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Abstract

In this thesis. muon spin rotation (xSR) measurements of the internal magnetic field
distribution in the vortex state of the high-T, superconductor YBa,;Cu3;0-_. and the
conventional type-II superconductor NbSe, are presented. From the measured field
distributions. the “characteristic length scales of superconductivity™ are extracted. [t
is found that both the d-b plane magnetic penetration depth )., and the vortex-core
radius ro (which is closely related to the coherence length £,,) vary as functions of
temperaturc and magnetic field in both materials.

The behaviour of A,y (H.T) and ro(H.T) at low temperatures is found to be sub-
stantially different in YBa,Cu3;0-_; from what is observed in NbSe;. This reflects the
unconventional nature of the pairing mechanism in this compound. The temperature
dependence of \,; in the vortex state of YBa,;Cu30-_; agrees well with microwave
cavity measurements in the \Meissner state. The magnetic field dependence of \,; in
YBa,Cu;0-_; is found to be considerably stronger than in NbSe,. This is likely due
to both the nonlinear and the nonlocal effects associated with nodes in the supereon-
cducting energy gap. However. in NbSe, (where nonlocal effects are negligible ). 1t is
not clear whether the field dependence of \,, can be explained solely in terms of the
nonlinear effects associated with an isotropic s-wave energy gap.

The vortex-core radius ry is found to decrease with increasing magnetic field in
both superconductors. The reduction in the vortex-core size appears to be due to
the increased strength of the vortex-vortex interactions. An important consequence of
this variation with field is that &, in the vortex state. which is generally regarded to

be extremely small in the high-T. compounds. is comparatively large at low magnetic

11




fields.

The vortex-core radius is also found to increase with increasing temperature. The
strength of this variation is considerably weaker in YBa,Cu3;0-_; than in NbSe,. Oue
possible interpretation is that the quantum limit is realized at much higher tempera-
tures in the high-T. compound. The measured temperature dependence of ry in both
superconductors is weaker than current theoretical predictions for an isolated vortex.

Finally. the effects of vortex pinning and thermal fluctuations of the vortex lines are
considered. It is found that the vortex lattice is strongly pinned in YBa,Cu40-_.. The
vortex lattice in the underdoped compound YBa,Cu30g.¢0 is found to exhibir quasi-2D
behaviour. In particular. a field-induced transition of the 3D-vortex lattice to a 2D-
vortex lattice is observed—which appears to be due to the small ¢-axis coherence length
and vortex pinning in the CuQ, layers of this material. Also. the 3D-solid vortex latrice
in YBa,Cuz04.60 at low temperatures is found to melt and/or undergo a transition to

a 2D-vortex lattice as the temperature is increased.

i
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Chapter 1

Introduction

When a small magnetic field H < H,, is applied to a type-II superconductor. the
field is expelled from the interior of the sample—while in an applied magnetic field
H. < H < H., it becomes energetically favourable for the field to penetrate the sample in
the form of quantized flux lines. called vortices. In the first case (the ~Meissuer state” )
the supercurrents which shield the inside of the superconductor from the magnetic field
flow around the perimeter of the sample. whereas in the latter case (the “vortex state™ )
shielding currents circulate around the individual vortices.

In the Meissner state. there is some penetration of magnetic field into the surface of
the superconductor where the shielding currents circulate. In particular. the magnetic
field decays from the surface into the superconductor over a characteristic length scale
A. called the “magnetic penetration depth”.

In the vortex state. the superconducting carriers which make up the shielding cur-
rents circulate faster near the vortex axis. Bevond a critical velocity. superconducrivity
is destroyed. The region of normal state material near the vortex axis defines the
“core”. The local magnetic field has a maximum in the center of the vortex core and
decays outside the core over the length scale \. If the vortices are spaced at a distance
much greater than A apart. the field decays to zero—otherwise the field is finite ov-
erywhere in the superconductor. The density of the superconducting carriers [or order

parameter ©(r)] is zero at the vortex center and rises to its maximum value over a
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distance of the order of £. which is called the “coherence length™.

Together. A and £ represent the characteristic length scales of superconductivity.
In particular. A7? is proportional to the density of superconducting carriers. Mea-
surements of this quantity provide a means of investigating the spectrum of low-lying
excitations in the superconducting state. On the other hand. € is the shortest distance
over which the density of superconducting carriers can vary appreciably. Put another
way. £ is the characteristic length scale of the superconducting order parameter v'(r).
A complete understanding of the behaviour of these parameters (i.e. as a function
of temperature. impurities and magnetic field) is an essential ingredient of any the-
ory which attempts to explain the mechanism responsible for superconductivity in the
high-T, materials.

The behaviour of A and € is generally considered to be the same in both the Meissner
and vortex phases. However. when measuring these length scales. several complications
arise from the presence of vortices. At low magnetic fields in the vortex state. the vortex
cores are essentially isolated. In this case. one might expect that measurements of \ in
the vortex state should show the same variation with temperature I and magnetic field
H as measurements of A in the Meissner state. However. at higher magnetic fields the
vortices interact appreciably with one another. changing the distribution of magnetic
field between them. Measurements of \ as a function of temperature or magnetic fielcl
are sensitive to the way in which the field distribution between the vortices changes.
In particular. the function A(H.T) which is obtained from experiment depends on the
way in which these changes are modelled. Thus in general. \(H.T) obtained from
measurements in the vortex state cannot be directly compared to M H.T) obtained
from measurements in the \leissner state.

A second important complication is that the interior of a vortex has an electronic

structure which changes with temperature and magnetic field. This electronic structure
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1s a unique property of the vortex and need not be like the quasiparticle states in the
normal phase. The precise nature of this electronic structure is still a matter of debate.
especially in the high-T. materials. In these materials the normal state exhibits many
anomalous properties. so there is good reason to expect that the electronic structure
of the vortex cores is different than that in conventional superconductors.

In the vortex state. the order parameter v-(r) is diminished appreciably (from its
bulk value) in the region of a vortex core. Since £ is the characteristic length for
ariations in w(r). then £ is related to the size of the vortex cores. In a conventional
superconductor. the radius of a vortex core ry is about the size of £ [1]. Because of the
close relationship between ry and € in the vortex state. the terms “vortex-core radjus”
and “coherence length” will be used interchangeably throughout this thesis. However.
§ should not be confused with the coherence length in the Meissner state. For instance.
the size of a vortex core changes as its electronic structure changes. As a result. the
variation of £ with temperature and magnetic field in the vortex state is directly linked
to the vortex cores. Thus. there is no reason to expect that measurements of §(H. T)
in the vortex state will exhibit the same behaviour as §(H.T) in the Meissner phase.

The behaviour of A and € is expected to be sensitive to the symmetry of the pairing
state. Their behaviour as a function of temperature and magnetic field can be used
to resolve the structure of the energy gap in a superconductor. For instance. it is now
widely believed that the pairing state in the high-7. superconductors is one possessing
d;:_,2 symmetry. which has four nodal lines on the Fermi surface. The presence of these
nodes means that the superconducting state is more sensitive to perturbations than a
conventional superconductor. which has an energy gap everywhere on the Fermi surface.
In particular. this sensitivity will appear as anomalous changes in the temperature and
field dependence of A. which is related to the fraction of the superfluid component.

Measurements of A\ and £ (i.e. rg) in the vortex state using muon spin rotation
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(#SR) spectroscopy is the primary focus of this thesis. What is really measured is the
magnetic field distribution in the bulk of the superconductor. which is predominantly
due to the vortex lattice. Extracting A and £ requires some modelling of this dis-
tribution. Generally speaking. the current theoretical models are inadequate to fully
describe this field distribution. Nevertheless. the data can be fit very well with the
field distributions predicted from hasic models in which the characteristic length scales
are defined. Deviations in the measured behaviour of these length scales. from that
predicted by the theory used to model the data. can be attributed to a problem with
the definition of A and € in the theory itself. In this sense. what is really reported in
this thesis is an “effective” penetration depth and an “effective” coherence length.

[ will begin with a basic introduction to the characteristic length scales as they
pertain to conventional and unconventional superconductors. I shall proceed to discuss
how the uSR technique can be used to obtain both A and ry (which is closely related to
the coherence length £). from the measured internal field distribution. Currently. this
technique is the only way to study £ in the “bulk™ of the high-T. cuprates. deep in the
superconducting state.

I'shall then explain how one can model the measured internal field distribution. The
effects of pinning and thermal fluctuations will be discussed as they pertain to both a 3D
and a 2D vortex lattice. This will be followed by an outline of the current theoretical
description of the vortex structure in both conventional s-wave and unconventional
d-wave superconductors.

Next. I shall present measurements of A and rg in the conventional supercoun-
ductor NbSe,. and in the optimally doped and underdoped high-T. superconductors
YBa;Cu30695 and YBa,;Cu;0s.60. respectively. The results are taken from our most
recent work which appears in a series of short papers [2.3.4.5]. We shall find that \,

exhibits unconventional behaviour as a function of both temperature and magnetic field
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in YBa,Cu30+_s. I also show that ro changes dramatically as a function of temperature
and field. and that the strength of these variations differs markedly in YBa,Cu;0-_;
from what is observed in NbSe;. I shall show that the qualitative behaviour of the
extracted values of A, and ry is fairly robust with respect to the way in which the
1SR data is modelled. I conclude by summarizing and discussing the novel features

associated with the measurements in YBa,Cu;0-_; relative to those of NbSe,.



Chapter 2

The Characteristic Length Scales of Superconductivity

In this chapter the definitions of the characteristic superconducting length scales (A
and &) in the London. BCS and GL theories are introduced. Both the linear and the
nonlinear response of a superconductor to a static external magnetic field are discussed.
The effect of nonlocal electrodynamics on the behaviour of the length scales is also
considered in connection with a d,2_,:-wave superconductor. The chapter concludes

with a brief summmary of how one can measure \ and €.

2.1 The Magnetic Penetration Depth

For a static magnetic field B(0) applied parallel to a planar vacuum-to-superconducting

interface. the magnetic penetration depth can be defined as 1]

1 X
A= —— dr. 2.
A B(O)/o B(r)d: (2.1)

where r is the distance into the superconductor measured from the surface and B(ri is
a function describing the decay of the magnetic field into the superconducting region.
The response of the superconductor to the magnetic field is usualiy defined in terms
of the expectation value of the induced supercurrent density. which can be determined
quantum mechanically [6]. The momentum-space relation between the induced current

and a static magnetic field for an isotropic superconductor is

[EV]
[AV]

J(k) = - =Q(k)A(k). (-
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where Q(k) is a circularly symmetric electromagnetic response kernel and A(k) is the
classical vector potential. In general. the electromagnetic response kernel is a tensor.
In an AC field. J. Q and A are also functions of the frequency « —however. in this
thesis only DC magnetic fields are used. In real space the relation between the induced

supercurrent density and the vector potential can be written as

=-1 /Q(r—r r')d’r’ . (2.3)

where Q(r) is the Fourier transform of Q(k). In this case. J. Q and A are also functions

of time in an AC field. The relation between Q(k) and an applied field B(0) is (1]

2B(0) > k sin(kr)
e o Q(k)+ k2

B(r) = dk . (2.4)

Equation (2.1) and Eq. (2.4) can be combined to give a general relation for \ in rerms

of Q(k)
A= _/ /\ ”m“")d, dk . (2.5)

Equation (2.3) is generally valid and can be used with the kernel Q(k) corresponding
to any theory.

2.1.1 The London Penetration Depth

Let us first consider the magnetic penetration depth in the context of the convenrional
London theory [7] at T=0. If a magnetic field is applied to a superconductor which is
initially in zero field. the magnetic field is a function of time. According to the Maxwell
equation VXE = =L9B/dt. the time-varying magnetic field gives rise to an electric field.
In a normal metal this will induce eddy currents. but in a superconductor the E-field
will give rise to persistent currents (i.e. supercurrents). The induced supercurrents
will in turn generate a magnetic field of their own which opposes the applied magnetic

field. If the applied magnetic field is weak. the flux is totally screened from the bulk of
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the superconductor. This phenomenon is often described as “perfect diamagnetism™.
From Newton's law. the equation of motion for a superconducting carrier with mass

and charge —e in the presence of an electric field E is

dv,
Fsz;; = —¢cE. (2.6)

where vy is the velocity of the superconducting carrier. The field-induced supercurrent
density is given by

Js = —en,v;,. (2.7)

where n, is the local density of superconducting carriers. Substituting Eq. (2.7} into

Eq. (2.6) gives
dJs nge?
= . 2.
dt m E !

(V4]

)

which is known as the “first London equation”. Taking the curl of both sides of Eq.(2.8)

gives

m dJ,
v S
2 ( v

nge-

which can be rewritten using the Maxwell equation V x E = 'T‘dB/(/f to give

mc (V . dJS) L dB

— =0. 2.
dt dt (2.10)

nge?
In order to obtain the Meissner effect (i.e. B =0 in the bulk of the superconductor)
the London brothers removed the time derivative in Eq. (2.10) and postulated the new

equation
mc

(VxJs)+B=0. (2.11)

2

nge?
Equation (2.11) is commonly referred to as the “second London equation . Since the

supercurrent density is related to the field B by another Maxwell equation

Jy = -—(V xB). (2.12)

w
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substitution of Eq. (2.12) into Eq. (2.11) gives

M(VxVxB)+B=0. (2.13)
where
1 trnge?
A2 mc? )

The variable A is called the London penetration depth. Note that A7? is proportional

to the superfluid density n,.
The relationship between A, and B is best realized by a simple example. Consider
the vacuum-superconductor interface illustrated in Fig. 2.1. If a field B(0) is applied

parallel to the surface of the superconductor. the solution of Eq. (2.13) is
B(r) = B(0)exp(—r/A.). (2.13)

Thus. both the magnetic field B(r) and the supercurrent density .J(.r) decay exponen-

tially with distance inside the superconductor over the length scale A;.

Equation (2.14) was derived for T=0. At nonzero temperature the behaviour of \;
can be approximated by incorporating the two-fluid model of Gorter and Casimir '3}
In this model the electron system is assumed to contain a superconducting componernt
with electron density n,. and a normal component with an electron density n,. The
total electron density n =n, + n, becomes n = nsat I'=0.and n=n, for T>7T.. where
T. is the superconducting transition temperature. For arbitrary temperature. Gorter
and Casimir found that good agreement with early experiments could be obtained if one
assumes that n(T)=n[l—(T/T.)!]. When this expression is combined with Eq. (2.14)

the penetration depth is given by

Ar(0)

A(T) = - (T/TL-)“]I/Q .
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vacuum superconducting

8 7

B(x)=B(0)e "™, ’

f %
AL,

pe— )\L——>

x=0

Figure 2.1: A magnetic field of magnitude B(0) applied parallel to a plane vac-
uum-superconductor interface. The field decays to B(0)/e at a distance r = \; in
the superconducting region.

As the temperature T increases. n, is reduced and the magnetic penetration depth
increases with T. such that A — > as T — T.. Although this relation gives a good
first-order description of many of the experimental results for conventional supercon-
ductors. the temperature dependence is not a prediction from the two-fuid model.
Better agreement is obtained with the behaviour predicted from the microscopic the-
ory developed by Bardeen. Cooper and Schrieffer (BCS) [9].

Before considering the BCS theory. let us work backwards to determine the kernel
Q(k) in Eq. (2.2) for the London theory. The second London equation [z.e. Eq. (2.13)]
can be rewritten using the Maxwell relation in Eq. (2.12) and the relation B=%V x A

to give
4w}

C

(VxJs)+Vx A=0. (2.17)
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which is easily solved for Js to give

b(r)——_m/\.iA(r). (2.18)
The kth Fourier component of Jg is thus
Jo(k) = ——S_A(k) (2.19)
s - 4"7/\‘2 ’ -

Comparing Eq. (2.19) with Eq. (2.2) gives the following simple result for the London

kernel
1

AL

Qr(k)

Clearly. Q¢ is independent of k. This implies that the London theory is a local theory.
where the value of J; at a point r only depends on the value of A at that same point
r. Generally. the value of A in the vicinity of the point where J; is being measured is
also important. In a more general nonlocal theory. Q(k) depends on k.

The current density due to the normal electrons is
Jo=0,E = —en, v, . (2.21)

where o, is the finite conductivity of the normal fluid. Thus. the total current density

at arbitrary temperature below T. is simply

J = I+,

[RV]

(V]

RV
—

= —€(nsvs +n,vy). (2.2

2.1.2 The BCS Penetration Depth

Consider the BCS ground state for a conventional superconductor with a cylindrical
Fermi surface. such that the axis of the Fermi cylinder is parallel to the l:':-axis. A

cross-section of the Fermi cylinder in the fcr-lzy plane is shown in Fig 2.2. In the
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superconducting ground state. the electrons near the Fermi surface are paired rhrough
a virtual phonon-induced attractive interaction (i.e. Cooper pairs). The BCS ground
state differs from the normal state in that some of the states just above the normal
Fermi surface are occupied. while some just below are unoccupied. The attractive
interaction between paired electrons lowers the total energy relative to the normal
ground state of unpaired electrons. The energy reduction is maximized if the two
electrons making up a pair (i) have equal and opposite momenta hk and —Ak. so
that the total center-of-mass momentum of a Cooper pair is zero and (ii) if they have
opposite spins (i.e. in a spin-singlet state S=0). The two electrons which make up a
Cooper pair are continuously scattered between states of equal and opposite momentum
by virtual phonons. However. the scattering pairs interfere with each other so that
the superconducting state is a highly correlated many-body state. The BCS theory
calculates the superconducting ground state using an explicit V-particle wavefunction
with all of these correlations built in. The wavefunctions corresponding to the Cooper
pairs in the original BCS theory were assumed to have orbital angular momentum
[=0. Thus. in a conventional superconductor the pairing is considered to be s-wave.
spin singlet. At a given instant of time. a Cooper pair is in a state (k; .=k, !}. where
the wavefunction describing the pair consists of all states " occupied by the pair
during its lifetime. It should be noted that the original BCS theory can be extended
to explain other systems. For instance. the BCS theory can be generalized to describe
the superfluid state of *He. The *He atoms form p-wave (I = 1) spin-triplet (S = 1)
pairs. In this case. the *He atoms are held together by magnetic interactions. rather

than phonons.

One of the important features emerging from the BCS theory. is the existence of a

temperature-dependent energy gap function \ at the Fermi surface. For an energy
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S—wave ky

Figure 2.2: The energy gap function in 2D for a s-wave (top) and d,._,2-wave (hotrom)
superconductor. In each case the 2D Fermi surface is represented by a dashed circle.
whereas the solid circle or solid curves denote the first excited quasiparticle states. Note
that the distances between the solid and dashed lines represent energy differences. not
distance in k-space.
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gap with s-wave symmetry. A is independent of k. The energy gap -\ is the minimum
energy required to create a single electron (hole) excitation from the superconducting
ground state. so that the binding energy of a Cooper pair is 2:\. Many conventional
superconductors are in the weak-coupling limit in which A <« hwp. where hep is the
Debye energy for phonons in the lattice. In the weak-coupling limit at T = 0. the

uniform energy gap is simply proportional to T,

A(0) = 1.76kgT. . EX

[AV]
[US)

At arbitrary temperature the energy gap is given by
A(T) = A(0)exp [f(A(T)/ksT)] . (2.24)
where f is a universal function of the ratio A(T) /kgT. Near T. this vields
T 1/2
_\.(:r)=1.74/_\.(0)(1—7) . 12.25)

As the temperature is raised above T =0. an increasing number of electrons are ther-
mally excited across the energy gap into single quasiparticle states. The minimum
energy to create an excitation is 2A. which is the binding energy of a Cooper pair. A

single quasiparticle excitation of momentum hk has energy

oy

Ex = \/s2 + AL, (2.26)

PV

where s =(h*k?/2m)—EF is the quasiparticle energy in the absence of a gap measured
relative to the Fermi surface.

The penetration depth in BCS theory is determined by first calculating Q(k) and
then substituting the result into Eq. (2.5). The expression for the BCS kernel is nonlo-
cal. and therefore more general than the London kernel. Since the expression for Q(k)

and hence A turns out to be nontrivial. only the BCS result in the low-temperature
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limit is presented here. In particular. for a clean superconductor in which T <« T..
the number of quasiparticles excited to energy states above the gap 1s exponentially

activated such that [10]

A(TK(B)A(O) ~ \/7A(0)/2kpT exp(~A(0)/kpT). (2.27)

2.1.3 Penetration Depth for a d,._,:-Wave Superconductor

If there are line or point nodes in the energy gap function Ag. a power law dependence
is expected. where N(T)—=A0) x T" (n =1. 2. 3 or 4) [11.12]. The presence of the
nodes on the Fermi surface allows quasiparticle excitations to occur for an infinitesimal
amount of thermal energy. In particular. for the high-T.. superconductors there is strong
evidence that the energy gap has d,2_ y2 symmetry. In this case the energy gap function

1s given by

on

Ap = Ao(l:‘ﬁ - l\j) = g cos(286) (2.28)

where g is the maximum value of the energy gap. For this symmetry there are line
nodes on the Fermi surface. At low temperatures an approximate analytical expression

can be obtained for the magnetic penetration depth [13]
,\(T)—/\(O)Z/\(O)C'S—. (2.29)

where €' =In(2) for a circular Fermi surface. There are now many published mea-
surements of the penetration depth in high-T. compounds. which support this linear-T
behaviour. Recent measurements in the Meissner state of high quality single crystals
of YBa,Cu30:_; [14.15.16]. Bi,Sr,CaCu;Ogys [17.18.19.20] and magnetically aligned
powders of crystalline HgBa,Ca,Cu30gys [21] show a strong linear-T dependence for
MT)—A(0) at low T. Muon spin rotation (xSR) measurements have determined that

AT} also changes linearly as a function of T in the vortex state of YBa;Cu;0-_.
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(2.3.5] and La, 45Sro15CuOy [22]. Experiments on the high-T. materials which show
T dependences other than linear are often explained in terms of extrinsic etfects. For
instance. in a d;2_,:-wave superconductor. impurity scattering can change the low-
temperature behaviour of M(7T) from a T to T? dependence [13.23]. This has been
verified experimentally by substituting small quantities of the non-magnetic impurity
Zn** for Cu®* in YBa,Cus0-_; [24.25]. An exception in the high-T. family appears
to be the electron-doped superconductors. For instance. measurements of AT In
Nd, 35Ceq 15CuQy single crystals are consistent with s-wave BC'S theory and show no
evidence of a linear-T term [26.27]. However. the large rare earth moments which are
present in the electron-doped high-T. cuprates may have a large effect on the measured
Aw(T). This extrinsic effect may mask the intrinsic nature of the superfluid which is

common to the hole-doped high-T. materials.

2.2 The Superconducting Coherence Length

To explain numerous experimental results which deviated from the predictions of the
London theory. Pippard [28] proposed the following general nonlocal relation for the

supercurrent response

3 c \? rR[R-A(r)] 3 )
=g (o) [T ee R 230,

where R=r—r'. £ is the coherence length and £ is an effective coherence length related

to the electron mean-free path [ through the equation

1 1 1

- = = 4+ . (2.31)
€ & ol
where a is a constant on the order of unity. For a pure superconductor. £ = &,. The

response of the superconductor to the applied magnetic field is nonlocal. in the sense

that the value of Js measured at a point r depends on the value of A throughout a
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volume of radius £ surrounding the point r. The Pippard kernel relating the kth Fourier
component of Js to the vector potential A(k) can be determined from Eq. (2.30). and

1s given by

E 3 272 -1 B K
k)= — (1 + k%€ k) — k . (2.32
Qp(k) X2 {2(1:6)3[( + k°€%) tan™ (kE) £l )
Qp(k) is always smaller than the London kernel Q/ (k). As a result. substituting the

expression for Qp(k) into Eq. (2.5) will always yield a value for A which is larger than

Ar. In particular. for £ €\

£ 1/2
A=) (?0) X (2.33)

and for £> A

o)__

- it

1/3
A= (‘/550,\{> i (2.34)

Note that in the first limiting case. A agrees with the London prediction in a pure
superconductor. On the other hand. the second limiting case is completely independent
of the electron mean-free path. A superconductor described by the first equation. is
called a ~type-II superconductor”. whereas one that is described by the second equation
is a “type-I superconductor”.

Using an argument based on the uncertainty principle. Pippard estimated that rhe
coherence length in a pure metallic superconductor is

flL‘j

T (2.33)
Bic

§o=a

where vy is the Fermi velocity and « =0.15. In BCS theory. the response kernel Q(k)
i1s similar to that in Pippard theory. The BCS coherence length &. is the range of the
Fourier transform of Q(k) and is defined as

_ fZL‘f
o '/TAO.

o (2.36)

where ¢ is the uniform energy gap at T'=0. Since Ao~ kgT.. the Pippard estimate is

close to the BCS coherence length. In a conventional superconductor. vy and hence &
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is large. The bound electron pairs which make up the superfluid have a spatial extent
on the order of &.

The high-T. materials differ markedly from conventional superconductors in that
they have much smaller coherence lengths. Consequently. these materials are in the
extreme type-II limit. The small value of the coherence length also means that rthe
high-T. compounds are generally in the clean limit. where £ < I. Furthermore. both
fluctuation and boundary effects are much stronger in these short € superconductors.
In a d,._,2-wave superconductor where the energy gap Is anisotropic. one must define

an angle dependent coherence length

fll'f

. (2.37)
WAI-(

Eo(k) =

where Ap = Ny Aﬁ —ic;’) and 3 is the maximum value of the energy gap. The divergence
of Eq. (2.37) along the node directions [k,|= |k,| means that the extreme nonlocal limit
is obtained near the nodes (i.e. £ — ). Recently. Kosztin and Legget [29] determined
that nonlocal electrodynamiics leads to a crossover from a T to a T2 dependence for
the penetration depth in the Meissner state at extremely low temperatures. To observe
this experimentally. one must distinguish this effect from the T? dependence expected
from sample impurities. Both the temperature and magnetic field dependence of £ will

be discussed later in the thesis.

