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HYPERFINE FREQUENCY IN MUONIC HELIUM

SUNIL DHANSUKHLAL LAKDAWALA
YALE UNIVERSITY

. 1982

Muonic Helium is an exotic atom consisting of YHe (or 3He) nucleus,
a negative muon and an electron. It can be regarded as one-electron
atom with an effective nucleus consisting of "He (or ®He) nucleus and a

muon. The hyperfine splitting in this atom is due to the spin-spin

" interaction between the electron and the effective nucleus. By makirig

-certain approximations, the hyperfine splitting of the muonic helium-
four atom in its ground state is calculafed in nonrelativistic
perturbation theory. The result aas been cogfirmed by experiments. A
more accurate nonrelativistic number is calculated numerically in
perturbation theory without any approximations. This is done by writing
the summation over two-particle intermediate states as a convolution
integral over the electron and the muon Green's functions. The one-
parficle Green's functions are expanded in Legendre.series to facilitate
integration over coordinate angles, and the radial Green's functions are
expressed as products of Whittaker functions which are evaluated
numerically. Adding the correction due to the anomalous magnetic moment
of the electron and muon to the numerical result yields

F\Y ("He) = 4464.3% 1.8 MHz, - which compares well with the experimental

result: AV (""He) = 4464.95%20.06 MHz. The ground-state hyperfine

. splitting in the muonic helium-three atom is evaluated analytically by

the same method. This requires a generalization to include the effect



of the magnetic moment of the %He nucleus. The nuclear spin and the
muon spin are strongly couplt;.d to form either a spin-zero or a spin-one
effective nucleus. For the spin-:one state, there is a subsplitting due
to the interaction of the magnetic moment of the effective nucleus with
- the electron spin to form states with total angular momentum 1/2 or 3/2.
The main interest is in this subsplitting, which should be measurable.
The result for this subsplitting is AV(sHe) = 4164.9% 3.0 MHz. A
semiempirical value for this subsplitting, based on the measured

splitting in muonic l"l»le, is &V (SHe) = 4166.5% 0.4 MHz.
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1. INTRODUCTION

A 4

Muonic "He is an exotic atom consisting of "He nucleus, a negative
muon and an electron. It was first formed and detected by Souder et al

1 . . .
in 1975. Since the muon is about 200 times more massive than the

electron, it is relatively close to the “He nucleus. Hence the atom may
be regarded as an one-electron atom with an effective nucleus consisting

of a ‘He nucleus and a negative muon.

The muon (or the effective nucleus) and the electron both have spin
1/2, and the combined system can form a singlet or triplet state. Since
the muon and the electron are two different particles, their wave
functions are not symmetrized (or antisymmetrized), in contrast to
Rydberg states of the helium atom, for example. Hence the Coulomb
interation does not remove the degeneracy of the singlet and triplet
states. This degeneracy is removed by the spin-spin interaction. The

energy difference is defined as the hyperfine splitting, &V.

The ground-state hyperfine splitting was measured in a weak magnetic
field at the Swiss Institute for Nuclear Research SIN,2 and in a strong
magnetic field at the Los Alamos Meson Physics I:‘acility LAHPF.s In this
thesis, perturbation theory is applied in a nonrelativistic calculation
of the ground-state hyperfine splitting."’ Various other theoretical
studies of this atom have been made B*W  The Nonrelativistic expression

for the ground-st.ate hyperfine splitting has been evaluated by Huang and
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Hughes using a variational method}a Drachman has evaluated the same
expression by applying a Born-Oppenheimer approxzimation, i.e., treating
muon as stationary with respect to the electron?p Drachman has also

evaluated the same expression by transforming the Fermi contact term

into a glohal operator.11

The possible generalizations of this study are as follows. The
techniques developed in this thesis could be applied to other problems
such as calculating the energy levels of Rydberg states of helium. The

muconic Helium atom can serve as a solvable model for nuclear

" polarization effects. The approach employed here can be generalized to

a relativistic calculaticn for muonic helium, and may eventually give a
precise value for the frequency which can be compared with the

experimental results for testing Q.E.D. effects.

The picture of an effective nucleus suggests a natural division of
the Hamiltonian into a zero-order part and a perturbation. Successive
orders in perturbation theory should give roughly a series in Me/H,. In
Chapter 2, the =zero-—order hyperfine splitting'lsvb is calculated
analyticaly with the zero-order wave function. This value contains some
corrections to the Fermi value due to the finite size of the effective
nucleus. Fermi value an%is the wvalue of the hyperfine splitting when
the effecive nucleus is taken as pointlike. In the same Chapter, the
first order correction to the hyperfine splittiné av, is calculated

analytically with the first order correction to the wave function. This

_correction can be conveniently broken into two parts,gnﬂ and amf. The

first part cnﬁ is obtained by restricting the intermediate muon state to
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the ground state. It can be regarded as a correction due to the size of
the effective nucleus. It can be analytically calculated as precisely
as needed, as a series in Hg/Myy- ~.Tpe leading term is of order (size of
the effective nucleus)/ (Bohr radius of the electron) relative to the
* Fermi value, analogous to the well-known nuclear size corrections in

deuterium12-13 hydx:'ogex'x"“'18 and heavy atoms K31

Otten has applied the Bohr-Weisskopf formulation to calculate the
corrections due to the finite size of this effective nucleus.® His

value agrees well with the value obtained here.

The second part A’\f is obtained by restricting the intermediate muon
states to excited states. It is associated with the  excitation of the
core, or equivalently the polarization of the effective nucleus. This
correction, which is of order (He/Hu)A\)F, is much larger than the
analogous corrections in hydrogen or deuterium bec-ause the effective
nucleus is weakly bound. The analytical calculation of A\’? is similar
to the calculation of hyperfine structure for deuterium by Low® and for
hydrogen by Drell and Sullivan.m The following two approximations are

made to facilitate the calculation.

(1) The Intermediate electron states are replaced by free electron
states.
(11) The electron ground-state wave function is replaced by its value

at the origin. The errors due to the two approximations are estimated

2
to be of order (He_/H“_) ln(HA/Me.) .

In Chapter 3, " the wave function for the electron is calculated by
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numerically solving the Schrodinger equation with the effective
potgntial due to the combined charge distribution of a point l‘He: nucleus
and ground-state muon. This wave function is used to calculate the
hyperfine splitting. This is equivalent to calculating the effecive
nucleus size corrections in all orders of perturbation theory. The
aifference between this result and £¥q°+-£si2 is numerically of order

(He/%aftsvg, as expected.

The excited muon intermediate state contribution was only calculated

approximately by analytical methods. In Chapter 4 a numerical

" calculation of Aaﬁ is described. The sum over the intermediate sates of

both particles together with the energy denominator is written as a
convolution integral over the electron and the‘ muon Green's functions.
The one-particle Green's functions are expaéaed in Legendre series to
facilitate integration over coordinate angles, and the radial Green's
functions are expressed as products of Whittaker functions which are
calculated numerically. The numerical result has an error that is two
orders of magnitude smaller than the error in the analytic result, and
also sheds light on the validity of the approxiﬁations made in the

analytical calculation.

In Chapter 5, the numerical calculation of the contribution of the
mass-polarization term AS&T to the hyperfine splitting is given. The

numerical methods are very similar to those described in the previous

Chapter.

The accuracy‘ of the total nonrelativistic result is limited by
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uncalculated higher order terms in the perturbation expansion. BAn order
of magnitude estimate of the next term in the perturbation expansion is

. . . 2 .
given in Chapter 6. It is of order (He/“.u.) ln(H‘,'/l‘l‘,_)A'\DF or higher.

In Chapter 7; the quantum electrodynamic Hamiltonian of the system
is written in the Furry bound-interaction picture.az The division of
the Hamiltonian into the zero order part and the perturbation part is
done in accordance with the effective nucleus picture. The hyperfine
splitting in the ﬁonrelativistic limit is obtained from certain Feynman
graphs, by making a series of approximations. These Feynman graphs give

"back the nonrelativisic limit plus corrections estimated to be of order

oA,

In Chapter 8, the analytical method éi#cussed in Chapter 2 is
applied to evaluate the ground-stéte hyperfine splitting in muonic:sﬂe.
This requires a generalization to include the effect of the spin of the
3He nucleus. The nuclear spin and the muon spin are strongly coupled to
form either a spin-zero or spin-one effective nucleus. For the spin-one
staté, there is a subsplitting due to the interaction of the effective
nucleus spin and the electron spin to form states with total.angular
momentum 1/2 or 3/2. The main interest is in this smaller splitting,

6.11,28,24 |

which should be measurable.™” The comparision of theory and

experiment could provide a test of our understanding of the structure of

this unique atom.

In Chapter 9, the results are summarized and compared to

" experimental resultsa"‘3 and other theoretical resuls?'aa' There is

i -
\ -
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good agreement.



2. ANALYTICAL CALCULATION OF THE HYPERFINE SPLITTING IN MUONIC “He

-In this Chapter, perturbation theory is applied in a nonrelativistic

calculation of the ground-state hyperfine splitting in muonicl'He.

The structure of muonic helium 1is described, to a good

approximation, by the nonrelaivistic Schrodinger equation (units in

which ch=1 are employed here)

- _ ool o 2% < _9,-V, %
AR AR e %’-)w&“’*e‘)

.

= BP0, Xa) 2.1)

vhere .’?u. and ?c’e. are the position vectors of the "muon and electron
relative to the & particle, and M, = m,mg/ (mtm,) and Mg = nim“/ (me-ﬂn “)
are the reduced masses of the muon and electron with respect to the X

paricle, and Xpe= Xy Xe -

In the nonrelativistic limit of the Breit equation, the operator

associated with the hyperfine splitting of the ground state is given by

- - 3 - -
BH = -SRM, Ao B (%y-%e) - €2.2)

D)
-

vhere ﬁA= -g“(mglm“)u;s'“ and .'&e_= -geagt are the magnetic moment
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vectors of the muon and the elecron. The nonrelativistic wave function

can be factorized into coordinate-space part \W» and spin-space part

\Zp, i.e.

0> = \w>\> (2.3)

The hyperfine splitting AY, which is the difference between the

hyperfine shifts of the ground-state levels with total angular momentum

0 and 1, is given by

AV = QIsHID>, - <Disu\D>,

=" 275" Yde ?r(n m,_,_(%ac‘-ﬁa’ ’?e)r)

AA
* [emlBurSelny, - <215,:5120,] | ca.u)

vhere < > denotes the expectation value in coordinate space. With the
aid of
5.5 = (Su+ Se) = S, - Se (2.5)
A Te > > .
one obtains
(2.6)

C2l5, Beltpy - <Xl Bl2y, = -1



With approximate wvalues for g, and ge taken to be 2, we have

- gn % % .
av = ST &= észc.,c“-xep 2%

To evaluate the expectation value in (2.7), we apply perturbation

theory to the ground-state wave function. the effective nucleus picture

"as discussed in the Introduction suggests that in the lowest order, the
muon sees the charge 2e while the electron sees the charge e because of

the screening by the muon. Hence, the Hamiltonian.is divided ino a

-

zero~order part and perturbations,

H = Hy+ 8V+ 8M 2.%4)

in which
H, = -2—‘73:- s Ve -%- 9-;-3‘ ¢2.9a)
NEuFe) = F= - %(E; |  €2.9b)
- M = _.5%;'EiL-;EiL ' (2.9¢)

The mass-polarizaion term is negligible to the accuracy considered here,

and is discussed in Chapter 5. The zero-order wave function for the
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ground state is the product of normalized 1s hydrogenic wave functions

(with Z=2 for the muon and 2=1 for the elec_tron).

