89 100 2160 0.046

Table 1. Examples of itinerant magnetic systems [7].

Table 1 summarizes some of the features of the magnets with itin-
erant electrons. These systems have rather low critical temperatures,
and, in the paramagnetic state, they obey only an approximate Curie-

Weiss law. In the most itinerant limit, the system remains paramag-



netic at T = 0 K. The magnetic moment in the paramagnetic state
formally derived from the Curie constant, p.rs, and the ordered mo-
ment at T = 0 K, p,, are independent of each other. As the itinerancy
of the electron system in a ferromagnet increases, the ratio pess/ps
strongly increases [8], as opposed to the case of magnetic systems with
localized moments such as Gd or EuO, shown in Table 2. The ratio
between T, the critical temperature, and T3, temperature which char-
acterizes the energy width of the dynamical spin fluctuation spectrum,
x(w, q), is decreasing as the itinerancy of the system increases.

System pess(pB) ps(uB) Peff/ps T.(K)

Gd 7.13 7.05 1.01 289

EuO 7 7 1.0 7

Table 2. Examples of magnets with localized magnetic moments [8].

The difference between the itinerant magnets and the magnets with
localized moments becomes more obvious on the Rhodes-Wohlfarth

plot [8], the plot of pess/ps as a function of T, shown in Fig. 2.
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Figure 2: The Rhodes Wohlfarth plot, showing p.ss/ps as a function of the
Curie temperature [1].

1.4 Theories of itinerant electron magnetism

In the case of a normal metal, the electron - electron correlations
suppress ferromagnetism, according to Wigner [9]. In view of this,
one expects that the itinerant electron magnetism is related, to some
extent, to the atomic character of the d-band electrons and the intra-
atomic interactions.

The first model to deal with the problem of itinerant electron mag-
netism was the Slater model [10], which discusses the magnetic ground

states of Ni, by taking into account only the intra-atomic exchange



10
interaction. The free energy of a system is written as the sum of the
kinetic and exchange energies: £ = Eji; + Eezen- The exchange energy
between the Bloch d-band electrons is I = J/Ny, with J the average
of the intra-atomic exchange energy and N the number of atoms in

the crystal:

1
Eezen = ZIN2 — IM2. (7)

N = N, + N;, N, is the number of electrons with spin o, and M =

1(Ny — N;) the magnetization in units of 2up.

G,

A 4 p_l(e)

Figure 3: The exchange splitting between the up- and down-spin bands. The
shaded area is occupied by electrons [1].

The kinetic energy is derived as a sum over the kinetic energies of

the spin up and spin down electrons up to the Fermi level, as shown



11
in Fig. 3 and it depends on A, the exchange splitting of the up- and
down-spin bands, and, therefore, on the magnetization.
The total energy becomes a function of the magnetization and par-

ticularities of the band structure:

1 1
E=-(1-Ip)M?+ —FM*+ ..
p( pYM*~ + 17 (V.7 s S (8)

where p is the density of states at the Fermi level and F; depends on
p and its first and second order derivatives. The condition for the
appearance of feromagnetism, called the Stoner condition for reasons
which will appear obvious later, is ag = I'p(er) > 1. The magnetization
is determined from M = p[2(ap — 1)/ F1]Y/2 for F; > 0. This explains
the existence of materials with a magnetic moment/atom different than
integral multiples of the Bohr magneton, up.

The theory also predicts the existence of systems with very simi-
lar properties as those of the itinerant ferromagnets but which do not
become ferromagnetic down to 0 K. They are called nearly ferromag-
netic metals, and for these systems, «g is slightly less than 1. Their

paramagnetic susceptibility at 0 K is enhanced compared to the Pauli
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magnetic susceptibility of normal metals with the Stoner enhancement

factor, 1/(1 — ag):

_ 1 pler)
X=A"a) 2 (9)

The extension of the Slater model at higher temperatures is called
the Stoner model, or generically, the Slater-Stoner model. There are
various versions of the model, depending on the system (ferromagnetic,
antiferromagnetic or systems showing helical spin density waves) and
the degree of complexity desired. For example, one of the approaches
is to calculate the free energy of a ferromagnetic system starting from
the Hubbard Hamiltonian:

H =T} %, tpal,a, + U Sjnjm;,
= Tk T €(k)al, a0+
+1 Eq: Zk: % a{_*_‘na{,_q 1@k} Bt (10)

where a;'-a and a;, are the creation and annihilation operators for elec-

trons with spin o at the sites j and [, respectively, ¢;; are the transfer
energies between the sites j and /, and €(k) is the band dispersion. U is

the effective on-site Coulomb energy (I = U/Ny), and the inter-atomic
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terms and the degeneracy of the band are neglected.
The Hartree Fock approximation for this hamiltonian gives the free

energy:

Fo(M,T) = Fo(0,T) + —— M2 + g(T)

2%o(T) =M+, (11)

where xo(T) = 3p(€o)[1 — (7*/6)RT?] is the temperature dependent
Pauli susceptibility, g(T) = Fi/[p(€0)]*[1 + (7?/6)R1T?] and the con-
stants R, F}, R, depend on the density of states at the Fermi level and
its derivatives: p, o, p", p", pV.

The condition for appearance of ferromagnetism is the Stoner condi-
tion: ag = Ip(er) > 1. The Curie temperature and the magnetization
at T = 0 can be calculated with the formulas: T, = [6(ap—1)/7%ag R]/?
and M(0) = p[2(ao — 1)/ F1]*/?, respectively. The magnetization for
small values takes the form M(T) = M(0)[1 — (T/T.)?]*/2, which for
low temperature translates into M (0) — M(T) o T?. The magnetic

susceptibility at temperatures above T is derived from:

1 1 1 1 2
XM~ xo@)  x@ & x(T) — 3aOI R(T* -T2). (12)

The most obvious drawbacks of the theory are that it fails to explain
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the Curie-Weiss-like paramagnetic susceptibility, and that the calcu-
lated T.'s are systematically higher than the experimental ones. For
example, the calculated values of the critical temperatures for Fe, Co
and Ni are 5000 K, 4000 K and 2900 K, respectively, while the real T,’s
are 1040 K, 1390 K and 630 K. The dependence of the magnetization
on temperature, M (0)— M(T) « T?, also contradicts the experimental
results on Fe or Ni, for which it was found that M (0) — M(T) o T3/2.

In the Mean-Field or Hartree-Fock theory of itinerant electron mag-
netism, a thermal spin-flip excitation of an electron across the Fermi
level is considered, and an electron and the corresponding hole thus
produced are assumed to move independently in a common static mean
field. The thermal excitation is usually underestimated. The Dynam-
ical Mean Field theory of the spin fluctuation takes into account the
elementary excitations from the ground state and the coupling be-
tween them through the exchange interaction, giving rise tc exchange-
enhanced spin density fluctuations, including spin waves.

Figure 4 shows a schematic view of a ferromagnetic ground state,

with the spin up and spin down electron seas. A magnetic excitation
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Figure 4: Fermi spheres for | and 1 electrons and an electron-hole pair exci-
tation with momentum ¢ [1].

from the ground state is equivalent to the formation of an electron-
hole pair, which evolves under the influence of a magnetic field or due
to the exchange coupling. The quantum state of the system can be

represented with the wave function:

U= ]I a;cf II ok Yo, (13)
k<ky k<k,

where ¥,,. is the non-excited state, a.}:.T is the creation operator for the

electron with momentum &, and ai; is the creation operator for the
hole with momentum k and spin down. k4 and k; are the Fermi radii
of the majority (down) and minority (up) spin electrons.

The magnetic excitation with momentum g consists of an electron

with wave-vector k + ¢ excited across the Fermi level in a state with
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wave-vector k. It can be represented mathematically as S, (k,q) =
a;Tak.Hu. One can study the equation of motion of the electron-hole
pair using the Hubbard Hamiltonian, for brevity, and an additional

oscillating magnetic field, H.;; = Tp S—(K', —q)h4(q):

iS.(k, ) = [S+ (K, q), H + Heze] =
= [ex+q — & — I i (niy — niy)|S+ (K, g)+
+I(nk+q — nit) T S+(k+ ¢, 9)—
—1 Ty Til(1 — drw)alrarral grakgrgr—
—(1- 5k'—¢,k+q)al'_ﬂakﬂwimam]+
+(nkr — nikrq1) e (9) (14)
The first three terms on the right hand side represent the diag-
onal part of the Hamiltonian, the scattering of the electron-hole pair
through the exchange interaction, with the conserved momentum trans-
fer ¢, and the scattering without conservation of the momentum trans-
fer, respectively. The third term was not taken in account in this
model. The diagonal part of the Hamiltonian gives the kinetic energy
and the mean field energy of the electron hole pair. Only this term was

considered in the Stoner theory based on HFA, the energy spectrum
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of the Stoner excitation being expressed as:

wStaner(k) Q) =20+ ¢ — €k+q» (15)

where 2A is the exchange splitting of the band.
Taking the statistical averages for S, (k, g) and ny,, one obtains:
(k — €k+q + 2A —w) < Si(k,q) >=

=< Ng+q — Nkt > [[ < Si(q) > —h+(q)], (16)
where S,(q) = ik S+(k,q) is the Fourier ¢ component of the spin
density Sy(r) +iSy(r). I < S.(q) is the equivalent of an oscillating
molecular field, therefore this approximation is called the dynamical
mean-field approximation or the Random-Phase Approximation.

The intensity of the excitation with the wave-vector transfer g and
the energy w is given by the imaginary part of the dynamical suscep-
tibility. As seen in Figure 5, the spin fluctuation spectrum is changed
dramatically in the presence of the coupling between the spin excita-
tions as compared to the Stoner excitations, obtained by ignoring the
exchange enhancement.

Assuming that h(g) oscillates in time as exp(iwt), one obtains the

dynamical susceptibility in the Hartree-Fock approximation as:
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Figure 5: (a) Intensity contours of the imaginary part of the RPA transverse
dynamical susceptibility in a ferromagnetic electron gas. The spin wave
dispersion is also shown. (b) Intensity contours for the Stoner excitations
(no exchange enhancement) [1].

- S
Xho (g, w) = <82

< Nkyql — Nkt >

=(q,w) = : 17
or X (ayw) = 3 e (17)

In the Random-Phase Approximation (RPA) considered, the dy-

namical susceptibility can be written as:

XAo (9, w)
— 18
1-1 XXO (Qa w) ( )

X;?'.FA(Q: w) =

The singularity in the expression of the RPA dynamical susceptibil-
ity is an indication of the presence of the spin wave excitations. The

dispersion equation for the spin waves is determined from:
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1 — IRexAg (q,w,) = 0. (19)

The static transverse susceptibility is obtained in the limit ¢ — 0 and
w — 0 from 1 — I'x%5(0,0) = 0, with which one can rewrite the spin
wave dispersion relation as xxq (0,0) — RexZg (g,wq) = 0.