2.3 The Magnetic Field Dependence of the Penetration Depth at Low T

2.3.1 Nonlinear Effects in an s-Wave Superconductor

Since the high-T. compounds are extreme type-II superconductors. they should be well
described by the London theory. The underlying assumption in the linear relation

between the supercurrent density Js and the vector potential A that appears in the
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London model is that the applied field is both weak and slowly varyving over a distance
§. This in turn implies that the wave functions of the superconducting carriers are
independent of magnetic field H and that Js scales exactly with the velocity of the
superfluid vy [see Eq. (2.7)].

Let us first consider an s-wave superconductor in the Meissner state for the case
where T =0. so that there is no contribution to J from thermally excited quasiparticles
[t.e. the second term in Eq. (2.22) is zero]. If a static magnetic field is then applied
to the BCS ground state. each electron with initial momentum hk will have a new

momentum given by

hk —s hk — SA . (2.38)
C

The other electron in a pair has momentum —hk. so that the new momentum of these

clectrons is simply

—hk — —Fk — SA. (2.39)

c
The net effect is to shift the entire Fermi circle in k-space as shown in Fig. 2.3.

The change in kinetic energy of an electron pair is

h2k? 1 o SN i S
2 —»—(hk—5A> +)—(—hk—£A> =207 L T A2 2
C C

2m 2m Im 2m mce?

Using Eq. (2.7) and Eq. (2.18) and summing up the contribution from all Cooper pairs

gives the total increase in kinetic energy due to the applied magnetic field as

2 . 1 y
AKNE = Bs € -A’ = —n,mv.?. 12.41)
2 mc? 2

This is just the classical equation for n, electrons per unit volume moving with a
velocity vs=(—¢/mc)A. Thus. the supercurrents are determined solely by the applied
field. and only exist in its presence. Provided the displacement of the Fermi circle does

not exceed the width of the energy gap [as in Fig. 2.3(a)]. the supercurrent response
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s—wave superconductor

(b)

excited /

quasiparticle
states

Figure 2.3: The shift in the Fermi circle for a s-wave superconductor due to a
field-induced superflow. where (a) v, <. and (b) vy > tv.. The zero-field Fermi surface
is shown as a dashed circle. Note that the distances between the solid and dashed
lines represent energy differences. not distance in k-space. The shaded region in (b)
represents the region occupied by the excited quasiparticle states.
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will remain linear. However. if the applied field is large enough. the shift will exceed
this limit and quasiparticle excitations will occur. This latter case is illustrated in
Fig. 2.3(b). Naturally. this will lead to a reduction in n, and a corresponding increase
in A. Near the Fermi surface. a quasiparticle has kinetic energy (1/2)mvg?. The change

in kinetic energy of the quasiparticle due to the superflow velocity vy is

1 . 1 .
sm(VF + vs)? — 3va2 X MVp - Vs . (2.42)

so that there is a shift in the quasiparticle excitation spectrum such that
Ex = \Jsf + AL + mvp - vs. (2.43)

The shift in quasiparticle energy relative to the energy gap :\. can be used to define a
critical velocity for v,. below which the supercurrent response is linear in the Meissner

state of an s-wave superconductor

A
r. = . (2.44)
muvg
Thus. if v, < v, then J3 = —ensvs. For velocities greater than v.. there is a quasiparticle
contribution J,, such that the supercurrent density is
! 5 -
Js = —enivs +J,,. 12.43)

where n’, is the reduced value of the superfluid density (relative to its maximum value
ns in the linear regime). Thus Js drop rapidly when v, > . so that the supercurrent
response becomes nonlinear. If the energy shift is larger than the condensation energy
(which will be derived later). the sample will become normal.

For T > 0. the size of the energy gap is reduced. so that the value of v. decreases.
The precise form of the supercurrent-velocity relation of Eq. (2.43) is [30]

VN2
Js = —enl(T)vs [1 - 3T (L—’—) } . (2.46)

Ue
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where the prefactor .3;(T") is a T-dependent coefficient that decreases rapidly with
T. with 3(T) — 0 as T — 0. At low temperatures. 3,(T) ~ exp(—A/kgT). Using
Eq. (2.46). the nonlinear London equations can be constructed to determine rhe feld
dependence of A. It is found that for a conventional s-wave superconductor at low T.

A changes quadratically with H '

MH.T) _ H 1 o -
o1y LA [HO(T)J 240

where Hy(T)=€eMT)/cv.(T) is a characteristic field on the order of the thermodynamic
critical field H.(T). which is of course related to v.. Above Hy(T) the nonlinear effects
become important. The H? behaviour in Eq. (2.47) has been confirmed experimentally
in the type-I superconductors Sn and In [31.32.33] and the type-II superconductor V';Si
(34]. The coefficient .3,(T) in Eq. (2.47) is typically small in conventional superconduc-

tors.

2.3.2 Nonlinear Effects in a d,._,:-Wave Superconductor

For a d,2_,:-wave superconductor. the presence of nodes on the Fermi surface means
that the supercurrent response to a weak applied magnetic field will be nonlinear even at
T'=0. This is clearly seen in Fig. 2.4. where. due to the nodes. quasiparticle excitations
will result from even a small displacement of the Fermi cylinder. For a given shift. the
precise number of quasiparticle excitations will depend on the slope of the energy gap
function Ap at the nodes and the direction of vs. The excited quasiparticles located
in a narrow wedge at the nodes produce a current density which flows in a direction

opposite to that of the superfluid.

'In this equation. A is defined from the initial decay rate of the field. where the supercurrents are
targest [35]. However, measurements of A involve a distribution of supercurrent densities over one or
more spatial dimensions. Thus Eq. (2.1) is a more appropriate definition for A.
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d._,,—wave superconductor
x<=y

Figure 2.4: The shift in the Fermi circle for a d;2_,2-wave superconductor due to a
field-induced superflow. where (a) v, is parallel to a node and where (b) vy is parallel
to an antinode. The unshifted Fermi surface is shown as a dashed circle. Note that the
distances between the solid and dashed lines represent energy differences. not distance
in k-space. The shaded area represents the region occupied by the excited quasiparticle
states. The angle 6 defines the wedge of occupied states.
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For the case in which vy is directed along a node. as shown in Fig. 2.4(a). the

supercurrent-velocity relation is

Jy = —en'e, (1 - |VS'> . (2.43)

Lo
where vo =(d|A(6)/df)/vE. such that (d|A(6)|/d8). is the angular slope of the energy
gap at the node. and v} is the Fermi velocity at the node. For the case in which v, is

directed along an antinode. as shown in Fig. 2.4(b). the supercurrent density is

Js = —enlu, ( - _l_lv") . i2.49)

\/§ Lo
The additional factor of 1/v/2 is easy to understand by comparing the angular size of
the wedges at the nodes in Fig. 2.4(b) to the angular size of the wedge in Fig. 2.4(a).
Due to the anisotropy of the nonlinear response. Yip and Sauls [30] proposed that the
field dependence of the penetration depth in the Meissner state could be used to resolve
the structure of the energy gap in a superconductor. The magnetic penetration depth
can be derived using the expressions for Js. The result is that A changes linearly with

H at low T [30.35.36]

MH.T) H 5 5
NO.T) = 14+ .3(T) [HO(T)J . 12.50)

where Ho = 3cvo/2e) and 35(T) is a temperature dependent coefficient which remains
finite at T =0 due to the nodes in the gap. The actual value of I T) will of course
depend on the direction of vy. The definition of ) in Eq. (2.50) is the same as that in
Eq. (2.47) (i.e. it is related to the initial decay rate of the field).

As the temperature is increased. there is eventually a crossover to a situation in
which thermal excitation of quasiparticles also occurs away from the nodes. Below this
crossover temperature I-(H ). A(H.T) is linear in H but quadratic in T. whereas above
T*(H). M(H.T) is quadratic in H and linear in T [36]. The first evidence for a linear

H-dependence accompanied with a T?-dependence in a high-T. material. was obtained
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by Maeda et al. [37] for measurements of the in-plane magnetic penetration depth
Asp in Bi;Sr,CaCu,0,. Similar results have since been reported in YBa,Cu,;0-_. and
Tl,Ba,CaCu;0, [38]. However. the results of these experiments are suspect because of
the large demagnetization effect (associated with the shape of the sample) which arises
from applying a magnetic field perpendicular to the flat a-b plane. Early measurements
of A\(H.T) in a single crystal of YBa,Cu30¢ 95 found a large H? term [39]. but the sample

had a reduced T indicating there may have been extrinsic effects due to impurities.

2.3.3 Nonlinear and Nonlocal Effects in the Vortex State

Predicting the behaviour of A in the vortex state is far more complicated. This is
because. compared to the Meissner state. the problem must be solved in two dimensions.
rather than one. A second complication is that the magnitude of the order parameter is
spatially inhomogeneous due to the presence of vortices. Very recently. some progress
has been made in understanding the nature of the field dependence of A in the vortex
state of a d,2_,2-wave superconductor [40]. The nonlinear effects which were discussed
in the previous section also affect the supercurrent response in the vortex state. The
mechanism for these nonlinear effects is identical to that in the Meissner phase. In
a dy2_,2-wave superconductor. the supercurrent response is also nonlocal due to the
nodes on the Fermi surface. Near the nodes € > A. which was discussed carlier n
connection with Eq. (2.37). There it was noted that these nonlocal effects will affect
the temperature dependence of A at very low T.

Nonlocal effects will not affect the measured field dependence of \ in the Meissner
state. This can be realized. for instance. by incorporating a k-dependence into the
London kernel Q. (k). The terms in Q. (k) which contain k will affect the precise way
the field decays into the superconductor. However. since k itself does not depend on

the magnetic field. this will not create a field-dependence for ).
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The situation is quite different in the vortex state. Since the theory is nontrivial and
the predicted behaviour of A(H) in Ref. [40] is given as a numerical result. the discussion
here will be qualitative only. The authors of Ref. [40] introduce an appropriate k-
dependent kernel into the London model to account for the nonlocal effects arising at
the nodes. The higher-order & terms are more important for large values of &. Since
large & values correspond to small values of r in real space. the nonlocal effects are
most important near the vortex cores. At fields just above H., where the vortex cores
are isolated from each other. the measured penetration depth is virtually unatfected.
However. with increasing applied field. the vortex cores move closer together and the
nonlocal regions overlap. This in turn leads to significant changes in the distribution
of magnetic field between the vortices and a field dependence for the corresponding
effective penetration depth. In particular. the effective A is found to increase with
increasing magnetic field. At fields in which the vortices begin to interact. this field
dependence is very strong. The strength of the field dependence weakens somewhat
at higher magnetic fields. In the same study. the nonlinear corrections are found to
have a small effect on the field dependence of A. However. it should be noted that rhe
calculations in Ref. [40] were performed assuming that the size of the vortex cores are

small. which is not always the case.

2.4 The GL Penetration Depth and Coherence Length

The temperature and magnetic field dependence of both the penetration depth and co-
herence length appear quite naturally in Ginzburg-Landau (GL) theory [41]. Like the
London model. the GL model is independent of the underlying mechanism for super-
conductivity. However. it must be emphasized that GL theory is strictly valid only near

the normal-to-superconducting phase boundary. and is thus not generally applicable at




~1

Chapter 2. The Characteristic Length Scales of Superconductivity 2

low temperatures. In the theory. a complex order parameter v is introduced. where
w 1s a function of temperature. magnetic field and the spatial coordinates. Ginzburg
and Landau assumed that near T. where ¢* is small. the free-energy difference per unit
volume between the normal and superconducting state at zero magnetic field may be

expanded as a function of «

Fi(0) = Fo(0) + alu}* + blw]*. (2.

Crt
—

where @ and b are temperature-dependent coefficients such that near T.

a(T) = —ag (1—%) and. (2.32)

(T) = bg. 12.33)

where ag and by are positive coefficients. so that ¢ < 0 below T.. Minimizing the free
energy with respect to |¢'|? gives the zero-field value of the order parameter

WGP 2 ld 2.5
Jol® = et (2.54)

In the presence of a magnetic field. the free energy in the superconducting state is

increased. In particular. the work done on the sample by the magnetic field H is
% H
- [ [m.am (2.35)
0 0

where 17 is the volume of the sample and M is the sample magnetization. In the
Meissner phase. B=0so that M = —H/4r. whereas in the normal state M is essentially
zero. This means that the Gibbs free energy per unit volume in the superconducting

state increases in the presence of a magnetic field to

H?
GS(H)=GS(O)+8—_. (2.56)
whereas in the normal state

G.(H) = G.(0). (2.57)
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At the phase change. G,(H.) = G,(H.) where H. is the critical field. Thus. using
Eq. (2.536) and Eq. (2.57). one has

H?
Ga(0) - Gy(0) = = (2.58)

Using the Legendre transformation F(H)=G(H) + ﬁB -H. Eq. (2.538) may be written
in terms of the Helmbholtz free energy per unit volume

H?

= (2.59)

Fn(o) - Fs(o)

This implies that an energy H?/Sx. called the “condensation energy . is given up by
the formation of the superconducting state.

Assuming that the order parameter v is not completely rigid in the presence of a
magnetic field. there is an additional energy term associated with variations in +-. This

term was assumed by Ginzburg and Landau to take the form

2

- |
’<—,’hv + f—A) o 12.60)
C

2m-=
where later it was found that m*=2m and e” = —2¢. Thus. the total free energy per

unit volume of the superconducting state in the presence of a magnetic field is

2+H‘.’
s

"

. i
F.H) = FS(0)+m'(—mv+ %A) v

2 2

H
—. (261
+5o- (261

"

. 1 =
F(0) + alu]? + blu]* + — ‘(—zhv + iA)
2m- c

Minimizing this expression with respect to ¢+ leads to the “first GL equation”

1 : ¢ .
— (—zhv - iA) v + a4+ bl = 0. (2.62)
2m c
and with respect to A. the “second GL equation”
.h = -2
Jo = - (1"Vie — wVe™) = A 12.63)

2m-
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which is the standard expression for the quantum-mechanical current. This equation
has the same form as the London equation. except that v is spatially varying. The GL
equations can be solved analytically for simple cases only.

Consider a superconductor i a weak magnetic field with the sample dimensions
much greater than the magnetic penetration depth. To first order in B. lo]? in
Eq. (2.63) can be replaced by its equilibrium zero-field value 1|2 from Eq. 12.54)

=2

J, = — leol*A . (2.64)

m=c

Taking the curl of both sides of this equation gives

-2 -2
TxJym = ug’B =l (2.65)
m-=c m=c b
Using Eq. (2.12). this can be rewritten as
= 2 b
(VX VxB)+B=0. (2.66)
17e=? |al
which. upon comparing to the expression in Eq. (2.13). gives
m=c?b(T) 12
MT) = | ———— 2.67
(I) <47?6‘2|a(T)|) (2.67)

which is the same as the London penetration depth if |iof* = lal/b=n>=n,/2.
Consider a second example where ¢* varies only in the I-direction. but the applied

magnetic field is zero. In this case the first GL equation hecomes

h? d?e .
—ﬁ—d:_z +aL‘+b|L",2L‘ =0. (268)

Assuming v is real. we can introduce a dimensionless order parameter

flzy = 2 12.69)
|‘-"‘0|

where |ug| is given by Eq. (2.54). Thus. Eq. (2.68) becomes

R i f

- _ 3-0. 2.7
2m=|a| d=? f+f 0 (2.40)
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A natural length scale for spatial varitaions of the order parameter is thus

2mela(T)|) -
which is known as the GL coherence length. Note that both the GL coherence length
and the GL penetration depth are temperature dependent quantities. From Eq. (2.33)
it is clear that both A(T) and £(T) vary as (1 — T/T.)""? with temperature. so that

their ratio is independent of temperature

# 1s known as the “GL parameter”. A precise calculation from the microscopic theory
gives a weak temperature dependence for . with » increasing as T decreases 42]. In
GL theory. a superconductor is called “type-I" if x < 1/v?2 and “type-II” if » > 1/ V2.
When the order parameter throughout the sample is essentially a constant. the GL
model reduces to the London model. This occurs when x> 1. which is the case for the
high-T. superconductors.

GL theory is particularly useful in modelling the small variation of A\ with mag-
netic field found near T.. Pippard [31] first used a simple thermodynamic argument.
which distributes the entropy difference due to changes in H over a layer of thickness
§. to explain the field dependence of A he observed in the type-I superconductor Sn.
Historically. this marks the introduction of € as a fundamental length scale in super-
conductivity theory. Although the field dependence is built into the GL theory. for
arbitrary H. ¢ has a non-negligible dependence on field. Thus. in general. rhe field
dependence of both A and £ must be obtained by numerically solving the complete
nonlinear GL equations. Analytical results can be obtained in special cases. such as

for thin films.
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2.5 Measuring the Characteristic Length Scales

In the Meissner state. A can be measured by excluded volume techniques (such as
microwave cavity perturbation). inductive methods and far infrared reflectivity. The
latter is a surface measurement which can determine the absolute value of \. In the
vortex state. uSR. nuclear magnetic resonance (NMR ) or small angle neutron scattering
can be used to measure the magnetic field inhomogeneity due to the vortex lartice in
the bulk of the sample. from which an absolute value of A can be obtained.

In contrast. there are few direct measurements of . Estimates of its magnitude can
be obtained from the contribution of fluctuations to measured quantities such as the
specific heat. susceptibility or conductivity. Scanning tunneling microscopy (STM | can
be used to measure the vortex-core radius rq at the sample surface. which provides an
estimate of £ 2. However. the coherence length is most often determined indirectly from
measurements of the upper critical field. H.,. At this field the vortices begin to overlap
and the superconductor undergoes a first order phase transition into the normal state.
Since the radius of a normal vortex core is about the size of the coherence length. then

at H.; there is a direct relationship with &. In particular. from GL theory

% ]
E(T) = _ 2.73)
=\ rmLm (=19

In the high-T, materials. H., is extremely large (e.g. on the order of 102 T in YBa,Cu,0-
at T =0) and is therefore difficult to measure accurately. Measurements are generally
limited to temperatures near T. where H., is considerably smaller (H., =0 as T — T.).
However. near T, thermal fluctuations of the vortex lines can depin or melt the solid

3D vortex-lattice into a vortex liquid phase. Rather than H.,. what is often measured

is the transition of the ordered 3D vortex solid into a vortex fluid phase. in which many

*The relationship between r, and & will be discussed more fully, later in this thesis.
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of the vortices are free to move independently of each other. The phenomenou is anal-
ogous to the way in which thermal vibrations of water molecules cause ice to melt into
water. The problem of thermal fluctuations is most serious in short coherence length
superconductors with high transition temperatures. This is because fluctuation ef-
fects become important when the thermal energy kgT exceeds the condensation enerey
Eabp§ H? 87 x (T —T.)Y/? [43]. Here. £,(T)&(T)E(T) is the minimum volume occupied
by the fluctuation and H. is the thermodynamic critical field. In the high-T. materials.
thermal fluctuations are mainly responsible for the large variation in reported values
of { determined from H., measurements. A more appropriate way to determine £ is to
perform measurements deep in the superconducting state. well away from the strong
fluctuation regime. This can be achieved with xSR. a bulk technique which is described

next.



Chapter 3

The ;SR Technique

This chapter describes how one can measure the field distribution associated with
the vortex lattice in the bulk of a superconductor using muon spin rotation (;SR)
spectroscopy. A comparison is made with the nuclear magnetic resonance (NMR)

technique which can also be used to measure the field distribution.

3.1 uSR vs. NMR

In a transverse field SR experiment. one measures the internal magnetic field distribu-
tion of a superconductor in the vortex state. Prior to the development of this technique.
the internal field distribution could be studied with NMR. which in principle provides
the same information as uSR.

The basic principles of the NMR technique are as follows: The interaction of the
magnetic moment of a nucleus py = —~ vAI (where I is a nonzero nuclear spin and ~ v
is the gyromagnetic ratio characteristic of the nucleus) with the local magnetic field B

at its site is described by the Hamiltonian
H=-vhI-B. (3.1)
which splits the nuclear energy levels into 2I + 1 lines with energies

En =—-yxhBm. (3.2)

33
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where m is an integer or a half-integer in the range —I < m < I. depending on whether I
is an integer or a half-integer. The energy separation between adjacent nuclear energy

levels is then

AEmmst = Em — Emp1 = vwhB = AE 13.3)

Nuclear magnetic dipole transitions may be excited among these levels by applying
a RF field of an appropriate frequency. In particular. when the frequency o of the
RF ficld is such that the energy hw is equal to the energy separation AE hetween
the quantum states of the nuclear spin. there is an absorption of energy. The resulting
resonance can be detected and the local field identified as B =w/%y. Since the distances
between similar nuclei in a superconductor are small relative to the separation of the
vortices. the magnetic field distribution associated with the vortex lattice is sampled
by measuring the fields at the sites of the nuclei. As long as the nuclei are uniformly
distributed. the sampling is volume-weighted.

An NMR technique which is a close parallel to uSR is “pulsed NMR™. in which one
observes time-dependent transverse nuclear polarization or so-called “free induction
decay” of the nuclear polarization. In this form of NMR. an RF pulse is applied to
rotate the nuclear spins 90° from the direction of the local magnetic field B. When the
RF field is switched off. the nuclear spins perform a free precession around the local
field B and relax back to their initial direction along B. The precession is detected by a
pickup coil. The frequency of the nuclear spin precession is a measure of the local field
(i.e. B=w/7v). In this pulsed NMR technique. the different precession frequencies
are observed simultaneously without variation of the RF or DC magnetic fields [44].
However. there are several limitations and added difficulties associated with the \ MR
technique which are overcome in a uSR experiment.

The first problem is that because the skin depth of the RF field probe is small.
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NMR only probes the surface of the sample. For most high-T. samples. the surface has
many imperfections. which results in strong vortex-line pinning and a highly disordered
vortex lattice—a topic which will be discussed in the next section. To measure the field
distribution in the bulk. magnetically aligned powders are often used (see for example
Ref. [51]). However. the vortex-lattice structure in the bulk of a small crystallite is
also likely to be affected by the strong pinning of the vortices at the crystallite surface.
Furthermore. it is difficult to align all of the crystallites with the applied field. Due
to mass anisotropy. the field distribution will not be the same in crystallites with
different orientations. To account for the misaligned fraction. one must measure the
NMR spectrum before and after alignment. and then subtract out the random powder
contribution by using a predetermined percentage of alignment. The penetration depth
of the RF field also limits the range over which the vortex lattice can be sampled.

On the other hand. 1SR is a bulk probe that is easily performed on single crystals. so
that one can measure the “true” magnetic field distribution in the bulk. The uuportance
of having this capability will become clear when the structure of the vortex-lattice is
discussed in some detail later in this thesis.

Other problems with NMR are the additional sources of line broadening in the
measured internal field distribution (i.e. line broadening sources which are negligible
in uSR). For instance. in the high-T. materials the linewidths originating from the
copper and oxygen nuclei are very broad due to quadrupole interactions and chemical
shifts (or metallic Knight shifts). A field distribution which corresponds more closely to
that of the vortex lattice is obtained with the uSR technique. Since the muon is a spin
1/2 particle. it has no quadrupole interaction. Also. uSR is sensitive over relaxation
times as small as 10 ns compared to 10 s for NMR. The signal relaxation in 7SR due
to the inhomogeneous field distribution of the vortex lattice typically occurs over the

first few us.
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3.2 Measuring the Internal Field Distribution with 4SR

In a uSR experiment. positively charged muons are implanted one at a time into the
bulk of the superconductor. The muon is a lepton which has spin 1/2. a rest mass
that is 206.729 times that of an electron. and a magnetic moment of 4.84x10~3 yg. In
the cuprates the muon comes to rest at a definite position in the crystallographic unit
cell—becoming hydrogen bonded to an oxygen atom [45]. Fortunately. in magnetic
fields appropriate for a SR experiment. the intervortex spacing is much larger than
the dimensions of the crystallographic unit cell (typically 102 — 103 times larger) so that
a muon stops randomly on the length scale of the vortex lattice. The implanted muon

precesses about the local magnetic field B with a Larmor frequency

“"Il = .2'/71/“ = "/“B . (3.4)

where ~, /27 =135.5342 MHz/T is the muon gyromagnetic ratio. After a mean lifetime

T

» = 2.2 ps. the positive muon decays into a positron and two neutrinos (t.e. pu¥ —

et +v.+7,). The distribution of decay positrons is asymmetric with respect to the spin
polarization vector P(t) of the muon. where the highest probability of emission is along
the direction of the muon spin. Consequently. the time evolution of the muon spin
polarization P(t) can be monitored. since the muon partially reveals its spin direction

at the time of decay.

Scintillation detectors placed around the sample can be used to detect the positrons
emerging from the muon decay. Figure 3.1 shows a simple four-counter arrangeient.

The number of decay positrons recorded per time bin At in the ith counter is given by
Ni(t) = NPe ™ (1 + A° Py(t)] + B°. (3.3)

where N7 is a normalization constant. 4? is the maximum precession amplitude. B?