W, R %) = W RIW, Ged

- % (207 ‘“‘A""e_)'z -20X™M, X% e:.otMe.xe. (2.\0)

which has the sum of.corresponding hydrogenic 1ls state energies as its

energy (Eg = E otEee) -
The zero-order hyperfine splitting is given by

AV = ¥ Er LW\, ~ReIWo D

3 ) JJE
B xS, SdneWed, Re) §.-

e B %) W R
Mo -3
= (1+ J‘zw.) AV, | c€2.11)

where AV, = gu(mktp)a/('éﬂhﬂy) is the Fermi value,

whose physical
significance is discussed in the Introduction.

- The first-order correction to the wave function is given by

WG = $at, B, ‘”Mﬂ‘““"”&ﬂ"‘ﬂ“’m" S
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x BV Xy X)W,k K, €2.12)

Note that in the above equation n and n' both can not be zero
simultaneously. The first-order cerrection to the hyperfine splitting,

Av,, due to the first-order correction to the wave function is

AV, = [¢wal €20y + 2w\ S - AN

3“\;‘“

= 18T <w°\€c:t %% NW, >

= 1emx de Scf*a\p R %) SCsc,‘-x;Qw %)

= deTx_ o d, of Sok, 2 W, Yew, 3

m

- - ¥ = ¥ =
% YounFa)We y G, Fad We,y )
Em'\‘ Eu - E - Ee'n

BVELFIWLLFE)  (2.43)

It is.convenient to divide the sum over muon states in (2.13) into two
parts Ay, = A\a+A\f, where A\a is the contribution to AV, from fhe term
with n=0, i.e., where the intermediate muon state is the 1s state. The
physical significance of this term is discussed in the Introduction.
For this part, we have

A3

AV? = am,m Scfxa 8P, z;. Wh R Y Dy (o) W GZ,,)

3 we“az] w;:n G\)
Eeo- E

VLR We &R (2.1)



with

- L0IM, %
Pul , c2.\58)

Only s states contribute to the sum over n in (2.14), so we may replace

the sum by the s state reduced Green's function for the electron.

% Wo g2 Wor( s 0 _ - XMg e:""“e.ﬁ"\*'":ﬂ

Eeo— Eens n

x [ Sammg, = 20 (20cMexy) + S - - kMot Ra)

(-
+ %N “’-_““_‘g-’_‘s.’_ 1, RS
ALTENE N X 303

vhere x, = max(x,,x;), X, = min(x,,X,), and % =0.5772.. is Euler's

constant. Evaluation of Equation (2.14) yields

AV = AV YL+ (MY en(t) -2 (MY

™Me S

+ oL(Es >zn(':;%-)1} (2.4%)

Hote that A\F. can be evaluated as precisely as desired, in as a series in

(Mg/M,) -
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The part A\fcorresponding to excited muon intermediate states, i.e.

nk0 in (2.13), may be written as

- + - T -
AV = - %—6&2‘"& Sce"agg*zs‘a"‘?ﬁo%oc"ﬂ WeoFadW, %)

x ’9:“('2&) Ge.c;a 5‘! >Eus~Eun® Eeo) X

La? X\
¥ \Paocga) w&oc-il) (2.4¢)
vhere
-‘-
X 2 WenRa) Wen &) 2.\9)
Ge ("3.;%\)2) nd Z‘l Ee“ _ %
is the electron Coulomb Green's function. In (2.18), there is no

contribution from the term -&/x, in sv(?za,?:‘) due to the orthogonality

of %G‘a) and %Gcz) for ngo.

Two approximations are made to evaluate (2.18).

(I) The ground-state wave function for the electron is replaced by its
value at the origin, i.e., WLG{;) and lveo(?:‘) are replaced by Wg,(0).
(II) The electron intermediate states are approximated by the free
states. This is equivalent to replacing the electron Green's funcf.ion by
the free Green's function.

Physically these approximations are motivated by the following
arguements. The hyperfine splitting is proportional to the spatial
overlap integral of the muon wave function and the electron wave
function. The important region of integration is of order 1/@(15“)
~because of the exponential factor in the muon wave function. The fact

that ground-state electron wave function does not vary much from its
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value at the origin in this region is the motivation for

appr'oximation I. The fact that high momentum components of the electron
intermediate states dominate in this region is the motivation for
Approximation II. el

In perticular, for justifying Approximation I, we have

= ~ XMax
YooY = W, tore e

= Wegolo) Lle XMex +----] (2.20)

Because of the associated exponential factor due to the ground-state

wvave function for the muon, the important values of X4 are of order

-~

1/(XM,). Hence

Ypolia) = WeotodLiv 0(Fe)1 -~ 2.2\)

Replacing wu(T:s) by “’eo(") introduces the error of order AVF(Me/lj‘t)z in
the calculation of av®. The important values of X, are of order
ll[K(HgHA)'”] due to the associated exponential factor from the free
electron Green's function [see (2.24)], and hence

2

Yo R = Weood [1+ 0(Ke) 2.22)

™
As

3.
introducing the error of nominal order Av’(He'/H“)z in the calculation of
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Avf'. The calculation carried out in the later part of this Chapter
shows that the contribution of the second term of (2.20) for x=x, to

2
AVE is in fact of order AV,(Me/My) ln(if,/Hg).

The justification for Approximation II is based on the equation

satisfied by the electron Green's function

R 3 - -
(- _% - 2)GFaFE) = §Fg-R) €2.23)
2Me ¥3

The value qf interest for 2z is Ee°+8‘b-8m. In the calculation of Avq,
replacing the Green's function by the free Green's function gives an
error of order AVF(MG_/HJ ln(Hu/He), suggesting that.the binding term
-Q’/x3 in (2.23) plays a minor role. A simila;' error can be expected in
the calculation of A\’?’- The calculation carried out in the later part
of this Chapter indicates that the leading correction due to the second
approximation is of order AvF(Me/Huf ln(Hu/Me). Comparision with the
numerical result for AvF suggests that the errors introduced in the

analytical calculation due to these two approximations are of order

A\?F(Hem“? ln(lfalue) (see Chapter 4).

- R . L -
With these two approximations, i.e., replacing W, (?:3) and wu(x‘)
by Wpa(0). and replacing Gg(%,.X, ,E,,+Eag” Eun) by the free electron

Green's function

-bn*a‘

- - _ ™ (2.21)
G2 Ry, BugBunt Eee) = % &

%2y
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in which b, = [ZHQ( “Eo E“)] . by>0, we get

AVE = - av %e [ Sk, Sk, P O G W, Eady Y, )

~b.x
*x g3 7 . (2.25)
%o - W, 0G2)
Integration over X, yields
13, € gha¥ar _ A 1 o, bz (2.26a)

= T3
X3y X2 by *az

R 3 )

= Lm'(__._. L%y s ....b xa,_ SrbaXaat+-- (2.26b)

In view of the exponential falloff of the muon wave functions, the main
contribution to (2.25) in the integration over ?‘a and 3':'3 comes from the
region in which x, and x5 are of order 1/(x™,). The order of magnitudes
Kag ™ 1/(x™) and b~ O((H'_MJZ', suggest that the series in (2.26)
gives a series in increasing powers of (He/Ma)'lzfor A\’?‘- The leading
term b.:., gives no contribution because of the orthogonality of the muon

wave functions. In view of the completeness of the muon wave functions,

we have
a— L) * -—
2*} 6‘31 LG = 8 (hg-%a) = W, (RIW ) (2.2%)
n{o “*

so the second term in (2.26b) yields

- AV, 20Mg § iy Sebe o 119, )P %3z W9, Gd T
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= - av: T e (2.2%)

in (2.25). In the third term in the series in (2.26), Egq is neglected
in comparison to Eg,-E, in bp, and again because of orthogonality of
. - .= -

the wave function in (2.25), we may replace lxs-xz\ by -2x%,-%,. Hence

in (2.25) this term contributes

tla -
AV ocmrg §B 880 T W, o) 2MelBun= Buod] R )

—

— 3l2
xoty:nﬁﬂ X W C = AVe %'(-%ﬁ\ Silo. (2.29)

where we define

P % 2
Sp = B (BuprBun) lcerolZ=tlun> ¢2.:30)

2
with l}“=20t Her a‘,_=1/(2m;_,,), the effective Rydberg and Bohr radius for
the muon. By neglecting Eg, compared to Ein~Ewe in by,  the error
slo,
involved is clearly of order AV (Mg/M,) . which can be neglected. For a

26
simple estimate of Sy,, note that the standard sum rules 5,5,=3,

together with 5,1 1/2(S,%S, )., give Sy, 3. A lower bound on S,lzis
given by
Sia = mm [( )Izl E <o \— \,u,m)\

= 3@ C an
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Hence Sy,= 2.8%0.2. Contributions from all other terms in (2.26) are of

2
order An%(ﬂalgu) or higher, and hence can be neglected.

Errors due to the first two approximations are estimated by
replacing by by some average b, independent of n, and of order
oaﬁequyz. This is based on the expectation that the order of magnitude
of the remainder is given by the excited bound states of muon, and for

excited bound states of muon, bn is a slowly varying function of n.

Now

Woo (X)) = Weolod [1— XMeXy +-00- ] _ (2.32)

-

Hence the 1leading correction due to the first approkimation is due to

the second term on right hand side of (2.32), and is given by

g vl = g};:, §iesSka §, T3 Wi Vo)

® lp ’%)w (2 )& C"‘a,"t.-.E,uo Ent E'eo3 [xz\

x Y, (%) L- ¢ Mg¥ Wa o)} ' €2.33)

To estimate (2.33), the same approximations are made, as described

above and b, is replaced by b. This gives

| 3 A
8. Lavi]l = ﬁ;"’ (xMaY” §dva S §ex, ao%ﬁa) W )



- 19 -

¥ g, G, hve (,‘,_ )%, t2.34)
Using (2.27)
s, Lovhl = T+ I, (2.35)

where

T, = D (e ijégfx,_gfﬁ Y, )W, Fa)

- b%a
x 6GRa-%p) &2 -1 3y x 2.
a~%a e G- €2.3¢)
I, = A"s (MY §xqScPra Sdx, \u,,g (x:p\ W, Foo\
% '3 """'"‘" - — %‘ (2-31)
Kya Kig, t X

Now

-b% A
x“e "——"z'“‘z;zl = 5%_ 1-::;\: Y.n(bac,)-x- Otb&)] (2.2%)

where the expansion "in a power series of bx, is justified because
i
bxzvu (He'/!h)z as described previously. We have .