Another success of the theory is that it predicts correctly the en-
hancement of the spin fluctuations near the critical temperature or in
the nearly ferromagnetic metals.

According to the experiment, one expects that the fluctuation spec-
trum is enhanced around the small wave-vector, ¢ — 0, and small
energy, ‘;—’ — 0 region in the ¢ space. By expanding the dynamical

susceptibility in powers of ¢ and ‘j;’, one can write the Hartree-Fock

susceptibility as:

XAo (g, w)

faolgw) = X5 (0,0)

2

1-Ag?—BY + . +icY,  (20)
q q

where the coefficients A, B and C are dependent on the band structure

properties. The Random Phase Approximation dynamical susceptibil-

ity in the paramagnetic state (A = 0) takes the following expression:
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fOO(Qa w)
1 — afoo(q,w)’

frra(q,w) = (21)

with @ = I'x{y; (0,0) and A = 0. The magnetic susceptibility is en-
hanced in the region ¢ — 0 and %’ — 0 of the ¢ space when « is close to

1, near the magunetic-nonmagnetic transition. Figure 6 shows this ef-

fect as a function of the exchange enhancement factor and wave-vector

11].
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Figure 6: Imaginary part of the exchange-enhanced dynamical susceptibility
for an electron gas model; (a) for various values of exchange enhancement
factor; (b) for various values of wave-vector [1].

The HFA or the band theory calculates the ground states well, and
the RPA theory is successful in describing the elementary excitation

from the ground state. However, both of these approaches are not
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satisfactory at finite temperatures.

1.5 The Self Consistent Renormalization Theory

The Self Consistent Renormalization (SCR) theory developed by T.
Moriya and his coworkers set the framework for interpreting most of the
experimental results accumulated up to now [1]. The renormalization
method used by SCR takes into account the effect of spin fluctuations
on macroscopic properties such as the ordered moment size and the
magnetic susceptibility. Through a self consistent treatment, the dy-
namical susceptibility x(q,w) and the free energy are calculated at the
same time, with the requirement that the static long wavelength limit
of the dynamical susceptibility agrees with the one calculated from
the renormalized free energy. The theory correctly predicts the crit-
ical temperature of the magnetic-nonmagnetic and the approximate
Curie-Weiss like dependence of the magnetic susceptibility above T..
The Curie constant depends not on the saturation moment at 0 K but
on the band structure. The outcome of neutron scattering or uSR

experiments can be interpreted easily in the frame of the SCR theory.
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Figure 7: Temperature dependence of the mean-square local amplitude of
the spin density S? in a weakly ferromagnetic metal and in a local moment
system [1].

According to SCR, in the case of itinerant systems the magnetic
susceptibility obeys a Curie-Weiss law due to a totally different mech-
anism than the one producing CW law in the magnets with localized
magnetic moments. Namely, as the temperature increases, one ex-
pects that the spin fluctuation modes with higher energies and higher
momenta to become more and more thermally excited. The tempera-
ture dependence of the local amplitude of the thermal spin fluctuation,
S2(T), is linear, except for a small region around the critical temper-
ature, as shown in Figure 7. S#(T) for the case of magnets with lo-
calized moments is shown for comparison. The magnetic susceptibility

is related to the amplitude of the thermal spin fluctuations according
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to S}(T) — SHT.) = gms, with S}(Te) = H(M2)?, from which the
Curie-Weiss law is easily derived.

The purpose of our experiments on MnSi under zero and 8.3 kbar
applied pressure was to investigate the ferro-para crossover and the
validity of SCR theory with increasing itinerancy. To confirm the pre-
dictions of the theory, we performed theoretical calculations which are

presented in more detail in chapter 4.3.
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2 The MnSi systems

2.1 Main features of the system

Manganese mono-silicide (MnSi) is a magnetic system with itinerant
electrons that orders at a temperature T, = 29.5 K in a helical magnetic
structure with a long period of 180+3 A along the <111> axis. The
system shows a small ordered moment of 0.4 ug per Mn at T =0 K
[12]. In a magnetic field, the helical structure becomes progressively
more conical, as shown in the field-temperature phase diagram in Fig.

8, without significantly changing its wavelength.
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Figure 8: Phase diagram of MnSi at ambient pressure [13].

Depending on the direction of the applied magnetic field, the
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helical axis aligns with the applied field at values of the magnetic field
from 1500 G to 4000 G [12]. Above 6.2 kG (at 4.2 K), the system
behaves like a ferromagnet having a relatively large high field suscep-
tibility [14], as common for ferromagnets with itinerant electrons. In
the paramagnetic state, the uniform magnetic susceptibility obeys a
Curie-Weiss law up to 400 K [15].

MnSi has been extensively studied as a prototype of itinerant weak
ferromagnets which follow predictions of the Self Consistent Renormal-

ization theory, as described in what follows.

2.2 Neutron scattering experiments

As characteristic for the magnetic systems with itinerant electrons
close to the ferromagnetic to paramagnetic crossover, strong spin fluc-
tuations persist at a rather high energy scale. For MnSi, this was
shown by neutron scattering experiments performed by Y. Ishikawa
[16] and his collaborators in 1977. Figure 9 shows the intensity con-
tours for neutron paramagnetic scattering at 33 K, above T, and at

270 K. At temperatures close to T, the spin fluctuation spectrum ex-
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Figure 9: Intensity contours for neutron paramagnetic scattering for MnSi
at (a) 33K and (b) 270K [16].

tends to energies scales as high as 10x7,. The small wavevector and
low energy components have the highest weight in the spectrum. The
main features of the spectrum do not change as the temperature is
increased to approximately 10x7,, but spin fluctuations with higher

wave-vector are becoming more and more thermally excited.

2.3 uSR experiments

Hayano et al. [17] performed muon spin relaxation (uSR) measure-

ments in MnSi and reported a divergence of the spin-lattice relaxation
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rate 7 observed above T in an applied longitudinal field By, of 700 G,
following 77 o (1 — %) Figure 10 presents the 77 versus % plot, and
the fit of the data to the above dependence. This is consistent with
the prediction of the SCR theory at temperatures above T,, where the

magnetic susceptibility obeys a Curie-Weiss law.
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Figure 10: Muon spin relaxation time in MnSi (study on a single crystal
sample) [17].

The uSR results above the critical temperature could be com-
pared with the ®Mn NMR scattering results at high temperature. If
one assumes that the muon does not change significantly the mag-
netic environment around the muon site, the following scaling relation

between the uSR and NMR relaxation times holds:



28

lO‘r 3
It LOCALIZED MOMENT ]
-

— \.\
€l N e o\~
- ~.SCR LT
w F
=
Se
§ 'k \\‘ R”‘"Dl E
=zt 1
x ¢ b }
o ! AL ‘4
B EE
|0," h \‘ -3
+§] 10 100 1000

TEMPERATURE T-T¢ (K)

Figure 11: The spin lattice relaxation time T} vs T — T,. The full circles are
the muon data and the open circles are the Mn data scaled accordingly [17].
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Figure 11 shows the plot of the spin lattice relaxation time T} vs
T —T.. The >Mn NMR data is scaled accordingly. The fit based on the
SCR theory for ferromagnetic metals is shown by a solid line, while the
Hartree-Fock (Random Phase Approximation) curve is shown by the
broken line. The dotted line is the estimate of the localized moment
model. The SCR prediction for anti-ferromagnets is also shown for
comparison. The SCR theory for ferromagnetic metals gives the best

fit to the data. [17].

Kadono et al. [18] confirmed Hayano’s result in subsequent uSR
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studies, which elucidated muon-nuclear double relaxation effects and
extended the measurements to the ordered state.

Two precession frequencies have been observed in the ordered state,
corresponding to two muon sites with different hyperfine coupling con-
stants. Two muon sites are expected also in the paramagnetic state,
but, due to limited statistics, one can not distinguish two relaxation

rates. All data in the paramagnetic state has been fit with one relax-

ation function.
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Figure 12: Temperature dependence of the local magnetic fields Hj, felt by
muons. Previous data are shown as open squares. Solid lines: theoretical
calculations of the normalized magnetization Mq(T)/Mg(0). Dashed lines:
the Mq(T)/Mp(0) determined from neutron scattering [18].

The temperature dependence of the internal field is estimated from

the muon precession frequency, w = v,B, as shown in Fig. 12. The
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data agrees within the experimental uncertainty with the results of

neutron scattering experiments.

2.4 Resistivity and magnetic susceptibility measure-

ments under applied pressure

Recently, Pfleiderer et al. [19] found that in applied pressure above
p. = 14.6 kbar, MnSi loses static magnetic order and becomes a corre-
lated paramagnet. The crossover from a spin-polarized state to a non-
polarized state at low temperature was investigated via high precision

measurements of the electrical resistivity and magnetic susceptibility.
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Figure 13: Pressure dependence of the transition temperature. For p < p*
(= 12 kbar), T4/? x p, while for p* < p < p. (= 14.6 kbar), T2 x p [19].

It was found that, for p < p* (= 12 kbar), T3 « p, while for
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p* < p < pe, T?  p. p* corresponds approximately to the pressure
where the transition at 7, changes from a second order transition for
p < p* to a first order transition for p > p*. The pressure dependence
of the critical temperature is shown in Fig. 13.

Of a considerable interest is the non-Fermi liquid behavior of the
resistivity above T,. For a Fermi liquid in a paramagnetic or weakly
polarized state, one expects %22 = &2 to be temperature independent.
p is the resistivity and pg is the residual resistivity at T = 0 K. As seen
in Fig. 14(a), the system in the paramagnetic state departs from the
Fermi liquid behavior. Pfleiderer et al. explains the behavior of MnSi
near and above p. in the frame of a model of a marginal Fermi liquid in
which the long range effective interaction between quasi-particles is due
to the exchange of long-wavelength nearly critical fluctuations in spin
density. Figure 14(b) shows the behavior of the magnetic susceptibility
as a function of temperature and pressure. For p > p* = 12 kbar, the
magnetic susceptibility shows a step at 7T, characteristic for a first

order phase transition.
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Figure 14: (a) The ratio of Ap = p— pg to T'? versus temperature at different
pressures (10.4, 19.9, 14.3 and 15.5 kbar going up, starting from the bottom
curve at left). (b) The magnetic susceptibility versus temperature at different
pressures (ambient — 16.1 kbar, starting from the top curve at 30 K) [19].