1s a time-independent random background and P,(t) is the time evolution of the muon
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..>\<

Figure 3.1: Typical arrangement of four positron detectors L. R. I” and D around a
sample S. The initial muon-spin polarization is denoted as P(0) and the applied field
is assumed to be out of the page.

spin polarization component in the /th direction. which is given by
Pi(t) = cos(w,t + 6;). (3.6)

where §; is the initial phase of the muon spin polarization vector relative to the ith
direction. Generally 6; is nonzero. since the muons will precess during their flight
through the magnetic field to the sample. There is no significant loss of polarization
during the short time over which the muons thermalize. This is because the primary
interactions by which the muons rapidly lose their initial kinetic energy are electrostatic

in nature and hence do not affect the muon spin [46].
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3.2.1 The Raw Asymmetry for a Pair of Counters

Consider a pair of opposing counters—e.g. L and R in Fig. 3.1 with a magnetic field
applied parallel to the Z axis. The “raw asymmetry” of the histograms N, () and Ng(t)

1s defined as
[:Ve(t) — Bg] — [Vr(t) — BY]

Araw(t) = App(t) = 1= . . (3.7)
(1) Lr(t) (NL(1) = B3 ¥ [Va(f) — BY] ‘
where
No(t) = Npe ™ [1 + 48 Pr(1)] + B2 and. (3.8)
Nr(t) = Nje /™ (1 + A% Pp(t)] + BS. (3.9)
so that
.\'O . [o] t - ‘\"O R o t
.-L_aw(t) _ L [1 + {LPL( )] R [1 + {RPR( )] (310)

 VE[L+ AL + VR + ARPR(H)]
The reason for introducing A« () is to eliminate the muon lifetime (which is a well
known quantity) and the random backgrounds B} and B$. Ideally. the two counters
in question are identical to one another. so that the histograms recorded by the rwo
counters differ only by a phase. In this idealistic situation the difference in phase
between the histograms is due solely to the geometry of the positron couunters with
respect to the sample. The polarization of the muon spin which is seen by each counter
15
Pr(t) = cos(w,t + ). (3.11)

Pp(t) = cos(w,t + o). (3.12)

where v and o are the initial phases of the muon spin polarization vector in counters

L and R. respectively. If the counters are aligned precisely opposite one another. the
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difference between these phases is | ©' — o {= 180°. so that
P(t) = cosw, + (0 + 7)) = —cos(w, + 0) = —Phg(t). (3.13)

The counters L and R measure the projection of the muon polarization on the % axis
so that

Pr(t) = P(t) and. Pg(t)=—Pr(t)=—P.(t). (3.14)

Thus Eq. (3.7) becomes
(NP = NR)+ (VP A + NpA%) Po(t)

—’1raw t) = = < - - . (313)
() (-\’2+-\?z)+(-\Z-4Z—-\E-4%)P:(f)
If V¢ = .\"J° and 4?7 = A9 = A° then Eq. (3.15) reduces to
-'lraw(t) = -{op.r(t) (316)

If B = BY. then using Eqs. (3.7). (3.8). (3.9) and (3.16) the r-component of the

J

polarization can be written as
Vi) — V(1)

Hru (3.17
Negae © (3.17)

P.z’(f) =

3.2.2 The Corrected Asymmetry

In practice. there are differences in the efficiency of the counters and also geometrical
misalignment of the counters. If the sensitivity of the individual positron counters
is not the same. the normalization constant V°. the maximum decay asymmetry 4°
and the random background levels B° will not be the same in all of the counters. The
number of recorded events in each counter also depends on the solid angle they subtend
at the sample. If the coverage of the solid angle is not maximized because of counter
misalignments. there will be a decrease in the number of decay positrons detected. The
raw asymmetry thus depends on the variables

N | A

3=
Y] and I

e

(3.18)

G =

~o
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In a superconductor. these variables are best determined by fitting the muon spin
precession signal in the normal state where the magnetic field in the sample is more or
less homogeneous. The “corrected asymmetry Acorrected(?) is obtained by substituting
Eq. (3.18) into Eq. (3.10) so that

Aorrecrea() = (1 —a)+ A°P(t)(1 + a3) _ (1 —a)+ Anw(t)(1 +0-3)‘ (3.19)
(1+a)+ A°P(t)(1 —ad) (l+a)+ duw(f)(ad —1)

where A7 = A° and P (t)=—Pgr=P.(t).

3.2.3 The Relaxation Function

In the vortex state the muons experience a spatially varying magnetic field due to the
periodic arrangement of the vortices. In this case the r-component of the time evolution

of the total muon polarization is
1 &

P.(t) = v Z cos{v,B(r;)t + 9] . (3.20)
==l

where the sum extends over all muon sites and B(r,) is the local field at the site 7.

Ideally. the sum is replaced by an integral so that
P.(t) =/l' n(B)cos(~,Bt + 6)dB . (3.21)
0

where n(B) is the probability that the muon will precess at the frequency «, =2xv, =
vuB. The muon spin polarization P,(¢) decays with increasing time because of the
inhomogeneous field distribution. Models of the field profile B(r) for a perfectly ordered
vortex lattice will be discussed in the next chapter.

In a real superconductor there are other independent contributions to the variation
in the local field. These additional sources of field inhomogeneity can be accounted for

by multiplying the muon polarization function by a “relaxation function™ G(#) so that

P.(t) = G(t)/ox n(B)cos(+,Bt + 6)dB . (3.22)
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The relaxation function G(t) describes the damping of the muon precession signal
which results from the additional sources of field inhomogeneity. One such source is
the nuclear dipolar fields in the sample. A Gaussian relaxation function approximately

describes the corresponding damping of the muon precession signal [47]
G(t) = e "an/2 (3.23)

where i, is the muon spin “depolarization rate” due to the nuclear dipolar fields.
Signal damping also results from disorder in the vortex lattice. According to Brandt

[122] random disorder can be approximated with a Gaussian relaxation function. The

relaxation function which contains the effects of the nuclear dipolar moments and the

disorder in the vortex lattice is

G(t) = e (Thiptodi )0/2 = =38/ (3.24)

where o4;s is the muon spin depolarization rate due to the lattice disorder anc 7+ 1s the

effective depolarization rate such that 0t =05+

3.2.4 Four-Counter Geometry and the Complex Polarization

Now consider the complete set of four positron counters in Fig. 3.1. Ignoring geoniet-
ric misalignments and differences in counter efficiency. the r-component of the muon
polarization P.(¢) [monitored by the L and R counters| differs from the y-component
of the muon polarization P,(¢) [monitored by the U" and D counters] by a phase of 90°.
The two components of the muon polarization can be combined to form a “complex”

polarization function

P(t) = P.(t) + { P,(t). (3.23)

where

P.(t) = G(t)/o'x n(B)cos(v,Bt + 6)dB . 13.26)
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and

P,(t) = G(t)/‘x n(B)cos(~v,Bt +6 — x/2)dB
0
- G(t)/x n(B)sin(~,Bt + 6)dB . (3.27)
0

The complex asymmetry for the four-counter setup is defined as

A(t) = 4°P(¢)
= A°P.(t)+4A°P,(t)

= A +i4,01). (3.23)

where 4.(t) and 4,(¢) are the real and imaginary parts of the complex asymmetry.

respectively. The number of counts per second in the i** counter (i = L. R. [” or Dyis

Nit) = .\—ioe—t/ru [1 + .-L(t)] + B;. t3.29)
where 4,(¢) = 4°P;(t)is the asymmetry function for the /" raw histogram. Rearranging
Eq. (3.29) gives

N?

H

Ai(t) = €t/ [MJ —1. (3.30)

In terms of the individual counters. the real asymmetry A.(?) and the imaginary asym-

metry 4,(¢) are

A(t) = %[.{R(t)—.{L(t)] and. (3.31)
1
4,(t) = 2 [4c(t) = Ap(t)] . (3.32)

In this thesis the real and imaginary parts of the asymmetry were fit simultaneously.

assuming a phase difference of 90° between them.
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3.2.5 The Fourier Transform

The Fourier transform of the complex muon polarization P(t) gives a good approxima-

tion of the actual internal field distribution. The Fourier transform is
n(B) = /cc P(t)e= o B+ gy (3.33)
(0]

Due to the finite counting rates. the Fourier transform contains statistical noise. The
noisy or distorted portions of the asymmetry spectrum can be eliminated from the
Fourier transform through “apodization™. Apodization is achieved by multiplying the
asymmetry spectrum by a weighting function which varies between one and zero [48].

For example. the Fourier transform can be apodized with a Gaussian function =o that
A —i(ru Bt+0) _—nl 122
n_4(B)=/ P(t)emilmBtt0) ~aie2 (3.34)
0

Unfortunately. this apodization procedure also broadens the Fourier transform. The
apodization parameter o, is chosen to provide a compromise between the statistical
noise in the spectrum and the additional broadening of the spectrum which such a
procedure introduces. The Fourier transform will also appear broader than the actual
field distribution in the sample because the muon spin precession signal is measured
over a finite time interval. Because of the finite number of recorded events. the integral
in Eq. (3.34) is replaced with a sum. Examples of the Fourier transform of the muon
precession signal in the vortex state will be presented in the next chapter. Since .-, =
27v, =+, B. the Fourier transform can be presented as a function of either magnetic

field B or the muon precession frequency v,.

3.3 The Rotating Reference Frame

It is often convenient to fit the measured asymmetry spectrum in a “rotating reference

frame” (RRF). To do this. one multiplies the complex muon polarization P(t) by a
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function e*“#rRF‘. The RRF frequency wrprr is chosen to be slightly lower than the
average Larmor-precession frequency &, of the muon in the sample. There are two
important benefits from this procedure. The first is that the quality of the fit can be
visually inspected. The precession signal viewed in this rotating reference frame has
only low frequency components on the order of T, — wrrr. where =, is the average
precession frequency in the lab frame. Second and most important. it allows the data

to be packed into much fewer bins. greatly enhancing the speed of fitting.

Further details of the £SR technique may be found elsewhere (e.g. see Refs. [47.46.49.

The essential point is that the muon accurately probes the local distribution of mag-
netic fields in the bulk of the superconductor. The resulting xSR line shape contains
considerable information. Of particular interest. are the magnetic penetration depth
A. the coherence length £ and the vortex-lattice structure. Unfortunately. the 4SR line
shape also contains information not generally wanted—such as the effects of fux lattice
disorder and additional fields such as those due to nuclear dipolar moments. Further-
more. extracting quantities such as A and £ from the data requires some modelling
of the internal field distribution. This is the major difficulty in employing rhe ;SR

technique.

J

0j).



Chapter 4

Modelling the Internal Field Distribution

This chapter reviews the current theoretical and experimental picture of the vortex-
lattice structure in conventional and high-T, superconductors. The volume of published
work on this topic is large. The purpose of this chapter is not to provide an exhaustive
compilation of these studies. but rather to highlight the most significant developments
through a discussion of selected references. The initial part of this chapter discusses
the general structure of the vortex lattice and the corresponding field distribution. and
how this structure is affected by pinning. thermal fluctuations and anisotropy. Next.
the problems associated with modelling the field distribution with a simple Gaussian
function are discussed. The second half of the chapter concerns itself with a more
accurate way of modelling the field distribution associated with the vortex latrice. In
particular. the vortex-lattice structure in both an s-wave and a d.:_,-wave supercon-
ductor are discussed in some detail. In addition. vortex-lattice Imaging experinents in

both conventional and high-T, superconductors are reviewed.

4.1 The Field Distribution of the Vortex Lattice

Figure 4.1 shows a typical muon-spin precession signal in the normal and vortex states
of YBa,;Cu;30695 obtained by applying a magnetic field parallel to the é-axis. For
convenience these signals are displayed in a reference frame rotating at about 3 \MHz

below the average muon Larmor precession frequency in the vortex lattice. A damped

45
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signal results from the inhomogeneous distribution of magnetic field in the sample.
The undamped signals arising from individual muons precessing in different local static
fields combine to give a signal which decays over time. Above T. where flux penetrates
the sample uniformly. there is only a slight damping of the signal which is attributed
mainly to the random local fields of nuclear dipolar moments. On the other hand. below
T. the strongly damped signal is primarily due to the inhomogeneous field distribution
of the vortex lattice.

Figure 4.2 shows the finite Fourier transforms of the time spectra in Fig. 4.1. The
real amplitude of the Fourier transform represents a good approximation to the internal
field distribution. Above T, the ;SR line shape is symmetric with some broadening due
to the nuclear dipolar moments (see top panel of Fig. 4.2). Below T the observed line
shape is primarily due to the vortex lattice. The sharp peak at 67.3 MHz is atrributed
to the residual background signal from muons which miss the sample.

Figure 4.3 shows a general theoretical field distribution corresponding to a trian-
gular vortex lattice. The sharp cutoff at low fields is due to the minimum in the field
distribution which occurs at the center of the triangle formed from three ad jacent vor-
tices. The peak is due to the saddle point midway between two adjacent vortices. The
long tail is due to the region around the vortex core. and the high-field cutoff is due to
the maximum field at the center of the core. As shown in the bottom panel of Fig. 4.2,
the sharp features expected from the vortex lattice are smeared in the Fourier tramns-
form of the measured muon precession signal. This is primarily due to the broadening
effects associated with the Fourier transform (which were discussed in the previous
chapter). The measured line shape also contains broadening effects due to the nuclear
dipolar moments. fluctuations in the temperature and magnetic field. demagnetization

effects associated with the sample geometry and disorder in the vortex lattice caused
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Figure 4.1: The muon spin precession signal in YBa;Cu30¢95 in the normal state at
T'=120 K (top panel) and the vortex state at T=2.4 K (bottom panel).
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Figure 4.2: The Fourier transform of the signals in Fig. 4.1 using a Gaussian apodization

with 04 =3 us~'.
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Figure 4.3: Theoretical magnetic field distribution for a triangular vortex lattice. The
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by pinning,.

4.2 Pinning, Thermal Fluctuations, Dimensional Crossover and Melting

When the magnetic field applied to a type-II superconductor exceeds H,,. the total
free energy of the system is lowered by allowing partial flux penetration in the form
of vortices. Since the core of a vortex line is essentially normal. there is a gain in en-
ergy equivalent to the condensation energy per unit length (H?/8#%)x€? for cach vortex
formed—assuming that ro ~ £. However. this energy gain is more than compensated
for by the decrease in magnetic energy per unit length (H?/87)xA? due to the re-
gion around the vortex which is no longer diamagnetic. The vortex line can lower
its own energy by interacting with a nearby nonsuperconducting inhomogeneirty. so as

to become “pinned”. Spatial inhomogeneities in the superconducting order parameter




Chapter 4. Modelling the Internal Field Distribution 30

arising from impurities or other structural defects. chemical vacancies. grain hound-
aries. twin boundaries. etc.. exert an attractive force on the vortex. The effective range
rp of the pinning force must be at least of the order of the coherence lengrth (vortex
core radius). since this is the smallest length scale resolveable by the vortex core (52].
Pinning from inhomogeneities smaller than this is much less effective. For weakly in-
teracting vortices. the energy saved by the vortex line passing through a point defect of
range rp, = and length d along the vortex axis is [, =(H?/87)w£2d ~ H2€*d (Ref. (53]).
The elementary pinning force f, acting on the vortex core is given by f, = JdU,/dr.
To depin. the vortex line must move over the distance €. so that fo=0,/5 ~ H¢d.
Modelling extended defects. such as grain boundaries. is generally more complicated
since one must integrate over the entire inhomogeneity. To obtain the bulk pinning
force per unit volume of the superconductor. one must sum over all the contributions
from the various pinning inhomogeneities. In general this summation is non-trivial.
In magnetic fields where the repulsive interaction hetween vortex lines hecomes
significant. the pinning of vortices to fixed positions in the superconductor can deform
the vortex lattice from its ideal configuration. The deformation of the vortex lattice in
response to the force exerted by a pinning center is determined by its elastic properties.
namely the shear and tilt moduli cgg and c,y [54.55.56.57.58]. Deformations will increase
the elastic energy of the vortex lattice. According to the “collective pinning” theory of
Larkin and Ovchinnikov [39]. the equilibrium configuration is achieved by minimizing
the sum of the vortex line energy and the elastic energy of the vortex lattice. Ar low
magnetic fields the interaction energy between vortex lines is weak. so that random
pinning centers will cause only a small increase in the elastic energy of the vortex
lattice. This implies that random pinning of the vortex lines will be most prominent
at low magnetic fields. At high magnetic fields. weak pinning centers cannot couipete

with the increased strength of the vortex-vortex interactions. In this case. only srrong
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pinning sites will hold individual vortex lines in place independently of the repulsive
interaction with neighboring vortices.

In the high-T. cuprates. the vortex lines are particularly susceptible to pinning be-
cause the vortex lattice is "soft”. In particular. they have a small line tension due to
the weak coupling between the CuQ; planes which gives way to highly flexible vortices
[52]. Due to this flexibility. the vortices can become twisted. distorted or entangled
[60]. Pinning effects will be stronger in these short coherence length superconductors.
According to Brandt [61]. randomly positioned stiff vortex lines will always broaden
the 4SR line shape. whereas the pinning of segments of highly flexible vortex lines will
sharpen the measured magnetic-field distribution. In YBa,Cu;0-_;. ! rough surfaces.
oxygen vacancies and twin boundaries are the dominant sources of pinning. In pow-
dered samples or thin films. pinning by rough surfaces can dominate the vortex-lattice
configuration in the bulk. Oxygen vacancies appear to be the dominant “point-like”
defect in single crystals [53]. Twin planes occur naturally in YBa,CuzO-_. along the
(110) and (110) directions. because of the orthorhombic crystal structure. The depres-
sion of the order parameter at a twin boundary attracts vortices. and can result in the
creation of multivortex chains oriented along the boundary. If the twin plane spacing
1s not commensurate. this can produce distortions in the vortex-lattice geometry. In
YBa,;Cu30;_;. changes in the vortex-lattice geometry can stem from a combination of
twin-boundary pinning and in-plane mass anisotropy. This will be discussed more fully
below.

At low temperatures the vortices are essentially frozen into their distorted config-
uration. As the temperature is raised. however. thermal fluctuation of the vortex-lige
positions become important. Thermal fluctutations in the high-T,. materials are con-

siderably stronger than in conventional superconductors. This is partly due to: (1)

!See section 5.2 for a description of the crystal structure for this compound.
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the small value of the in-plane coherence length &,4. (2) the high T. which allows for
high thermal energies to be reached in the superconducting state. and (3) the layered
nature of these compounds. Strong thermal fluctuations greatly reduce the pinning
strength. According to Feigel'man et al. [62]. because of thermal motion of the vortex
lines. the vortex core will experience a defect potential averaged over the increased
effective range r, ~ V€% + u?. where (u?)'/? is the root-mean-square (RMS) average
of the vortex-line thermal displacements from their equilibrium positions [62]. The
pinning strength is reduced by this smoothing of the effective pinning potential accom-
panied by a reduction in the collective pinning force. Thermal depinning will occur
at a temperature T,(H) at which (u?)!/2~ £. The depinning of vortices results in a
region of reversibility in the phase diagram. Below the so-called “irreversibility line”.
the vortices are pinned by defects. whereas above this line the vortices are free to move
in response to an external force. As noted earlier. the presence of the reversible region
complicates measurements of H.y(T). In particular. the resistive transition between
the superconducting and normal states is no longer sharp due to the motion of vortices
(which experience a Lorentz force from the applied current). The energy which keeps
the vortices moving is removed from the current—so that the resistance of the material
is not zero above the irreversibility line. Thus. it is the irreversibility line which is
usually measured. since H.»(T) no longer exists as a phase boundary.

If the vortex fluctuations are sufficiently large. the vortex lattice will undergo a
melting transition at a temperature T, (H) (< T.) into a vortex-liquid phase. In the
liquid phase. the vortex lines are not pinned and the interaction force between vortices
is weak. As a result. there is generally no long range order in the lattice. It is currently a
matter of debate whether or not the melting temperature T}, coincides with the thermal
depinning temperature T,. Since pinning is sample dependent. so is the irreversibility

line. Thus, only some experiments suggest that T, = T,.
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Vortex-lattice melting has been observed at high temperatures and/or magnetic
fields in nearly-optimally doped. untwinned and high-quality twinned YBa,Cu;0-_,
single crystals. from magnetization measurements using a mechanical torsional oscilla-
tor [63.64]. from sharp drops in resistivity measured at high magnetic fields [65.66.67.68.69.70.71.72!
from discontinuous jumps in magnetization measured using a SQUID magnetometer
[73.74.75.76]. from jumps in ac susceptibility measured using a Hall probe [77] and fromn
measured steps in specific heat {78.79.80.81]. Many of these experiments also support
a first-order melting transition of the 3D vortex lattice in YBa,;Cus0-_,.

It should be noted that the melting of the vortex lattice is a phenomenon which
is not unique to the high-T. materials. Melting behaviour has been observed at high
magnetic fields in Nb-Ti and Nb3Sn wires [82]. polycrystalline Nb foils and NbSe, single
crystals [83] and Nb thin films [84] and Nb single crystals [85]. It should be noted that
there are other more likely interpretations [86] of the measurements in Ref. [85] and
other experiments [87] show no evidence for melting in Nb over the field range claimed.
Recently. Ghosh et al. [$8] performed AC susceptibility measurements on single crystals
of NbSe; at low magnetic fields in the vortex state. They observed a re-entrant “peak
effect”™ at low fields. which may be a signature of vortex-lattice melting. The peak
effect refers to an abrupt and nonmonatonic increase in the eritical current density.
which shows up as a negative peak in the AC susceptibility. A narrow melted-vortex
region between the solid vortex state and the Meissner state was originally proposed
by Nelson [89]. Figure 4.4 shows a simplified magnetic phase diagram. which roughly
lustrates the vortex-solid and vortex-liquid regions.

Theoretical predictions for the shape of the melting line in the H-T phase diagram
[62.90.91.92] are usually based on the Lindemann criterion [93]. In this picture the
vortex lattice is expected to melt when (u?)!/? exceeds some small fraction ¢; of the

intervortex spacing L. Typically the Lindemann number ¢; is of the order 0.1. although
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experimentally. some variation in this number is expected since the Lindemann criterion
does not account for the effects of pinning. Pinning is expected to modify the first
order melting transition. to perhaps a “vortex-glass™ transition [94]. where the lattice
freezes into a state in which the vortices form an irregular disordered pattern or into a
highly disordered state in which the vortex lines are “entangled” [95.96]. The melting
transition in the H-T phase diagram is reasonably described by the power-law relation
H.(T)~ (T. — Tn)" in moderate magnetic fields H., < H < H.,. Brandt 91] and
Houghton et al. [92] considered a nonlocal elastic theory for the vortex lattice to
arrive at a power-law exponent n = 2. Blatter and Ivlev [97.98] later argued rhat
this result is really only valid in YBa,CuzO-_; close to T.. They performed a more
rigorous calculation which takes into account the suppression of the order parameter
near H.»(T). as well as quantum fluctuations. to vield a melting line which is better
described with a smaller value of n. This prediction is supported by several experiments
on YBa,;Cu30-_s which report exponents of n < 1.45 [65.68.70.73.75.76.77.99]. Some
of these experiments [75.76.77] report power-law dependences for the melting line in

which n=4/3. the critical exponent expected within the 3D XY critical regime [100].

Although YBa;Cu30:_; is a lavered material. near optimal doping the vortex lat-
tice behaves in an essentially three-dimensional manner over most of the H-T phase
diagram. This is not the case for the highly anisotropic compound Bi,Sr,CaCu,05.,.
where the coupling between planes is very weak even well below T.. For this material
it is useful to consider the 3D vortex line as being composed of a stack of aligned 2D
vortex “pancakes”. where the pancakes exist within the superconducting lavers (i.e.
CuO; planes) [101]. The Lawrence-Doniach (LD) model (102] is a reasonable starting
point for a theoretical treatment of this problem. In this model adjacent superconduct-

ing layers are separated by an insulating layer of thickness s. The vortex pancakes in
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neighboring layers are connected by Josephson vortices which exist within the Joseph-
son junctions between the superconducting layers. The vortex pancakes in adjacent
CuO; planes thus couple through both magnetic interactions and Josephson tunneling.
A third coupling mechanism. namely the indirect effect of the Coulomb interactiomn.
has been suggested by Duan [103]. The relevant parameter in the LD model is the
ratio of the ¢-axis coherence length &, to s. When £./s > V2 there is no phase dif-
ference in the order parameter between neighboring lavers. so that in the absence of
pinning the vortex lattice exhibits 3D behaviour—equivalent to the anisotropic London
and GL models. On the other hand. when £./s < /2 there may be a phase difference
and the LD theory describes a quasi-2D vortex structure. The LD model will not be
completely satisfactory in a superconductor in which the material between the super-
conducting layers is not completely insulating. In this case the proximity effect may
become important.

At low temperatures vortex pancakes between neighboring layers are aligned. How-
ever. in a superconductor with random inhomogeneities. pinning will displace some of
the pancakes and cause a suppression of the phase coherence between layers '104j. The
effects of random pinning-induced misalignment of the vortex pancakes on the measured
1SR field distribution has been the focus of several studies [61.104.105.106.107.108.109].
The effects include a reduction in both the line shape width and the line shape asvm-
metry. When the magnetic field is increased. the interaction bhetween pancake vortices
within a layer will eventually exceed the coupling strength between the pancake vor-
tices in neighboring layers. In this case random pinning in the layers will lead to a
misalignment of the pancake vortices between layers. Thus. in a highly anisotropic sys-
tem with inhomogeneities. a dimensional crossover from a 3D to a 2D vortex structure
can be induced by magnetic field. Harshman et al. [106] observed a narrowing and

a loss of asymmetry in the uSR line shape for Bi,Sr;CaCu,0s4¢ at low temperatures
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and high magnetic fields. which they attributed to pinning-induced misalignment of
the pancake vortices. In the same study. the SR line shape for YBa,Cu;0-_. under
similar conditions was found to be in agreement with a 3D vortex lattice. Other 4SR
studies on Bi;Sr,CaCu,0g4s [107.108] provide additional support for a field-induced
dimensional crossover.