3 ~bX A '
Sk, 02 o 2% C 2:39)

Yy
Using (2.38) and (2.39),
2. 2 2
I, = - & AV CeeMey® S Vg, @3 1¥ %" 2n Cox )
+ OLAV, (-a&) | - (2.20)

Since b is of order &X(M M ""

1, =34y, (%ﬁ)zzn(ﬁ:%) + OLave( %&32] ¢2.41)
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To evaluate Iz' note that

Scfs;;\w DV (R 1)

Ky

= - b Qe2uMx ) € Rl Sl (2.42)

Hence important values of x, are of order 1/«15“), thus giving

2
I, = olawva(Reya (2.43)

From (2.41) and (2.43),

2 2
BLAVEY = 30V (T Yn(le) r O lava(HaY] c2.0)

The Green's function for the electron can be written as

- S - - - P
GeisF1,2) = Goliaf,2) - §dky Ga(Fa KBV (%) Gt o 2)
Foe-n t2-45)

vhere

V&) = - %—H - (2.16)

Hence the leading term of the error due to the second approximation is

from the second term on right hand side of (2.45), and is given by

82 IAV] = - 6T Xd.x.S&,Soe:c;,S‘d.*“g cxa)w €%y)

3m,me,

- ° -
'3 wAnG-‘) %J-":.’ Gq (%, %u, E 5 Eunt Eeo) % G:.__Ciuﬁ'-,%‘i‘un* Eoo)

€ X (g = 4 ) W lFa) gy | c2un)
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To estimate (2.47), the same approximations are made as described above.

This gives, with the aid of (2.27),
200001 = Tg + T+ Ty (2..8)

wvhere

-

¥
Ia‘ _—- Zé-}\’; (“Me’z Sﬁlggﬁsgxss&q %O(‘J)%&) )

~b¥%a, ~bx
x & d gb%m ¢ 3. _

~b¥s, ~b¥z, 3 -
% & Qe M L gx,-
Gn *H Ry % B Cxy ":.? ' (2.50)

I,= —--—--(o(Me,') Sfx.gixascf%agixh\ oc%)?\%&,}?‘

~b¥%y =¥y,
e W 1 e : L .

Integration over x can be carried out in (2.49) by using (2.26). Using

the integral

b‘l‘uz \ - P _ 00 ("b*:.)ﬂ ‘
SCL .(xuz) ,?‘-L-‘ _Lin[‘ Y .Q.nb*:. r&m J L?-SQ)

integration over'ﬁu in (2.49) gives

b“uz —bx
V- na
§dx, € - ,c (== )
= 41 [2n2- B & 00843 C (2.53)

Using (2.53), we get
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22 3
I, = -%2n2 Av;(.&‘!:'is'.)_ + 34V XM Mg . glav. (Me)] (2.54)
b =] Mt"" Ar

Integration over X, and X, in (2.50) carried out by using

fd, @B 1 - LI (3-etbXu )

X ¥ T gt N (2.55)
and
3 %y - b"z“ -y ‘aﬁa) -C
fdx. e & = AT T2a(e ™ M-g N .
€ TE— [ S W] (2.56)
wvhere a = 4y, in (2.50). Using
S' ‘*" €.e™)n-e™) =2n2-b o(E (2.5%)

we have

I, = BL02 AV (XM 3DVE KMe Mg

+ O LAV: (Fa Y] (2.58)

Integration over ?:'z in (2.51) can be carried out with the aid of (2.42).

From (2.56) and the integral

e Ux, ~Ux eV¥u -U-*u .
§dx, eu — e.xu‘:' ( ) - (2.59)

it follows that

L ' 2

I, = -ave (M )zé‘%‘z‘_( -0 e™) + olave(Be)]
2

= -Ay, (%f.;)ln% + Olbvp(%§1 , (2.60)

Since b is of order o((ﬂ,_H“)'h;
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. 2 . <
I, = "“iAV:(‘%j) .Qn(%t—"-&—) + OLave (%&\] (2.61)

using (2.54), (2.58) and (2.61),

2
8.laf1 = ~-‘5AV=(%§\ on(fs) + G[Avg(%)z] €2.62)

Equations (2.44) and (2.62) suggest that the errors, due to the

approximations made in evaluation of A\)f‘. are of order

A\’F(He-_llh?' In(M,/M.) or higher. This is also consistent with the

pumerical calculation discussed in Chapter 4.

Summarizing,
AV, = &2+ A
. aw™ 32 2
= Me3-3 e + 25, (Re) +oL(Ee)en ()] (202

and

Ay =2 AVQ + AV,

3}
= av. u- 38 + 2 5.(5e) 2

+ 0 [(%}%n (2:%}] S (2.61)



3. NUMERICAL CALCULATION OF THE CORRECTION DUE TO THE FINITE SIZE OF

THE EFFECTIVE NUCLEUS

In this Chapter, the wave function for the electron is calculated by
numerically solving the Schrodinger equation with the effective
potential due to the coﬁbined charge distribution of a point %He nucleus
and ground-state muon. This wave function is used to calculate the
hyperfine splitting. This is equivalent to calculating the effective

nucleus size contribution in all orders of perturbation theory.

The electron experiences the effective potential due to the l"He
nucleus as well as the charge distribution of the muon (represented by

the zero-order muon wave function). The effecive potential is given by

- .2 = W\
Ve#-c < = Ko + S‘E’fa‘%c"f«—o\ E—
- - X ~

where the zero-order ground-state wave function for the muon is

%(5?) = J!—;;'(?“Mafh e 2060, % (s.2)
and
BVO%e) = ~&-(ur 20rquxe) EM* e ¢3.3)
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The ground-state wave function “%Sﬁ) depends only on the radial

coordinate x, and hence F(x) defined by

Flx) = Xwx) €3.1)

satisfies

2

de _ 2Mg [Vgee &x)~ EJF(x)

prpvci 3.5)

By using perturbaion theory to first order

2 2
E = ‘i‘MeK +S£xiwm0<3\ 8VLK) (3.6)
vhere the zero-order ground-state wave function fér the electron is
given by
\ la __amgx
W k) = Nﬁ_?(ozme_? a *Me BRSS!

substituting (3.3) and (3.7) in (3.6),

E= - -;-Meo?'{i-i- (%i)atn.-&- o (bﬂﬂﬁ):\g (3.9)

With the aid of (2.7), the hyperfine splitting can be written as

3
avg = FEE | §\w, ot lwecn ™ €s.q)

Since F(x) is not normalized, the right hand side of (3.9) has to

include the normalization constant. Hence
o ‘2
e Sdx\FoO\ \%Dcv.a\?'
[«] —

AV = I w. = €3.10)
e R oo
o
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The function F(x) is evaluated numerically with the value of E given by

(3.8) as follows. The sum of the two power series

Fix+h) = Fox) + hFox + 1
21

Fex) + § F 0 + O
3.\

and

! ]
Flx-h) = F&ry -hFEexy +.\33' Foxr— o F exy + oLnY (3.42)
21 3\

together with (3.5) yields

Fexeh) + Fot-h) = YL+ MeWN TVee ) = £ 13 Fory + 0ct)
3.\3)Y

Using this relation one can, in principle, go in either direction of x
to find F(x), if F(x) 4is known for two neighbouring values of x. 1In
this problem F(x) is known in two regions. In the first region, Qefined
byo(lg“x << 1, with the aid of (3.1) and (3.3), the effective po.tential

is well approximated by

Vepe (%e) -3’_% €3.\1)

This result can also be obtained from the physical consideration that
when the electron is very near the nucleus compared to the muon Bohr

radius, the electron moves in the potential due to the nuclear charge of

2e. In this regién F(x) satisfies
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d:

e v LS+ 28mF = 0 Caas)

The solution of (3.15) which is regular at origin, is obtained by a

power-series expansion.

Elx) = Max [ -26XMX + 007

-20Mg %

2 Magx € (3.16)

where the second term in (3.16) is independent of binding energy. In
the second region; defined by®M x >> 1, the effective potential is well

approximated by

oK
Vees 00 = = - €3.13)

This result also can be seen from the physicéi consideration that when
the electron is far from the nucleus compared to the muon Bohr radius,
the electron moves in the potential due to the nuclear charge of e,
because of the complete screening by the muon. In this region F(x)

satisfies

2
dEe [2XMe , 2EMelr = o

d.x’- (3.11)

and F should be square integrable in this region. The solution F for

arbitrary E is given by

FORD o Wy, (2E8Mex) €3.19)

where W is the Whittaker function which is regular at infinity, v =®/c

)
and c=(-2£/M¢)z, c>0. The asymptotic expansion for W is given by

Wi a@x) = €527 [1 4 VW & 0(4a)1 (3.20)
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The value of (1-Y) is of order (He/l%f . and ¢ is of orderf¢. Hence
apart from normalization, -
CMgx

N 2
Fex) = (MgX) € v o[22 =13 €3.21)

[ ™Mex

If one starts frém' the values 'of ¥ in the region where
O(ILX << l(o(lhx >>1), then the procedure of numerically evaluating F(x)
with the aid of (3.16) and (3.21) for increasing (decreasing) wvalues of
x, 1is eventually unstable(see Appendix A). To avoid this problem,
Equation (3.13) is wused to calculate F, (%), in the direction of
increasing x starting from x=0 with initial values given by (3.16).
Also Equation (3.13) is used to calculate F’z(x) in the direction of
decreasing x starting from a large value of x(=x:), with initial values
given by (3.21). The calculations are terminated at some intermediate x
such that both functions are stable. This point x(=xH) is chosen to
give the best match of the logarithmic derivatives of the functions.
The function F(x) is given by
Ex) = Fwxr), N & Koy
= CFRw), R >Ry

3.22)
vhere the constant c = F (x,)/F,(x,) provides the continuity of F(x) at

"

To calculate F (%) starting from small x, one needs the values of F,
at two neighbouring wvalues of x. In the limit of x tending to zero,

Equation (3.16) is exact. Hence the value of F, at the origin is zero.
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To find F, at the neighbouring value of %=D, following method is used.
For D=0.01 and for various values of h=0.1D,0.01D,0.001D, Fy (h) is
calculated by using (3.16) and. then F,(2h), F,(3h),....F, (D) are
calculated using (3.13). The various values of F; (D) for various h,
- agree very well with each other. For example, the values of F (D) agree
within 1 part in 10'°®  for the last two values of h. This gives an
indication of the accuracy of the value for F,(D). Now F, (x) is
calculated with the étep size h=0.01 for Og&x¢24. Then with the step

size h=0.1, F, (x) is calculated for 24¢x¢x +h, where x =360. For x>24,

BVLXY ¢ 4030

3.23
Vege (R €2:23)

and hence §V is neglected in (3.13) for those values of . The

derivative of F; at x,is calculated by the symmétric difference formula

-

Fltxw) = F'“;:M-P\“"-m + 0 (3.21)

to evaluate the logarithmic derivative

\ ]
L| - F, (%)

(3.25)
Foxl)

For large x, Fz(xz) and Ez(x:-h) are obtained using (3.21), where
x==2400, and h=0.1. The error in the value of F,(x,) 1is abou£ 2 PPM,
and this error in the subsequent evaluation of Ez(x) is expected to
decrease because we are going in the stable direction. With those
initial values and the step size h, F,(x) is integrated in the direction

of decreasing x to the point x ~h. The logarithmic derivative of Fy(x)

at x,.,

L
' B, %)
Ly, = 2="m! .
2 T (3.26)
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X .oy . . ]
matches L, within 2 PPM. Using F(x) at various x, 1?dxl?(x)\ and
e 2 e
sdxlF(x)\\Iguo(x)fL are calculated by the trapezoidal rule.
Qs

Substitution of these integrals in (3.10) yields AVy= 4494.44 MHz.