2.5 NMR measurements under pressure

The pressure experiments on MnSi were continued by °Si NMR
[20] and magnetization measurements [21] performed by C. Thessieu
et al.. The same pressure dependence of the Curie temperature has
been obtained as in the above resistivity measurements, as shown in
Fig. 15.

The NMR resonance frequency at 1.4 K, also plotted in Fig. 15,
shows little pressure dependence and decreases abruptly around p..
Other NMR experiments performed by the same group show the de-

crease of the ordered moment right at p., as expected for first order
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transitions [22]. The lineshape of the resonance line broadens as the
pressure increases through p.. The magnetization measurements [21]
confirmed the very slow dependence of the ordered moment p; on the

applied pressure.



3 The SR Technique at TRIUMF 2

3.1 Generalities

The positive muon spin rotation and relaxation technique (uSR)
was suggested by experiments trying to show the parity violation in
meson decays. Due to the parity non-conservation in the nt — u*
decay, it is possible to provide beams of 100 % polarized muons. A
polarized muon beam can be stopped in a sample, where the muon
spin changes with time under the influence of the local magnetic fields
until it decays with an average lifetime of 2.2 usec according to u* —
e* + ve + 7,. The decay positron is emitted preferentially along the
direction of the spin of 4% because of the same parity non-conservation.
This allows determination of the statistical average of the muon spin
polarization as a function of time. The short lifetime of muons limits
the applicability of the technique to events visible in the time range
from .02 to 10 usec.

Muons provide a remarkably powerful probe of magnetism in the
2All figures of this chapter are taken from the Operation Manual of the Triumf facility.
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matter due to the sensitivity of the muon magnetic moment to the
local magnetic fields. By determining the time evolution of the muon
spin polarization in the magnetic environment inside of a sample, the
1SR technique allows detection of static magnetic fields as small as
a fraction of a gauss and fluctuating fields on the time scale between
103 and 107 seconds.

There are two uSR techniques: Time-Differential (TD-uSR) and
Time-Integral (I-uSR). In the case of (TD-uSR) each muon entering
the sample starts a clock, and the time and the direction of the decay
e= are both recorded. The TRIUMF facility provides a continuous
muon beam, which requires the muons to be taken one at a time and
individual decays correlated with individual muons. If a second muon
arrives in the sample within 5 muon lifetimes after the arrival of a
first muon, the event is discarded. This imposes a limit on the muon
beam rate, which is approximately 30 ku/sec. The Time Integral uSR
makes no correlation between the muon arrival and decay, but counts
the number of decays in opposing directions, which allows to use all

the muons delivered. TD-uSR is used for all of our experiments.
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3.2 Production of the muon beam

The TRIUMEF facility is based on a cyclotron capable of accelerat-
ing negative hydrogen ions (H™) to energies up to 520 MeV. The H-
beam is passed through a thin carbon foil which strips off the two elec-
trons. The proton beam resulted is bent out from the cyclotron due
to its opposite charge and directed towards the experimental areas.
TRIUMF allows the simultaneous extraction of several proton beams
of different energies and intensities. The proton beams are directed
through the meson production target, usually 1 cm graphite or Beryl-
lium, where they produce pions by nuclear reactions. Pions decay into
muons with an average lifetime of 26 nsec. Depending on the purpose
of the experiment, one can use the muons which result from the decay
of the pions that come at rest at the surface of the production target,
called surface muons, or use the muons that result from the “in flight”
decay of the high energy pions.

The higher energy pions escape the production target and pass
through a quadrupole magnet selecting the pion momentum. Pions

with well defined momentum are decaying into muons along the =
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decay section, which consists of a series of quadrupole magnets or a
superconducting solenoid. The muon momentum is selected by dipole
magnets, and it can vary between a range of 20 MeV/c to 100 MeV /c.
The resulted muon beam is more than 80 % polarized. The M9B muon

channel at TRIUMF specializes in highly energetic muon beams.
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Figure 16: Production of polarized surface muons
Figure 16 shows the schematic view of the beam elements required
for the production of the surface muon beam. The surface muons
are perfectly polarized opposite to their momentum, which is 29.8
MeV /c. The muon momentum is selected by the use of dipole magnets.
This makes sure that the resulting beam has the correct polarization.
Quadrupole magnets are used to focus the muon beam. Various slits

limit also the momentum range transmitted and the final spot size.
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Other charged particles are stripped out using crossed E and B fields
in the DC separator. If the magnetic field is high enough, the DC sep-
arator can be used to rotate the muon spin perpendicular to the beam
direction. The highly collimated muon beam reaches the end of the
beam pipe, which is sealed with a thin Kapton or mylar window, and
moves toward the experimental area. Before reaching the experiment,
the beam passes through a several millimeters large collimator. The
M13, M15 and M20 muon channels are designed to produce surface

muons.

3.3 Experimental set-up

The experimental set-up is realized by the use of uSR spectrome-
ters and the uSR inserts. A schematic view of the uSR apparatus is

presented in Fig. 17.

3.3.1 Spectrometers

The uSR spectrometers are magnets plus an array of counters to

detect incoming muons and their decay positrons. The detectors are
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Figure 17: Top view of schematic layout of a uSR apparatus
usually made of plastic scintillators that are connected to photo-tubes

through light guides. When a charged particle passes through a detec-
tor, the photo-tube will give an electric signal. The muon counter is
placed between the sample and the end of the beam line and detects
the arrival of an incoming muon. To make sure that the muon reaches
the sample, the muon counter is very thin (.25 mm). The positron
counters, approximately 1 cm thick, are paired along some specific di-
rections: 2, along the beam, £, up, perpendicular to the beam and 7,
to the right. The main magnet is oriented so that the magnetic field is
applied along the beam axis. Other coils provide weaker fields in direc-
tions transverse to the beam direction. Depending on the information

needed, the positron counters and the magnetic fields are arranged in
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one of the longitudinal or transverse field configuration.

3.3.2 Longitudinal field configuration
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Figure 18: Coordinate system and labelling conventions for surface uSR ex-
periments. a) and b) show possible longitudinal field configurations, with
the muon spin polarization and the applied magnetic field along the same
direction, indicated by the subscript on the right; c) shows the spin rotated
configuration suited for high transverse fields and d) shows the weak trans-
verse field configuration.

In the longitudinal field (LF) configuration (which is suited also for
zero field (ZF) measurements) the magnetic field is applied along the
initial muon momentum, which coincide with the muon spin direction.
The positrons are registered by the forward (F) and backward counters
(B) as shown in Fig. 18(a). The muons pass through a small hole in
the backward counter, then through the thin muon counter (M). Att =

0 nsec positrons are emitted preferentially in the backward direction.



41
After enough time, the muon spin looses its polarization, and there
is no distinction between the forward and backward directions. The
evolution of the component of the muon spin polarization along the

beam direction is characterized by the longitudinal relaxation time T3.

3.3.3 Transverse field configuration

In a transverse field (TF) muon spin rotation experiment a magnetic
field is applied perpendicular to the muon spin polarization, causing
the spin to precess about it. The technique is used both for measuring
the muon precession frequency (w = v,B, where B is the local field at
the muon site) and the rate at which the muon looses phase coherence
(T, relaxation). Since B can be affected by diamagnetism, paramag-
netism, or contact hyperfine interactions with polarized electrons in the
medium, B can be different than the external magnetic field applied.
The difference is usually the focus of the TF-uS R experiment. There
are two possible transverse field configurations. In the configuration
shown in Fig. 18(d), a weak magnetic field (maximum 200 G) is ap-

plied perpendicular to the muon momentum. The muon spin precesses
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around the magnetic field applied until it decays, and the positrons
are counted by using forward and backward counters. This technique
is not appropriate for higher magnetic fields, which may curve the tra-
jectory of the muon up to the point where it misses the sample. For
high fields, the configuration shown in Fig. 18(c) is used. The muon
spin is rotated in the DC separator, while the magnetic field is applied

along the muon momentum.

3.3.4 Inserts

The uSR inserts consist of cryostats and sample holders. The tem-
perature of the sample can be varied in the range of 2 to 300 K using
a He?* cryostat and between 20 mK and 6 K using a He-He* dilu-
tion refrigerator. For the experiments presented in this thesis, He?
cryostats have been used. In a He! cryostat, the sample is placed at
the end of the sample space, next to a mylar window in the cryostat
wall facing the beam line. The other end of the sample chamber is
connected to a rotary pump, which maintains a very low pressure in

the sample space. Close to the sample position, He? is passed through
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Figure 19: Electronics diagram for recording the data.

a diffuser, where it expands from the high pressure liquid phase into a
low pressure gas phase. The diffuser is connected to a liquid He* de-
war through a capillary with a needle valve. The thermal expansion of
He* provides the cooling power, which can be controlled by adjusting
the needle valve. The temperature of the sample is finely adjusted by
two heaters, the diffuser heater and the sample heater. GaAlAs diode
thermometers placed very close to the sample are used to measure the

sample temperature on a wide temperature range.



3.4 Electronics

The electronic circuits are designed to record the time the muon spent
in the sample before it decayed. Raw counter pulses are fed to fast
constant fraction discriminators (CFDs) that generate uniform timing
pulses if the raw pulse height is above a threshold. Figure 19 shows the
electronics diagram for constructing the time histogram. The incoming
muon sends a start pulse to a fast “time digitizer”, the TDC (Time
to Digital Converter) clock, and a data gate (D,) is opened for a time
ty > 74. It is possible for many muons to enter the sample at about
the same time or for a muon to decay before reaching the experimental
area and its positron to be mistakenly associated with a muon that
arrived in the sample earlier. Additional modules ensure that “second
muon” events are rejected. At the arrival of the muon a Pile-up gate
(F,), which is longer than the data gate (D,) with approximately 500
nsec, is set to “false”, a busy gate (B,) is set to “true” and the data
gate is set to “true”. If a second muon arrives, the P, gate is flipped
and remains “true” for the rest of the time t,. Before the arrival of

the muon, the B, gate was set to “false”, command which also resets



45
the number of positrons previously counted, n = 0. The condition to
accept a positron event (e = “true”) and increase n to n + 1 is that
P,D,e = “true”. The event is registered if when the clock is reset n
= 1, and P, = “false”.

The procedure described above does not eliminate the background
(B) signal due to random triggers, even if only from cosmic rays. To
determine B, the best procedure is to delay the signal from the positron
counters with several hundred nanoseconds. A good event can then be
formed by the muon event, and an “e” event that happened physi-

cally before the muon arrival. These events are random noise and the

histogram for ¢ < 0 provides a measure of the background.