Clem [101] has shown that the thermal energy required to misalign 2D pancake vor-
tices is extremely small. The effect of thermal fluctutations on the vortex lattice is very
different between the regions of weak and strong magnetic fields [110]. In low magnetic
fields the displacement amplitude of the pancake vortices due to thermal fluctuations is
much larger than the relative displacement of the vortices between layers. On the other
hand. as just noted. in strong magnetic fields the vortex-vortex interactions within a
layer are stronger than those between layers. In this case thermal fluctutations act in
a quasi-2D manner.

The effects of thermal fluctuations on the measured internal field distribution have
been previously studied by xSR in Bi,Sr,CaCuyOgys [107.111]. Rapid fluctutation of a
vortex about its average position can increase the apparent core radius and smear the
magnetic field out over an effective radius of (u?)!/? [61]. The smearing effect reduces
the average of the field distribution in the vortex-core region. The muon detects the
field averaged over the fluctutations. since the typical time scale for thermal fluctuations
of the vortices (~ 10~'° s [51]) is much shorter than 27/+4,AB. where 5, is the muon
gyromagnetic ratio and AB is the range of the field fluctuation at the muon site. The
result is a premature truncation of the high-field tail in the measured #SR line shape.
A proper analysis of the corresponding muon precession signal would lead to an overes-
timate of the vortex-core radius ro. The effect of thermal fluctuations on the high-field
tail was nicely demonstrated in Ref. [111]. The melting transition in Bi;SryCaCu,0g4s

was determined by Lee et al. [107.111] by observing additional changes in the ;SR line
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shape—namely. a reduction in the line width and in the asymmetry of the line shape as
a function of temperature and magnetic field. Numerical simulations of the magnetic
field distribution were later provided by Schneider et al. [112]. for both a vortex liquid
phase and a disorder-induced 2D phase. Good agreement was reported between these
theoretical line shapes and those measured in the experiments by Lee et al.

Although the coupling strength between CuO, planes in fully oxyvgenated YBa,Cu,0-_,
is sufficient to yield a vortex structure which exhibits 3D behaviour over the ma jority of
the H-T phase diagram. such is not the case in the underdoped material. Magnetization
measurements performed on YBa,Cu3;Og¢o are consistent with quasi-2D fHucrutation
behaviour [113]. As [ will show later. due to this reduced dimensionality- 1SR measure-
ments of the internal magnetic field distribution in YBa,Cu;0s .60 vield a rich phase

diagram which is comparable to that for Bi,Sr,CaCu,y0g, 5.

4.3 Gaussian Field Distribution Analysis

Traditionally. the behaviour of the magnetic penetration depth in the vortex state of a
superconductor has been determined from the variation of the second moment (.¢. the
square of the width) of the 4SR line shape. The second moment of the local nmagnetic

field distribution n(B) is

(AB?*) = /Mc n(B)((B) — B)*dB. (4.1)

—x

where (B) is the first moment of n(B) (i.e. the average local magnetic field). At
moderate magnetic fields. the second moment of the field distribution for a vortex
lattice (which is considered in the next section) has been shown in the London picture
to be {123]

(AB?) = 0.00371®2A*. (4.2)
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A simple way to model the second moment is to assume that n(B) is a Gaussian
distribution of static internal magnetic fields. The corresponding muon polarization
function is [47]

P(t) = P(0)exp(—a?t*/2) cos(~,(B)t). (4.3)
where o is the muon depolarization rate. For a Gaussian field distribution. the second

moment is given by [114]

Y2
(AB?) = . (4.4)
fu
so that
o x1/A xn;. (4.3)

However. this method is extremely crude since the field distribution corresponding to a
vortex lattice is generally asymmetric. It is mentioned here only because many of rhe
earlier SR experiments arrived at conclusions regarding the pairing-state syvuunetry
in the high-T. compounds based on this type of analysis (114.115.116.117.118]. Fig-
ure 4.5(a) shows an example of fitting the early time part of the mMuon-spin precession
signal in NbSe, with a Gausssian relaxation function. The spectrum was obtained by
field cooling the sample to T =2.4 K in a magnetic field H =0.35 T applied parallel
to the ¢-axis. The quality of the fit (\2?) is 4076 for 412 degrees of freedom. The
real Fourier transform of both the data and the Gaussian fit are shown in Fig. 4.5(b).
The small peak near 47.5 MHz is due to muons which miss the sample and avoid the
background suppression system. Typically this constitutes 5 to 15% of the total signal
amplitude for our apparatus.

Figure 4.6(a) shows the temperature dependence of ¢ for a mosaic of three high
quality YBa;Cu3O0e.95 single crystals. Despite the poor quality of the fits. the Gaus-
sian function appears to effectively model the change in the second moment of the

#SR line shape. As the temperature is increased. \? decreases dramatically due to the
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natural progression towards a symmetric internal field distribution as the penetration
depth grows. A serious drawback with this method is its inability to resolve the sev-
eral phenomena which separately contribute to the width of the u#SR line shape. For
example. one cannot assume that the linear T dependence of o(T) at low temperatures
necessarily implies that A™%(T) has the same linear dependence. For instance. some of
the change in the line width may arise from thermal fluctuations of the vortex lines
which result in a narrowing of the uSR line shape at higher temperatures. Thus. the
magnitude of the linear term in A=%(T") could be different than that of o(T). or worse.
o(T') could have a different leading term.

Consider Fig. 4.6(b). which shows the temperature dependence of the muon depo-
larization rate ¢(T') in single crystal YBa,Cu;04.95 for two different applied magnetic
fields. There is a distinct drop in ¢ at low T when the applied magnetic field is changed
from 0.5 to 1.5 T. Moreover. the term linear in T decreases at the higher field. However.
there is no way to determine whether the field dependence of the muon depolarization
rate is due to intrinsic or extrinsic effects. We now believe that the field dependence
of ¢(T') observed in some of the earlier SR experiments was misinterpreted as being
due to an increase in flux-lattice disorder at low magnetic fields. The precise cause of

this field dependence will be addressed later on in this report.

There are many other serious limitations or problems associated with using a simiple
Gaussian analysis. For instance. the shape of the internal field distribution will chanege
when there are variations in the vortex-lattice geometry and at a crossover at low
fields where the intervortex spacing L equals \. Fitting to a Gaussian function will
misidentify these changes in the ¢SR line shape as changes in A. This simple analysis
i1s also insensitive to the high-field tail of the measured internal field distribution - so

that no information regarding the structure of the vortex cores or the behaviour of £
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Figure 4.5: (a) The muon spin precession signal in NbSe, after field cooling to T =241k
in a magnetic field H =0.35 T. The solid line is a fit to a Gaussian relaxation function
exp(—o?t?/2). (b) Fourier transformation of data (solid line) and fit (dashed line) from
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can be obtained.

4.4 Field Distribution of the Vortex Lattice

A more appropriate way of analyzing the measured field distribution is to model the
contributions to the line shape separately. The London theory provides the simplest
approach to modelling the internal field distribution n(B) corresponding to the vortex
lattice. The London model applies exclusively to extreme type II superconductors in
which A > ¢. and is independent of the detailed mechanism responsible for supercon-
ductivity. Furthermore. the London picture is valid at all temperatures below 7. and
for applied magnetic fields H <« H.;. Both of these conditions are usually satisfied in a
1SR experiment.

For a magnetic field applied in the 3-direction parallel to the crystallographic é-axis.
the London equation [i.e. Eq. (2.13)] for the field profile B(r) resulting from vortices

positioned at the sites r, is
B(r) + AL[Vx VxB(r)] =8 é(r—r,)z. (4.6)

where A,y =(\,\4)"/2. (1) is a two-dimensional delta function and $Py=2.068S x 10~ T-
m* is the flux associated with each vortex. We restrict the discussion throughout this
report to the above mentioned orientation between the applied magnetic field and the
crystal lattice—hence avoiding generalizing equations to include the é-axis penetration
depth. The points r, form a two-dimensional periodic lattice in the &-b plane. so that
B(r) may be expanded in a Fourier series. The Fourier transform Bk is

Bk =n; [ B(r)e KTq?r, (4.7)

cell

Here n; is the number of vortices per unit area and K are the reciprocal lattice vectors.
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From Eq. (4.6) the Fourier components are

By .
K=1% I\zAﬁbz (+3)
where By = ny® is the average internal field. Thus the total field at the point r is
given by

e—iK-r

= —Kr —_— 1. 1.9
B(r) %:Bxe Bo%: . +I\.2/\§bz (+.9)

Eq. (4.9) does not account for the finite size of the vortex cores. which are assuined
to be infinitely small—i.e. a delta function is used as the source term in Eq. (4.6).
The spatial dependence of the order parameter which goes to zero at the center of
the vortex cores is not built into the London theory. As a result Eq. (4.9) has the
unphysical property that B(r) diverges on the axis of the vortex line at r,. To correct
for the finite size of the vortex cores. one can modify Eq. (4.9) by multiplying each
term by a cutoff factor which suppresses the higher Fourier components and produces
a smooth variation of field to a finite maximum value at the center of the vortex core.
A sharp cutoff such as at k' =27/¢,, is generally inappropriate because it introduces
an oscillatory cutoff in real space (119]. A smooth cutoff may be obtained by solving
the GL equations. At reduced fields b= By/B., <0.25. Brandt [120] derived the cutoff
factor exp(—Ah¢?/2) from the isotropic GL theory for x> 1. At low fields b« 1. the
cutoff factor is better approximated by exp(—V2LK¢€) [121]. To account for the field
dependence of the order parameter in GL theory. Brandt also replaces A and £ with
A/V1—Tband £//T—b. respectively. With the external magnetic field applied parallel
to the crystallographic é-axis. the local field at any point in the a-b plane is then given
by Brandt's modified London model [54.122.123]

-iK.r 6-1\'2555/2(1—1))

€
B(r) = B _ . 410
(r) °§ 1+ L2A%,/(1 - b) (.10)
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where B(r)= B(r)z and the cutoff factor should be replaced with exp(— V2K €,/ VT =b)
when b < 1. In Chapter 6. we shall show that Eq. (4.10) is a reasonable model for the

internal field distribution due to the vortex lattice in a real superconductor.

4.4.1 Vortex Lattice in a s-Wave Superconductor

The vortex core in a clean s-wave superconductor was first studied by Caroli. de Gennes
and Matricon [124]. Using a Bogoliubov formalism these authors calculated the low-
energy spectrum of quasiparticle bound states in an isolated vortex core in which E <
Ag. where A is the bulk energy gap in zero magnetic field. They determined that the
vortex core radius ro (i.e. where the order parameter changes appreciably) was on the
order of the coherence length £. The model is conceptually the same as the quantum
mechanical picture of a particle in a cylindrical potential well of radius Ex~hep/mAg
and depth \g. The eigenvalues of the low-lying quasiparticle states may be wrirten
as E, > pNG/Ep ~ pNo/kp€. where p=1/2.3/2.5/2..... are the angular momentum
quantum numbers and Er is the Fermi energy. 2 Bardeen et al. [126] later extended
the calculations of Caroli et al. to determine the higher energy scattering states with
E > g and the effects of the magnetic field on the energy of the bound states in
the vortex core. Neumann and Tewordt [127] determined the vortex structure near T.
by numerically solving the GL equations while various other authors obtained vortex-
lattice solutions of the Gor kov microscopic equations [128.129] near H., using a variety
of approximations [130.131.132.133.134].

To determine the vortex structure for arbitrary temperature. magnetic field and
impurity concentrations. numerous efforts were made to numerically solve Eilenberger’s

equations [133]. which are a reformulation of the microscopic Gor'kov theory. In the

*The quantity y must be an odd half-integer to ensure that the wave functions u and ¢ in the
Bogoliubov equations describing the excited states in the vortex core are single-valued. as discussed in

Ref. [125].
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dirty limit the transport-like Eilenberger equations reduce to the simpler diffusion-like
Usadel equations [136.137]. Using a circular-cell approximation. Kramer et al. [13§]
determined the vortex structure in the dirty limit by numerically solving the Usadel
equations near H.,. They found that the size of the vortex core shrinks with decreasing
T at low temperatures. but that the effect is much weaker than expected in the clean
limit. Numerical solutions of the Eilenberger equations for nearly isolated vortices in the
clean limit were later obtained [139.140]. again using a circular-cell approximation. In
the clean limit the size of the vortex core region was found to shrink more drastically and
the field at the center of the core increased with decreasing temperature. In particular.
for T < T. the order parameter v°(r) and the supercurrent density J,(r) are predicted
to increase from the center of an isolated vortex core over a length scale £, which has
a temperature dependence given by [140]

€= b0k (4.11)

T (4.

where & is the coherence length defined in BCS theory. This prediction is commonly
referred to as the “Kramer-Pesch effect™. The predicted temperature dependence of
the vortex core size is related to thermally activated quasiparticle excitations which
populate the higher energy bound states. At high temperatures the bound states with
energies E, are densely packed within the low-energy region of the vortex core (i.e.
E, < Ap). Upon reducing the temperature. the bound state energies E, increase so
that there are fewer bound states in the vortex core region. The mimimum size of
the vortex core is obtained when only the lowest bound state is populated [141]. The
case of arbitrary impurity concentration was treated in the context of the Eilenberger
equations using a circular-cell approximation by Rammer et al. [142] and by Klein [143].
who rigorously solved the Eilenberger equations numerically for a hexagonal vortex

lattice without making any approximations. Impurities reduce the maximum feld in
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the vortex core. Near T. the effects of impurities on the magnetic field distribution are
negligible.

More recently. Hayashi et al. [148] have investigated the quantum regime of a single
vortex in a clean s-wave superconductor. by self-consistently solving the Bogoliubov-
de-Gennes (BdG) equations. The temperature dependence of the vortex-core radius is
found to essentially agree with the Kramer-Pesch effect except at temperatures below
the so-called "quantum limit”. In this limit the temperature is low enough that there is
no thermal smearing of the discrete bound quasiparticle states in the vortex cores (i.e.
k+T <E,). Acccording to Hayashi et al.. the quantum limit is reached below T < 30 mI
in NbSe;. In this temperature region the shrinkage of the vortex cores must saturate.
Unfortunately. experiments thus far have not probed this low-temperature regime.

Scanning tunneling microscopy (STM) experiments on the layered hexagonal con-
ventional type-II superconductor NbSe; by Hess et al. [144] confirmed the existence of
localized states in the cores. In the vicinity of a single vortex they measured the differ-
ential conductance dI/dV". which is proportional to the local density of states (LDOS).
Well away from the vortex center. the dI/dV" vs. V" scan resembled the standard BCS
density of states for zero magnetic field. In the vortex core region. however. instead of
the constant LDOS expected for the normal state. they observed a pronounced peak
in the differential conductance centered at zero bias voltage. The peak has been inter-
preted as being due to the bound states localized inside the vortex core. Theoretical
efforts [145.146.147.149.150] shortly followed which focused on calculating the LDOS
observed in this now famous experiment and subsequent experiments on N bSe; by Hess
et al. {151.152.153]. In a conventional s-wave superconductor with an isotropic energy
gap. the LDOS has circular symmetry around an isolated vortex core. Hess et al.
observed that the LDOS has a sixfold star shape around a vortex in NbSe, [151]. Fur-

thermore. the orientation of the star was found to depend on the quasiparticle energy
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and at intermediate bias voltages the rays split [152]. The origin of the sixfold syimme-
try in the LDOS has been explained in terms of vortex-vortex interactions [134]. gap
anisotropy [153]. the anisotropic Fermi surface [156]. and combinations of these effects
[155]. The magnetic field distribution B(r) in the vortex core region will depend on
which of these interpretations is correct. For instance. if vortex-vortex interactions are
the major source then the field distribution B(r) will be nearly circularly syimetric
in the vortex core region and will progress to a definite sixfold symmetry farther away
from the vortex center (as shown in Ref. [154]). The circular symmetry will extend fur-
ther out from the vortex center as the magnetic field is weakened. On the other hancl. if
the sixfold symmetry observed in the STM experiments is due to an anisotropic s-wave
energy gap. the sixfold symmetry in B(r) will be more prominent in the vortex core
region. Even in this latter case. however. the field distribution in the vortex core region
can be reasonably approximated by circular symmetry.

The GL theory has the spatial dependence of the order parameter built in and thus
provides a natural description of the magnetic field in the vortex-core region. Abrikosov
[157] predicted the vortex state from his famous periodic solution of the GL equations
near H.;. He also provided an approximate analytical solution of the GL equations
for an isolated vortex near H.,. For intermediate fields. the GL equations must be
solved numerically. The magnetic field distribution obtained from the exact numerical
solutions of the GL equations coincides with that from the modified London model at
low fields and arbitrary ~ [158]. J.R. Clem [159] proposed a variational model to solve
the GL equations based upon a trial function for the order parameter: f=r/iri+e3)1/2,
where £, is a variational core radius parameter. This model solves the GL equations

approximately at low magnetic fields (i.e. isolated vortices) vielding an analytical
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expression for the magnetic field distribution

K ) L2 /\—-2 —-iK-r
Bie) = 5,3 Kb/ B2 +Ashe ke )

K I\—l(fv//\ab)/\rzbl\'

where Ii(r) is a modified Bessel function. For extreme type-II superconductors (x 3> 1).
€.~ \/2€. where € is the GL coherence length.

Hao et al. [160] extended the Clem model to larger magnetic fields through the linear
superposition of the field profiles of the individual vortices. This included multiplying
the trial function for the order parameter by a second variational parameter f. to take
into account the depression of the order parameter due to the overlapping of vortices.
In particular. fx — 1 as B — 0 (i.e. the Clem limit) and fx — 0 as B approaches
the upper critical field. Yaouanc et al. [121] recently simplified Hao's analytical model
exclusively to the case of A2R2, > 1. where K., is the smallest non-zero reciprocal
lattice vector of the vortex lattice. This condition is satisfied even at low fields for large
x superconductors like the high-T. compounds. The result is that the local field at any

point in the a-b plane due to an applied field along the é-axis is [121]

—iK-r I
B(r)=By(1 - b)Y ¢ \2“[.‘2‘(“). (4.13)
K Anb AN

where \'|(u) is a modified Bessel function and

u? = 24 K31 + bY)[1 - 26(1 — b)?]. (4.14)

The Bessel function has the asymptotic limits A(u) = 1/u — (u/2)In(1.7139/u) for
(¢ < 1) and Ky(u) = (7/2u)?exp(—u) for (v > 1). Yaouanc et al. (121] argued
that there is no general theory for the field distribution valid at arbitrary temperature
and that the B(r) derived from GL theory should be applicable down to B=0. This
seems unliklely since the symmetry of the LDOS around a vortex core depends on the

energy E of the quasiparticle bound states relative to the temperature dependent energy
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gap A(T). Nevertheless. Brandt [161] has recently developed an iteration method for
solving the GL equations. to compute the field profile B(r) for a vortex lattice of
arbitrary symmetry at any value of magnetic field. Equation (4.13) is found to agree
extremely well with these exact numerical solutions of the GL equations at low reduced
fields b [121].

To employ Eq. (4.10) or Eq. (4.13) one must assume an appropriate geometry for
the vortex lattice. Theoretically. the equilibrium structure of the vortex lattice can be

found by minimizing the Gibbs free energy

BH
Gr=F~——. (4.15)

where the London free energy per unit volume associated with the vortices is 162
Fi = / [h? + AYV x h)?|d?r/87 4. (4.16)

where A is the area of the sample. The vortex-lattice geometry which minimizes the free
energy for a conventional s-wave superconductor is a triangular lattice [162.163.164].
Ideally. the vortex structure is determined by experiment. This is possible in super-
conductors which contain few foreign contaminants or structural defects. For instance.
STM [144.153] and small angle neutron scattering (SANS) [165] measurements on the
anisotropic conventional type-II superconductor NbSe, show a perfect triangular lattice

with long-range order. when the magnetic field is applied parallel to the é-axis.

4.4.2 Vortex Lattice in a d-Wave Superconductor

The problem of an isolated vortex line in a d,2_,2-wave superconductor was first seri-
ously considered by Soininen et al. [166]. using a simple microscopic model for electrons
on a lattice in the BAG formalism. In calculating the spatial distribution of the or-

der parameter for a single vortex, they found that an s-wave component is induced
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near the vortex core with opposite winding of phase relative to the d-wave component.
Several authors [167.168.169.170.171] have studied the effect of this induced s-wave
order parameter on both an isolated vortex and the vortex-lattice structure. in terms
of two-component GL equations containing both s-wave and d-wave order parameters.
In these equations the s-wave component couples to the d-wave component through
mixed gradient terms. Because of this coupling. the s-wave component is induced by
spatial variations in the d-wave order parameter which occur in the vicinity of a vortex
line. In a tetragonal superconductor the induced s-wave order parameter has four-
fold symmetry and the d-wave order parameter has circular symmetry. Thus. in the
core region of an isolated vortex. the magnetic field distribution is fourfold symmetric.
whereas away from the core region. where the s-wave component vanishes. the field
distribution has circular symmetry. At low temperatures near H.,. the vortex lattice
is oblique—reflecting the fourfold symmetry of the s-wave order parameter. However.
near T the s-wave component becomes negligible and the vortex lattice is triangular.
This latter prediction is crucial to the study of YBa,;Cu3O0+_; in this thesis. Later it will
be shown that when YBa,Cu30¢.s5 is cooled through 7, in the presence of a nmagnetic
field. the vortex lattice becomes strongly pinned at T0.75 T. and remains so for fur-
ther reductions in temperature. Thus the vortex lattice geometry at low temperatures
is governed by the geometry at the pinning temperature—which is nearly triangular in
the two-component GL model.

It is well known that the orthorhombic crystal structure of YBa,Cu;0-_. results
in a significant mass anisotropy in the a-b plane—although the actual value of ~ =
(mq/my)/? is clearly a doping-dependent quantity. For instance. according to infrared
reflectance measurements at zero field: v = \,/\, =1.55 and Aad(T = 0) = (N, \) 2 =
[(1600)(1030)]'/?=1284 A in YBa,;Cu30¢ .05 [172]. while v =1.31 and A\,p =(\, \s)" /2=
[(2100)(1600)]'/2=1833 & in YBa,Cu3Og .o single crystals [173] similar to those used
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in the present study. Xu et al. {170] have extended the two-component GL theory to
include the effects of mass anisotropy. When the magnetic field is applied parallel to
the crystallographic ¢-axis. both the s-wave and d-wave order parameters show a two-
fold symmetry. where the d-wave order parameter has essentially elliptical symumetry.
Within the GL formalism. Heeb et al. [174] find a similar reduction from fourfold to
twofold symmetry in the presence of orthorhombic distortions. More recently. [chioka et
al. [175] reconstructed the two-component GL theory to investigate the vortex lattice
in a pure d,._,-wave superconductor at low temperatures near H. 2. These authors
argue that correction terms derived from the Gor'kov equations which are absent in
conventional GL theory must be included at low T. They find that the unit-cell shape
of the vortex lattice transforms from hexagonal to square at low temperatures. with
the fourfold symmetry of the cores becoming clearer. even when there is no induced
s-wave component included in the theory.

It is important to realize that the results using the two-component GL theory are
strictly valid only along the superconducting-to-normal phase boundary near H.,. and
therefore do not necessarily provide an understanding of the vortex-lattice structure
deep in the superconducting state where SR experiments are performed. Near H.,.
where the vortices are close together. the fourfold symmetry of the induced s-wave
component in the cores leads to a fourfold symmetry in the vortex-lattice configuration.
However. there is no reason to expect this to be the case at low fields where the density
of vortices in the superconductor (and hence the influence of the cores on the fux-lattice
geometry) 1s diminished. For instance. in the borocarbide superconductors RN1,Bi,C
(R= Er. Lu) the vortex lattice has been shown to transform from square to triangular
at low fields [176.177]. Although the origin of the fourfold symmetry at high fields
is as yet unresolved in this family of compounds. it is clear that the geometry of the

vortex lattice can change with reduced vortex-vortex interactions. Of course all of this
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is irrelevant if the vortex lattice “freezes” in at high temperatures. as mentioned earlier.

Another serious problem with the two-component GL theory. is that it contains
too many phenomenological parameters to be useful in fitting the measured internal
field distributions. Recently. Affleck et al. [178] attempted to resolve these issues
by generalizing the London model to include four-fold anisotropies in a tetragonal
material. Starting from a GL free energy density with s and d-wave order parameters.
they derived the corresponding London equation. For a magnetic field applied along
the é-axis. the field profile which is obtained may be written as [178]

e~ Kr —R2E2, /2

a

1+ K222, + 4eA2,6% (K, K,)?2

B(r) = Bo)_ (4.17)

K

where € is a dimensionless parameter which controls the strength of the coupling be-
tween the s and d-wave components. For €= 0. Eq. (4.17) reduces to Eq. (4.10). Un-
fortunately. the vortex-lattice structure obtained by minimizing the Gibbs frec energy
of Eq. (4.15) depends on the choice of e. which cannot be determined independently.

Franz et al. [179] have recently developed a generalized London model derived from
a simple microscopic model. which takes into account the nonlocal behaviour which
occurs in the vicinity of the nodes in a d;2_,2-wave superconductor. This modified
London model predicts novel changes in the vortex-lattice geometry. including two
first order phase transitions at low T. More recently. this work has been extended to
account for both nonlinear and nonlocal effects as discussed earlier (40]. It is found
that the nonlocal corrections are the dominant effect in determining the vortex-lattice
geometry. In particular. the numerical calculations in Ref. [40] yield a nearly triangular
vortex lattice. It should be noted. however. that the source term the authors used in
the London equation was derived from the GL equations near H., [120]. and is not
theoretically valid for lower magnetic fields.