The calculation is repeated by reducing the mash-size(h) by a factor
of two. The hyperfine frequency changes by 0.003 MHz. The calculation

is also repeated with the values of E given by
2 c3
E = -imeoxd L1+ o-qs.(%ﬁ\ a €3.2%)

and

S
E = -fMed L1+ 1-05(Ze) 1 (3.2%)

The logarithmic derivatives match within 15 PPH, while the hyprfine
frequency changes by 0.01 MHz. Hence the error in AV, should be less

than 0.01 HHz. The program is checked by solving the hydrcgen problem,

i.e. with
Vees O = = ¢ (3.29)

and '

Y .
E= - 3Mex €330)

The hyperfine splitting obtained is 4483.38 MHz, in exact agreement with

the result obtained analytically.

Summarizing, A\’S = 4499.44%0.01 MHz. The quantity &V+ b\g(which
takes into account the effective nucleus size contribution to the

hyperfine splitting upto first order of perturbation theory), agrees
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numerically with A\)s (which takes into account the effective nucleus
size contribution in all orders of perturbation theory) up to order

Av:‘"elu,u)z , as expected.




4. NUMERICAL CALCULATION OF THE CORRECTION DUE TO THE EXCITATION OF THE

EFFECTIVE NUCLEUS

The numerical calculation of AV®, the contribution to the hyperfing
splitting in the first order of perturbation theory when the
intermediate muon-stét;s are excited states, is described in this
Chapter. The correction csu? can be physically interpreted as the

contribution due to the excitation of the effective nucleus.
The correction Anf is given by
3MuMe

AVE = \eTx 03 o, O, ;z;.ow: Ry Ra)
“I

% WGy ) We Ra) W R Wy, €20

E“°+ Eeo - Eun- Een

VGG FIWLE KD (4.\)

It is difficult to deal with the summation over all intermediate states
numerically, particularly for the continuum. The summatibn over
intermediate states along with the energy denominator can be replaced by
Green's functions, which are easier to handle numerically. To achieve
this, the energy denominator has to be written as a product of two
terms, one containing only the electron intermediate energy levels and

the other containing only the muon intermediate energy levels:

- 32 -
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i I . 0dz
a.b 2 b R gcz-ﬂ\cz-b) ) (“0’2)

where the contour C in the complex 2 plane can be chosen to be a
straight 1line parallel to y-axis with 'a' on the left side of the
contour and 'b' on the right side of the contour. With a = Egs-Egy for

any n' and b = “EnotEun for any ni0 in (4.2), we have2¥

|

E,.otEeo—- Eun— Eent

. C4+ico |
S o \dZ ——

2

" Gein T (Eeo - Ber)ILE- (BB o) (L. 3)
where
a .2

O <c <5y, Claoly)

The Figure 1 shows the contour in the complex 2 pléne with the bound

states and continuum states for the electron and muon.

Equation (4.3) is true for any n}0 and any n', and the right hand side

of that equation gives zero for n=0 and any f . Hence

- - + ¥
T Wan(Ra) Wa g )W, o (R YW 1 €5 , °§:° 5
nl® Euot Eeo - Eun— Een — ® 2w O%F L,

C-it0 s

% Wiin ) Wery G'a\w,:“&ﬂwzn‘ X))
[z~ (Eeo-EerL2- (Eu - £, 0]

th.n)



- 34 -
ImZ

L

Figure 1 : The Contour in the complex z plane

° muon bound states
= muon continuum states
X electron bound states
electron continuum states
From the definitions
War (RIWE, R0 - o
L & en Ge 3 %1, EeomE) (L.5)
n Een‘ - (Eeo-%)
g‘ Yan ) Wan2) = G,y %, >Eud %) h.6)
Eun = (B+Eus)

vhere Ge and G, are the Coulomb Green's functions for the electron and

the muon respectively, we have
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R 2 c4loo - -
AV = Rt 03 (e, Sk, § i w7 Ty W, R
. 3"}‘&“‘& -

C-100

L3 GQGE&;{‘:EEO'E) G”C’.‘-a gz;%“'z) (;‘_‘; - ',‘z"' (L.3)
(L3¢ .

= ¥ (dge he) (L-2)

3MuMe e ' ‘

In equation (4.8) h(z*)=h"(z), hence

. a Catloo
AVE = L8x” Xd.z Lhe)+ Bea*)l

catlod

ileec® Rel{dz hezd]
c

. ¥ mﬂme.

- 6L 0ém : e -
W Re.[S;d_;a- h(zun)] N y-9)

where

2e) = 200, [k L(-1)] (4.10)

and k=c/(20?l§u). In this calculation we have chosen k to be 0.306 so

the Equation (4.4) is satisfied.

The Green's function can be expanded into angular and radial parts.
X - A ¥ oA
GelaiBeB) = Tu Genlra i BesE I Vpm (R Yo (R (L)

A » -
GruGaFa B ®) = 1 Gty 202, B 8) ern@ad %y, Ra) €112
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Alsb
T . ¥* oAl (x'2 2 '
Eu%E‘ITY‘ ‘“"’Yz‘nru'\ c;.z))e,u (h13)
>

where x': = min(x,,%x;,) and x':' = max(x,,%x3). The integration over the

angular part can be easily carried out to get

2 Ly \ L) oo oo
AV = ~RBEX Ve )T g T §dt fax, fdwa §dnyxindnd
ey o &3 o o -]

Xe
Lx|2 2
® ;. G g2 %, BB G Uy X B b2 ) [_(_g_)s_a‘ \ ‘Szo-‘
k)
As derived in Appendix B,
<
Geptxam,2) = Me G (Mera,Mex,, 55 ) (L4.15)
2
G‘ugf)‘z,ﬁ,z ) = 2M,G, (2M % 2m %.3-‘_-6-4- ) (L.16)

where radial part of the Coulomb Green's function Gg, independent of

mass and charge, satisfies

f S - 'A{X3))
L 2%, dsq-x""' Zxz —‘E]G O 0 ,2)

‘- ——,‘* BC%, - %) ('H"-',')
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The function G can be written as the product of the two Whittaker

functions H and W.

&, (X2, %, Z2) = A Terra=-vy c2ex%?
LT C¥i¥2 T(agra My, peia <)

12
L] Nv,g¢.p,_(7'c'*> ); (L!'\g )

where ¢ = (—22"a such that Re(c) > 0, and v=&/c. The functions M and

W satisfy the following confluent hypergeometric equationzg

2 2 ’ '
d. - wl %)
[3521"' (.&'—";“'%"""—?)J Ve | o L9y
*® ™My, oy ?
where M is regular at x=0 while W is regular as x-mw. The following

integral representations for M and W are used for the purpose of

. . 29
numerical evaluation.

™ - T(22+2) XA
v, mh(.z) T+ 24xVITCL+2-1) s

i -’ v -
x Qe €7 aey Ve io-2eR (1-20)
o

o
1 x? ~%a-1E s ¥ \hig
T+ 2~v) %’“‘ e (%) 4(”’%

) w2)

To evaluate M, the following integral has to be calculated.
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1

- 2+y
I = $dx %Y a-nY o2 (u.22)
. o :
For OsRe(z)sa,-' I is evaluated by using the 12 point Gauss-Legendre
guadrature formula®® For 8¢Re(z)¢18, the change of variable y=2 is
made, and then the integral I is evaluated by the same 12 point formula.

For Re(z)18, the new variable s=z(1-x) is introduced. Then

= e! Sd.s(_.) ""’e -S
coel®

_ ot 2oy Y _§

= & Sd.s (€)Y -2y €

coel® e,
- e“ Sd.s(s *au-£ -S (L.23)

where 8=arg(z), and the integration contour is chosen to lie below the
branch cut extending from z towe e For the relevant values of
zV,1(Re(z)>18, 1=5, Re(V¥)<1.2), the magnitude of the ratio of the

second term to the first term in (4.23) is of order

TC22+1) lzi""" e-.us\

u2h)
T(ey1+v)

Hence for the relevant values of zy,l1, neglecting the second term in
(4.23) introduces an error of less than 1 part in 1. Hence the

integral I can be approximated by

coet®
2 BV, s &V .5
Qz_é'd,s(%) Q-2)" g
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8

g~

ds(%)l-ﬂ’ Ci- %) e-S (L.25)

- et
=

oc—

The integral given by (4.25)
30

Laguerre quadrature method.

is calculated by the 10 point Gauss-

To evaluate W, the following integral has to be evaluated.

o
-V 24y
- -Sfs <)
For O<Re(z)<0.35, we use
Iy -y QL+
I = fdse®(2) e ™1 - rame ]
+ (2+ri-v) (24T (R4+2-1)
zz_v + z’.&—hv (4.2%)
The first term can be written as
I, = I,+ Ty (L.2%)
where
'
-5 QY e+ s
I“=§a.se. () LO+2Y- - (e 2] (4.29)

and is evaluated by using 10 point Gauss-Legendre quadrature formula,

while
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B e o8 [ 5 \TY § \E+Y c
L= §ese® () Lar sy o ccemi]
]

i et 2= 24
= Jdte (e 510w § FRYIN T
g e (z ) LGx = ) V= (2w = 3 (u.30)
is evaluated by 10 point Gauss-Laguerre quadrature formula. For

Re(z2)»0.35, we use

00
oY
-5 (S S 2%V s . - 2
= gd-se. (3) Lo+ ar - g mw);-z-w 2 (5]

+ THEZH-Y) | (0 vIT(R4+2-D) | (24 I(L4V=1) THR43-V)
zz-v + Z_r_q-\..v + =) zz&z-—v U"‘s‘)

The first term is evaluated by same methods discussed for the case where
Re(2)<0.35. The 10 point integration for W gives a good result only for

Re(V)<1.2. This restriction on % is ensured by the choice of k in

(4.10).