3.5 Reconstructing the muon spin

The positive muon decays according to the relation: u* — et +v.+
U,. The decay probability of the muon depends on its spin direction,
the direction of e” emission and the e* energy, z = % (where €maz =
52.83 MeV is the maximum possible energy of the e*). The higher the

energy of the positrons, the more asymmetric the decay probability is.
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Figure 20 shows the probability of positron emission integrated over

the positron energies.

Figure 20: Angular distribution of positrons from muon decay, integrated
over energy.

Thus, it is only possible to reconstruct the projection of the muon
spin, S, :(t), on one axis, G,(t) =< S,.(t) >. The most convenient
experimental set-up is formed by a pair of counters. The same informa-
tion could be extracted with more difficulty from the time histogram
accumulated with a single counter. Figure 21 shows a typical counter
arrangement.

The projection of the muon polarization along the z axis is G,(t) =
cos(6(t)), where 0 is the angle made by the muon spin with the counter

axis. The time spectra in the two counters can be described by:

N+(t) = B+ + N0€+e"t/‘ru(1 + A+G2(t))’

N_(t) = B_ + N%_e /™ (1 — A_G.(t)), (23)
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Figure 21: Positron counters used to reconstruct G,(t).
where N® is a common normalization, e. are the efficiencies of the
positron detectors in the z and —z directions, B are the backgrounds
(as determined from the ¢ < 0 bins), AL are the ”intrinsic” asymme-
tries of the positron detectors (the count rate is proportional to (11 A.)
when the muons are fully polarized along (opposite) the detector axis
of symmetry), and 7 = 2.2 usec is the muon lifetime.

The two spectra are combined to form the experimental asymmetry:

) < (elt) = Be) = (V_(¢) = B.)
(N+(8) = Br) + (N-() = B-)’

(24)

(1-a)+ 1+ aB)AG,(t)
(1+a)+(1-aB)ALG.(t)’

a(t) = (25)
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where a = :‘f and 8 = j—:. The factor ﬁ is the “baseline” asym-
metry for totally unpolarized muons. One convenient feature of this

construction is that the muon lifetime does not appear in the experi-

mental asymmetry.

In practice, one displays the corrected asymmetry, given by:

(@—1) + (@ +1)a(t)
(@B+1) + (aB — Da(®)’ (26)

ALG:(t) =

The “raw” spectrum from one counter and the corrected asymmetry
for TF-uSR data are compared in Fig. 22. As shown, the corrected

asymmetry does not depend on the muon lifetime.
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Figure 22: (a) Raw spectrum from one counter. (b) Corrected asymmetry.

The parameters a and 3 are determined from fits to the data. « is
found the easiest way from TF spectra of the opposite counters along

the z direction, while 8 must be determined by simultaneous fits to
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the TF "raw” spectra Ni. It is usually assumed that 8 = 1, while
alpha is allowed to vary. It is not uncommon to assume a value for
a by identifying the "baseline” from the ZF spectrum containing the

most relaxing data.

3.6 Sample and particularities of the measurement

We measured the sample under zero and longitudinal magnetic field
up to 2.7 kG at the M20 channel of TRIUMF using the LAMPF spec-
trometer. The forward counter consists of two long semi-cylindrical
pieces, with the axis along the direction of the muon beam. Because
of the difficulty in aligning the counter with the beam, a small fraction
of the total signal shows precession with a frequency w = v,B. The
longitudinal field measurements were continued up to a field of 6 kG
at the M15 channel of TRIUMF, with the Belle spectrometer set up
for a conventional LF experiment. With the same spectrometer, we
also performed TF measurements under magnetic fields up to 1 T. For
all the mentioned measurements, we used surface muons with a 29.8

MeV /c momentum and a single crystal specimen of 8 x 8 x 2 mm in di-
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mensions. The largest surface perpendicular to the cubic crystal axis,

which is parallel to the muon beam direction.
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Figure 23: The pressure cell used for measurements under 8.3 kbar.

We also performed measurements under an applied pressure of 8.3
kbar at the M9B channel of TRIUMF, which specializes in high mo-
mentum muon beams. To apply the pressure, we used a piston-cylinder
pressure cell, shown in Fig. 23, with an outer diameter of 24 mm and an
inner diameter of 6.2 mm. The cell was made of the copper-beryllium
alloy 25 with a density of 8.35 g/cm3, and with a composition of 1.9
% Be, 0.2 % Co, 0.1 % Fe, 0.05 % Ni, 0.003 % Cr and the rest copper.

The sample is immersed in a pressure transmitting medium, Daphne
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oil, which is compressed by a piston using a common hydraulic press.
The piston is expected to travel along a distance of 17 mm when the
pressure varies from ambient pressure to 13 kbar. The Daphne oil
freezes at a temperature between 100 K and 130 K, depending on the
pressure. To ensure homogeneity of the pressure, the pressure cell was
cooled at a slow rate of 2 K/min in this temperature region. During
cooling, the pressure decreases with 2-3 kbar, which reduces consider-
ably the pressure range available.

Because of the thickness of the pressure cell walls, the muon must
have a high momentum in order to reach the sample. We run the
experiment at the highest momentum (approximately 110 MeV/c) al-
lowed by the current power supply of the superconducting magnet.
To minimize the loss of momentum in the cryostat walls, we used a
horizontal cold finger cryostat with a mylar window at the sample po-
sition. The sample, made of square tiles of MnSi of 3.9 x 3.9 x 2 -3
mm sitting one on top of another, was 16 mm long. We fixed the sam-
ple in place by encapsulating it in a thin-wall tube made of Kapton

tape. The temperature was recorded as the average indication of two
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GaAlAs thermometers placed close to the ends of the pressure cell. The
pressure was determined from the resistivity versus temperature and
pressure calibration of a semiconductor pressure gauge SPG10 located

inside the cell.
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4 Fitting Procedure

4.1 The paramagnetic state

In the paramagnetic phase, the time dependence of the muon spin
polarization is determined by the dephasing of the muon precession
due to the electronic or the nuclear dipolar spin fluctuations and also
to the variable nuclear dipolar field at the muon site. Figure 24 shows
the temperature dependence of the muon spin polarization under an
applied field of 2115 G. As the temperature increases above T, = 29.5

K, the signal relaxes more slowly.

00  *t295 K H =215 G .

0 2000 4000
Time (nsec)

Figure 24: The temperature evolution of the muon spin polarization in the
paramagnetic phase, under an applied field of 2115 G. Close to T, the signal
depolarizes faster.
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The longitudinal spin relaxation function is best described as:

<P,(t) - P,(0) >
IP.(0)/2

Gu:(t) = (27)

Since the local field due to electronic spins fluctuates much faster
than the nuclear dipolar fields, the ZF longitudinal polarization func-

tion can be written as:

Gyuslt) = ¢ T GET (1, TH™), (28)

where T¥ is the relaxation time of the fluctuating electronic spins and
TM™ is the correlation time of the nuclear dipolar field. The function
GEI(t; T") is the dynamical Gaussian Kubo-Toyabe function and
describes the relaxation due to a Gaussian distribution of local fields
fluctuating with the rate 711}7;.- In the static limit, 7M™ — oo, the

Kubo-Toyabe function takes the form:

A2

1 2 _
gkT(t) = GEI(t;00) = 3+ 5(1 — A%%)e "7 . (29)

% is the root mean square value of the Gaussian distribution of static
nuclear dipolar fields: %; =< B >=< Bg >=< B? >. Since the lo-
n

cal field from the Mn moments is small, % ~ 4 G, magnetic fields
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greater than 50 G suppress the nuclear dipolar relaxation making
GKT (¢, T'™) = 1, this way being possible to observe T} independently.

Z

Level crossing resonance (LCR) with nuclear quadrupole oscillation
was found in MnSi around By, = 100 G [24]. We carefully avoided this
By, and we did not find any signature of the LCR effect in the present

study.

4.2 The ordered phase

Under each magnetic field, two precession signals could be identi-
fied. Figure 25 shows the muon spin polarization as a function of time
and temperature for an applied magnetic field of 2115 G. As the tem-
perature is increased, the amplitude of the oscillating signal decreases
considerably.

Previous ZF-uSR studies on MnSi [18] also found two precession
frequencies, indicating two muon sites with different magnitudes of in-
ternal fields. However, it is difficult to decompose F;; observed above
T. into a sum of two exponential functions having different decay rates.

Thus, the results in references [17] and [18] were obtained by using a
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Figure 25: The temperature evolution of the precession signal under an ap-
plied field of 2115 G. Two precession frequencies can be seen close to T..

single exponential relaxation function for the electron spin contribu-
tions. We followed this approach in the analysis of the present data,
which allows direct comparison of the 7} results with the previous
measurements.

For the ordered phase data, the muon polarization function was

expressed as:

1 -4y 2
PED) = 3 (u(ze ' +ge Peoswt),  (30)

where Tz(i), i = 1,2, are the transverse relaxation times and wj; =

fy,,B,(z are the precession frequencies around the local magnetic fields



a7
(s = 27 x 13.55 kHz/G). p; and pq are the relative populations of the
two inequivalent muon sites, py + p2 = 1.

The transverse relaxation is due to inhomogeneities in the magni-
tude of the local magnetic field and also to fluctuations of the local
field. The factors % and % from the above expressions are expected to
change under an applied magnetic field or for anisotropic single crys-
tals [23]. The nuclear dipolar relaxation can be neglected compared to

the effect of the spontaneous magnetic field.
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5 Analysis of the longitudinal field data

5.1 Preliminary results
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Figure 26: Temperature dependence of the relaxation rate under zero field
and applied magnetic fields of 51.5 G, 2115 G, 2700 G, 4000 G and 6000 G.
Data under 700 G taken by Dr. Hayano’s group is plot for comparison.

In Fig. 26 we present the relaxation rate A = ,_%l as a function of the
temperature and of the magnetic field applied. The histogram binning
was chosen to average out the precession of the muon spin around the
local magnetic field in the ordered phase. This precession signal looses
amplitude on a time interval of approximately 500 nsec, much smaller
than the 8000 nsec length of the time histogram. Therefore the data

in both the paramagnetic and the ordered state could be fitted with
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a simple exponential function. For the analysis of the paramagnetic
state data, the asymmetry was kept constant, while for the ordered
state data it was allowed to vary down to .33 %, when the sample is
completely ordered magnetically. This procedure was used in order
to get a consistent measurement of the relaxation time over the entire
temperature range. More detailed features of the relaxation rate in the
ordered phase will be presented later.

As seen in the figure, under magnetic fields up to 2700 G the muon
spins still show a pronounced relaxation in the temperature region of
the helical transition. A magnetic field of 4000 G or above completely

suppresses the critical fluctuations.