Shiraishi et al. [180] have studied the vortex lattice using the extended GL theory.
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which includes the fourth-order derivative term and accounts for the finite size of the
vortex cores. The fourfold symmetry of the vortex cores leads to a first order transition
in the vortex-lattice geometry with increasing magnetic field. In particular. in weak
fields the vortex lines form a triangular lattice which slowly transforms with increasing
magnetic field. and then suddenly changes to a square lattice. Near T. they predict a
crossover field given by H., =0.524H,(T/T.)/(\/— In(T/T.)x).

The structure of a single isolated vortex in a pure d,2_,2-wave superconductor has
been calculated using the quasiclassical Eilenberger theory [181.182]. which is valid at
arbitrary temperature. A fourfold symmetry appears in the LDOS. the pair potential.
the supercurrent and the magnetic field distribution around a vortex. The fourfold
symmetry about the vortex center is strongest in the core region and gradually fades to
circular symmetry toward the outer region. On the other hand. using an approximate
version of the BdG equations Morita et al. [183] found that the LDOS around a
single d.:_,2:-wave vortex has circular symmetry. and exhibits fourfold symimetry only
when an s-wave component is mixed in. Franz and Ichioka [184] have since argued
that the circular symmetry obtained by these authors is an unphysical artifact of the
approximations used for the BdG equations. The BdG equations have been solved
numerically for a vortex lattice of a d-wave superconductor [166.183]. Unfortunately.
there are currently no calculations (in any formalism) of the vortex-lattice structure
in a d;2_,2-wave superconductor. which are valid at both low T and low H swhere
experiments are generally performed.

Several authors [182.185.186] have suggested that the low-lying quasiparticle exci-
tations cannot be bound in a d-wave vortex core because of the presence of the nodes.
Rather than states which are localized in the core as in a s-wave superconductor. the

states are peaked in the core region but extend along the node directions. According
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to Ichioka et al. [182]. in the vortex state of a d,._,2-wave superconductor the quasi-
particles do not flow along conventional closed circular trajectories. but rather fow
along open trajectories which connect with those of nearest-neighbor vortices. This
theoretical model requires that the nodes lie along the line connecting nearest-neighbor
vortices. In the absence of anisotropy. this implies that the nearest-neighbor direction
must be 45°.

So far. experiments have not entirely resolved the issue of the vortex-lattice structure
in the high-T. materials either. The major problem has been in determining how much
of the observed vortex structure is directly attributable to the d,._,.-wave pairing state
and how much is due to deformations of the lattice caused by extrinsic effects. Generally
speaking. Bitter decoration experiments which image the vortex lattice at the sample
surface indicate that the vortices arrange themselves to form a triangular lattice. For
instance. Gammel et al. [187] observed a triangular lattice with long-range order in
YBa,;Cu30;. Decoration experiments by Dolan et al. [188] show a triangular lattice
in YBa,Cu30;. with a slight distortion probably caused by the a-b plane anisotropy.
A triangular vortex lattice with long-range order was also observed by Vinnikov et al.
[189] in T1,Ba,CaCu,0;, at T=0.047- and in Bi1,Sr,CaCu;044. by Kim et al. [190] at
high temperatures. Since the Bitter decoration technique is resolution limited to low
magnetic fields. the results obtained may not be representative of the lattice structure
at higher magnetic fields. particularly in a sample dominated by extrinsic effects.

The structure of the vortex lattice in the bulk of a superconductor can be investi-
gated using small-angle neutron scattering (SANS). The pattern generated by neutrons
scattering from the vortex lattice is the reciprocal lattice of the real-space vortex lattice.
Large single crystals are generally required so that the diffracted neutron mtensity is
strong enough to clearly resolve the peaks resulting from Bragg reflection. The scat-

tered intensity is proportional to the square of the spatial variation in the local magnetic
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field. which is of the order A=* [191]. In principle. one can measure the temperature
dependence of \ using SANS. The signal-to-noise ratio is reduced in samples which
contain defects which scatter the neutrons in the same small angle as those scattered
from the vortex lattice. In clean conventional superconductors like Nb and NbSe,. a
perfect triangular lattice with long-range order is observed using SANS [165.192]. A tri-
angular lattice has also been observed in the high-T, superconductor Bi,;Sr,CaCu;Oyy4s
at low temperatures [193]. On the other hand. resolving the vortex-lattice geometry
in YBa;Cu30:_; has been more difficult. Forgan et al. [191] investigated the vortex
lattice in small single crystals of YBa,Cu;0: up to fields of 0.6 T. Only diffraction
spots corresponding to vortices parallel to the twin boundaries were strong. Relatively
weak diffraction spots were observed in the other directions—twhich implies that the
vortex lattice was non-uniform. A diffraction pattern with square symmetry was ob-
served by Yethiraj et al. [194] in a SANS study of the vortex lattice in Y Ba,Cu;0-.
The authors attribute the observed geometry to twin planes. since the intensity peaks
are aligned along the (110) direction. More recently. Keimer et al. [195] studied the
vortex lattice in a larger single crystal of YBa,Cus0- for magnetic fields of 0.5t0 1.5 T
applied along the crystallographic é-axis. at T = 4.2 K. These authors reported that
the vortices form an oblique (fourfold symmetric) lattice with an angle of 73° between
two nearly equal primitive vectors. and that one of the primitive vectors is oriented at
an angle of 45° with respect to cither the & or b axis. The alignment of one primitive
vector of the oblique lattice with the (110) or (110) direction of the underlying crystal
lattice was observed in four different orientational domains of the crystal. Walker and
Timusk [196] noted that the vortex-lattice geometry observed in this SANS experiment
1s easily explained as a combination of strong pinning effects due to twin planes and
the a-b plane anisotropy in YBa,Cu307. In particular. an equilateral-triangular vortex

lattice with one side aligned along a twin boundary. which is then stretched (due to
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the a-b plane anisotropy) along a line which makes a 45° angle with the twin boundary.
vields the observed vortex-lattice geometry.

An oblique lattice was also found in STM measurements performed by Maggio-
Aprile et al. [197] on the (001) surface of twinned YBa,CusO-_s. at H =6 T and
T = 4.2 K. Consistent with the SANS results. they report an angle of 77° between
nearly equal primitive vectors—although they could not determine the orientation of
the vortex lattice with respect to the crystal lattice. The oblique lattice imaged in
this experiment was only observed locally. with no apparent long-range order. These
authors also report that the vortex cores are ellipsoidal in shape with the ratio of the
principle axes being about 1.5. The elongation of the cores is consistent with the a-b
plane anisotropy in YBa,Cu3O;_s—i.e. other than this anisotropy the vortex cores
appear to be approximately circular. As is the case for the SANS experiments. the
geometry of the observed vortex lattice can also be explained as a combination of the
a-b plane anisotropy and an alignment of vortex lines with twin houndaries. Thus in
a detwinned or sparsely twinned sample of YBa,Cu30-_,. it is likely that the vortex
lattice is triangular at moderate magnetic fields.

There are several serious discrepancies between the current experiments on high-T.
superconductors in the vortex state and the theoretical models for the vortex lattice of

a d,2_,2-wave superconductor:

1. None of the current theoretical models can explain. in terms of an intrinsic mech-
anism. both the vortex-lattice geometry (observed in the SANS and ST\ experi-
ments on YBa;Cu3z0:_s) and the orientation of the vortex lattice with respect to
the crystallographic axis (observed in SANS experiments in YBa,Cu;0-_,). To
fully understand the influence that the symmetry of the pairing state has on the

vortex-lattice geometry. it will be necessary to perform imaging experiments on
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untwinned crystals and/or tetragonal superconductors.

o

The STM image of the vortex core on YBa;Cu3O7_s by Maggio-Aprile et al. [197]
does not show the fourfold anisotropy predicted for the LDOS near a d,._ g2-wave

vortex.

3. Experiments performed on both YBa,Cu;0-_, [197.198] and Nd; g5CeysCuOy s
[199] are more consistent with a picture in which a few bound quasiparticle states
exist in the vortex core—which contradicts the idea that the low-lying quasiparti-
cle excitations cannot be bound in a d,2_,2-wave vortex core because of the nodes.
For instance. in the STM experiment on YBa,CuzO-_; [197] two peaks separated
by about 11 meV were observed in the differential conductance df /dV (i.e. the
LDOS) measured at the center of a vortex core. A natural interpretation of this
result is that these peaks correspond to the lowest bound quasiparticle energy

levels.

Franz and TeSanovi¢ {186] have recently attempted to address some of rhese issues
by proposing a mixed d;2_,2 + id., pairing state. For this symmetry there is a finite
energy gap everywhere at the Fermi surface so that bound quasiparticle states can
exist. Within a BdG formalism these authors predict near spatially-isotropic bound
quasiparticle states—however. the size of the d:, component required to reproduce
the gap observed in the tunneling conductance at the center of the vortex core in
Ref. [197] may be difficult to reconcile with other experiments. For instance. the linear-
T dependence of A,; found in our own #SR studies of YBa,;CuzO-_; in the vortex state
[2.3.53] imply that any finite gap which opens along the node directions cannot be too
large.

Given the anomalous normal state properties in the high-T. compounds. it is quite

reasonable to expect deviations from the conventional picture of a vortex core in these
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materials. One such novel description is the prediction from SO(3) theory for the
existence of a superconducting vortex with an antiferromagnetic core in underdoped
high-T. compounds {200.201]. Recently. we have investigated this possibility in a uSR
study of YBa,Cu30ss5: (Ref. [202]). However. neither this study or any other has
produced clear evidence for the existence of antiferromagnetism in the vortex core.
With experiment and theory in apparent disagreement. it seems reasonable to model
the vortex lattice in the simplest possible manner. Furthermore. it does not matter
whether theory predicts a fourfold symmetric vortex lattice for YBasCusO-_. if pin-
ning “freezes in” the threefold (triangular) lattice just below T.. In this thesis. the
contribution of the vortex lattice to the measured uSR line shape will be modelled
with both Brandt's modified London model [see Eq. (4.10)] and Yaouanc's version of
Hao's analytic solution to the GL equations [see Eq. (4.13)]. The primary advantage
of using these phenomenological models is that they contain a manageable number
of parameters for fitting the uSR spectra. In addition. both models are conveniently
valid at low reduced fields b where uSR experiments are generally performed. [ will
show in this study that fitting to these models vields a good description of the T and
H-dependences of the fundamental length scales A and € (i.e. rg) in both conventional

and unconventional superconductors.




Chapter 5

Experimental Details

This chapter begins by describing the novel uSR apparatus used for the experiments
contained in this thesis. This is followed by a discussion of the characteristics of the

compounds studied.

5.1 The Apparatus

A novel low background apparatus [204] was employed to greatly suppress the sig-
nal originating from muons which miss the sample. Previous uSR studies have been
plagued by a large background signal which contributes significant spectral weight to
the measured line shape. This has been a problem particularly for the high-T. com-
pounds because of the small size of good quality samples. For instance. the ratio of
the cross-sectional area of the sample to the beam spot area is typically 1/3. Since
the average magnetic field of the background signal is close to the average field in the
sample. the background signal always appears near the middle of the measured internal
field distribution of the sample.

The experimental arrangement is shown in Fig. 5.1. The crystals were miounted on
a thin piece of aluminized Mylar stretched over a hollow cylindrical aluminum sample
holder. A small amount of Apiezon N grease was used to attach the crystals to the My-

lar. The crystals were mounted so that their é-axes were parallel to the magnetic field
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and muon beam directions. The muons were injected with their initial spin polariza-
tion P(¢=0) perpendicular to the magnetic field direction. A thin scintillation counter
(M) was used to detect the incoming muons. The signal from the M counter started
a clock provided that no muon had entered the sample in the previous time interval
(~11 ps). The clock stopped when a decay positron was detected. A cup-shaped veto
counter (V") placed behind the sample was used to suppress the unwanted background
signal from muons which missed the sample. The decay positrons from muons stopping
in the sample were detected by overlapping cylindrical forward ( F) and backward (B)
counters. As shown in the lower illustration of Fig. 5.1. the F and B counters consisted
of four individual counters Fy. F,. F5. F; and B,. B,. Bs. B,. respectively. A valid
muon stop was defined as M - V7 and a valid positron event was defined as F,-B, -V
where :=1.2.3 or 4. The dashed lines in the top illustration of Fig. 5.1 show the solid
angle subtended by the overlapping F and B counters. Note that the arrangement of
the F'. B and 1" counters is such that decay positrons originating from muons which
miss the sample and stop in the back of the 1~ counter are rejected. Since these “bad™
muons register neither a valid muon stop nor a valid decay positron. they are logically
excluded from the experiment.

The sample and veto counter were contained within a horizontal *He gas-flow cryvo-
stat. The uSR time spectra in this study were recorded under conditions of feld
cooling (i.e. cooled below T. in an applied magnetic field). Typically each spectrum
consisted of 2 x 10" “good™ muon decay events. The measurements were performed on
either the M135 or the M20 beam line at TRIUMF. each of which produces a beam of

spin-polarized positive muons of mean momentum 28 MeV /c.
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Figure 5.1: The low background uSR apparatus. The sample and veto counter (V) are
contained within a cryostat which is not shown for clarity. The lower figure shows the

arrangement of the positron and muon counters in 3 dimensions.
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5.2 The Samples

The structure of the NbSe, single crystal used in this thesis is shown in Fig. 5.2. The
precise chemical formula is 2H-NbSe,. The numeral 2 indicates the number of layers
in a unit cell. while the capital letter H indicates the type of crystal symmetry (i.e.
H stands for hexagonal). Each layer is a "sandwich” of two layers of Se atoms with a
layer of metallic Nb atoms between them. The Nb and Se atoms within a sandwich
are covalently bonded. and these atoms form a 2D-hexagonal lattice. The NhSe, lavers
are weakly coupled by van der Waals forces. As a result. the mechanical and electrical
properties of 2H-NbSe, are extremely anisotropic. For instance. this material is very
easy to cleave along a plane parallel to the layers. This feature makes NbSe, ideal for
studies of the vortex lattice using surface techniques (such as STM) since clean. fresh.
smooth surfaces are easily obtained. The 2D nature of the electronic properties in NbSe,
is similar to that in YBa,Cu;0-_;. Electrons can move freely within the layers. however
the overlap of the electron wave functions between the layers is small. Consequently.
the conductivity perpendicular to the layers is several orders of magnitude smaller than
that within the layers.

The NbSe; single crystal was grown by a standard vapour transport technique
as discussed in Ref. [83]. The characteristics of this sample are listed in Table 5.1.
The near zero-field T. was 7.0 K with a transition width less than 0.1 K. determined
from magnetization measurements. The upper critical field was also measured with
magnetization and is roughly described by the relation Ho(T)=H,(0)[1 - t?]. where
t=T/T.. H»(0)=3.5 T and p=1.55.

Figure 5.3 shows the unit cell of the fully oxygenated compound YBa,Cu;0-. The
unit cell is orthorhombic with dimensions a=3.83 4 . $=3.88 A and c=11.65 A . The

layers containing the Cu(2) and O(3) sites are often referred to as the “C uQ, planes”.
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Figure 5.2: Top: Structure of the layers in 2H-NbSe; (shown in the 1120 plane). bot-
tom: Structure of 2H-NbSe; in three dimensions.
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whereas the layers containing the Cu(1) and O(1) sites along the b-axis are commonly
referred to as the “chain layers™. The O(2) and O(3) sites in the CuQ, planes are
almost always occupied. Deoxygenation involves the removal of oxvgen primarily from
the O(1) sites.

The most significant improvement in experimental studies of YBa,Cu3;O-_; in recent
vears is the availability of high-quality single crystals. The single crystals used in
the present study were grown at the University of British Columbia (UBC) by a flux
method in yttria-stabilized-zirconia (YSZ) crucibles [203]. The purity of the UBC
crystals has been determined to be greater than 99.5%. The impurities which are
present in the crystals originate from corrosion of the crucibles. The characteristics of
the YBa,;Cu307_s samples used in the present study are summarized in Table 5.1. The
transition temperatures were determined by low-field magnetization measurements.
All samples were on the order of 0.1 mm thick. The high quality of these crystals has
been verified by other characterization methods. namely resistivity. microwave surface
resistance and heat capacity measurements (see Ref. [203]).

Hole doping in YBa,;Cu30;_; is primarily controlled by adding or removing oxygen
in the O(1) sites in the CuO chain layers. The local oxygen configuration is highly
sensitive to the temperature and oxygen partial pressure in the annealing process.
Impurities tend to impede the mobility of some of the oxygen. Thus. the most uniform
oxygen configuration can be achieved in the purest crystals. The highest value of T. is
obtained with ¢ %0.05. so that YBa;Cu3Qg.g5 will frequently be referred to in this thesis
as the “optimally doped™ compound. Note that there are still some oxygen vacarcies
at this doping level which may act as pinning sites for vortex lines. At § = 0.4. every
other CuO chain in a chain layer is essentially empty. The compound YBa,CuzOg 0

will often be referred to as the “underdoped” compound.



Chapter 5. Experimental Details

87

. ) Number T. Total Surface
Sa:rnple Chemical of Mass Area Detwinned Ref.
Name | Formula | oo K] mg] | [mm?
01 YBa,Cu30¢.95 3 93.2(0.25) 33 36 no [2.3]
02 YBag CLI:}Ot;_gs 1 93.2( 025) 25 no {3]
03 Y’Bag C'u3 06.95 1 93.2( 025) 25 yes
U1 ’Y-Baz CLI:;OG.G() 3 590( < 0. 1) 33 36 no [5]
U2 Y’Bagc‘u;;OG,eo 2 59.0( < 01) 30 yes [5]
NB NbSe, 1 7.0(< 0.1) 43 30 no twins (4]

To remove the twin planes. some of the samples were mechanically detwinned and
subsequently reannealed to set the oxygen doping level. Sample O3 was completely
free of twins after this process. However. some of the twin planes reformed in sample
U2 when reannealed. The separation between the twin boundaries in U2 was on the

order of 10" A. which is substantially larger than the spacing between vortex lines for

the field range considered in this study.

Table 5.1: Sample characteristics.

5.3 General Comments on the Fitting Procedure

All of the uSR spectra were fit in the time domain. In particular. the real and imagi-
nary parts of the corrected asymmetry were simultaneously fit in a rotating reference
frame as explained in Chapter 3. The spectra were fit with the following nine variable

parameters:

1. AJ: the maximum precession amplitude of the corrected asymmetry for the signal

originating from within the sample.
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V]

9.

vu: the average precession frequency of the muon spin in the sample [te. v, =

(7./27)Bg. where By is the average internal field in Eq. (4.13)].

- 0: the initial phase of the muon spin polarization vector.

os: the effective depolarization rate due to random disorder in the vortex lattice

and nuclear dipolar moments in the sample [see Eq. (3.24)].

Abkga: the maximum precession amplitude of the corrected asymmetry for the
residual background signal (as will be explained in Chapter 6. the residual back-
ground signal was fit assuming a Gaussian broadened distribution of magnetic

fields).

- Obkgd: the depolarization rate corresponding to the residual background signal.

Ubkgd: the average precession frequency of the muon spin due to the average field

Bukga of the background signal.
At see Eq. (4.13).

E.: see Eq. (4.13).

The sum over reciprocal lattice vectors in Eq. (4.13) was carried out by sampling

2814 evenly spaced points in the triangle formed by three adjacent vortices. Significant

changes in the fitted parameters was found for sums less than 1626 points. whereas an

increase in the sum to 4902 reciprocal lattice points changed the fitted value of \,; by

less than 1 %.

In all cases the first 6 us of the time spectrum were fit. There was essentially no

change in the fitted parameters corresponding to the sample signal when the time range

was increased to 10 ps. The raw data was binned so that there were approximately
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1200 data points (z.e. 600 in the imaginary part and 600 in the real part of the corrected
asymmetry spectrum). Doubling the bin size (to reduce the total number of data points
to about 600) did not change the fitted value of A, and changed the fitted value of £,

by no more than 3 % in YBa,Cu;30¢9s.




Chapter 6

Experiment: NbSe,

In this chapter. recent uSR measurements of the a-b plane magnetic penetration depth
Ass and the vortex core radius rg in the conventional type-II superconductor NbSe, are
presented.

Figures 6.1 and 6.2 show the Fourier transforms of the muon precession signal
in NbSe; as functions of temperature and applied magnetic field. respectively. The
horizontal axes are in terms of the internal magnetic field B relative to the average
field of the background signal Bhigd. which by definition is centered at 0 G. As the
temperature or magnetic field is lowered. the line shape broadens and the high-field
tail becomes longer due mainly to a decrease in A,;. The high-field cutoff is clearly
visible in all of the measured line shapes for NbSe,. This implies that the vortex cores
occupy a significant volume of the sample. This fractional volume depends on both the
size of the vortex cores and the areal density of vortices.

In order to test the effects of the analysis procedure on the determined behaviour
of Ay and &g three different models for the theoretical internal field distribution cor-

responding to the vortex lattice were considered:

1. the modified London (ML) model given in Eq. (4.10) with a Gaussian cutoff factor

exp(—L€%,/2(1 - b)).

2. the ML model with a Lorentzian cutoff factor exp(— V2K E,/V1 = b).

90
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REAL AMPLITUDE (x1077)

B—Bbkgd (G>

Figure 6.1: Fourier transforms of the muon spin precession signals in NbSe, after field
cooling to T =4.5. 3.5 and 2.4 K in a magnetic field H =0.19 T. The average magnetic
field of the residual background signal is centered at B — Bpkga=0 G.
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NbSe,
T=2.4K

REAL AMPLITUDE (x107%)

-100 =50 0 30 100 150
B— Bbkgd (G)

Figure 6.2: Fourier transforms of the muon spin precession signals in NbSe, after field
cooling to T=2.4 K in magnetic fields of H =0.79. 0.40 and 0.10 T.
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Figure 6.3: The magnetic field dependence of \,,(H) at T =0.33 T. in NhSe,. deter-
mined from fits to three different models for the field profile B(r) of the vortex lattice.
The solid line fits are described in the text.

3. the analytical GL model given in Eq. (4.13).

In all three cases. a triangular vortex lattice was assumed. The cutoff factors assume
circular symmetry. so that within these models a sixfold symmetry around a vortex line
is generated solely from vortex-vortex interactions. The theoretical muon polarization
function P(t) is generated by assuming a field profile given by one of these three models.
and then multiplying by a Gaussian relaxation function G(t)=exp( —a%t?/2) to account
for random disorder in the vortex lattice and the contribution of the nuclear dipolar
moments. In addition. a Gaussian broadened distribution of fields with width Tbkgd
and average field Bpygq was used to fit the residual background signal independently.
Figure 6.3 shows the magnetic field dependence of Ay at T=0.33 7. (i.e. T=2.3 K)
obtained by fitting the uSR time spectra with a polarization function which assumes

one of the three models for the field distribution due to the vortex lattice. From
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Model for B(r) A(0) [-&] 3

ML: Gaussian Cutoff 1659(1) 1.85(4)
ML: Lorentzian Cutoff 1398(2) 0.81(3)

Analytical GL Model 1323(2) 1.62(3)

Table 6.2: Parameters from fits of \,,( H.T =0.337.) to Eq. (6.1) for NbSe,.

magnetization measurements. H.,(0.33 T.)=2.9 T. so that the results extend over the
field range 0.03<h < 0.31. where h=H/H.,. A clear linear H-dependence for A,,( H) is
obtained for all three types of analysis. although there is some difference in the absolute
value of A(H) and the strength of the linear term. The solid lines in Fig. 6.3 are fits

to the linear relation

Aab(H )= Ap(0)[1 + 3h]. (6.1)

The results of these fits are given in Table 6.2. At low magnetic fields there is good
agreement between the ML model with a Lorentzian cutoff factor and the analytic
GL model. This is reasonable since the Lorentzian cutoff is strictly valid only at low
reduced fields b= B/B.,. On the other hand. the ML model with a Gaussian cutoff gives
a significantly higher value for \,,. The Gaussian cutoff is derived from the solution of
the GL equations near B, and is thus not valid at low reduced felds. Unfortunately. a
Gaussian cutoff was used in some of our earlier work [2.3.50] and in various theoretical
studies by others.

Figure 6.4 shows the magnetic field dependence of the quality of the fits at T =

0.33 T., obtained for the three different models. The ratio of \? to the number of
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Figure 6.4: The ratio of \? to the number of degrees of freedom (NDF) at T=0.33 T.
in NbSe,. determined from fits to three different models for the field profile B(r) of the
vortex lattice.

degrees of freedom (NDF) is significantly greater than 1.0 in most cases due to the
high statistics of the measured magnetic field distribution. For a non-perfect fit. higher
statistics magnify the value of \ 2. Fits to the ML model with a Gaussian cutoff generally
vield the worst \? value. On the other hand. fits assuming a Lorentzian cutoff are only
slightly better than fits to the analytical GL model.

Figure 6.5 shows. in the frequency domain. how the quality of the fits obtained
(in the time domain) from the ML model using a Gaussian cutoff factor and from the
analytical GL model are virtually indistinguishable. One would expect the results from
these two models to converge at higher magnetic fields. However. as shown in Fig. 6.3.
Aas( H ) determined for the two different models appear to diverge slowly at high A. The
reason is that the analytical GL model deviates significantly from the exact numerical

GL solutions at high reduced fields [121]. and also. according to Brandst [123]. the ML
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model is really only applicable when b< 0.25.