The recursion relation in 1 for Hv‘“‘hgz) and wv,u.q,fz) for fixed y

and 2, can be derived from the integral representations. They are given

as follows a4

1 2 i '
= [ ens-v v
'“o?-"‘cz’ [' L a3 (2240 (29.~3-)\ "a"('E) = 200V (4.32q)

_ 22+1 22CR4) (24\) (24V)
u"-‘g‘(%) - ZLL‘H-\’)‘- = -'\J]'i' LCay 1=V

tn.233a)
=)

"a t-\‘

where
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Sy 2) = Mo, eeata (2D (4.32b)
* ™Mo, 0a12 (2D

> W, geal®

For numerical stability, the recursion relation has to be employed in
the direction of decreasing 1 for M and in the direction of increasing 1
for W. For a qualitative explanation, see Appendix D. To calculate
“\'!.e.uufz) for 041¢L(the choice ‘of L is discussed later in this Chapter),

a value for ry ‘_(z) is required. With the aid of (4.32) by downward
. .

‘recursion starting from

= Ly = Max [L,Re(2)] +15 + Rel(E) (L.3W)

and the initial guess

My, B = = | (4.35)

the ratio rv‘\'(z) is obtained by downward recursion. To estimate the

error involved, this ratio is calculated starting from various values of

Ly The agreement among those various values indicate that the error is

less than 1 part in 105 for all+¥v and z. From Equation (4.32) and the

value for r”.‘_(z), rv‘t(z) is obtained for all 1¢L. The function

Hv lw;(z) is calculated for 1=5(the most convenient choice for numerical
¢ ]

calculation), and then from the values of rv‘,_(z), the H‘,o“‘ a(_z) are

calculated for all 1¢L. To calculate W for 0£1¢L, first W,,‘sz(z) is
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evaluated for 1=0 and 1=1, and thus u\%o(z) can be calculated. Then

from the relation (4.33), “1;1!3) and W‘,Q*q{z) are calculated for all
. rt] (]

1¢L.

To evaluate the integrand of the integral over X, .%3,Xg and t, the

infinite sum over 1 has to be carried out. This sum is divided into two

parts

L oo
s:,o £Le) = E‘.cczw . £C2) (L.36)
=0

L4y

The quantity L is initially chosen so that the Green's functions for
electron and muon approach the asymptotic limit within 1% for 1>L(note

that this L is same as mentioned previously in this Chapter). For

1>>|x|,32

e+
My e C%? ™ X | (4.33)

w.%z“h_cx) o 120400 "-2

(L4.3%
TCR41-D) )

Hence

2 (%252

Gplti¥a,zy ~ S5 T (4.239)
> -
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Using (4.15), (4.16) and the above equations, we find

l..

' vz 2.
Geg(*aa)‘{a Eep-z\ Az(& *3. *23[ QQ‘ -

*

 82.0)
O

oo (4.40)
where

_ MeMy,

3% )(x"s)c (TR

is independent of 1, and

M o= (3 20D Cx2' )

.49)
(%32 ) E3HY B

The asymptotic limit given by equation (4.40) is reached within 1% for

all relevant wvalues of Xy Xy ,Xg and 2, if one chooses

L= 10 + 2:Max 31 4 LMt o+ 2N Mar apad |,

| 2 [-2Me(Eag-2)] 2 Max Ok %3). ‘3

Cl.43)

In the sum (L+1 toco) the function £ is replaced by its asymptotic form

a0
in the large 1 limit. That sum is proportional to 2r2/(1+1/2)" , and is
Lo

approximated by

oo Y

= L'-S:\t,% Cu iy NI< L4y BaCx) (a.un)

2 mu:a‘
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where
X = CL¥VIReag (4.u5)
co -tR
EnC%’ - Sd.zne . (L‘.L‘G)
[}
For x>10'"‘: Ez(x) is calculated by the relat::i.m'l2q
E,(x) = €7 -%Ex) (LL3)

and E'(x) is evaluated by a library subroutine. The first sum f;om 1=0
to L in (4.36) is evaluated without any approximation. Starting from
1=0, after every ten terms of the sum, a check is made to determine
whether the remaining sum over 1 is significant (i.e., more than 1 part
in ld“) compared to the partial sum S() for 1¢L. If the remainder is

insignificant, the summation over 1 is terminated. For making the

check, following method is used. It is assumed that

o0 [~}
Y ey = L, f )  (LeL®)
L2241 Ra L+t
where
]
— &_—
Fﬂm) T (RAa)?

(L.La)

It can be shown that
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‘_l.;«'l,u‘ st ?

4

g

1 zgfatm <& (L+12) Fa(2) (L.50)
% a2
% ) .
R j.;(z) < Y tu-5\)
) Hence if
min C (L+12)Fa (L), 57'__(—_“-,"_—) )
4 0-000\ .
5623 (L.52)

00
then Y £(1) is insignificant and the summation is terminated. HNote that
QUgn

this termination, contrary to what one might expect, does not save any

K
%
%
E
I3
2
I
2
3
E
i
=
¥
€
g
£
E)
b
i
%
2

" computer time. For the justification of the approximation given by

(4.48), this calculation is checked against the calculation in which the

sum is not terminated.

The integration over x‘,xa,xa'and z(or t) is carried out as follows. .

For large arguments of M and W, i.e., \x\>>l,32

iz v
T (22423
Muga 00~ &% A (4.53)
W'\’,lﬂl:.(%) ~ e-ﬂz"v (4.5L)

Hence the exponential factors of Green's functions are given by

-—la | 5
thezb‘a,%._,z:) o g \TENEE Xaun) (L-55)
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G, , (*3,%2,8) 0 g FEE ea-ad (4.56)
Hence for large Xy+ Xq, Xy, the i.ntegrand has peaks at x,=x, and X =Xj.
These peaks become more and more sharp for larger values of {zl, making
the task of integration difficult. To deal with this feature, the
iﬁtegration region is divided into six regions defined by XXX,
x3x%,2%, and so on. In each region the exponential behavior of the
integrand is known for large arguments of the functions M and W. This
peaked behavior is removed by a variable transformation. For example in
the region given by x,3x,5%,, define the variables y,r, and r, by y=x,,

'r‘ =X,/%, and ry=xg/x,. then

0a %y Xa 2 .
§ vyt fatand Jonarl € Crimaza,zd”
()

%Y ! |
= Cduu® Sdo,ad $dotany &y, sy [ 2) CL.5%)
(-] o (-]

Integration over y, i.e.,

- |
T = $aus"euy (4.58)
[o]

is carried out first. It is empirically verified that for large y the

exponential behavior of f"(y) is given by

£y oc e (u.59)

where
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g Ry Y e Y
FEHR LRI g -

A = Mg+ X(2M, + M I Ny &+ 20CM, H,
e -

+ ReC\ITame(seo-z) =) + ‘?e.[\FzMALwaa.m-m;\]

Cu.60)
This value of A is inferred from the exponential behavior of wave

L P UL L. ok ST

£y

functions for electron and muon and exponential behavior of Green's

functions. By the change of variable y-y =Ay, we have

% .ugl

(ue\)
o a S

where the exponential factor of f"(y’/A) is f"(y' Ja)ee e’ for large y'.

The integral I is broken into two parts

R T | 9! “d. ] “(u'
A R

o A
] o0 st
R " A g (Bx*%
- Kg‘*“‘: (B2) + L §d-*~ (55°) (L.62)

A convenient value of R is found empirically to be 5. Thé first
integral in (4.62) is evaluated by the 8 point Gauss-Legendre quadrature
method, and the second integral in (4.62) is evaluated by the 8 point
Gauss-Laguerre quadrature method. Once the integration over y is carried
out, the integrand of the integral over r, and r, has peaks at r, =1 and
r;=1. The peaks are roughly given by 9. For large lz\ this poses a
. formidable problem and is discussed subsequently in this Chapter. The

16 point Gauss-Legendre quadrature method is used to integrate over ry
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and r, (the 18 point formula is used for t<0.1). Integration over t is
evaluated by the Gauss-Legendre quadrature method, using 4,6,..,16

points.

This completes the description of the method used in the calculation
of ¢xv5 except when [z is very large. For very large {z§ (corresponding
to t<0.05), accurate evaluation of the integrand for the integral over
t, becomes very diffiéult because of various factors. Firstly L is
large for large 1zl . Hence the calculation of M and W functions(for all
1¢L), requires a great deal of computer time and storage space.
-Secondly accurate integration over r, and rp is difficult because of the
peaks at r; =1 and ry=1. Thirdly a significant contribution to Amﬁcomes
from the region 0<t<0.05 and hence the integrand has to be accurately
evaluated in that region. To overcome this hifficulty, an asymptotic
expression for the integrand is used in this region. The exact

integrand is given by

Jet) = -6uxtMy o hea) :
: BMQ,N: Re[?l . (L‘ 62)
so that
1
NN §d.!:3(’.‘!:) | (L.6L)

The function h in (4.63) is

+ - - -
hezy = Sd?i‘\ Sds":.g'-‘fxa W, 64y %) W Cxa %)

* Galis %1, Beo- 2R T £ v 230~ 4)  ¢1.65)
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The asympfotic expression for F is obtained based on the following
approximations. . }

(I) The Green's functions for electron and muon are replaced by the
free Green's functions for elecéron and muon respectively. As discussed

in Chapter 2 and shown in more detail in Appendix C, this is a good

approximation for large |z|.

& Cxaax. ,Eee~2) 2 G:_Cx_-,;c.,Eeo-'z)

-0
™M etay
=~ —a &
2R "% (L.66)
3L&(5§3,§z;.,5§0u,+.;g) <« c%:;CS§347‘=a Euo®rZE)
- ™ e-b Yan

(L.-G¥F)
' U]

where bg = [-2He(Ee°-z)]L', Re(bg)>0 and b, = [-unjgua+z)] :, Re(gw)>0.

(1I) Because of the exponential behavior of the Green's functions, the

integrand has peaks at ¥,=X, and xz . Those peaks become very

pronounced for large |zl . Hence, most of the contribution comes from

x -xa and xz—xa This suggests that evaluating the ground-state wave

functions at the argument %y, ;i..e.,.t.po (?x’z,x‘)-—» wo(xa,?ca), is a good

approximation.