5.2 Analysis of results in the frame of the SCR

theory

Generally, the nuclear/muon spin-lattice relaxation rate due to elec-

tronic spin fluctuations is given by [25]:

1 h'yf‘fl ' — |Ag2Imx* (g, w)
— = 3 , 31
No G ( )

T1 W
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where the z direction is taken along the quantization axis of the muon
spins, -y, is the muon gyromagnetic ratio, A, is the Fourier g-component
of the hyperfine coupling constant and w is the energy of the spin
excitation, which for practical purposes can be considered w — 0.
X" (gq,w) represents the dynamical susceptibility and the imaginary
part of x*7(gq,w) gives the intensity of the excitation with the wave-

vector transfer ¢ and the energy w.

5.2.1 Paramagnetic phase
According to SCR, the dynamical magnetic susceptibility in the
paramagnetic phase, expressed in units of (2ug)?, is given as:

7l’T0 1
aT4 2nT(y + z?) — iw’

x(g,w) = (32)

where y = 2_aT—:§@ is the reduced inverse susceptibility, z = qu? is the
reduced wave-vector, with gg = (%ﬁ the effective zone boundary
vector and vy the volume per magnetic atom, and « is the reduced
interaction constant (@ = 1 at the magnetic instability). Ty and T4
characterize the energy width of the dynamical spin fluctuation spec-

trum and the width of the distribution of static susceptibility in the
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g-space, respectively.
Neglecting the g dependence of A, one obtains for the relaxation

time of muons the formula mentioned previously:

_k 242
1 PyuAhs 1 with l — ﬁ, (33)
T1 2ﬂ'TA T1 T1 2'y

where T} is the reduced relaxation time and t = 71,0 is the reduced
temperature.

If the static susceptibility obeys a Curie-Weiss law, x = ,_,-é"i, the
slope of the T} versus % plot is proportional with the critical temper-
ature. This behavior is expected for the case of itinerant systems at
higher temperatures above T.. The relaxation time of muons Tj is
shown in Fig. 27 as a function of the inverse temperature for magnetic
fields of 51.5 G, 2115 G and 2700 G. For temperatures higher then T,
the T, versus % plot is linear under each applied magnetic field, but
the slope of the plot increases with the field up to magnetic fields of
2115 G. The data taken under 2700 G is superimposed on the data
taken under 2100 G. The data taken previously under 700 G by Dr.

Hayano [17] is consistent with our experimental results.
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Figure 27: Magnetic field dependence of the relaxation time versus inverse
temperature plot; the data shows a good linear dependence of T| on % at
higher temperature under each magnetic field.

Close to the critical temperature, the spin fluctuation modes with
small wave-vector and low energy become predominant in itinerant
magnetic systems and the uniform susceptibility is expected to devi-

1

ate from the Curie-Weiss law, | (% — 1)2, which results in T} «

#(7z — 1)? [1]. There is also an intermediate region between the high

temperature region and the region around T. where - o ((%)*3 - 1),

which is a weakly super-linear dependence of % on temperature [1].
Improved experimental conditions allowed us to define the sample

temperature with much better accuracy (+ 0.02 K) and to acquire

more data, especially in the region around 7,. Fig. 28 shows the plot
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Figure 28: The relaxation time versus inverse temperature plot around T,_.,
together with the theoretical fit. The data shows departure of the T versus 3:
dependence from the linear behavior characteristic for higher temperatures.

of T versus % around the transition temperature, together with a fit
to the (— —1)2 dependence. The values of the critical temperatures, as
determined from the peak of the relaxation rate A versus temperature
plot, are 29.4 K and 29 K under 51.5 G and 2115 G, respectively. A
slight offset has been added to fit the data under 51.5 G. The data
confirms the curving of the 77 versus = plot predicted by the theory.
The best fit was obtained for the 2115 G and 2700 G data in the
temperature range from 29.5 K (3 = 0.0339 K™') to 30.5 K (1 =
0.0328 K~1!). The data taken previously under 700 G by Dr. Hayano

is also shown.



5.2.2 Ordered phase

In the ordered phase, the zero field spin lattice relaxation time is

given by [1]:

T _ wo(%8F)?
T\ 1raA2C2 ’

(34)
where Tjg is the spin lattice relaxation time in normal metals and it is

given by the usual Korringa expression:

o= T o(ep)PT (9

A was defined in Eq. 20 for the expansion of the dynamical susceptibil-
ity around T, vg is the atomic volume, ar is the area of the d-electron
Fermi surface, wg = ‘W’;“,f—;lg;; and ( = % is twice the magnetic moment
per atom.

In an applied magnetic field, the spin lattice relaxation changes

according to:

”~

1 __ 2 'U(]C i‘
77 = Ower g ) Ty e

(36)
where C is defined in Eq. 20 in connection to A, A = o A(%2%)~? and

A= A [26].
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Figure 29: The temperature evolution of the proportion of the non-oscillating
signal for various fields. The fraction of the ordered phase decreases as the
systems undergoes the transition to the paramagnetic phase.

Muon spin precession was seen up to 29.5 K, 29.4 K, 28.5 K and
28.75 K for zero field, 51 G, 2115 G and 2700 G, respectively. To obtain
good fits, we followed the procedure indicated by R. Kadono and his
collaborators [18]. We assumed that, as expected in the fast fluctuation
limit, the 77 and T, relaxations are proportional to the square of the
local magnetic field at the muon site, Tl('% = 01,2w(2,-), 1= 1,2, with 6,2
an effective correlation time common to the two sites.

The factors % and % from Eq. 30, section 4.2 remained constant up
to 29 K under zero field and 51 G, and changed completely under high

applied fields. The proportion of the ordered phase decreased as the
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system passed through the helical transition from the ordered phase,
which results in an increase of the fraction of the non-oscillating signal,
as shown in Fig. 29. The transition is not as sharp under high applied

magnetic fields as in the case of the lower applied fields.
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Figure 30: The temperature dependence of the local magnetic field as a
function of the magnetic field applied. The magnitude of the local field
decreases sharply at the transition temperature.

The magnitude of the local field at the two muon sites was calculated
from the precession frequency according to: w = 7,B, with v, =
2w x 13.54 MHz/kG. Figure 30 shows the temperature and applied
magnetic field dependence of the local field. The very high values of
the internal field become more difficult to determine accurately, due to

the time resolution of the experiment.
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The Tj relaxation rate corresponding to the two muon sites is shown
in Fig. 31. The two relaxation rates show individually the same diver-

gent behavior as indicated previously in Fig. 26.
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Figure 31: The temperature dependence of the longitudinal relaxation rate,
7‘—.—', as a function of the magnetic field applied. The relaxation rate shows a

vc;lry pronounced divergent behavior around 7, under each applied magnetic
field.

We compared our data with the predictions of the SCR theory for
a ferromagnet. Under zero applied magnetic field, Til x %, which
results in AT{F o T. Under an applied magnetic field the linear temper-
ature dependence is multiplied by a factor of the form ﬁ%' Because
MnSi is a helimagnet with a long period, we apply the above formula,
using w instead of the magnetization. ‘-{,’—% is plot as a function of the

temperature in Fig. 32. The plot shows linear behavior up to temper-
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atures of 27 K. The data is not precise enough to reveal a departure

from the linearity under higher magnetic fields.
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Figure 32: Temperature dependence of the square of the precession frequency

multiplied with the relaxation rate.

As expected for weak ferromagnetic

systems, the plot is linear in temperature up to temperatures close to 7,
(approximately 27 K).

Previous experiments by Prof. R. Kadono show up to 20 K the

. 2 -
same linear temperature dependence of % determined under zero ap-

plied field. To justify the departure from linearity above 20 K, it was

suggested that the helical structure with a long period might show a

behavior closer to antiferromagnetism in the critical region. In the case

of a weak antiferromagnet one expects % x T [1]. In Fig. 33 a plot

of %’ as a function of temperature is shown for the temperature range

from 25 to 29.5 K.
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Figure 33: Temperature dependence of the precession frequency multiplied
with the relaxation rate. The plot of - is expected to be linear in tempera-

ture for helimagnets with a long period.

The data taken under 2700 G, shown with open squares, the data
taken under 51 G, shown with filled triangles, and the zero field data
up to 29 K, shown with filled stars, are consistent with the expected
behavior. Also, the data under 2115 G shown with open rhombic
symbols and the data under 2700 G shown with crossed square symbols
seemn consistent with this trend, but the data is too scattered to fit.
The departure from linearity could be attributed to the high tradeoff
of fitting parameters close to 7.

In conclusion, most of the properties of the MnSi system could be

explained in the frame of the SCR. theory. The linearity of the T} versus
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% plot at temperatures above T, and the departure from linearity at
temperatures close to T, were shown in a very convincing way. Also, the
analysis of the ordered phase data is confirming previous expectations
for helimagnetic systems with a long period, such as MnSi.

What it is difficult to explain in the frame of the SCR theory is the
field dependence of the slope of the 77 versus % plot at high temper-
atures above T,. In what follows we show how the experimental data
disagrees with the predictions of the SCR theory and we propose a

model to account for the differences.

5.3 Theoretical calculations

Detailed calculations allow us to investigate the validity of the SCR
theory on a wider temperature range, including the region around T..
The SCR method consists in applying quantum statistical theory to
the itinerant magnetic system, starting with the microscopic Hamilto-
nian. In earlier stages of investigation, the zero-point spin fluctuations
were assumed to be temperature independent. It was later proven by

neutron inelastic scattering experiments on MnSi [27] that their tem-
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perature dependence is significant. The most recent version of the
theory of spin fluctuations around magnetic instabilities [28] was used,
which takes in account this effect.

According to the theory, the parameters needed for a complete de-
scription of the system are any four of the following: T, T, T4, p, and
Fg (or y1). p is the value of the ordered moment per atom at T = 0,
expressed in units of up. Fg represents the renormalized coupling con-
stant between the spin fluctuation modes with the wave vector around
Q (Q = 0 for ferromagnets) and is related to the slope of the Arrot

2 H.
plot, the plot of M* versus 37:

up e = Fol M(T, H)? - M(T,0, (37)

where M is the magnetization per atom expressed in units of 2ug. ¥
is the reduced renormalized coupling constant and it is related to Fy

through the relation:

2T}

Fg = ——=.
Q 3T0y1

(38)

There is another relation connecting these parameters, which is

characteristic for itinerant ferromagnets:
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Figure 34: Calculated magnetic field dependence of the muon spin relaxation
rate A = ,,‘Tl versus temperature plot in the paramagnetic phase. A magnetic
field as small as 700 G suppresses the critical relaxation.