Despite the quantitative differences between the three phenomenological models.
which is related to their validity in different field ranges. the finding of a linear-H
dependence for A,,(H) is common to all. Since the analyvtical GL model properly ac-
counts for the finite size of the vortex cores and our measurements are taken essentially
at low reduced fields (especially in the case of YBa,Cu30-_; which we consider later)
the results obtained using this model should most faithfully reflect the behaviour of the
fundamental length scales. Unless otherwise stated. results presented in the remainder
of this thesis were obtained assuming this model.

Figure 6.6 shows a comparison between An(H) in NbSe, at two different temper-
atures. A linear-H dependence is observed between T =0.33 T, and 0.6 T.. The field
dependence at lower T was not investigated because the *He gas flow cryostat limited
us to temperatures above T =2.3 K. In the Meissner state of a conventional s-wave su-
perconductor. A, is expected to increase quadratically as a function of magnetic field.
due to nonlinear effects. The nonlinear corrections to the supercurrent respouse are the
same in both the Meissner and vortex states. However. the average supercurrent den-
sity (Js) =(c/47)(|V x B(r)]|) scales quite differently in the Meissner and vortex states.
as shown in Fig. 6.7. The curve in the top panel of Fig. 6.7 (i.e. the Meissner state)
was generated assuming that the magnetic field decays exponentially [see Eq. (2.15)]
and that A is field independent. Thus in the Meissner state. (Js) x H. Tt follows that
if Assx H?. then (J,) x /0.

The solid curve in the bottom panel of Fig. 6.7 (i.e. the vortex state) was generated
with the field profile B(r) from the analytical GL model. The dashed curve in this
figure shows that the average supercurrent density in the vortex state is approximately

proportional to H** ~/H. Thus. if (J,)x VH and Ay x H (as measured here). then
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Figure 6.5: Fourier transforms of the muon spin precession signal in NbSe, after field
cooling in a magnetic field H =0.188 T down to T =0.33 7.. The dashed curve is the
Fourier transform of the simulated muon polarization function which best fits the data
assuming the ML model with a Gaussian cutoff factor (top panel) and the analytical
GL model (lower panel). The shaded region is the residual background signal.
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Figure 6.6: The magnetic field dependence of A\,,(H) in the vortex state of NbSe, at
T'=0.33 T. (open circles) and T=0.6 T. (solid circles). The solid line fits are described
in Table 6.3.

as in the Meissner state (J,) x \/Az;. This suggests that the field dependence of A,
in the vortex state of NbSe, is due to nonlinear effects. However. A,, measured in our
1SR experiment is by definition not the same as the penetration depth which appears
in the nonlinear theory or which is measured in the Meissner state. Relating A from
the nonlinear theory to the effective \,;, measured by uSR is nontrivial and requires a
proper account of the vortex source term.

In the vortex state. the strength of the term which is linear in H is almost the samme
at both temperatures considered. when normalized with respect to the value of H.,(T)
(see parameter 3 in Table 6.3). As the temperature is increased. the energy gap in the
quasiparticle excitation spectrum shrinks. leading to the thermal excitation of quasi-
particles. The reduction in the size of the energy gap also means that quasiparticles can

be excited by relatively smaller magnetic fields. For this reason. in the Meissner state.
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Equation

Aab(H )= Ap(0)[1 + IA]

~(0) n ~(0) n

K(H)=r(0)[1 + nh]
8.4 (2) | 74(2) | 5.7(2) 8.2(3)

x'(0) ~ ~'(0) 2

K'(H)=r'(0)[1 + 4]
6.9(2) 9.5(3) 9.1(2) | 10.2(4)

Table 6.3: Magnetic field dependence of parameters from fits to the NbSe; data using
the analytical GL model.

the strength of the term quadratic in H is found to increase with increasing IT. Since
the strength of the coefficient .3 for the term linear in H in Eq. (6.1) does not appear to
change over a large range of temperature in the vortex state. it seems unlikely that the
mechanism responsible for the nonlinear Meissner effect can be solely responsible for
the observed H-dependence of A, (H.T) in the vortex state. Furthermore. according
to the calculations of Amin et al. [40]. it seems unlikely that nonlinear corrections to
the supercurrent response in the vortex state can result in a ficld dependence for the
effective penetration depth measured by ;SR which is as strong as that found here.
However. as just mentioned. the calculation of the effective ) is rather sensitive to the
vortex source term. so that the size of the vortex cores should be included in such

calculations.
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Figure 6.7: The magnetic field dependence of the average supercurrent density in the
Meissner (top) and the vortex (bottom) states for A = 1400 A and x = 10. In the
bottom panel the solid curve was generated from the analytical GL model and the
dashed curve is the relation (.J,) =0.6 H**.
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Since A, is not the only parameter which contributes to the fitted #SR line width.
it is necessary to monitor the behaviour of the additional broadening parameter ay.
Besides disorder in the vortex lattice. the large **Nb nuclear moments (3.34 x 10~2ug)
in NbSe, also slightly broaden the uSR line shape. For instance. in the normal state
the muon depolarization rate oy at T =10 K is found to increase linearly from o\ =
0.19 us™' at H=0.19 T to oy =0.22 pus~' at H=0.90 T. To determine the degree of
disorder in the vortex lattice. the contribution of the Nb nuclear moments Tdip to the

muon depolarization rate can be subtracted in quadrature from the fitted value of o 7

2 2 2 :
Ogis = 05 — Ogip, - (6.2)

Assuming o4;p is temperature independent. the normal state value oy is approximately
the value of o4, in the vortex state. The parameter og4;, due to disorder in the vortex
lattice [plotted in Fig. 6.8(a)] is relatively small and is weakly dependent on magnetic
field and temperature. This indicates that the determined behaviour of \yy(H.T) does
not arise from a systematic interplay between \,, and oy 1n the fitting procedure.
Figure 6.8(b) shows the quality of the fits (\?) normalized by the number of degrees
of freedom (NDF). as a function of H for T = 0.33 I. and 0.6 T.. The quality of the
fits is essentially independent of H and T. An upper limit for the root mean square
(RMS) displacement (s?)!/2 of the vortices from their ideal positions in the perfect

vortex lattice. due to random pinning. can be obtained from oy, as follows [30]

1 HY 2 _%
(s3)7 = ";;*\/5 (Z i ) : (6.3)
0

K (1+RK202,/(1-b))

The magnetic field dependence of (s?)!/? is shown in Fig. 6.9(a). The magnitude of
(s%)!/2 is essentially independent of H. except perhaps at low fields where the interaction

between vortices is weakest. This suggests that there are no significant changes in the
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vortex lattice geometry as a function of magnetic field. The degree of disorder in the

vortex lattice does appear somewhat larger for higher T.

For a perfect triangular vortex lattice the intervortex spacing is given by

200 %
L= . (6.4)
(\/530)

Since the distance between vortices decreases with increasing field. the RMS deviation

of the vortices from their ideal positions grows as a percentage of L [see Fig. 6.9(b)].
At low tempertures (s2)!/2/L is less than 2 %. even at H = 0.31H.,(T). This small

disorder is consistent with the STM and SANS experiments on NbSe, discussed earlier.

The radius of a vortex core is not a uniquely defined quantity. since there exists no
sharp discontinuity between a normal vortex core and the superconducting material.
Nevertheless. a useful definition can be made taking into account the dramatic spatial
changes observed in quantities such as the order parameter v'(r). the local density of
states .V(E.r). the supercurrent density .J,(r) and the local magnetic field strength
B(r) near the center of a vortex line. Since the supercurrent density J,(r) can be easily
obtained from the fitted field profile through the Maxwell relation J(r)=(c/47)VxB(r).
we define an effective core radius rq to be the distance from the vortex center for which
Js(r) reaches its maximum value. As shown in Fig. 6.10. J,(r) rises steeply from zero

at the vortex center to its maximum value .J

smax &l 0.

The magnetic field dependence of ry in NbSe, is shown in Fig. 6.11. where ry is
obtained from J,(r) profiles created from the fitted field profiles B(r). The deduced
values of rg are less sensitive (than A) to the choice of the theoretical mode] for B(r).
This is because a good approximation of .J,(r) can be obtained by taking the curl of
any function B(r) which fits the measured field distribution well. This includes an

insensitivity to the assumed vortex-lattice geometry, provided a good fit is obtained.

Since rg is fairly robust to the validity of the theoretical field distribution used to fit the
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Figure 6.8: The magnetic field dependence of (a) the additional broadening parameter
odis and (b) the ratio of \2 to the number of degrees of freedom (NDF) for NbSe, at
T=0.33 T. (open circles) and T=0.6 T. (solid circles).
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Figure 6.9: The magnetic field dependence of (a) the RMS displacement (s2)!/2 of
the vortices from their ideal positions and (b) (s2)!/? expressed as a percentage of the
intervortex spacing L. The data is for NbSe, at T =0.33 T. (open circles) and T =0.6 T.
(solid circles).
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Figure 6.10: The dependence of the supercurrent density .J,(r) and the order parameter
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value ',y far from the vortex core.

data. then provided a good fit is obtained. the vortex-core radius can be determined
from uSR with few theoretical assumptions. We note that discrepancies between the
three models considered here do appear at low fields (see F ig. 6.11) because of the
reduced statistics at the high-field tail of the measured internal field distribution. Since
there are far fewer vortices in the sample at these low fields. there is a reduction in the
number of events originating from muons which stop in the vicinity of the vortex cores.
As a result. the high-field tail shows more “statistical wiggles”. which in turn allows
for a greater variation in the tail of the fitted B(r). Increasing the number of recorded
muon decay events in the 4SR spectra at low H would rectify this problem and should

lead to better agreement between the three models in Fig. 6.11 at all magnetic fields.



Chapter 6. Experiment: NbSe, 106

200 T T T i ]
§ A “Modified London Model”” !
180 - (with Gaussian Cutoff) 1
160 + § a O  "GL Moge!”” _]

i ® Modifiea Loncon Model””
~~ 140 3 (with Lorentzian Cutoff) -'
=\</ Q ‘ —j!
o 120 §£ u i
1 B B
0]0] I ci) A, j
80 r ? S ? A A =
E 9
60 -
L 1. 1 L J
0.0 0.2 0.4 0.6 0.8 1.0

H (T)

Figure 6.11: The magnetic field dependence of the vortex-core radius ro in N bSe, at
T =0.33 T.. determined from fits to three different models for the field profile B(r} of
the vortex lattice.

Golubov and Hartmann [205] have shown that the shrinking of the vortex core radius
with increasing magnetic field can be attributed to increased vortex-vortex interactions.
They solved the microscopic equations in the dirty limit (i.e. the Usadel equations)
self-consistently and showed that the order parameter w(r) and the LDOS reach their
maximum values closer to the vortex center when H is increased. From the LDOS. these
authors calculated tunneling current I(r) profiles from the vortex center as a function
of H in order to model STM measurements of ro(H) in NbSe, [206]. The magnetic
field dependence of ry in NbSe, determined by STM at T =0.6 T. is shown in Fig, 6.12
along with that determined by uSR at T = 0.6 T. and 0.33 T.. The definition of ro
in the STM experiment was arbitarily chosen to be the radius at which the measured
I{r) had diminished to 1/\/5 of its maximum value at the vortex-core center. It was

shown in Ref. [205] that this gives a value of rq which is somewhat larger than the
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Figure 6.12: The magnetic field dependence of the vortex-core radius ro in NbSe,
determined at the surface by STM [206] at T =0.6 T. (open squares) and in the bulk
by uSR (4] at T =0.33 T. (open circles) and T = 0.6 T. (solid circles). The dashed
curves are given by Eq. (6.5).

commonly used theoretical definition. i.e. the radius at which u(r) rises from zero at
the core center to 1/ V2 of its maximum value well away from the core. The different
definitions of ry are the main reason for the difference in magnitude of ry between the
STM and xSR experiments at T =0.6 T.. Also. we found from the microscopic theory
(see Ref. [4]) that J,(r) does not reach its maximum value at exactly the radius where
v(r) reaches 1//2 of its maximum value. at all temperatures and magnetic fields. For
this reason. our definition of ry is robust to changes in T and H and should better

reflect the actual H-dependence of the vortex-core radius.

The authors of Ref. [203] reported good agreement between the STM measurements
of ro(H) and the dirty-limit microscopic theory. Although the magnitude of rq is

reasonably predicted from their calculations. the error bars in the STM measurements
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are too large to conclude whether there is precise agreement with the theory. In a uSR
experiment. typically 2 x 10® muons sample the local magnetic field of approximately
10" vortices in the bulk of a few mm? sample. as opposed to an STM experiment
which averages ro from a few vortices at the surface. As a result of this statistical
improvement. the 4SR data shown in Fig. 6.12 have smaller error bars and less scatter.
This improvement allowed us to show in Ref. (4] that ry decreases more strongly with
magnetic field than predicted by the dirty-limit microscopic theory. This finding was
not surprising since NbSe, is in the clean limit. To our knowledge. there have vet
to be any calculations of the H-dependence of ro from the microscopic theory in the
clean limit. However. in Ref. [4] we showed that the uSR results fit well to the simple

phenomenological equation

_Aw(H) [1+ 3h] i
ro(H) = K(H) raf )[14‘—'}’} (6.5)

where x' = A,/ro and ro(0). 3 and 5 are temperature dependent constants. The
excellent fits to this equation are shown as dashed curves in Fig. 6.12 where ry(0) =
191 & and 282 4 at T=0.33 T. and 0.6 T.. respectively. Equation (6.5) was derived
from our observation that both )\, and »’ increased linearly with H. The latter is
shown in Fig. 6.14(b) along with field dependence of x = A,;,/&,, in Fig. 6.14(a) [see
Table 6.3 for the fitted parameters|. Since h = H/H., =3®,/v2L?B., for a triangular
vortex lattice and H.,(T) can be obtained from measurement. for a given temperature
ro in Eq. (6.5) is a function of only the distance between vortices. L. This observation
supports the physical interpretation for the reduction in ry. namely a shrinking of
the vortex cores due to the increased interaction between vortices—which are closer
together at high magnetic fields.

The effective coherence length &£, in Eq. (4.13) which best fits the data is plotted

in Fig. 6.13 as a function of magnetic field. The variation of €(H.T) is similar to that
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of ro(H.T). which was shown earlier to be model independent. The curves through
the data points were generated from the fitted relations for A,(H) and ~x(H) given
in Table 6.3. It should be kept in mind that &£, must be considered an “effective”
coherence length. For instance. according to Eq. (2.73) of the GL theory. the coherence
length near H., at T=0.33 T. should be 106.5 &. where H.»(0.33 T.)=2.9 T. However.
at 2.9 T the fitted curve in Fig. 6.13 gives £,, =49.1 A. Similarly. at T=0.6 T... Eq. (2.73)
vields £,,=131.6 A. whereas the fitted curve in Fig. 6.13 gives 78.7 A. A reduced value
of £,y may be obtained if the fitted theoretical field distribution overestimates the length
of the high-field tail in the uSR line shape. However. according to Fig. 6.5. it is highly
unlikely that the fits are substantially overestimating the length of the high-field tail.
The discrepancy between the measured €,; and that predicted in Eq. (2.73) is most
likely due to the theoretical difference between &, in Eq. (4.13) and the “true” GL
coherence length. Given that GL theory is really only valid near the phase boundary.
it is reasonable that deviations occur at low T and low H.

Assuming that the shrinking of the cores is associated with the strength of the
vortex-vortex interactions. the increase in ry and £,, with decreasing magnetic field
should saturate when the vortices are sufficiently far apart (i.e. when A, < L). From
Eq. (6.4) and the fitted expressions for A,,(H) in Table 6.3. the field at which this
saturation occurs can be estimated. In particular. at T =0.33 T. there should be no
change in the size of the vortex cores below H x0.12 T. whereas this crossover field is
H=~0.10T at T=0.6 T..

A few remarks are now necessary with regard to the behaviour of x(H) and «'(H)
in Fig. 6.14. The behaviour of x(H) implies that NbSe, becomes more type-II like
with increasing magnetic field. In GL theory. « is independent of both H and T.

However. this definition is strictly valid only near the superconducting-to-normal phase
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Figure 6.13: The magnetic field dependence of the parameter £, in Eq. (4.13) at
T'=0.33 T. (open circles) and T=0.6 T. (solid circles).

transition. Qur results imply that the conventional GL equations with field-independent
A and £ are not applicable deep in the superconducting state. Even if A,, were field
independent. an increase of x and x’ with H would still arise from the decrease of Po
which has been independently observed in NbSe, by STM. Furthermore. attempts to
fix (H) and x’(H) to constant values in the fitting procedure yield higher values of
\? and unphysical results—such as a residual background signal which is 50 % of the
total signal amplitude.

Figure 6.15 shows a typical muon precession signal displayed for convenience in a
reference frame rotating at about 1.5 MHz below the Larmor precession frequency of a
free muon. The curves through the data points are examples of fits to the theoretical
polarization function for fixed values of £,,. where Aqp and all other parameters were

free to vary. Only the first 3 us of data are shown in Fig. 6.135 since the signal from the




Chapter 6. Experiment: NbSe, 111

00 02 04 06 08 10
H (T)

Figure 6.14: The magnetic field dependence of (a) x = A,/ and (b) &' = Aw/ro in
NbSe; at T=0.33 T. (open circles) and T =0.6 T. (solid circles).
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vortex lattice essentially decays over this time range—although the fits were actually
performed over the first 6 us. Figure 6.16 shows the difference between the data points
and the fitted curve for the fits in Fig. 6.15. There is a clear oscillation for the fits cor-
responding to £,, =80 A and £a =160 A. indicating a missed frequency or frequencies.
The ratio of \? to the number of degrees of freedom (NDF') 1s shown in Fig. 6.17(a)
as a function of £, for two different applied magnetic fields. Note that the value of
s for which \2/NDF reaches its minimum value is quite different for the two fields.
Figure 6.17(b) shows the behaviour of the free parameter ~ for these same fits. The

best fits indicate that » is dependent on magnetic field.

The reduction in ro and £, with increasing temperature which is shown in Fig. 6.12
and Fig. 6.13. respectively. is expected from theoretical predictions for a s-wave vor-
tex [140.148.150]. However. as shown in Fig. 6.18(b). the vortex core radius does
not decrease as steeply with temperature as predicted by theory. The dashed line
in Fig. 6.18(b) is a fit to the theory of Kramer and Pesch [140] [see Eq. (4.11 )] where
ro{T)=aT/T.. with a =299 A. Part of the problem is that these theoretical calculations
pertain to a single isolated vortex. Given the apparent strong influence of vortex-vortex
interactions. the vortex-lattice effect should not be ignored in theoretical calculations
for ro(T). For a given magnetic field. \,; will grow with increasing temperature [see
Fig. 6.18(a)]. whereas the intervortex spacing L remains constant. The strength of
the vortex-vortex interactions will increase at higher field as the ratio \,;/L increases.
leading to additional changes in the electronic structure of the vortex cores. Since these
interactions become stronger with increasing T. the difference between the measured
value of ry and that predicted for an isolated vortex core will increase monotonically

with temperature.

The solid line through the data in Fig. 6.18(a) is a fit to the empirical relation
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Figure 6.15: The muon spin precession signal in NbSe, after field cooling to T=0.33 T.
in a magnetic fleld H = 0.19 T. The solid curves are fits to the theoretical muon
polarization function assuming the field profile from the analytical GL model with

fixed values of & (i.e. 80.118.2 and 160 4).
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Figure 6.16: The difference between the measured uSR spectrum and the theoretical
muon polarization function for the fits in Fig. 6.15.
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Figure 6.17: The ratio of \? to the number of degrees of freedom (NDF=872) as a
function of (a) &, and (b) « (from the same fits) for H=0.19 T (stars) and H=0.60T
(circles) at T=0.33 T..
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Figure 6.18: The temperature dependence of (2) A2 and (b) ro in NbSe; in a magnetic
field H = 0.19 T. The dashed line in (b) is what is expected from the Kramer-Pesch
effect [140].
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AF(T)=A7(0)[1—1t7] with A;2(0)=50.7 um~2. p=2.48 and t =T/T.. Although this is
considered to be consistent with a weak-coupling BCS superconductor [1] (which shows
a T-dependence of A\~ which is close to (1 — t?)). there is no real low temperature data
to obtain a proper fit to the BCS expression of Eq. (2.27). From the empirical fit
and an observed weak linear-T dependence for «'. the temperature dependence of the

vortex-core radius is given by

ro(T) = = = ro(0)[1 — t?]" 7 [1 — ~t] 7" . (6.6)

where ro(0) = 117 A and v = 0.23. This equation appears as the solid line fit in
Fig. 6.18(b). Note that the change in ro(T) is weakest at low temperatures where the
strength of the interaction force between vortices is small. The measurements here
are well above the quantum limit in NbSe, (see Ref. [148]) so a complete saturation
of r¢ is not observed. As noted earlier. the weak increase in x (or x') with decreasing

temperature is predicted from the microscopic theory.




Chapter 7

Experiment: YBa,Cu;O0¢s

In this chapter. recent uSR measurements of the a-b plane magnetic penetration depth
Aes and the vortex core size (~ £,) in the high-T. compound YBa,Cu30¢95 are pre-
sented. The oxygen concentration in this superconductor is that which gives the max-
imum value of the transition temperature 7.

Figures 7.1 and 7.2 show the Fourier transforms of the muon precession signal in the
optimally doped compound YBa,Cu;0645 as a function of temperature and magnetic
field. respectively. In Figure 7.2 it was necessary to renormalize the Fourier amplitudes
to the same maximum height. because of a reduction in the signal amplitude with
increasing magnetic field. Asymmetry loss is due to the finite timing resolution of the
counters. a reduction in the radii of the decay positron orbits and a dephasing of the
muon beam before it reaches the sample. The last originates from muons with slightly
different momenta and/or beam trajectories. which take different times to traverse the
magnetic field and therefore precess different amounts prior to arrival at the sample.

The basic features expected for a rigid 3D vortex lattice are observed in these Fourier
transforms. although their signal-to-noise ratio ! is not as good as those for NbSe,. In
addition. the high-field cutoff is not clearly visible at low temperatures. which is partly
a result of the much smaller coherence length (and vortex-core radius) in this material.

The smaller value of ry means that fewer muons stop in the vicinity of the vortex

'Recall from Chapter 4 that the Fourier transform diminishes the signal-to-noise ratio somewhat by
weighting all of the time bins equally.

118




Chapter 7. Experiment: YBa,Cu30¢.gs 119

cores. resulting in less signal-to-noise in the high-field tail. Consequently. £,, and r,
are difficult to determine in this material so deep in the superconducting state. Since
the signal-to-noise ratio scales with v/N. where .V is the number of counts. it takes
an impractical amount of time to make significant improvements in the high-field tail
of the measured field distribution. To dramatically improve the signal-to-noise ratio
in the high-field tail. it is necessary to go to higher magnetic fields where there are
more vortices in the sample. According to the spectra presented in Ref. [30]. at low
temperatures this means magnetic fields in excess of at least 5 T. Unfortunately. as just
mentioned. there are problems associated with the signal amplitude at such large H.
Currently. efforts are underway to construct an apparatus which operates effectively in
such strong magnetic fields. This “high-field” apparatus will include the use of higher
timing resolution counters and a reduction in the distance between the decay positron
counters and the sample. A high-field cutoff is clearly visible at high temperatures. as
shown in Fig. 7.1. This is because ry increases with T as was just observed in the case
of NbSe,.

As noted earlier. oxygen vacancies and twin planes may pin vortices in YBa,(Cu;0-_..
The strength of this pinning can be studied by determiming the sensitivity of the 4SR
spectrum to small changes in magnetic field. Figure 7.3(a) shows the Fourier transform
of the muon spin precession signal in “detwinned” YBa,Cu3O¢ .05 (03) after field cool-
ing to T'=3 K in a magnetic field of H =1.50 T. When the applied field is decreased by
0.02 T. the residual background signal shifts down to the new applied field H =148 T
[see Fig. 7.3(b)]. However. the signal originating from the sample does not shift in re-
sponse to the small change in applied field. This shows that the vortex lattice is firmly
pinned. In addition. the absence of any detectable background peak in the unshifted

signal implies that there are no nonsuperconducting inclusions in the sample. As the
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Figure 7.1: The Fourier transforms of the muon spin precession signal in YBa,;Cu3Q0g.9s
(O1) after field cooling to T=2.9,25.5.45.1 and 71.3 K in a magnetic field A =1.49 T.
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Figure 7.2: The Fourier transforms of the muon spin precession signal in YBa,;Cu30¢.95
(02) after field cooling to T=2.5 K in magnetic fields of H =0.10. 0.50 and 1.50 T.
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temperature is increased. the shape of the Fourier transform changes due to the changes

in Ay and £. However. the signal remains unshifted indicating that the vortices are

still pinned. Eventually. the temperature is large enough that thermal fluctutations

depin some of the 3D vortex lines. as shown in Fig. 7.4. Raising the temperature even

further results in thermal depinning of the remaining fixed vortex lines. On the other

hand. the vortex lattice is not so strongly pinned in NbSe,. When the applied magnetic

field on NbSe, was shifted by a small amount at low temperatures. the sample signal

always shifted with the background signal.

The muon precession signals for YBa;Cu3Og.95 were fit in a manner similar to that

for NbSe,. with the following additional constraints and assumptions:

1.

[SV]

As explained in Ref. [2]. because of the interplay between \,; and o s- which arises
because of the poor statistics in the high-field tail. it was necessary to fix one of
these parameters with respect to the other. In particular. the following linear
correlation is assumed. based on the general trend observed in the fits performed

without this constraint
2 2
1 Ty — 0N o -
— — _f (¢. 1)

A2, C C

2
a

where C' is a constant and oy is the Gaussian muon depolarization rate in the

normal state.