With these two approximations,

he) = hate) = Delte G, 0, S, lwoe, 7,58 (L -

|=- .’Tt
b Xan -
x € 32 a-bexay (4-6%)

Kan *a\

With the aid of (2.26a) we obtain
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Me )"‘3

' 3
haz) = 2. (@Med MeMa
A y (1+ Svan

be.b.u- Cbet+bo

™™ “beb? g* c2s+ba)> >

(L. 69)

where s=2MM, +kM, . With the aid of (4.63) and (4.69), we have for higher
1z\

3 D
Q) ¥ Yte) = Re[2Wa > Mella ¢, ™Mo 34

Tt beb, (berb, N2 2™Ma
¢
256 AV ¢ Ne_wsi LS+be
+Re 3 bebZ £ Sitasat = (4-30)

Frem this derivation we expect that g(t)ngpit) as t-»0 and this is
confirmed empirically. Hence for very small values of t(t<0.05), g(t)

is approximated by g.(t) in the integration over t in (4.64).
P A

The errors involved in the calculation are discussed in the
following. The desired accuracy ;s about 1 part in 16‘, which
corresponds to an error of 0.005 MHz in zsv?. Care has been taken so
that this accuracy is maintained at each stage of the calculatipn. For
example, the integral representing H\LQQUz‘z) is calculated by employing
a 6,8,10 or 12 point quadrature formula for 1=5 and various values of ¥
and z vwhich cover the range of these parametérs. The convergence of the
integral is better than 1 part in 10* for all values of v and z. To
ensure that the value for M converges to the right number, M is

calculated by other methods, i.e., series expansion or asymptotic
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expansion. The two values agree within 1 part in 10“ in all cases,
Also, for some fixed V and z; M is calculated for 1=4,5,6. These values
were compared by the recursion reiation. Again the agreement is better
than 1 part in 10“. The value for Green's function is compared in
asymptotic region(1>>!xl or 1l<<ixl) with the analyiic value obtained by
éppropriate series expansion. The agreement within 1 part in 10%
suggests that the errors made at each stage of calculation do not
accumulate. Once the program is built up to calculate g(t), some of the
parameters are changed one at a time. For example, the integral

representing M is evaluated with 14 point quadrature instead of 12 point

" quadrature. The quantity L., is calculated by

Ly = MaxLL,Re(Z)1+ w5 + Re %Q . CL-FY)

instead of (4.34). Also

0
L= 10+ Mo 1 4l-gm B om0 Max Gapa) |

| 21-2MelBec-20"" Maw cxu%3d V §  (.32)

is wused instead of (4.43). For each of these changes, g(t) is
calculated for various t, and compared with the value obtained without
the change in that parameter. The agreement is always better than 1
part in 1d*.  For the final integration over t, (4.792) is used instead
. of (4.43) vith no significant loss of accuracy, thus considerably saving

computer-time and storage space. Also for the same reason, W is
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evaluated using only half as many points as discussed previously (one is
interested in achieving a particular accuracy globally rather than

achieving that particular accuracy‘ locally).

For an estimate of the errors involved in the values of g(t) for
0;05$t$0.5, g(t) 1is calculated numerically after making the same
approximations as are méde in obtaining the analytical expression gﬂ(t).
The approximate value thus obtained, g'ﬂ(t), is compared with the
analytical value gﬂ(t). The difference, g:‘(t)-g (t), gives an errror
estimate for the calculated value of g(t). This is so because g(t) and
'gn(t) have similar qualitative behavior, and in fact quantitatively they
do not differ much (the fractional difference between g(t) and gﬂ(t) is
20% at t=0.5 and 4% at t=0.1). In the regiori 0.14t40.5, the error
involved in g(t) is estimated (by the above mentioned method) to be less
than 0.005 MHz. For t>0.5, - the convergence at each stage in the
calculation of g(t), is much better and hence the errors involved in
g(t) are much less than 0.005 MHz. For 0.054t40.1, estimated errors in
g(t) increase as t decreases, and increase to about 0.035 MHz at t=0.05.
However the error in the integrated result is much smaller. For t<0.0S,
g(t) is approximated by ga(t), and the difference ag(t) [=g(t)-g€(t)] is
estimated by the following method. The difference Ag(t) is calculated
for various t, in the range 04t40.12 (t'=0,t210.05,tg-0.09,t"'x.0.12).
Then Ag(t) is fitted to a third-order polynomial using the values of
Ag(t) at t| » ta, tg and t" This polynomial is used to obtain Ag(t) at
any other value of t in this'range. For an estimation of the error, the
~upper (lower) limit of g(t,), g(ta), g(ta) and g(t“) are also fitted to

similar polynomials to estimate the upper (lower) 1limit for the value
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g(t). Note that for 0.054t40.1, the value for g(t) obtained in this way
agrees well with the value calculated by direct integration. Even for

t<0.05, the two values agree within the limits of the estimated error of

each one.

Table (1) gives tyd%obtained by employing 4,6,...or 16 point
quaduature method for integration over t. The estimated errors in zsu?
for n=16 is 0.008 MHz, » based on the weighted sum of the errors at the
individual integration points in the integral over t. The difference
between amf for N=16 and AAE for N=14 is 0.0006 MHz, showing a good
* convergence. The quoted error of 0.008 MHz is larger because the
individual errors were only consistently checked to one part in ld*.

Hence AV} = -45.670£0.008 MHz.

- TABLE 1
N(no. of points) trv? (MHz)
4 -43.1346
6 | -45.3567
8 -45.7640
10 . =45.7172
12 ~45.6796
14 -45.6708
16 ~45.6702

. Two additional consistency checks on the calculation have been made.

(I) A differemt contour, corresponding to k=0.174, is used to evaluate
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IS“%. The.result agrees within 1 part in 1d* with the result obtained
with the previous contour. -
(iI) The hyperfine splitting is numerically calculated with the same
approximations as made in tge analytical calculation of [SU? in

Chapter 2. This result agrees well with the analytical result of

Chapter 2.




5 NUHMERICAL CALCULATION OF THE CORRECTION DUE TO MASS-POLARIZATION

In the preceeding discussion, the mass-polaization term (-1/m F:9 )
ih (2.9) has been neglected. In this Chapter we estimate the order of
magniude of this term on the hyperfine splitting, &V, and describe the

numerical evaluation.

Replacing BV in (2.13) by the mass-polarization term and using

TaWeolF) = —20eMuW, (RYR, (BA)
63 we.o(;‘-t ) = - “Me.we,ocin?‘l (5.2
we have,

\ 3
A.\}P = = S_LT\'M_ MMME
3m€mum“

Sd?x‘ga%‘,,ga&awﬁ (%, )

S VORI S
"nz.}\ Wun(Fa) We 1y CRa) W, nO%2) We 08y )
*ao Euohx Egg - Ean- Eer

b Qz.&; woc.izg| ) (5'3)

We estimate the order of magnitude of AV with the same
approximations as made in the analytical calculation of A\’.e‘. With those

approximations, we have

- 55 -
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AV = - \GOPNMMZ 3 a3 8 * _ %
3, me My §d+§ &*;g&é‘z'%;vmtﬁgweo o)

-bn%
e -n + A A
¥ S W (R R R,
® W, (R Wealo) (5.4)
where b, = [-ZHQ(E“-E e°)]h‘ b,>0. The term n=0 in (5.4) is

excluded because in that case the integration over %, gives zero.
-

Integration over X, can be carried out with the aid of

2 a~bna%a, A
Jdk, €72 %
LT XY

- 2 -bn% r
= LTt T *a‘ A )+ ;,_1 (5.5)

As discussed in Chapter 2, the major contribution to A\f:‘comes from the
region where Xq.¥y are of order 1/(&1‘1“). Since b, is of order o((ue_H“)'h‘
bnxg is of order (Mg/M, ) Hence the leading term in .(5.5) [obtained by
expanding the exponential on the right hand side of (5;5)] is

(8“/3)(x'/bn)§=- ?:3. With this leading term, the order of magnitude for

A\V.‘ is

AV~ AV Me 8 ~ O-1 MWz, (5.6)

Hence neglecting the mass-polarization term is justified for the
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analytical calculation. However for the numerical calculation this has
to be evaluated because the accuracy desired is about 0.005 MHz. With
the same techniques as described in the numerical calculation of A\’.e,

Equation (5.3) gives

. . a
'\)m - o 8100 M, Mg 3 o +
JAUN Bmamerre $ dixg (v, Sk W, g Ka) W LR R0

Céico
- - - A,
* Xclz Gel¥a B EBagB) G LR X3, E %) %%y (5.3)
C-ioo

‘where ¢ is any real number satisfying (4.4). We have

- LR ] -~ -
Q‘ 'Q:. - 9-2"‘ m-\. s‘z’\\’zm(';‘\l)YR.mc*a) . (5.%)

Expanding Green's functions into radial and angular parts and then

carrying out angular integration, we get

Av”

1]
{elt HLE) (58)

where

- B1202AYg Mg (oM, S v R a® 2
H) = - = = LA =) Ra [T.i s;d-"\"\ g’ch(g‘;
[- -3

® gd‘*a% é-QOCNA"a e:-“MQ%: e-zxm%z e K ™Mp%,

x Ge\ CXaki,Egn=2) G‘A\L"‘a.’.‘%EMo"’Z\ ] (B.10)
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Z = 208, [+ L(35-10] - (B.M)
c
K - 2“2.“'“ . (5.‘2)

in this calculation we choose the same value of k as of the previous
Chapter, namely, k=0.306. Hence (4.4) is satisfied. The above equation
is very similar to Equation (4.14), except that in in this case only the
1=1 term contributes. The same numerical methods as described in the
previous Chapter are employed to evaluate (4.14). For t>0.1, the
" integrations over r,., Iy and y (see previous Chapter) are carried out by
22 point, 8 point and 8 point quadrature methods respectively.

For high z (t<0.1), accurate integratibns over r, and r, are
difficult for reasons similar to those discussed in the previous
Chapter. To overcome this problem, an approximate analytical formula
for H(t) is derived as follows. Wigh the aid of (5.7), H(t) can be

written as

- VZQCKsbqapq a 3 + 7 _ “ -
H ({'.) - 3m mem “-:5 de‘ S&xZSCf*swo % %) woc"':,? o) XyeXy
‘R AIEDGEREI (54

Hith the same approximations made in deriving (4.70),
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‘ = \1ZE!O< MI™m ™ ™Mo
= R X IR

% W, (7 By V% %y Rel& be*ar @-u*aa 1 (5.41)
Ya Faa

where bg = [- ZH -z)] Re(be)>0 and b = [-2qu(§u°+z)] y Re(g“)>0.

We first integrate over X, and X, by using (5.5). Then integrating over

x‘,

H. ) = LORE AV (XML (xMe)Me o

AR babh

2,2
xq bg;‘ bebg(bu_J. )+ 2R00n G

aPa

- 2
+--(?-be.b~‘5-‘-~ be _ Rebe 53 (5.%)
2 2 .

where

Ry = LM, 4+ 20cMg

(5.16q)
Aa = Bi+ be (BIGb)
Ry = Axrg, (5.6
A, = RAitrbexb, (5AEd)

For t<0.1, H(t) is approximated by H“(t).