The reduced magnetic susceptibility was defined previously as y =

m, a being the reduced interaction constant (@ = 1 at the mag-

netic instability). For a 3D ferromagnet with itinerant electrons, y in

the paramagnetic state takes the following form as a function of the

temperature and of T, T, and y; [28]:

Y= [),:.’ol(ya t; xc) - Y31 (01 tc; xC)]a

Yoy tize) =3 [ doaln(u) - oo - p()],  (40)
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z(y:-zg), $ = %, t, = %, and z. = L. Under an applied mag-

with u =
netic field, the expression becomes more complicated. To determine

the magnetic susceptibility, one must solve the magnetic equation of

state:

1 b2y1 1

1
= —ZtapME 4 taymd + 2 41
on stayiMo +tayimy + o5 th o0 (41)

where Mj is the value of the spontaneous magnetization per atom at

T = 0 K in units of 2ug, and mr is the amplitude of the thermal spin

fluctuation. mr can be calculated from:

1424,
mé =¥ Tl (md),, a=L,|.

3 rze 1
(m2)n = t_;/()z drz’[In(ug) — ru Y(uq)l, (42)
with u, = ‘1(-’%22—2 YL = ﬁﬁ and y =y, +M%”§ are the components

of the inverse reduced susceptibility perpendicular and parallel to the

1 _ 1 —_ B
2Tax. and W= 2Tax) " b= To

direction of the magnetization M: y, =
with B = 2ugH, H being the external magnetic field.

The parameters values used in calculations were taken from the
same reference [28]: T, = 29.5 K, y1 = .47, T4 = 2080 K, and Tj

= 231 K. The relaxation time was estimated using the reduced sus-
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ceptibilities. Figure 34 shows plot of the calculated relaxation rate,
A= TIT for different magnetic fields. Even a magnetic field as small as
700 G suppresses the critical fluctuations. This is in contradiction with
the experimental results presented previously, which indicated that the

critical fluctuations persist up to fields as high as 2700 G.
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Figure 35: Magnetic field and inverse temperature dependence of the muon
spin relaxation time T, for MnSi in the paramagnetic phase. Around the
critical temperature the spin fluctuations are suppressed by the application
of magnetic field, while at higher temperatures the magnetic field dependence
of the relaxation time becomes negligible.

At higher temperatures, the plots of the relaxation time T} versus
inverse temperature for different fields are expected to converge along
a single line, as shown in Fig. 35, which again contradicts the experi-

mental data.
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5.4 Proposed explanation for the departure from

the predictions of the SCR theory

[t was for a long time assumed that, because the helical structure
has such a long period, the system behaves as a weak ferromagnet for
which the application of a small magnetic field suppresses the critical
fluctuations. The magnetic field dependence of the relaxation time is
rather unexpected.

To explain this behavior we propose a simple model which takes
separately into account the contributions to muon spin relaxation from:
(a) the ¢ = 0 component of spin fluctuations along the direction of the
external magnetic field and (b) the spin fluctuations of the remaining
helical component in the plane perpendicular to the magnetic field.
Accordingly, the muon spin relaxation rate in MnSi can be expressed
as 7- = (g-)parallet+ (7; )perp- In view of the dependence of the relaxation
time on the Larmor precession frequency of the muon spin around the
local field and on the local field fluctuation rate v, %l x “—,’;, one expects
the first term to be proportional with the component S2 of electronic

spin fluctuations parallel to the magnetic field applied along the =z
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direction and the second term to be proportional with S:%,y' Here we
assume that S? %; and S? @%ﬁfﬂ, where Bp., denotes the
value of By, required to eliminate the helical component of critical spin
fluctuations.

In the ordered state at T = 4.2 K, the external field By = 6.2 kG
is sufficient to eliminate the helical component, aligning all the spins
ferromagnetically, as was shown in Fig. 8. Although it is difficult to
have an accurate a prior: estimate for By, in the paramagnetic state,
we expect Bpnax to be of the order of magnitude of 6.2 kG.

According to the calculations, the critical behavior due to ferromag-
netic spin fluctuations is suppressed completely above T = 30 K for
By > 700 G, as shown in Fig. 34. Therefore we assumed that (%)pamuel
is negligibly small above T = 30 K. The observed value of Tll reflects
only the contribution from helical spin fluctuations, which translates
into - o< (B — BE)-

In Fig. 36, we show the observed relaxation rate %‘ as a function of
B? at 30 K, 31 K, and 32 K. The data taken at 31 K and 32 K is not

quite conclusive, but the magnetic field dependence of the data taken
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at 30 K confirms the above prediction. From the linear fit, we obtained
Bmax = 2.36 kG. The fit for the data at 31 K is also consistent with
this value of Bpax, except for the lowest field point. As can be seen
in the phase diagram of MnSi from Fig. 8, the magnetic field of 2 to
3 kG near T, induces a ferromagnetic state in the system. Therefore,
the value of Byax obtained in our experiment is consistent.

This result indicates that even in the paramagnetic state above
T., the system has a memory of the phase to which it orders with

decreasing temperature for a given value of By. The application of

uniform field By, suppresses the spin fluctuation of the ¢ = 0 component
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selectively, while the helical critical fluctuations survive up to By =
Brax-

According to Nakanishi [29] et al, in the case of an itinerant electron
ferromagnet with no inversion symmetry, the spin-lattice interaction
could create a helical spin density wave (HSDW) with a long period.
The antisymmetric spin-lattice interaction must be sufficiently small,
while the exchange energy favors a ferromagnetic ground state. A finite
contribution to the antisymmetric part of the wave-vector dependent
dynamical susceptibility is obtained. In MnSi, the ferromagnetic spiral
is caused by a Dzyaloshinski-Moriya (DM) interaction which arises
because of the non-central arrangement of the Mn magnetic atoms in
the unit cell. This interaction makes also the spin spiral right handed,
as it was shown by neutrons scattering experiments {30]. Polarized
neutron scattering experiments performed on the MnSi system in 1983
[31] have shown that the one-handed spiral has a strong influence on
the scattering in all regions of the field-temperature phase diagram.

Polarized neutron scattering experiments along the [0,g,g] crystallo-

graphic direction were performed recently on MnSi under a very small
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magnetic field of 10 G [32]. The cross section for neutron scattering
could contain a term which depends on the initial polarization of the

neutron:

(Q-P;)(Q-B), (43)

where B is an axial vector defined as a function of the asymmetric part
of the Fourier transform of the spin correlation function, and Q is the
scattering vector. The DM interaction vector in MnSi has a component
along the [0,1,1] crystallographic direction inducing spin fluctuations
that are centered at positions incommensurate with the chemical lat-
tice. The polarization dependent scattering in the paramagnetic state
determined experimentally is an indication of fluctuations with chi-
ral nature. The result was interpreted in terms of the Dzyaloshinski-
Moriya (DM) interaction produced by antisymmetric spin interactions
persisting at temperatures above the transition due to the noncen-
trosymmetric crystal structure of MnSi.

In the ordered state the direction of the spin spiral is determined

by the crystalline anisotropy and dipolar interactions. The positions
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of the maximum and minimum intensity in the paramagnetic state are
not located at the incommensurate positions of the magnetic Bragg
peaks in the ordered phase. The polarized neutron scattering data
indicate that the direction of propagation vector of the spiral in the
ordered phase is due to anisotropies that are lost above T,. Well above
T, the anisotropy disappears and the dipolar interactions become so
weak that the spin fluctuations become isotropic.

Most probably, the presence of the incommensurate spin fluctua-
tions affected our data creating the field dependence of the relaxation
time described above.

It was shown in a theoretical work of K. Makoshi and T. Moriya [33]
that at sufficiently low temperatures a weak helical magnet is expected
to have a behavior closer to antiferromagnets. In some helical systems
such as MnSi, there is a crossover at higher temperatures from a be-
havior similar to an antiferromagnet to a behavior of a ferromagnet,
but this is not characteristic to the helical spin structure with a long
period and small anisotropy.

The authors performed calculations of the uniform and staggered
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susceptibilities above the transition temperature of MnSi. It was found
that the staggered susceptibility is almost identical to the uniform
susceptibility, which obeys a Curie-Weiss law.

In view of the results of neutron scattering experiments, showing
the significance of incommensurate spin fluctuations in MnSi, and of
theoretical considerations for helical magnets, we tried to investigate
the MnSi system close to T, using the theory for weak antiferromagnets.

Generally, for an antiferromagnet, the relaxation time is given by:

2 A2
—1— = ——my Ah ;, with i = _371’t )
Th 2Ty T Ty 4,/y

(44)
with y the reduced inverse susceptibility. High above T, where the

magnetic susceptibility obeys a Curie-Weiss law, the relaxation time

T, depends on temperature as follows:

T — 0.5

Th T

(45)

At the antiferromagnetic to paramagnetic crossover, one expects
7. o< T%% [25]. Following a work on weak itinerant antiferromag-
netism of K. Nakayama and T. Moriya [34], I assumed that for finite T,

the staggered susceptibility depends on temperature as i x (7432,
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1 T : 1 .25
therefore 7+ o T which reduces to 7 o 792 for T. — 0.

Figure 37 shows a fit of the data to the above temperature dependence.

The data taken under 51 G is in agreement with this predictions.
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Figure 37: The relaxation time versus inverse temperature plot around T,
together with a fit to the dependence for a weak antiferromagnet.

#SR can not completely separate the ferromagnetic and the helical
spin fluctuations. The data under 51 G could be strongly affected by
the incommensurate spin fluctuations, but we consider the data taken
above B, (at 2700 G) relevant for the ferromagnetic properties of
the system. Both the linearity of the siope of the T7 versus % plot at
high temperatures and the curving of the plot around 7, were indicated

rather well.
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It has also been shown by A. Buzdin and Y. Meurdesoif that in
the case of helicoidal structures as that of MnSi, new localized states
appear at the helicoidal transition around the crystal defects [35]. The
main defects in MnSi are dislocations, but even a point-like local in-
crease in transition temperature can give rise to a localized state. The
easy broadening of the transition temperature may be an inherent ef-
fect. The single crystal studied shows a rather sharp transition, which
takes place on a temperature interval from 29 K to 29.75 K with no
applied field. Also, as uSR is a volume probe, the contribution to the
relaxation function due to the local defects is expected to be small.
Therefore, we conclude that the field dependence of the uSR result on
MnSi in the paramagnetic state is an intrinsic property of the system,

deeply connected to the helical nature of the magnetic structure.