An equilateral triangular vortex lattice is assumed for the summation over re-
ciprocal lattice vectors K in the theoretical field profile B(r). As discussed in
the previous chapter. this is a reasonable assumption because of the high pin-
ning temperature in YBa;Cu3Ogos. The cutoff in the summation was done in
a way which preserves circular symmetry around the vortex cores. The Sy1-
metry of the cores themselves is of minor significance in determining \,;. since

their contribution to the measured field distribution is small in the feld range
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Figure 7.3: (a) The Fourier transform of the muon spin precession signal in “detwinned”
YBa;Cuz0s95 (O3) after field cooling to T =35 K in a magnetic field H =1.50 T. (b)
Same as (a) except that the field was lowered by 0.02 T while the sample was at T =3 K.
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considered here. The theoretical triangular lattice does not include deformations
of the vortex-lattice geometry due to mass anisotropy and/or twin planes. The
in-plane mass anisotropy ratio 5 = (m,/ms)!/? has been measured by Basov et
al. [172] in YBa,;Cu304.95 using far infrared reflectance. They find that in sin-
gle crystals similar to those used in the present study. the ratio of the zero-field
penetration depths along the @ and b directions is 7=A/ A =1.47(14). A simple
scaling argument [196] can be used to show that it is not necessary to incorpo-
rate the in-plane anisotropy 5 into the field profile. The argument is as follows:
The orthorhombic crystal structure for YBa;Cu3069;5 implies that the effective
masses along the crystallographic axes are such that m.>m, > m,. When a mag-
netic field is applied along the é-axis direction. three adjacent vortex lines form
a lattice in the a-b plane which is a stretched version of an isotropic triangular
lattice [162]. The unit cell is a centered rectangular lattice and the supercur-
rents flow in an elliptical path around the vortex cores. since =& /8 =\ /A,
However. the magnetic field distribution is unaltered from the 1sotropic case since
any change in v is compensated for by rescaling the coordinates in Eq. (4.10) or
Eq. (4.13). Of course. this argument does not take into account pinning effects
at twin planes. The Fourier transform of the measured muon precession signal in
detwinned YBa;Cu3O0g.95 (O3) [see Fig. 7.3]. does however show the same basic
features as that for the twinned crystals. The subtle differences that do exist be-
tween the uSR line shapes of twinned and detwinned crystals. in the field range
considered here. can only be determined by fitting the data. Unfortunately. we
have yet to carry out a complete study of detwinned YBa;Cu3O¢.9s5. A discussion
regarding the effects of twin planes on the outcome of a 1SR experiment in the
vortex state will be reserved for the underdoped compound. which is considered

later in this report.
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3. Due to the absence of a sharp high-field cutoff in the field distribution at low
temperatures. in previous attempts to model the measured field distribution in
YBa;Cu306.95 (see Refs. [2.3]) the GL parameter x = \,;/£, was fixed to a con-
stant value. To obtain a reasonable value for x some of the high temperature
spectra in which the cutoff was clearly visible were fit and the results averaged
to give a value of » = 68. The low temperature data were fit by assuming this
value and assuming that ~ was independent of both temperature and magnetic
field. Given the observed field-dependence of « in NbSe,. the latter assumption
is likely invalid. Nevertheless. the fits in Refs. [2.3] were found to be not very
sensitive to the value of x anyway. For instance. as noted in Ref. [2]. increasing »
to 73 changes A,(0) by less than 3 A. The data for the underdoped compound.
which will be presented later in this report. confirm that the assumption of a
T-independent « is reasonable. but that an H-independent  is not. The reason
is likely related to the shrinking of the vortex cores with increasing magnetic
field. In this thesis I have re-analyzed the ;SR data from Ref. [3] in terms of the
analytical GL model and in doing so. I allowed « to vary “freely” in the fitting

procedure.

-

Figure 7.5 shows the temperature dependence of A7 in YBa,Cu3Oyys (O1) at
H=0.5T. from fits assuming the analytical GL model [see Eq. (4.13)]. The linear tem-
perature dependence at low T supports an unconventional pairing state in which there
are nodes in the superconducting energy gap. The solid curve in Fig. 7.5 represents
the zero-field microwave measurements of Ads(T)=Aa(T) = Ap(1.35 K) performed by
Hardy et al. {14] on similar high quality YBa,CuzQg.s crystals. To plot A\7(T) for the

microwave data. our extrapolated value of Aab(1.35 K) was used. The excellent agree-

ment between the measurements in the vortex state and those in the Meissner state
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Figure 7.5: The temperature dependence of /\;62 in YBa;Cu3Og95 (O1) at H =0.498 T.
The solid curve through the points represents the microwave measurements of Ref. [14]
which are explained in the text.

indicate that the variation of the superfluid fraction as a function of temperature is
identical in both phases. Furthermore. this confirms that the assumption of a triangular
vortex lattice in the fitting procedure introduces at most only a small systematic error
in the absolute value of A,,. This is reasonable since it has been shown theoretically
that including additional terms in the free energy of the vortex state produces only
minor changes in the internal field distribution [178]. This can be confirmed by fitting
the data to a theoretical field profile which assumes an inappropriate vortex-lattice con-
figuration. For instance. if a square vortex lattice is assumed in the fitting procedure.
the quality of the fits is found to be much worse and the absolute value of Aas( T) does
change dramatically. However. the temperature dependence of As(T) — A.s(0)/A.5(0)
from these fits is nearly identical to that obtained assuming a triangular vortex lattice.

Our uSR measurements of A, (T) presented in Ref. [2] suggest that the strength

of the term linear in T depends on magnetic field. However. as noted in Ref. {3]. this
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effect is artificially created by prematurely cutting off the summation over reciprocal
lattice vectors. The problem is easily rectified by increasing the sum until any further
increase does not affect the deduced value of A (7). Although the term linear in T is
found to be H-independent here.? the absolute value of A,;, does depend strongly on
magnetic field. In Ref. [3]. A, was measured in the vortex state of YBa,Cu3Q4.5 (O1.
O2) as a function of magnetic field. The internal field distribution was fit assuming
the ML model with a Gaussian cutoff factor. The results of this study are listed in
Table 7.4. Yaouanc et al. [121] suggest that the observed field dependence is probably
explained if a more appropriate cutoff function is used. Using the conventional GL
equations. they have shown that the variance of the field distribution A2 = ((B2) —
(B:)?) depends on magnetic field. Through rough calculations of the variance from our
measurements in Ref. [2]. they find good agreement with the field dependence predicted
by the conventional GL theory. Unfortunately. as noted above. the results in Ref. [2]
are flawed. The field dependence for A,, has since been shown to be much stronger
[3]. It is unlikely that this field dependence is related to an improper treatment of
the vortex cores. since the small cores in YBa;Cu306.95 contribute very little to the
variance at low fields. Nevertheless. to properly account for the finite size of the vortex
cores. the data has been re-analyzed here using the analytical GL model as suggested

by the authors of Ref. [121].

Figure 7.6 shows the low temperature behaviour of A7 in YBa,CusOg .05 (02) ob-
tained from this new analysis for three of the magnetic fields considered. As in Ref. [3].

excellent fits are obtained to a linear relation
AZ(T)=AZ20)[1 — at]. (7.2)

where t =T /T. and T. is the transition temperature at zero magnetic field. The results

*This assumes that A7*(T’) is normalized as in Eq. (7.2).
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Figure 7.6: The temperature dependence of /\;,f in YBa,Cu306.45 (0O2) for magnetic
fields of H=0.10 T (solid circles). 0.50 T (open circles) and 1.50 T (solid triangles).

of these fits appear in Table 7.4. The term linear in T is essentially independent
of magnetic field. so that a agrees well with the microwave cavity measurements of
Ref. [14] at all magnetic fields considered.

Figure 7.7 shows the magnetic field dependence of \,; extrapolated to T =0 for
sample O1 (open circles) and sample O2 (solid circles). The solid and dashed curves

are fits to the power-law relation
Aas(H. T =0)=Aps(0.0) + 3H? . (7.3)

Table 7.5 shows the parameters from these fits together with those from the analysis
in Ref. [3]. Over this narrow field range the data is reasonably described by a relation
which depends linearly on H. Moreover. the strength of this linear term is essentially
the same in both types of analysis. as found for NbSe,. This is reasonable here. since
the fits are not very sensitive to the field distribution near the vortex cores. The scatter

in the data is remarkably small given the variety of conditions under which they were
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l
| Modified London Model| | [ Analytical GL Model

Magnetic | Beamline/Year

Field C Aw(T =0) o Aep(T=0) 4]

[T] (108 A2/pus] | [A] [10~1] (4] (10~
(i)

0.191 m20/1993 1.955 1188(8) 6.0(3) 1115(7) 1.8(4)

0.192 m15/1993 1.943 L1S1(7) 6.5(6) LL14(6) 6.2(2)

0.498 m15/1992 1.835 1208(13) 6.6(3) 1129(12) 6.3(2)

0.731 m15/1994 1.827 1222(20) 6.3(5) 1165(18) 6.3(4)

1.003 m15/1993 1.625 1228(16) 6.3(4) L168(12) 6.0(4)

[.488 m15/1992 [.784 1272(7) 5.8(4) 1195(6) 5.9(4)

1.952 m15/1993 2.275 1351(37) 7.3(7) 1261(34) 5.5(8)
(it)

0.103 m20/1995 [.195 1149(6) 6.2(2) 1069(6) 6.4(4)

0.497 m20/1995 1.485 1171(9) 7.5(4) 1099(9) 7.3(3)

1.500 m20/1995 1.833 1277(14) 6.6(6) 1192(12) 6.1(7)

Table 7.4: Parameters from fits of /\a'bz(T) to Eq. (7.2) for (i) sample O1 and (ii) sample
O2. The constant C is defined in Eq. (7.1).
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Figure 7.7: The magnetic field dependence of A,, extrapolated to T=0in YBa,Cu304.g5
(O1) (open circles) and YBa,Cu30495 (02) (solid circles).

recorded (see Table 7.4). This demonstrates the reliability of the fitting procedure for
extracting a consistent value of Ay. despite variations in the experimental arrangement
which cause changes in the size of the background signal. Although the fits to Eq. (7.3)
suggest that A,;(T =0) x H in the vortex state. the measurements are only for very
small values of reduced field. 0.0009 < h < 0.016 (assuming * that H.,(0) =120 T). so
that it is difficult to draw any firm conclusion about the precise way i which A, varies
with H.

The strong field dependence for A, in YBa,Cu3QOsgs is obtained from both types
of analysis. and is considerably stronger than that found in NbSe,. Figure 7.8 shows
the field dependence of A,y at T=0.33 T. for both of these materials. The solid lines

are a fit to the equation

) g [ H i
Aa(0) [ch(o.s3 n)] ' (7.4)

3The lower limit for H.2(0) in YBasCu307 is 120 T according to measurements which are summarized
in a table on p.338 of Ref. [207].
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l | |
lModiﬁed London Model lAnalytical GL Model]
A25(0.0) 3 p A.5(0.0) 3 p
[A] [A/T] [4] [4/T]

(1)

1181(4) | 32(4) | 1.5(1) | 1084(3) | S1(1) 1.0(1)
(1)

114%7(3) | T1(8) | 1.5(2) | 1063(2) | 80(3) | 1.16(12)

Table 7.5: Parameters from fits of A,,(H.T =0) to Eq. (7.3) for (i) sample O1 and (ii)
sample O2.

where s = 1.6 with H.»(0.33 T.) =29 T for NbSe, and : = 5.4 for YBa,Cu,yOg 4.
assuming H.,(0.33 T.)=95 T. Undoubtedly some of the field dependence is due to the
effects of a nonlinear supercurrent response. similar to that observed in the Meissner
state. However. as noted earlier. nonlocal effects associated with nodes at the Fermi
surface should be more important in YBa,Cu3Q¢.9s.

Figure 7.9 shows the temperature dependence of the linear coefficient 3:(T) deter-
mined from Eq. (2.50) for YBa;Cu3O0g9; (O1). The large error bars are due to the
scatter and to temperature variations between the different data sets. The scatter in
the data at each temperature was too large to deduce the precise field dependence. so
a linear dependence on H was assumed. The finite value of Jo(T) at T =0 is consistent
with the field-induced pair breaking effects expected in a superconductor with nodes
in the energy gap. We note that 3,(T) is approximately 30 times smaller at low T and
about 10 times smaller at T'a 0.5 T, than the values reported by Maeda et al. (38] for
microwave cavity perturbation measurements in the Meissner state of YBa,Cu;0-_,.

However. very recently Bidinosti et al. [208] have determined the field dependence
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Figure 7.8: The magnetic field dependence of Aas(H)/Aap(0) in YBay,CuzOg4s (O1)
(solid circles) and NbSe, (open circles) at T=0.33 T..

of Ady in YBa;CusOggs in the Meissner state from AC susceptibility measurements.
They find that the coefficient of the term linear in H is approximately an order of mag-
nitude smaller than that reported by Maeda et al. Nevertheless. the different definition
of the penetration depth in the ;SR experiment (which was discussed earlier) makes a
comparison to these Meissner state experiments very difficult.

[t is possible that some of the measured field dependence for A, is due to changes
in the vortex-lattice geometry with increasing magnetic field—which is predicted in a
number of theoretical studies [178.179.180]. It is currently unknown if such geometry
changes actually occur. However. if they do. the question is whether these changes are
subtle over the narrow field range considered here. We now show that the fits to the
data suggest that there are no significant changes in the vortex-lattice geometry. This
does not necessarily imply that the theories are wrong, since the strong pinning of the

vortex lines in the YBa;Cu3Os95 samples studied here likely prevents such geometrical
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Figure 7.9: The temperature dependence of the coefficient J5(T) of the term linear in

H [see Eq. (2.50)] in YBa,Cu;04.45 (O1).

changes from occurring,.

Figure 7.10(a) shows the temperature dependence of the additional broadening pa-
rameter oy in Y Ba,Cu30g95 (O1) at H=0.19 T (open circles) and H =1.48 T (solid
circles). Due to the imposed constraint of Eq. (7.1). o s(T) exhibits the same linear de-
pendence on T as A*(T). Despite this constraint. we find that 0i(0.19 T)>0,(1.48 T).
while A7%(0.19 T) > A;*(1.48 T)—which implies that the line width of the measured
internal field distribution is definitely larger at smaller fields.

The RMS displacement (s2)!/2 of the vortex lines from their ideal positions in a
perfect triangular lattice [determined from Eq. (6.3)]. is plotted as a function of tem-
perature in Fig. 7.11(a) *. The value of (s?)!/? is much larger at H =0.19 T than at

H =148 T. This is most likely due to an enhancement in the random pinning of vortex

4I[l YBa'_)CU;;O",_,s. the muon depolarization rate in the normal state oN 1s extremely small. so that
A
Tdis ~“"0’!.
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Figure 7.10: The temperature dependence of (a) the additional broadening parameter
oy and (b) the ratio of \? to the number of degrees of freedom (NDF) for YBa,;Cu30¢.95
(O1) at H=0.192 T (open circles) and H =1.488 T (solid circles).
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lines by point defects at the smaller magnetic field. Figure 7.11(b) shows (s?)!/? as a
percentage of L in YBa;Cu3Og9s5 (O1). The close agreement at the two different mag-
netic fields suggests that at low temperatures. where thermal fluctuations are small. the
disorder in the vortex lattice scales with the nearest-neighbor distance between vortex
lines. as was found in NbSe,. This result is inconsistent with a dramatic change in the
vortex-lattice geometry in going from H =0.19 T to H =1.48 T at low T. Further
evidence that there are no significant distortions in the vortex lattice over this narrow
field range is given by the consistency in the quality of the fits assuming a triangular
vortex lattice. Figure 7.10(b) shows that \? normalized to the number of degrees of
freedom is essentially independent of magnetic field and temperature in the region of
the phase diagram considered in this experiment. Certainly this would not be the case
if there were a sharp transition e.g. from a triangular to a fourfold-symmetric vortex
lattice.

Figure 7.12 shows the temperature dependence of « in YBa,;Cu30695 (O1) at the
different magnetic fields considered. The scatter in the data reflects the uncertainty
which arises in fitting a field distribution which has a small signal-to-noise ratio in
the high-field tail. Surprisingly. there is less scatter in the data at the lower fields
where there are fewer vortices in the sample. This suggests that the vortex-core radius
must be significantly larger at smaller H. as was the case in XbSe;. The data in
Fig. 7.12 suggests that « is either independent of temperature or increases very weakly
with increasing T. However. » depends strongly on magnetic field in YBa,;Cu;yQg9s.
Figure 7.13 shows the best fits to the data sets at the different magnetic fields in
Fig. 7.12. assuming a T-independent value of x. The solid line in Fig. 7.13 is a fit to
the linear relation

K(H) = x(0)[1 + nh]. (

=1
t
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Figure 7.11: The temperature dependence of (a) the RMS displacement (s%)Y2 of the
vortices from their ideal positions and (b) (s%)!/? expressed as a percentage of the
intervortex spacing L. The data is for YBa,;Cu306.9s (O1) at H =0.192 T (open
circles) and H =1.488 T (solid circles).
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Figure 7.12: The temperature dependence of x = Aa/€m in YBayCuszOggs (O1) at
H=0.192 T (open squares). 0.498 T (solid circles). 0.731 T (open triangles). 1.003 T
(solid squares). 1.488 T (open circles) and 1.952 T (solid triangles).

where h=H/H.,(0) and H.,(0)=120 T. The best fit is obtained for ~(0)=10.6(3) and
n=212(10).

Figure 7.14 shows the first 1.5 us of a typical muon precession signal in YBa,Cu30¢.95
displayed in a reference frame rotating at about 3.3 MHz below the Larmor precession
frequency of a free muon. The curves through the data points are examples of fits (ac-
tually performed over the first 6 us) to the theoretical polarization function for fixed
values of &. The only additional constraint in these fits was that o s x A, Differ-
ences in the quality of the fits for the various values of £,, are most noticeable at early
times. This is seen more clearly in Fig. 7.15 which shows the difference between the
data points and the fitted curve for fits similar to those in Fig. 7.14. The ratio of \?

to the number of degrees of freedom (NDF) is shown in Fig. 7.16(a) as a function of
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Figure 7.13: The magnetic field dependence of x = A3/, in YBa;CusOsgs (O1) ex-
trapolated to T =0.

a5 for two of the magnetic fields considered. F igure 7.16(b) shows the values of the
free parameter » obtained from the same fits as in Fig. 7.16(a). Note that the distri-
bution of data points around the minimum value of \?/NDF is asymmetric. Since \,;
is essentially unchanged in the fits for different values of .. this asymmetry reflects
the lack of statistics from the vortex cores in the measured internal field distribution.
In particular. the fits can tolerate a smaller value of £,, and a longer high-field rail. At
the lower field in Fig. 7.16. the minimum is much sharper because of the increased size
of the vortex cores.

Despite the scatter in the data for ~(T). a smooth plot for the temperature depen-
dence of £, can be generated from Eq. (7.2) for A\,3(T) and the fitted constant values
of x(T'). Such plots are shown in Fig. 7.17 at different magnetic fields where £, T is
given by the following relation

/\ab(T) _ /\ab(O)
“(T)  k(0)V1I-at’

The values of a are given in Table 7.4. The strength of the T-dependence of £,; is

(7.6)

fab( T) =
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Figure 7.14: The muon spin precession signal in YBa,Cu3Q0gg5 after field cooling to
T'=35.8 K in a magnetic field H =0.498 T. The solid curves are fits to the theoretical
muon polarization function assuming the field profile from the analytical GL model
with fixed values of £, (i.e. 20. 54 and 90 A).



Chapter 7. Experiment: YBa;Cu;0s.95 141

T t 1 1]
0.015 |, £,=20A 1
0.010 F = .
0.005 | . .. o o e T
0.000 F , . Teet .
-0.005 = = T e
-0.010 F ’ R
—-0.015 .
>
5 % 4 : :
[:+]
L o
~< 0015+ £L=54A -
N—r s
o 0.010 » .. Best Fit
0.005 ° . > 4
< 5 e, e . o,
I 0.000 ~ ° =ﬂ°° ° a un e T
o ~0.005 . - s .-
S -0.010 .
N
<, -0.015 + .
a # 1 : :
< o015 F £,=90A -
0000 F = = .
0.005 F ° . ; o
0.000 T e . T
—OOOS - o [ °° ° ’ ccnou 7
-0.010 S 1
-0.015 } :

00 03 06 09 12 15
Time (us)

Figure 7.15: The difference between the measured uSR spectrum and the theoretical
muon polarization function for fits similar to those in Fig. 7.14 but with the bin size

doubled.




Chapter 7. Experiment: YBa, Cu; 095 142

2-0 T T T T T T T T

xz/NDF
»

1.6 0.498T * 1
o 1.9527

2.0 T T T T T T T T T

x’ /NDF
%

f 1 L I | 1

0 25 S0 75 100 125 1S0 175 200 225 250
K

Figure 7.16: The ratio of \? to the number of degrees of freedom (NDF) as a function
of (a) & and (b) s (from the same fits) for H = 0.498 T (stars. NDF=1148) and
H=1.952T (circles. NDF=1196) at T=5.8 K.




Chapter 7. Experiment: YBa;CusQOg.9s 143

considerably weaker than in NbSe,. It should be noted that thermal fluctuations of
the vortex lines will lead to an increase in the measured size of the vortex cores. as
explained in section 4.2. As in NbSe,. there is a clear reduction in the magnitude of £,
with increasing magnetic field. which is consistent with a shrinking of the vortex cores
due to the increased strength of the vortex-vortex interactions.

The magnetic field dependence of £,, extrapolated to T =0 is shown in Fig 7.18.
The solid curve represents the combination of the fitted relations for \,( H) and K(H).
namely. Eq. (7.3) and Eq. (7.3). Recall that in the data analysis assuming the analytical
GL model it was found that px1 in Eq. (7.3). so that the relation for £,,(H ) at T=0

1s

_ Aa(H.0) (1 + 3A] -
fab(H-O)—m—fab(o-o)'——[l+qh] . (7.7)

where £45(0.0) = X,5(0.0)/%(0.0) =102 A. 3'=3H.(0)/A5(0) =8.97 and =212 using
the values in Table 7.5.

Our findings are most easily interpreted in terms of vortex cores which contain
discrete quasiparticle bound states. At H = 6 T. which is the field at which the
STM experiment [197] on YBa,Cuz0;_s was performed. Eq. (7.7) gives £E.(T =0) =
12.8 A and with the help of Eq. (7.6) gives £,(T=4.2 K)=13.0 A. Using the formula
E, =2uA3/Er [124] and taking £,4(T =0) to be the BCS coherence length &, = hey /7.
the lowest bound energy level is estimated to be E|/, = 2h?/m,x2€2 ~ 9.1 me\". This
estimate agrees well with the STM result of E, ;2=9.5 meV and the value of 9.5 meV
obtained from an infrared absorption experiment [198] on YBa,Cus0;_, thin films.
The STM measurement implies that £,,~ 17 A at 6 T. The moderate agreement found
here strongly supports our assertion that the coherence length rises appreciably with
decreasing magnetic field. This is one of the most important findings of this study.

because theoretical predictions and the interpretation of experiments on the high-T,
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Figure 7.17: The temperature dependence of £,, in YBa,Cu3O¢ 95 (O1) at the same mag-
netic fields as in Fig. 7.12. The magnetic field increases from the top curve (H =0.192T)
to the bottom curve (H =1.952 T).

materials are often based on the assumption that £, is extremely small. The results
herein imply that the spacing between energy levels becomes larger with increasing
magnetic field because of the reduction in £,,—which is analogous to a reduction in
the radius of a cylindrical potential well. In this picture numerous bound states should

exist in the vortex cores of YBa,Cu3Og95 at low fields (i.e. <1 T).
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Figure 7.18: The magnetic field dependence of &, in YBa,Cu3Og.95 (0O1) extrapolated
to T=0. The solid curve is given by Eq. (7.7).




Chapter 8

Experiment: YBa;Cu3;O0s¢q

In this chapter. recent SR measurements of the a-b plane magnetic penetration depth
Ass and the vortex core size (~ £,) in the high-T. superconductor YBa, Cus0g.6p are
presented.

Figure 8.1 shows the ;SR line shapes for the underdoped compound Y Ba,Cu30.0
(U1) and the optimally doped compound YBa,;Cu30¢.9s (O1). at similar temperature
and magnetic field. The width of the field distribution in the underdoped compound
is considerably smaller due to a larger \,;. Furthermore. the high-field cutoff is much
more pronounced due to both a larger vortex-core radius and the longer A,;. In the
analysis that follows. it is found that at H = 1.49 T the fractional volume of the
sample occupied by the vortex cores in YBa;Cu3Og.0 is nearly two times greater than
in YBa,CuzQ4.95.

Figure 8.2 shows what happens to the internal field distribution in YBa,CusOy 40
upon warming the sample in an applied field of 1.49 T. In going from T =0.04 T. (see
Fig. 8.1) to T =0.42 T. (i.e. 24.8 K). the asymmetry of the line shape suggests that
the vortex lattice is comprised of 3D-flux lines arranged in a regular pattern. However.
at T'=0.59 T. the line shape becomes more symmetric. and is completely symmetric at
T=0.76 T.. The loss of asymmetry in the uSR line shape is a strong indication that
the vortex lattice has melted and/or it has undergone a 3D-to-2D transition. In order

for Aey(H.T) and £,(H.T) to be determined in YBa,;Cuz0¢.40 using uSR spectroscopy.

146
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a rigid 3D-vortex lattice must exist. We will therefore begin by restricting ourselves to
the low-temperature region of the H-T phase diagram. and reserve the discussion of

the vortex lattice in YBa,Cu3Os¢o at higher temperatures till the end of this section.