For an estimate of the errors involved in the values of H(t) for t
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near 0.1, the same procedure, as described in the previous Chapter, is
usea. The error in the value of H(t) at t=0.1, is thus estimated to be
0.00001 MHz. Again for the same reasons as described in the previous
Chapter, the errors in the value's of H(t) for t>0.1, should be less than
0.00001 MHz. The difference between Ha(t) and the calculated value of
ﬁ(t) at t=0.1 is 0.002 MHz. This difference decreases as t decreases.
Hence approximating H(t) by Ha(t) in the region t<0.1, introduces an

error which is smaller than 0.0002 MHz.

The quantity A\’Tis evaluated by integrating over t with a 4,6 or 8
" point quadrature method. The results are shown in Table 2. The
estimated error in A'D'." for N=8 is 1less than 0.0002 MHz. Hence

av'= 0.078520.0002 MHz.

TABLE 2
N(no. of points) . &V (MHz)
4 0.07887
6 0.07853

8 ' 0.07852



6. ESTIMATE OF HIGHER ORDER NONRELATIVISTIC CORRECTIONS

In this Chapter we estimate the order of magnitude of the second-
order correction AV, to the hyperfine splitting, due to the second-order

correction to the wave function.

The ground-state eigenvector of the Hamiltonian H, given by

Equation (2.8), is

> = MWH+ W+ 1w, S e .. (e-v)

where \\%pris the eigenvector of the zero-order Hamiltonian, and \w>»
and \y,» are the first-order and second-order corrections respectively.

The magnitude of the hyperfine splitting is given by[see Equation (2.7)]

AV = AVgs AV, + AV +---- = Lwlaniwd - (e2)
where
AH = ‘gf;‘m % 2e) (6-3)

From (6.1) and (6.2), the second-order correction to the hyperfine

_splitting is given by

- 61 -
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AV, = Qwlanlw,y + 2Re Lwslan\w,y (6.1}

Now let inny be the eigenvector of the zero-order Hamiltonian with

#he eigenvalue EntEaq - 1.0,

{R, Raln> = W, FIW,  Fe) 6.5)
With this notation,

lWe> = l0,38> €c.Q)

v,y = “2. innsen nisvio.ds

. (6.3)
#o,?o E—“o“' Ego~ E,«.m- Een
W,y = ..?m. Crnpe VM S (6.%)
) .
where
U . 2
, Coo - ~2“— \4“;\‘\\5\1\0_,0 >\ y (G'q)
s ton  CEuc* Eeom Eun Fan)
and for m,m'#o,o
Comeyt = = dmlisvio,o><o,818vioc>
\ 4 A)
+ “Z'é“<m,m\8~l\n_,h)<h.n\SV\O,d) (e.10)

% 0,0 (Euo* Beo- Eun-Ben ) (Eus Feo ~Bum~ Eawm)

. He estimate the order of magnitude of AV with the same approximations

as used for the analytical calculation of A\’.‘. One expects that those
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approximations give the leading order correctly. The contribution to
AV,due to the first term in (6.4) can be written as

LW\ AR\, = 2 PR LEVIMmmD (mm lanini>any \sV100)
::6:0 :;?o (Euo*Eac~Eunn

= Eem)(E, o Eas~E, ~Een)

3
‘g:‘nrma &L 'Z‘: Sd‘* Scf'*,_ﬂcf%;g &*.Sd:r% A-lo(*" w ’_"a)
$0,0 % o,

< 2 gt |z
% (1“—‘;. - -",Z"') wAm(Vﬂ\ we_ml C“ﬁ.swﬂmc%\weﬂ\' (‘3\

. ao* Beo =By - Egp

M\'\G‘a\ we_“\ (ﬁa\ w_,u“ C"k\ we\,\l (%5) ( \ A X
n
E’-lﬂ + Eeo E n— Ee_“ 5 5

% wm C'Z;Q Weo xg) ] (c.\)

With the above mentioned approximations and neglecting numerical factors

lw | ARV o AVg (o(Me)?‘ ‘é“% S‘ S&%;Y&'&QS&’I-L.SCE*S

\ o
x W, G0 wAmaow wWwCF W (¥ w SR W, )

5(2:3 W, W,

L
“‘wa. *g

(6.\2)
Y ag

vhere b, = [2M (E,,. E“)] b,>0. Integration over %

o and x g can be
carried out with the aid of (2.26a) to give




Ldwlaniwy ~ Avg (x™Mey § g_“. giac.scf*,s':fn,w:ocm

-t = r -
)c‘guuﬁﬁw‘“&an\Cﬁi’“&;n€i33‘2un°*u3ngoc*u)-g;— ;:z
n

EXY

~Bm% -
" (\-e. ™R - e.“"""°)(\- e Pr¥an _\-e:b-ma) (6A3)
Rl "3 *ar, Ko )

The important contributions come from the region where x,,x, and x, are

of order 1/(XY,), while b (bg) -is of order O((Heuush for m}O0(nj0) and of

Hence we expect that the leading term is given

" by the lowest power of b x(bnx).

order Hg for m=0(n=0).

W AHIW,S ~ AVplxMeY PH ?\.S&*;Sé&a s&v.“uﬂocr.wmgm

~

* -~ N
% W, EIW, RO, ROW, L) (K= %) (R m %) (GAL)
By completeness of the muon wave functions,

CWIARIWS o AV (gl Sk v ! oy, (%)

2
~ AV, (9‘,_—,‘%)

(6a%)

The contribution to AV, due to the second term in (6.4) can be written

- as
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2 Re AW\ AN\W,S = 2Re §,Co,o<0.0\AW\00

— . ¢o.0laviim, ey e o, \sVlo.8><¢odisvio s>

30,0 CEuo*Eao = Eum= Bgem )2
(X} IsemmisvinnILnnisvio,c
+ Em‘ Zas (O,&\A \m,m D> \8 R 3 -5 (6-\63

46,0 to.0 ¢ BusrEen~Eum-Few) LEysr Eao~ BEun-Fer)
First two terms in (6.16) are estimated by the same method described for

estimating (6.11). 1In this calculation we make the approximation

Wen (RIWE ) o
n' (EE.Y\' - E)z

% Yen (FOWh e ¢T)

s
O » Een-=

- 8 3
= 5% G 52D

s ™M e-—bn "z-‘l \

(6.13)
218 8z (ZT-J\

(b{(b

U
vhere bn= (-Zuez)”’, b,>0. First two terms are estimated to be of order

AV.(HQIHA? . Third term is Re(T), where

T = '2‘?. P <°a6\AH\NJ\“)(MM\sv\n.h'><n.n‘ls~:|o,,d>
om n.w

%050 -.;oo CE o* Beo = Ers Eent) (B, o Boo~ Eun— Eerd )

- \ertedd
- 3Ivume r?‘m' ?—.‘: Sd‘*‘sg*zgg"asx’hgoes‘s%ewﬂwe CED
30,0 30,0
4
% BarnFE I (F) Wy RIUE e %y)

CEo+ Eqo -

;'?.3 - ""z)

Eom = Eem )
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Eio* Beo~ Eun- Ean ¥us ¥s5

* W, (R We o (Rg) (6.\®)

We make the approximations stated above, and carry out the integration

crir ";':5 with the aid of (2.26a), with the result

< ' - -
~ zw:TcocMas pady S Sdka Seha S fru W, FOW, (%)

X - z + _ ¢z e_"bm"lz \ \
¥ W) W, R, SR, SR S =)

ebo¥ay | e-br¥y
Kay *a

® ‘%;na:' ( 1= (6.\9)

" The major contributions in (6.19) come from the region where Ry o Xg, Xy,
are of order 1/®M,). Let us assume that the major contributions come
from the region where b x,<1(this assumption is justified later in this
Chapter). Therefore exp(-b“xzh) and exp(-bnxgy) in (6.19) can be
expanded in power series to obtain a leading term. ° The leading term is
independent of by,. 'Hence using the completeness of the mu;:n wave

functions,

n~ BDVL (MY 3 & — ik
T2 S nrTe) B (dnSda Sy wl oy, Gayl o)

g~ Pr¥ia v

Y onG‘Q

X2 %am ;‘3.)("3" *23) (6.20)
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The term T can be conveniently broken into two parts: T,, corresponding
to m=0, and Ty, corresponding to my0 in'(6.20) For m§0, b,, is replaced
by an average b, independent of m, and of order O((HGMA';". The second
term T, is further divided into two parts, T,, and Ty,, by using (2.27).

Hence,

T = _T| + Vo + Ton (e.21)

T, = AVe(xMey?
.n .

3 | -
S S, S, 1, Rov 1w, (R 12

p -B ‘J‘|3
Y € °

\ \ -
%m Yo~ T Y (¥a= *22) (6.22)

o . .
T, = AV T‘(_OCMe.\ gj*‘gcf,‘;gi,ca‘ug:o@qﬁfci.-iﬂ

-

-B% |
S S "' 1
* W, %) i (x,_.a - 3 ) (Ra=%2) (623)
2 2
Top = =~ 82 lXMeY" (i S, Sdvaly, 7ol g, go 2
k%
e 3 l -\
® g ( *2q 3?:3) (%y~%23) (62u)

HWith the aid of integral

EE-EﬁHs
x‘s

$x,

( ;Ta"~$3‘)(*ar'*\z) .

= - HE T entex) + OLAY | ' (625)
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we obtain

* 2

+ o[ave(ReY]

= - e (RRY an(B )+ olave(tel] (o0

Since b is of order oc(ueu“)"‘.
MVe (MeNp (M Me V
Tz 5 (RR) n (B2)+ olave(R2)] (623)

To evaluate Tpng. following integrals are used:

-
$ e, VY, kOt €02

Y3
~b"3 -Qﬁ °“% e-o'*z
cale Y . X2 (6.2%)

where a=4KHA

S\, (RoV _a_

2 - - QY%
=< (Z0-g%) - "‘39- 21 (629)

SR\, ot Lz

a

= 2—,‘,;-‘.2'—*3- e cé—c\ e 3y - ?ﬁg——-—-] (6.30)
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From (6.29) and (6.30),

Xd-%,.\‘l-\) EI\ (Szm ) Ofo— *%22)

= -L-*ggs_- Q- e%%3) (63v)

where the terms neglected on right—hand side give contribution of order

A‘\{,(u,;/u”)2 to Ty,. From (6.28) and (6.31),

2“

*»%

_a$) C\ —Q'ﬁ)

C
+ ol Avnc%\‘]

= - AV (%ﬁ)"ﬂn% + 0 [_A'D,_.,(‘:“&i)z] (6.32a)

‘l

AT\)E('-‘“;,i n(-&-) + 0 [av( ._s.) 1 (e.321)

Now T, is same as Tae, except for the sign and the fact that b; appears

instead of b. Since by={Mg, with the aid of (6.32a), we have

T, = AV (.'3%329_“ (%) o Lave(Ye ) (633)

Hence

T o AV (——13 2n(B)+ 0 Lm:w(-—&\ 1 (6.3w)
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This result is obtained with the assumption that the major contribution
in (6.19) comes from the region where baxa<l. To justify that

assumption, consider the region xg;l/bn. In this region

d_(1-ebr¥an | _ gbr*a )
ba ¥an - *a
\ «®
~ SEva Lotz + 0(7"‘;3] (c.35)
L ~ X2 (6-36)
"9-'3 xa xg’ )

Hence the contribution from this region to T is

Vjs

] 2
T ~ A\)Q(%j' dxq [o(m\i-@(-bé?g)]

by

~ 0 LAV (2*‘“_,‘%\2] (e33)

which is smaller than (6.34), and can be neglected. with the aid of

(6.15) and (6.34),

~ Me \2 ™M - 2 |
&Vy 2 AV () on(fie)+ 0 Lawe(22) ] (63%)

Summarizing, the second order correction to the hyperfine splitting

. . -
is estimated to be of order Aﬁ%(ﬂe/q“) ln(qnlﬂa).