6 Transverse field measurements

6.1 Transverse Field Experiments and Fitting Pro-
cedure

We performed temperature scans of the MnSi sample under trans-
verse magnetic fields of 4 kG, 6 kG, and 1 T. Figure 38 shows the
transverse field precession signal at 5 K, 33 K, and 50 K under the ap-
plied magnetic field of 1 T. Two precession frequencies can be clearly
distinguished at lower temperatures. At higher temperatures, they can
be separated from the beating signal.

Under each applied magnetic field, the sample shows two precession
frequencies, with the amplitude ratio p; : ps, p1+p2 = 1. The relaxation
function takes the following form:

¢t | 3

Pi(t) = ple—;;mcos(wu)t) + me-;zmcos(w(g)t), (46)

where Ti? (i = 1,2) are the transverse relaxations corresponding to
the two muon sites and w(;) (i = 1,2) are the precession frequencies

around the local field, respectively. The dipolar field width in MnSi
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Figure 38: The precession signal under the applied field of 1 T at 5 K, 33 K
and 50 K. Two precession frequencies can be distinguished.

is A = 27(13.54 MHz/kG)x(0.004 kG) =~ 0.3 usec™!. The range of
our measurements is roughly 1.5 usec, which corresponds to¢- A =~ .5
on the plot of the high field transverse relaxation function in Fig. 39.
Therefore, we could neglect the contribution to the relaxation function
from the fluctuating nuclear dipolar fields in what follows.

The transverse relaxation of muon spins, 75, is determined by both
the static and the dynamic components of the local field. In the limit
of fast fluctuating fields, the transverse relaxation rate is given by

G.(t,v) = ezp(——A;t), where A = \/< H2 > represents the static field
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Figure 39: High-field transverse relaxation function plotted for different val-

ues of 7 = 1, the correlation time of the field fluctuations [36].

v

width along the applied field direction and v represents the local field
fluctuation rate. To get good fits to the data, we used the procedure
followed for the analysis of the longitudinal field data. We assumed
that the T, relaxations are proportional to the square of the local
magnetic field at the muon site, T = buwly (i = 1,2), with 6 an

effective correlation time common to the two sites.

6.2 Experimental Data

Figure 40 shows the temperature dependence of the local field de-
termined by uSR under each applied magnetic field. We interpret the
continuous decrease of the magnitude of the local field with decreasing

temperature as the transition to the polarized state. The broad range
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of the transition is consistent with previous measurements of ultrasonic

attenuation.
10
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Figure 40: Temperature dependence of the local field under applied trans-
verse fields of 4 kG, 6 kG and 1 T. The value of the local field decreases as
the spin system becomes polarized and then stays approximately constant in
the helically ordered phase.

Under the applied magnetic field of 4 kG, below the transition to
the helical state at 29 K, the magnitude of the local field shows a
slight increase. At lower temperatures, the local field is approximately
constant. Under 6 kG, the transition temperature to the helical state
is 12 K. Both local fields at 5 K show a slight increase in magnitude
compared to the local fields at 20 K, similar to the behavior of the

system under 4 kG. Under 1 T, the local field decreases smoothly.
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No trace of helimagnetism can be detected, as one expects from the

field-temperature phase diagram.

6.3 Data Analysis

We explain the temperature dependence of the local field based on
a simple model of the local field at the muon site. In calculating the
local field, we account for the contributions of the applied magnetic
field, the demagnetization field, and the hyperfine field. The magnetic
field induction B is measured in gauss and the intensity of the local

field H is measured in oersted, as is common for 4SR data analysis.

6.3.1 Quantitative description of the local field at the muon

site

It is convenient to separate the contributions to the magnetic field
by dividing the magnetic material in two regions. Inside a sphere of
suitable diameter, called the Lorentz sphere, the sources of magnetic
fields are treated individually, while the continuum approximation is

applied outside this sphere. The total magnetic field at the u* can be
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expressed as follows:

By = Begt — Bpm + Br + Bhry + Byip, (47)

where B, is the externally applied field, Bpys is the demagnetization
field due to the surface magnetization of the finite sample, By, is the
Lorentz field produced by the empty Lorentz sphere inside the mag-
netized environment, By is the contact hyperfine field at the muon
site (including the diamagnetic effects), and By;, is the net field from
magnetic dipoles inside the Lorentz sphere [37]. Figure 41 shows the
macroscopic magnetic field inside the Lorentz sphere.

The demagnetization field and the Lorentz field depend on the mag-

netization as follows:

Br = 43—"M, Bpum = —NM, (48)

where N is the demagnetization factor. The demagnetization factor
for our sample, of dimensions 8 x 8 x 2.5 millimeters, is around 9, if
one uses the system of units indicated previously. It was calculated
assuming that the sample has uniform magnetization, by integrating

over the field due to the surface density of the magnetic charge.
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Figure 41: Macroscopic magnetic field inside the Lorentz sphere. In the con-
tinuum approximation the magnetic dipoles outside the cavity will produce

a field inside the cavity given by Bpy + By = —(N — %£)M, where M is the
magnetization of the sample and N is the demagnetization factor [37].

The dipolar field is the summation of all fields b; from the magnetic
moments at positions r; located inside the Lorentz sphere. For a cubic

crystal such as MnSi, the dipolar field is zero.

Bdip = Z bi(‘l‘” - 1‘,’) ~ 0 (49)

rcQL

The contact field or the hyperfine field is determined by the elec-

tronic structure around the muon site:

Baglry) = () = n™(r), (50)
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where n*(r,) is the density of spin-up electrons at the muon site and
is n7(r,) the corresponding spin-down density. Their difference is the
net spin density at the muon site. A non-zero spin density may be
the result of spontaneous magnetic ordering or can be caused by an
external field, via the Pauli spin paramagnetism of the conduction
electrons. In the first case, the ordered electronic moments induce, via
exchange interactions, a spin polarization of the conduction electrons
which produces the contact hyperfine field at the u*. The spontaneous
hyperfine field is related to the domain magnetization M via the rela-
tion By = ApgM. It is convenient to express the hyperfine coupling
constant Ay in units of kOe/pp and the magnetization M in units of
up/Mn.

In the MnSi system, under applied magnetic fields higher than 1
kG, the helical axis aligns with the direction of the external magnetic
field. Therefore the macroscopic magnetization is also parallel to this

field. The following equation will then hold:

4
By = Best — NM + M + A M + Bay, (51)
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where B, is the component of the local field parallel to the magneti-
zation.

The contact term produces in MnSi a negative contribution to the
total local magnetic field. The hyperfine coupling constants corre-
sponding to the two muon sites were determined from measurements
in the ordered state under zero applied field [18] and are Aj}; = -3.94
kOe/up and A} = -6.94 kOe/pup, respectively. A different value, A};
= -4.8 kOe/up, was obtained from Knight shift measurements in the
paramagnetic state under 2.9 kG [17]. This value yields results con-
sistent with our measurements under high applied field, and we use it

for the rest of the discussion.

6.3.2 Magnetization results

In the paramagnetic phase B,; = B,. The sample magnetization
can be obtained in the most convenient way by subtracting the values

of the magnetic fields at the two muon sites:

B, - B,

M=—_—-—2>.
Ahs — A3

(52)

This fortunate procedure eliminates the inaccuracy in determining
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the demagnetization and the dipolar contributions to the total local
magnetic field, but it is valid only for the paramagnetic state. By
uSR, one can determine the total value of the local field, but not 6,
the angle made in the helical state by the local field and the applied

field (B = Bycos(9)).
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Figure 42: Temperature dependence of the magnetic moment per Mn atom
under 4 kG, 6 kG and 10 kG, as determined from both uSR and magnetic
susceptibility measurements. The data shows excellent agreement.

We compare the uSR data with magnetization data obtained at
Columbia University. Figure 42 presents the results of both measure-
ments, scaled so that the magnetizationsat T=5K and B=1T
are comparable. The agreement is excellent, except for the data taken

in the helical state, as explained previously. The actual magnetization
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result at T = 5 K and B = 1 T is consistent with other measurements,
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Figure 43: Temperature dependence of the magnetic moment per Mn atom
under 4 kG, 6 kG and 1 T. The predictions of the SCR and Landau theories
are shown by the solid and the dashed lines, respectively.

To check the validity of the SCR theory, we performed theoretical
calculations for 4 kG, 6 kG and 1 T. The same magnetic equation of
state holds over the entire field - temperature phase diagram of the itin-
erant ferromagnetic systems. Therefore, we could follow the procedure
outlined for the T; calculations. We made use of the same parameters
as previously indicated. The resulted magnetization is shown in Fig.
43. The theoretical line reproduces well the shape of the magnetization

versus temperature plot, even if the agreement is not prefect.
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We also compared the prediction of the SCR theory with the pre-
dictions of Landau theory for second order phase transitions. In the
frame of the Landau theory, the free energy of the magnetic system is

given by:

®(p, T, M) = ®y(p, T) + A(p, T)M?* + B(p)M* — M BY, (53)

with A(p,T) = a(p)(T — T.) and B(p) > 0 as the temperature and
pressure dependent coefficients, respectively. For a(p) > 0, the asym-
metrical phase is realized at T' < T, as desired for magnetically ordered

systems. The average magnetization is determined from:

8%(p, T, h)

M=—5m

(54)

Therefore, in a thermal equilibrium state (3% s = 0, the magnetic

equation of state is:

2¢(T — T.)M +4BM? = VB. (55)

The magnetization calculated from this magnetic equation of state
is shown with dashed lines in Fig. 43. The parameters used for calcu-

lations are ?Vﬁ = 0.657, % = 72.805 and T, = 29.5 K. 27“ and % were
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determined from a fit to the data under 1 T, with T, being held con-
stant. We see that the shape of the magnetization versus temperature
plot is very different than the one experimentally determined.

In conclusion, the SCR theory gives a much better prediction for
the overall temperature dependence of the magnetization as compared

to the prediction of the Landau theory.

6.3.3 Discussion of the 7> measurements

As the temperature decreases, the signal depolarizes faster under
all applied fields. For a sample of the given dimensions, the demag-
netization field at the edge of the sample is about 30 % less than
the demagnetization field in the center of the sample. The higher de-
phasing rate of the muon spin precession could be produced by the
inhomogeneity created by the demagnetization field, and it is not an
intrinsic property of the spin system.

In conclusion, the high transverse field measurements do not consti-
tute a good method for determining the relaxation time of fluctuating

spins in MnSi. Longitudinal field measurements are more suited for



this purpose.
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7 Muon spin relaxation studies of MnSi under

applied pressure

Another interesting issue of the SCR theory is the crossover from
itinerant ferromagnet to a correlated paramagnet. Since MnSi em-
bodies this crossover in applied pressure, extensive studies have been
performed by magnetic susceptibility, resistivity [19], and NMR [22]
measurements to explore regions near quantum critical point at p. =

14.6 kbar.