Due to the larger contribution of the vortex cores to the measured internal field
distribution. it is unnecessary to relate or fix any of the parameters in the fitting
procedure. In this way the data is analyzed exactly as it was for NbSe,. We note
that the theoretical field distribution is generated assuming a triangular vortex lattice.
This is reasonable. since we know of no experiments which have imaged the vortex
lattice in YBa,Cu30460. As was explained for YBa,Cu306.4s5. in the absence of twin
boundary pinning the a-b plane anisotropy will stretch the triangular lattice in a way
which does not change the shape of the internal field distribution. Figure 8.3 shows the
temperature dependence of the fitted /\;b2 in YBa;Cu30660 (U1) using the analytical
GL model for the field profile of the vortex lattice. The curves through the data points
are merely guides for the eyve. At higher temperatures where the vortex lattice is no
longer a rigid 3D structure. the fitted value of A7 merely characterizes the width of the
field distribution and is not the penetration depth as defined at lower temperatures.
Note that the transition in the vortex-lattice structure occurs at a lower temperature
in the larger magnetic field. Figure 8.3 suggests that measurements of A,; should be
restricted to temperatures below 25 K for applied magnetic fields greater than 1.5 T.

Figure 8.4 shows the temperature dependence of A7 in YBa,Cu304 .60 (C2) at low
T. for three of the magnetic fields considered. As in YBa;Cuz0e.9s. there is a strong
linear decrease in the superfluid fraction with increasing temperature. The solid lines
are a fit to Eq. (7.2). The fitted parameters appear in Table 8.6 along with those for an
analysis assuming the ML model with a Gaussian cutoff factor. Note that the coefficient

a of the term linear in ¢ is weaker than in the optimally doped compound and is ar most
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Figure 8.1: The Fourier transforms of the muon spin precession signal in (top panel)
YBa;CuzO¢e0 (Ul) at T=2.4 K and (bottom panel) YBa,;Cu30695 (O1) at T=29 K
after field cooling in a magnetic field of H =1.49 T.
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Figure 8.2: The evolution of the ySR line shape measured in YBa,Cu30,4 upon
warming the sample. subsequent to field cooling to T = 2.4 K in a magnetic field
H=149T.
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Figure 8.3: The temperature dependence of the fitted /\:,,2 in YBa;CuzO0g40 (U1) at
magnetic fields of H =0.74 T (open circles) and 1.49 T (solid circles). The curves
through the data points are merely guides for the eye. Beyvond T=35K at H=0.74 T
and T'=25 K at H=1.49 T. the fitted A\, no longer represents the length scale over
which the field decays from the vortex cores.

only weakly dependent on magnetic field. This is consistent with conclusions drawn
from earlier uSR measurements of the muon depolarization rate o for various oxygen
dopings in YBa;Cu3Or_s [209]. As shown in the inset of Fig. 8.4. there is also excellent
agreement with microwave cavity measurements of AXp(T)=Aap(T) — Ap(1.253 K) in
zero magnetic field [210]. According to the Meissner-phase measurements in Ref. [210].
the strength of the term linear in ¢ changes substantially as a function of oxygen doping
only in the b-direction (i.e. the direction of the CuO chains). In particular. the value
of the coeflicient linear in ¢ for the temperature dependence of A, is reduced in the
underdoped compound. One interpretation is that the oxygen vacancies in the CuQO

chains act as pair-breaking defects.

The magnetic-field dependence of \,; extrapolated to T = 0 is shown in Fig. 8.5.
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| |
Modified London Model| || Analytical GL Model

Magnetic | Beamline/Year

Field /\ab(T=0) G /\ab(T=O) G

[T] [A] [107'] [A] (1071

(1)

0.742 ml5/1994 2212(18 4.1(2) 1698(15) 1.9(2)

1.013 ml15/1994 2248(17) 1.0(3) 1739(23) 4.7(2)

1.490 m15/1994 2393(40) 4.5(6) 1810(32) 3.7(8)
(1)

0.500 m15/1996 2286(11) 1.1(2) 1754(13) 4.6(2)

0.850 m13/1996 2396(18) 4.1(2) 1815(16) 3.7(3)

1.250 ml15/1996 2450(19) 3.9(4) 1846(17) 1.8(4)

Table 8.6: Parameters from fits of AA(T) to Eq. (7.2) for (1) sample Ul and (ii) sample
U2.
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Figure 8.4: The temperature dependence of MAT.H) in YBa;Cu3O¢60 (U2) for ap-
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set: The T-dependence of A, at 0.5 T. The solid line shows the microwave mea-
surements of AAg(T) = Ags(T) ~— Aes(1.25 K) in zero field [210] assuming our value
Aas(1.25 K) = 1762 4.
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There is a clear difference in the magnitude of A, (H ) determined from measurements in
the twinned (Ul) and detwinned samples (U2). This difference is likely due to vortex-
lattice distortions in Ul caused by twin boundary pinning of the vortex lines. Such
distortions introduce a systematic uncertainty in the determination of )\,;. As noted
earlier. fitting to a theoretical field distribution which assumes the wrong vortex-lattice
geometry seriously affects the magnitude of the extracted \,,. but has little effect on
the T or H-dependence.

The lines in Fig. 8.5 are fits to Eq. (7.3) assuming p = 1. The fitted parameters
are: A.5(0.0)=1586 A and 3=149 &/T in the twinned sample (U1) and A,;(0.0) =
1699 A and 3=121 A/T in the detwinned sample (U2). To roughly estimate H.,(0)
in YBa;Cu30g.60. we can use the ratio of the coherence length between this compound
and YBa;Cu30¢9s5. It was noted earlier. that at H =1.49 T the fractional volume of
the sample occupied by the vortex cores is nearly two times greater in the underdoped
compound. This implies that £, in YBa,Cu3Oe¢ is = V2 times the cohererce length
in YBa;Cu30s.95. Taking H.(0) =120 T for YBa,Cu3Oe9s and assuming H., x £°.
we may estimate H.,(0)=60 T in YBa,;Cu;0¢.¢0. Using H.,(0) in place of H.,(0.33 T.)
in Eq. (7.4). the coefficient linear in & (i.e z) at T = 0 is 5.6 and 4.2 in Ul and
U2. respectively. On the other hand. for the YBa,;Cu30695 compound treated earlier.
£=9.0 in both the Ol and O2 samples. The linear dependence of A,(H) on H when
plotted as a function of reduced field is therefore smaller in YBa;Cu306.4¢ than in
YBa;Cu30¢.95. It is predicted that the presence of impurities should reduce the field
dependence of the penetration depth in the nonlinear supercurrent response of a d,2_ .-
wave superconductor [36]. It appears as though oxygen vacancies in the chains of the

underdoped compound have a similar effect.

In the analysis of the SR spectra for the optimally doped compound it was assumed




Chapter 8. Experiment: YBa,;CuzOs¢o 154

'3900 T T T T T
~— 1850 F detwinned .
a< T—
— 1800 | T 1
5
o730 . % ) twinned
< e
z 1700 r {; -
&
1650 C 1 1 L L L )
0.4 0.6 0.8 1.0 1.2 1.4 1.6
H [T]
Figure 8.5: The magnetic field dependence of A, extrapolated to T = 0 in

YBa;Cu3O660. The data for the twinned (U1) sample are shown as open circles.
whereas the solid circles designate the detwinned (U2) sample.

that sigmay; x A;2. As shown in Fig. 8.6. fits to the underdoped compound without
this constraint reveal that this is a reasonable approximation. Moreover. the range of
values of o is small. so that the uncertainty introduced by this assumption into the
analysis of the YBa;Cu3Q0¢.9s data is also small.

The variation of the additional broadening parameter o 7 with temperature in YBa,Cu;O0g 4
(U2) is shown in Fig. 8.7(a) for H=0.50 T (open circles) and H =1.25 T (solid circles).
The magnitude of o, is nearly the same at the two magnetic fields shown. As in the
optimally doped compound. there is a reduction in the value of o s with increasing tem-
perature and the quality of the fits are independent of temperature and magnetic field
[see Fig. 8.7(b)]. Figure 8.8(a) shows the temperature dependence of (s2)!/? calculated
from o at these fields. The field dependence of (s%)1/2 is weaker in YBa;Cu3Qy .60 than
in the optimally doped compound. When the RMS displacement of the vortex lines
from their ideal positions is expressed as a percentage of the intervortex spacing L [see

Fig 8.8(b)]. the percent disorder at H =0.50 T agrees well with that for YBa,Cu3Q0¢.9s
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Figure 8.6: The magnetic penetration depth A, as a function of the additional broad-
ening parameter o; in YBa;Cu3Ogg0 (U2) at H =0.50 T (open circles) and 1.25 T
(solid squares). The solid lines are fits to Eq. (7.1).

[see Fig 7.11(b)]. However. the percent disorder is actually slightly largerat H=1.25T
in the underdoped compound. This may reflect the quasi-2D nature of the vortex lines
in YBa;Cu30e60. In particular. there is likely some degree of pinning-induced mis-
alignment between the 2D vortex lattices in adjacent layers at the stronger ficld. so
that the vortex lines are no longer straight. Similar values of ¢} and (s3)1/2 were found
in the twinned sample U1l.

Figure 8.9 shows the temperature dependence of the GL parameter ~ in Y Ba,;Cu30q .60
(U2) at three magnetic fields. There is far less scatter in the data at the higher fields
compared to the optimally doped samples (note that the vertical scale is larger than
in Fig. 7.12). This is due to the increased size of the vortex cores in the underdoped
compound over the full field range considered. The horizontal lines in Fig. 8.9 are fits

to a T-independent . The field dependence of x obtained from these fits and those
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Figure 8.9: The temperature dependence of x = Awn/€s In YBa;CuszOgey (U2) at
H=0.50 T ((solid circles). 0.85 T (open circles) and 1.25 T (solid triangles).

for the twinned sample (U1) is shown in Fig. 8.10. The values of ~ in the twinned and
detwinned samples agree well enough that a single fit to Eq. (7.5) was performed. The
fit gives ~(0) = 17(2) which is larger than in YBa;Cu3Oggs. and n = 53(9) [assuming
H.»(0) =60 TJ]. which is smaller than in YBa;Cu30g95 but still considerably greater
than in NbSe,. The larger value of ~ results from the substantial increase in the pene-
tration depth in the CuO chain direction. whereas the reduced value of the coefficient

linear in h stems from the weaker field dependence of .

Figure 8.11(a) shows £,; as a function of temperature in Y Ba,;Cu30¢6p (U2). whereas
Fig. 8.11(b) shows the temperature dependence of ry obtained from the Js(r) profiles.
The net change in £,; over the temperature range T=0to T=30 K is greater than in

YBa;Cu30¢.95. although when Eqb 1s plotted as a function of reduced temperature. the
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Figure 8.10: The magnetic field dependence of x = Aus/Eas in YBa, CuzOg g0 extrapolated
to T =0. The data for the twinned (U1) sample are shown as open circles. whereas the
solid circles designate the detwinned (U2) sample.

term linear in ¢ is weaker. For instance. fitting to the linear relation
Ean(T) = &as(0)[1 + €t]. (8.1)

at H = 0.5 T gives £,,(0)=68.7T A and ¢ = 0.27 in YBa,;Cu30¢60. whereas £,,(0) =
56.7 A and € = 0.37 in YBa;Cu30495. The larger value of £ 1n the underdoped
material implies that the energy scale of the quasiparticle bound states in the core is
reduced. However. in this conventional picture of a vortex core. the smaller value of
e in YBa,Cu30¢4¢ contradicts what is expected from the Kramer-Pesch effect alone.
If the quantum limit is realized in both of these materials below T = 30 K. the major
source of the T-dependence for £,; may not be the Kramer-Pesch effect at all. In both

compounds. e is essentially independent of magnetic field.

The values of £,4(H) and ro(H) extrapolated to T = 0 are shown in Fig. 8.12

for both the twinned (Ul) and detwinned (U2) samples. Note that there is good
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agreement between both samples. which implies that the twin planes have little effect
on the vortex-core size. The magnetic field dependence of £,,(T =0) in YBa,Cu304.40
is shown compared to that in YBa,Cu30¢g5 in Fig. 8.13. The coherence length in the
vortex state is larger in the underdoped muaterial at all fields considered. The solid curve
through the data points of the optimally doped sample was described in the previous
section. The solid curve through the data points for YBa;Cu30¢.60 was obtained hy
averaging the linear best-fit lines for \,5( H) and x(H) of samples Ul and U2. so that
as(H)=107[1 + 0.082H]/[1 + 1.095H]. As was explained in the discussion for NbSe,.
the curves in Fig. 8.13 should flatten out at low fields. when Aapy < L (1.e. there should
be no change in the vortex core radius when the vortices are isolated from each other).
From our 4SR results. the coherence length should stop rising below H = 0.19 T in

YBa;Cu30¢.95 and below H x0.09 T in YBa,Cu;06 eo.
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Let us now return to the discussion of vortex-lattice melting in YBa;Cu;04 .. which
occurs well below the superconducting-to-normal phase transition. As noted earlier.
the sudden loss of asymmetry in the SR line shape as the temperature is raised may
be interpreted as a melting transition for the vortex lattice (see Fig. 8.2). In the
melted phase the vortices are mobile. giving rise to a vortex structure with no long
range spatial order. As indicated in Fig. 8.3. the melting temperature T, depends
strongly on magnetic field. By monitoring the changes in shape of the measured field
distribution with increasing temperature. at several different magnetic fields. we find

that the melting transition can be described by
Hm(Tm)zV(Tc—Tm)n- (82)

where v =0.059(4) T/K. nx1 and T. is the zero-field critical temperature. Although
this gives a power-law exponent of 1. the temperature increments for these measure-
ments were too large to determine T,, any better than +5 K. Furthermore. n is usually
greater than 1.0 as discussed in section 4.2.

The dimensionality of the “melted” vortex lattice is of equal interest here. The
question is whether the “melted” lattice consists of straight 3D-vortex lines. highly
flexible 3D-vortex lines or pancake vortices in which the phase coherence is destroved
across neighboring CuQ; planes. The strong magnetic field dependence of T,, favours
the latter scenario. Within the LD model. the pancake vortices are aligned and weakly
coupled between neighoring CuQ, layers at low temperatures in the absence of disorder.
As the temperature is increased. thermal fluctutations of the strings of pancake vor-
tices becomes significant. The displacement of the 2D-pancake vortices within a layer
by thermal fluctuations is opposed by the strength of the Josephson-coupling between
pancakes in neighboring CuQ; layers. At low magnetic fields. the vortex-vorteyx interac-

tions within a layer are weak. so that the displacement of an individual vortex does not
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necessarily affect the other vortices in the layer. Thus. for small thermal fluctuations a
3D structure is maintained in the majority of the sample. It has been suggested that
at low fields. the vortex lattice first melts into a state consisting of mobile 3D vortex
lines. which are destroyed upon further increase in the temperature as the pancakes
which makeup the vortex lines breakup [110].

On the other hand. at high magnetic fields. the interaction between pancake vortices
within a CuQ, layer is stronger than the interaction between pancake vortices between
neighboring layers. In this case. the vortex lattice behaves in a quasi-2D manner.
consisting of weakly interacting 2D-vortex lattices in different CuQ, layers. Thermal
fluctuations cause the 2D lattices to move back and forth over top of each other.
For larger fluctuations the pancakes within the lavers become mobile. The effect of
temperature and magnetic field on the SR line shape in YBa,Cu3Og60 is similar to
that previously observed in uSR experiments on Bi,Sr,CaCu,Og.ys [107.111] and arises
here due to a reduction in the é-axis coherence length relative to that in the optimally
doped compound YBa,Cu;0s 5.

Pinning will of course also lead to vortex displacements. As discussed earlier. the
effects of pinning on the vortex structure in the low and high-field regimes will be
considerably different in the pancake-vortex model. Figure 8.14 shows the uSR line
shape in “twinned” YBa,;Cu30¢s0 (U1l). obtained by cooling the sample through the
transition to low temperature in different magnetic fields. The field distributions at
H=0.74 T and H =1.49 T exhibit the characteristic features of a 3D-ordered vortex
lattice. However, the field distribution which arises from field cooling in a magnetic
field of 2.91 T does not exhibit the expected high-field tail for a 3D-ordered vortex
lattice. but rather shows a low-field tail. From the melting-line expression obtained

above. the lattice should melt at T,, = 9.5 Ix at H = 2.91 T. which is higher than
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Figure 8.14: The Fourier transforms of the muon spin precession signal in twinned
YBa;Cu30660 (Ul) at Tx0.04 T. after field cooling in magnetic fields of H =0.74. 1.49
and 2.91 T.
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T'=2.5 K in Fig. 8.14. The most natural interpretation is that the 2D-vortex lattices
become misaligned with respect to each other due to pinning brought about by pointlike
defects within the layers. The origin of the low-field tail in Bi,Sr,C aCuy0g4; has been
previously attributed to the geometry of the sample [112.211.212]. In a flat rectangular
sample. the average magnetic field penetrating near the crystal edges is smaller than
that in the center of the sample. due to non-uniform demagnetization. As a result.
the density of vortices is smaller near the sample edges. The sample-geometry effect of
course also exists when the vortex lattice is 3D and ordered. However. the variations
of the internal field distribution due to the vortex lattice “swamp out the effect.
Also. in the case of YBa;Cu30¢95 and at low fields in YBa,Cu3Og 0. the high pinning
temperature likely freezes in a nearly uniform density of vortices in the sample. which
remains uniform upon cooling. A tiny low-field tail is visible in all of the line shapes
shown earlier.

The effect of the sample geometry on the measured internal field distribution can
occur without vortex pinning—as evidenced by the existence of a large low-field tail in
the 1SR line shape for Bi,Sr,CaCu,0g4s in the melted phase [107]. The top panel of
Figure 8.15 shows the uSR line shape measured in the twinned sample of YBa,Cu304
(U1) obtained by field cooling in a magnetic field H ~2.89 T to T = 2.5 K. followed by an
increase of approximately 0.01 T in the applied field. Note that the small background
signal shifts to the new applied field at H =~ 2.90 T. but the signal from the sample
does not. This verifies that the vortex lattice is not melted and strongly supports
the picture of a dimensional transition which is induced at high magnetic fields in the
presence of pinning. When the temperature is raised. the 2D-vortex lattices depin
within the layers and the lattice melts (see middle and bottom panels in Fig. 8.15).
Although not shown, at Tx 15 K the lattice is still pinned. Since this temperature is

greater than the estimated T, at this field (i.e. 9.5 K). it is likely that n > 1 in the
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Figure 8.15: Top panel: The Fourier transform of the muon spin precession signal in
twinned YBa;Cu30e60 (U1l) after field cooling at H ~2.89 T to T = 2.5 K followed
by an increase in the field to 2.90 T. The middle and bottom panels are the uSR line
shapes upon warming the sample to T=19.8 K and 23.0 L. respectively.
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expression for the melting line transition.

Figure 8.16 shows the measured field distributions in “detwinned” YBa,;Cu;06.60
(U2) as a function of magnetic field at low temperatures. The asvmmetries in the line
shapes in the top two panels are similar to those for the twinned sample. showing the
features characteristic of 2 3D vortex lattice. However. at H =2.99 T where the line
shape should exhibit the features associated with the misaligned 2D-vortex lattices. the
line shape still shows a high-field tail. Note that the temperature in the bottom panel
is T=10 K. compared to T=2.5 K in the bottom panel of Figure 8.14—which makes it
even more surprising that the line shape is still asymmetric. Also. when the detwinned
sample is fleld cooled in a magnetic field of 3.4 T to T = 10 K. the measured field
distribution still shows a small high-field tail and the background signal can be field
shifted. The dimensional crossover observed in the twinned sample should not arise
from pinning by the twin boundaries. since they extend the full depth of the sample and
displace the 2D-vortex lattices equivalently in all layers. Since the two samples were
not from the same batch. the absence of the dimensional crossover in the detwinned
sample (U2) at fields comparable to those in the twinned sample (U1). is likely related
to differences in the pointlike defects in the samples. In particular. these results suggest

that defects in the CuO, layers are greater in the twinned sample.
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Figure 8.16: The Fourier transform of the muon spin precession signal in twinned
YBa,Cu30¢.60 (U2) after field cooling to T=2.5 K in magnetic fields of H =0.85 T and
1.25 T and field cooling to T=10 K in a magnetic field of 2.99 T (bottom panel).
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Conclusions

The linear temperature dependence of AJ? at low T found in the vortex state of both
YBa,;Cu30695 and YBa,;Cuz0¢.60 provides strong support for a superconducting en-
ergy gap with lines nodes. The strength of the coefficient linear in T was shown to
agree extremely well with other measurements of A,; in the Meissner state. This agree-
ment implies that the change in the superfluid fraction as a function of temperature is
identical in both phases.

The absolute value of A,;(T =0) extrapolated to zero magnetic field from the uSR
measurements is approximately 10-15% smaller than that obtained from far infrared
measurements of A,(T =0) in zero field. The difference is perhaps reasonable given
the very different nature of the uSR and far infrared methods. Although the absolute
magnitude of A,; is sensitive to the assumed theoretical model for the field distribution
of the vortex lattice. the temperature dependence is relatively independent of the choice
of model. It is possible that the presence of vortices also influences the absolute value
of A, in the vortex state. The ratio of the penetration depths for the underdoped
and optimally doped samples determined by uSR is comparable to that found from far
infrared measurements on similar crystals.

The magnetic field dependence of \,, measured here in the vortex state of both
NbSe, and YBa,Cu;0:_; is not completely understood. The field dependence of \,
in NbSe; may be due to nonlinear effects. since it is found that (Js) x V/Au—which

is the same relation for nonlinear effects in the Meissner state. However. according to

170
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the calculations in Ref. [40]. the nonlinear effects are only a small correction to the
supercurrent response and therefore cannot account for the size of the field depen-
dence (measured here) in the vortex state of NbSe;. It is possible that the assumption
of a small vortex-core radius by the authors in Ref. [40] affected their calculations
of the effective penetration depth measured by pSR. The field dependence of \,, in
YBa,;CuzO-_; is likely predominantly due to the nonlocal effects associated with nodes
on the Fermi surface. as outlined in Ref. [40]. However. more detailed measurements of
the field dependence on untwinned samples of YBa,;Cu3;O;_s may be required to con-
firm this. The stronger field dependence measured in YBa,Cu;O-_;s (relative to that
in NbSe;) could be explained by this additional effect alone—although. the effects of a
nonlinear supercurrent response are also expected to be stronger in a superconductor
with nodes on the Fermi surface than in a conventional superconductor.

In NbSe;. Ay was found to increase linearly with increasing field. The precise form
of the field dependence of A,,(H) in the vortex state of YBa,Cu30-_; could not be
determined. due to the narrow range of reduced field which the measurements cover.
The strength of the field dependence in the vortex state is found to be weaker than
that reported from microwave cavity perturbation measurements in the Meissner state.
which find AA,, x H in YBa,Cu306.4s [38]. However. very recent AC susceptibility
measurements [208] suggest that the field dependence is much weaker in the Meissner
state than that reported in Ref. [38]. In the vortex state. nonlocal effects associated
with nodes on the Fermi surface likely dominate the behaviour of A, (H ). whereas
nonlinear effects are believed to be the primary source of the H -dependence in the
Meissner state. One must be careful in making comparisons between measurements of
the penetration depth in the Meissner and vortex states. Differences may be solely due
to the way in which the penetration depth is defined in the techniques used.

The measurements of ry as a function of temperature and magnetic field are an
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important contribution to the general understanding of the characteristic length scale
&w- It has been shown here that in the conventional theory of the vortex state. &,
behaves essentially in the same manner as the vortex-core size. The sharp decrease in
the vortex-core radius ry (and hence £,;) with increasing magnetic field is attributed to
increased vortex-vortex interactions. In YBa,Cu;0-_;. €45 1s generally assumed to he a
small quantity (e.g. typical values being 12-14 A). However. the results herein indicate
that at least in the vortex state. this is really only the case in moderate magnetic fields.
The extrapolated zero-field value of &, in YBa;CusQOg.9s is =80 A. which “may  1mply
that £ is larger in the Meissner state than what is generally assumed. Deoxygenation
is found to increase the magnitude of £,,. which in the vortex state implies that the
cores will overlap at a reduced value of H.,. It is important to note that while ro is
rather insensitive to the choice of the fitted model. the precise relationship between ry
and &,, does depend on the model.

The shrinking of the vortex-core radius with decreasing temperature in NhSe, is
consistent with the traditional picture of discrete bound quasiparticle states in the
core. As rg shrinks. the energy level spacing increases. The change in the size of
the vortex core should saturate when the thermal energy is less than the encrgy level
spacing. The substantially weaker temperature dependence of rq found in YBa,Cu;0-_.
suggests that this occurs at much higher temperatures in this compound. The smaller
core size and the reduction of the T-dependence in YBa,;Cu30-_s both imply that there
are fewer bound quasiparticle states in the vortex cores than in NbSe,.

It should be noted that since the temperature and field dependence of £,, found
here originates from changes in the electronic structure of the vortex cores. there is
no reason to expect that £,; should exhibit similar behaviour in the Meissner state.
Furthermore. it is really the vortex core size which has been measured in this thesis.

Although this is generally considered to be an indirect measurement of the coherence
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length. it is not entirely clear whether this coherence length is fundamentally the same
as the coherence length in the Meissner state.

Finally. the results of these measurements indicate that the London and GL models
with field independent A and € are not applicable deep in the superconducting state.
The fact that the data were analyzed with models in which ) and € were not defined as
functions of magnetic field does not invalidate this conclusion. The field dependence of

both A and £ appears to be associated with the unique properties of the vortex lattice.
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