7.1 Preliminary measurements at PSI

We performed preliminary measurements of a powdered MnSi sam-
ple under applied pressure at Paul Scherrer Institut (PSI).

We obtained results for the dynamical muon spin relaxation time
around the critical temperature and for the precession frequency of
the muon spins at 5 K under applied pressures up to p = 0.43 p. (6.3
kbar).

In Figure 44, we present the corrected asymmetry measured un-

der an applied field of 100 G as a function of temperature. Under all
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Figure 44: Muon initial asymmetry as a function of temperature under zero
and applied pressures of 2.7, 4.5 and 6.3 kbar.

applied pressures, the asymmetry decreases over a broad temperature
interval as the sample orders magnetically. It is possible that the appli-
cation of pressure in our powdered sample created some inhomogeneity,
resulting in a broadening of the transition temperature.

Under an applied field of 100 G, the nuclear dipolar contribution
to the relaxation function is suppressed. We parametrized the re-
sults around T, after fitting the data with a stretched exponential,
G:(t) = exp(—(N't)?), assuming that the relaxation of the muon spin
polarization is only due to electron spin dynamics. We defined the re-

laxation time 7} as the time needed for the asymmetry to reach half of
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Figure 45: Dynamical relaxation rate of the muon spins as a function of
temperature in the MnSi sample under zero and applied pressures of 2.7, 4.5
and 6.3 kbar.

its initial value: ¢,/ = ﬂ@M In Fig. 45, the muon spin relaxation

rate, A = —17, is shown for different applied pressures. The critical

b2
temperature, determined from the peak of the relaxation rate versus
temperature plot, decreases systematically with increasing pressure.
In Fig. 46, we plot T; versus the inverse temperature. For each
pressure, T; shows an approximately linear dependence on the inverse
temperature. Our sample proved to be rather small for muon measure-
ments under pressure, giving a small asymmetry. The combination of

the uncertain background, used as a fit parameter, and the small asym-

metry could introduce error in our determination of 7.



101

A 0 kbar

— N % 2.7 kbar

86 O 4.5 kbar i
3 \\ B 6.3 kbar
< N
;\4 = \\ -
~ 5
& N i\i i .
w2 A %\ N =
y 3 R
3 adBE g0\ O

\EQJ O\
O 1 \ [N | KN \l
.02 .03 04 05

1/Temperature (1/K)

Figure 46: Relaxation time, 7}, of the muon spins in the MnSi sample as a
function of the inverse temperature, under zero and applied pressures of 2.7,
4.5 and 6.3 kbar.

In Fig. 47, we show the evolution of the slope of the T} versus -}—. plot
as a function of the applied pressure. The theory predicts a scaling of
the slope with the critical temperature. The plot shows the reduction
of the slope as the pressure is increased, except for the 6.3 kbar data.
This inconsistency may be due to the fitting procedure. For the 6.3
kbar data, we extended the background interval from 400 nsec to 800
nsec, which may change our results to some extent.

We could approximately determine the precession frequency of the
muon spins at 5 K under zero and two other applied pressures. In Fig.

48, our results of the precession frequency are plotted together with the
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Figure 47: Slope of the T, versus the inverse temperature plot in the para-
magnetic state, at ambient pressure and applied pressures of 2.7 kbar, 4.5
kbar and 6.3 kbar.

NMR resonance frequency of 2Si at 1.4 K obtained by C. Thessieu and
his collaborators [22]. The NMR results have been scaled so that the
resonance frequency equals the uSR result under zero applied pressure.
Consistent with NMR results, we see a systematic weak reduction of
the precession frequency with pressure.

In conclusion, the data seems to show a linear dependence of the re-
laxation time with inverse temperature. However, it was premature to
make solid conclusions regarding the behavior of the MnSi compound
under pressure due to the spread in critical temperatures, limited qual-

ity of our data, and limited region of applied pressure.
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Figure 48: Precession frequency of the muon spins as a function of the applied
pressure in the MnSi sample, together with NMR results of the resonance
frequency of Si scaled to the muon precession frequency at zero pressure.

7.2 Measurements under pressure at TRIUMF

We continued the experiments under pressure at TRIUMF. This
time we used a larger single crystal of MnSi, kindly provided by Dr.
Gen Shirane (Brookhaven National Laboratory). The use of single
crystal specimens in uSR would assure homogeneity of the applied
pressure, while powder specimens could be subject to some inhomo-
geneity of pressure.

In the ordered phase, we measured the muon precession frequency
under zero magnetic field. To fit the data we performed a very careful
background subtraction. Usually, the background is considered to be

constant and the spikes appearing with the periodicity of the cyclotron
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Figure 49: Evolution of the precession signal under 8.3 kbar as the temper-
ature is increased. The corrected asymmetry is plot at 5 K, 10 K and 13 K,
together with a fit to the data. Two precession frequencies could be distin-
guished. The amplitudes of the precession signals were kept constant for all
temperatures.

(42 nsec) are ignored. To extract the data, we fit the background to
a parabolical function having this periodicity. The data at 5 K, 10
K, and 15 K are shown in Fig. 49, after performing the background
subtraction. We distinguished two frequencies at all temperatures. At
5 K, the amplitudes of the lower and higher frequency signals were
0.00195 and 0.0028, respectively, and we kept these values fixed while
fitting the rest of the data.

Figure 50 shows our results for the precession frequency. The pre-
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Figure 50: The precession frequency of the muon spins in MnSi under an
applied pressure of 8.3 kbar is compared with data taken by Dr. Kadono and
his collaborators [18] on MnSi at ambient pressure. The open circles represent
the precession frequencies measured at a previous time. The agreement shows
that the pressure did not change between the times of the measurements.

cession disappears completely at 17 K, which we consider to be T..
The results for the higher frequency have a large systematic error due
to limited statistics and small sample signal compared to the large
background from the pressure cell. The ratio of the amplitudes is not
relevant because of the same reason. The temperature dependence of
the lower frequency is very similar with the temperature dependence of
the precession frequency at ambient pressure obtained by Dr. Kadono
and his collaborators [18]. This is a confirmation of the validity of our
results.

In Fig. 51, we plot our results of the lower frequency under 8.3 kbar
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Figure 51: Pressure dependence of the NMR frequency and T, [22{ in MnSi.
The present uSR result at 5 K is plotted with the rhombic symbol together

Evit]h the lowest temperature precession frequency obtained by Kadono et al.
18|.

at T = 5 K together with the value at ambient pressure [18] and the
29Si NMR results for the pressure dependence of the magnetic moment
[22]. Our results confirm the NMR results and show that the magnetic
moment M, decreases much more slowly with increasing pressure, com-
pared to the reduction of T.. This behavior of the magnetic moment
M, might be related to the first-order nature of the phase transition
at p. [19, 38].

In the paramagnetic phase, we measured the relaxation rate of
muons due to electronic spin fluctuations. The application of a 61.3 G
longitudinal field suppresses any contribution from the nuclear dipoles.

After the background subtraction, the data of the paramagnetic state
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Figure 52: The muon spins polarization function of MnSi under an applied
pressure of 8.3 kbar at 20.2, 18.3, 17.6 and 17 K. As the temperatures de-
creases towards T, = 17 K, the relaxation becomes more pronounced.

has been fit with a simple exponential.

Figure 52 shows the corrected asymmetry at a few temperatures
above T.. The small amplitude oscillation is due to the background of
the pressure cell. Under zero field, the pressure cell background could
be fit with a Gaussian Kubo-Toyabe function with an amplitude of
.154 and a field width of .334 usec™!. Under an applied field of 61.3 G
the Gaussian Kubo-Toyabe function is strongly decoupled, the signal
showing slight oscillations on top of a slowly decaying line. Added to
the total signal, we identified in all runs a fast relaxing background of

unknown origin, with an amplitude of 0.012. This could be fit with
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a stretched exponential, exp(-(At)?), with A = 0.793 usec™! and 8 =
0.83. Possibly, this background is due to the other components of the

pressure cell, such as the piston.
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Figure 53: The relaxation rate of the muon spins in MnSi under an applied
pressure of 8.3 kbar. A takes its maximum value at T, = 17 K.

The relaxation of the muon spins has a maximum at 17 K, where
the precession in the ordered state disappears, as shown in Fig. 53.
Our result of T, = 17 K for 8.3 kbar is consistent with the pressure
dependence of the critical temperature, determined previously by NMR
and resistivity measurements.

Figure 54 shows the relaxation time 77 = % as a function of the in-
verse temperature at 8.3 kbar and at ambient pressure. The plot of T}

versus 1/7T under applied pressure shows a pronounced curvature, espe-
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Figure 34: The relaxation time versus inverse temperature plot under 8.3
kbar is compared with the similar plot at ambient pressure under various
applied magnetic fields. Under applied pressure the plot shows a pronounced
curvature, as an indication of the system approaching the quantum critical
point at p,.

cially when compared with the similar plot at ambient pressure. This
might be related to the MnSi system approaching the quantum critical
point of the magnetic - nonmagnetic transition. As stated previously,
for the very itinerant systems, one expects the small wave-vector and
low energy spin fluctuations to contribute more significantly to the
macroscopic properties of the system. The magnetic susceptibility de-
parts from the Curie-Weiss law as the system becomes more itinerant.
This could determine the nonlinearity of the T; versus 1/T plot at 8.3

kbar.
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The success of this first uSR experiment on MnSi at 8.3 kbar opens
the path for further measurements of MnSi under applied pressures, to
improve our understanding of the behavior of the system close to the

quantum criticality at p..
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8 Conclusions

In conclusion, we presented new sets of uSR measurements on
MnSi and elucidated the effect of the applied field on the critical behav-
ior observed via the relaxation rate 1/7;. This emphasizes the limits
of applicability of the SCR theory for weak ferromagnets in the case
of the MnSi system and the need to account for the helical nature of
the magnetic structure.

We also found near T, a departure of 1/T} from the linear behavior
T\T x (T—-T.). This is a first uSR experiment to prove the predictions
of the SCR theory for the relaxation time of the muon spins close to
the critical temperature. We would like to perform more experiments
using various systems to conclude on this subject.

We extended the uSR measurements by performing uSR on MnSi
under applied pressure. We confirmed the very small pressure depen-
dence of the magnetic moment in the ordered phase. We also ob-
tained evidence for the departure of the 1/T; from the relationship
TiT < (T — T¢) in the critical region. More experiments on MnSi un-

der pressure are desirable to consistently study the system near the
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ferromagnetic to paramagnetic crossover.
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