7. ESTIMATE OF RELATIVISTIC CORRECTONS

In this Chapter, the quantum electrodynamic Hamiltonian of the
‘system is written in the Furry bound-interaction picture?"z The
division of the Hamiltonian into the 2zero order part and the
perturbation part is done in accordance with the effective nucleus
picture. The hyperfine splitting in the nonrelativistic limit is
obtained from certain Feynman graphs, by making a series of
approximations. These Feynman graphs give back the nonrelativistic

limit plus corrections estimated to be of order U?A‘\),._ or higher.

The Hamiltonian density %, in the interaction picture, can be

devided into a zero-order part X, and a perturbation Sa&, where

W 0x) = _@ecm(—i"r'-"v‘ * g) P, 0

+ B 60 LT + M@ 00 AR

DA, = - %—Y@éﬂ‘?”_, P 001 (R,+ AT 60)

—

12 007, 6] (A,00+ A40a) (32)

[
p|®

In (7.2), Av(x) is the vector potential for the quantized radiation

field. The external potentials are given by

-71 -
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e o w) ée .

Consider the equation of motion of the state vector in the interaction

picture

g 3
L2 \Pw> = Jdksx ool (3:13)

We now make the following unitary transformation on \Q (t)Y to transform

to the Furry picture

135> = V7 (@ -  (35)

where V(t) satisfies

18 veer = ~§dx gt LT 00, @ el (Ao - B
+ %\'_I‘Q’ﬂo‘w’ $ ool (F-\,, ‘o) § V) (#.8)

From the above equation, we get

L& 10y = (% 1-£ \'_Q T, ‘I}FCsc)] (A0 ¥ 2 m)
-% ﬁﬁzm v, Q) (A § 1T ) (34

where -
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e

| Qo0 = Ve exavee)
Oy = NP oover)
AL - AL

e
(At + m‘\ =V (Rytr) + & S VW =

(g”un‘: = Ve AYAVLL) = ALCR)
With the aid of (7.5), (7.6), (7.7) and the equations

_g_z Qe“" = (V¥ T - 17"m,) Qeu)

g—c @»f.&) = (-°FT- i-'\'o""'}a\ ‘PMC’Q

the fields QZ(x) and Q:‘(x) satisfy

. )
(iV'9,-mg) ip:m = eV (A - ,_m\-‘) ‘E

U."Y Iy~ #)qJ (R) = & P\m’c@@ R

By comparing (7.4) and (7.7), we have

L - = v
PU_O = SUL ) + U,

where the radiation term is

e, F = v o
U = - S LB 0y, T 0] AL

,,(v-)-t—
LTRL

(3.¢)

(3.a)

(*.10)

(z.\\)

(F12)

(313)
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e iy
- %—: [‘P “Cn‘Y > P ::C* Y| Q,Cﬂ) (34w)
and the potential term is
F X “F' o =¥
R T -\
¢, (%) S LE o0y, Q] (315)

The superscript 'F' will be omitted for the rest of the Chapter. Let
{§n(x)s be the nonoperator solutions of Equation (7.11) or (7.12),
vhere n specifies the quantum number of the state. The operators O (x)

can be expanded in terms of the §n(x), i.e.,

‘I',MQQ = 2 b.u.né,un“’ - 0 d'* %) (#.186)
Nt

AATY "
X nE- ~

. |
Q) :%*benée,n(*) + %_AQ“QE“cxs (#1%)

vhere the first summation extends over positive energy solutions, and
the second summation extends over negative energy solutions. The
operator ben(bw\) is the destruction operator for an electron (a
negative muon) in the state n, and d:“(dz“) is the creation opex';ator for

a positron (a positive muon) in the state n.
The zero-order ground state vector for muonic helium is given by

- ¥% %
fay = ‘E’CCL&.U) Buu Ly 10 | (349)
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where 5:0(5:“) is a creation operator for the electron(muon) in the
groﬁnd-state with the z-component of the spin to be v(u). The Clebsch-

Gordan coefficients c are chosen to give the total angular momentum

F=0 or 1.

Clu)= <su Ll LMy (+.18)

The level shift is

AE, = \%m L isa % <SgY,

=\ <ss>°
: AE:‘ + AE;Z’ Fooee (?-20)

where the subscript c implies that only the connected graphs are taken,

(LI
AE“ is of order €' and

{5y = <La\Sg\a) (.2\)

The adiabatic S-matrix, Sg. is

§g = V+ A5 + X8 .ot
= 1= 2R ST Lae e 3

2 -8\
- % S0k d, T Lo ) X iy @ B8 o Bl Ea)

*oeee (3.22)

where T denotes the time-ordered product. For the Feynman graphs in
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Figure 2, .
) LR (&3] 1 o\
BB = il g (5« $45075,) (#:23)

Wy ) Li cw \ (2) 2 2 L3y
AE, = 2 TN 5((55 Y~ = <S5 >y * K5 Yay

3 A)) 20 _ (2% -1 \ (&)
= W $Ss X 455 >, & <5¢ Yt =4S Y,) (2w

AEX™ = o, n=ye,... (7.25)
é ° I
e"" AL . e-

A

I

7% 7%

o
~‘:l
I
.Fl

I

Figure 2 : Feynman graphs corresponding to one-photon and two-photon

exchange.

The subscripts R or V indicate that the contribution to SG arises from
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the radiation term S'acﬂor the potential term 8%, respectively, and the
subscript RV indicates the cross term of By and S x The second term
on the right hand side of (7.23) and the last two terms on the right

hand side of (7.24) do not contribute to the hyperfine splitting. With

_ the notation

Lo\ T [A *x,) 8 cx‘)]lo> 3 "D @ C%2,0%,)

5 (3.26)

F - S
Se, (R %) = r:é‘o@en%3§encx|) > ¥20%> %10

= nt.o@ %\5@%) > ¥a0%o

C——” b 3 -— *
2'r\- ; S a2 g éasm("'ﬁ ‘.f’e,,c:cd e LZ (kb)) ]
Een‘-“‘-@)—i Y 4.24)

where @ is arbitrarily small positive number and
B, ) = RV E t€ant (#.2%)

and a-similar expression for i(xz,x‘), one can obtain in the limit of

small §

89y, = = B T § 1 & B, (3 (3.29)
5(;9) - 2 * Ctu.\?)s&l\‘,Sd. -s(\tz\«\-\h\\) 2.
"W -

¥ éuu.' a) Vo, B, ) [ PARER A TN
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v
* 9 o D (x;~%) (7.30)

- _ilx * e 3. 0% ®  (x %
= ?ﬁ‘ c od)$) Ceuns) Sdx, Sdx, @Aw(x,)'*',émf’&)

- a - ' :
* éew‘(""yY ée.oo"‘) %oy (#3\)

(4}]

3L IR » €20
(Ss > = (S‘s Pav— <55 >, 4Sg >y
= 4nia” L € (i clu) Sk, Sdk, S, g BU sl e v
uw

F3 3 F
w @n“.(.*aﬁ'y”: éMu(xsj { é e.ﬁ'( )(:.) ‘szs E’CXQ_}SQ ‘YQ @ e \,C"‘ ‘3

+ @ 06 Se hxa) Vo, Bo g )G B T2 D_%y-%2) -

- <5‘: R <5g1 >V : - (232)

. Mooy 3 < I - -
= bzl 7 Suldicao ISt B] w8,
uo'

*

R B G B, R oo
ey T Zy Sen Zen = D5 (333)

|}
*
a2, n
10 EGO = e‘e.*n i

and
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PN - u) (), 2
. (Ss > T &S5 ¥ 2. <S¢ >

(4Teg) Sd.$ S&HSJ‘* ga..‘ - S(“’.\\&l!;\\v\t;\ﬁ\tu\ )
= * 3 ne

uE\, C U9y C(u)\y) @ (%,_D'Y 5 (% ,(3)7” Q "‘33
e’ A
- &

x ée\" 0 'Y"’:.se sz.?‘ Y 'Y"’. ée.\)"* )] [.3“‘0’3' sV

% Dy o) D G2 + G 21852 Do, ID ke 3]
(3.3u)

s

D 2
§

{s

p\/

t
ni-

3 3 3
9-‘-—- c."' 9y cu ey Sk, Sa xS, S% \

Rg

.L'
£
§¢”

[2 3, OB G0, BN, G B, FITR, S
@ JFuadTETE Mt TR,

- - 1"l 1
® % R) 7— . 192
ée,.,.c DY ée.\: ) ¥ oXat .S., lzve, -6, 0- -ie)Y)(ee; 5Ca Cl-u:-))-i)

+ .,Z:l .éw_. K Yo B, F) @A )V B, LED

x@ o‘;\"v @ (:;c,\@ (.A)'Y ée.w J"m"az

°§d.1 e_i""m'lz’-\- 18, e\*s2dzhie, (3.35)
* - - . .
: - C.z-\- e‘uo—e “(\-\G\)&‘\- €ap- ee_“L\-\.eD

the muon

Por the nonrelativistic limit of the hyperfine splitting,
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wave function for any state is written in the Pauli approximation, i.e.,

g r o®

(2.38)
23 .E%n(ﬁ-\
2,

where ¢au$i) is the Pauli-Schrddinger wave function. The electron

ground-state wave function is also treated in Pauli approximation.

One can show that in the nonrelativistic limit,
S&x f RIK I P R)
1 2) - m

2 LGB o ¢ £ Z-F 4754 PG ¢, 5

3 ot -
- ;_r'n $dx @ (V8. [Tex] &, ¢ &) (+3%)

where latin indices run from 1,2,3. Only the parts effecting hyperfine

splitting are retained in (7.37). Also, in the nonrelativistic limit,

Sé?x. S‘fxg_é‘. (;‘.:) £ Ci:’z.:.) O‘i @mci.)

n

~ 2%.; g&-gf%:fb: &) [6;, 8- (T, 8)~8-(T%) é:] Fbm";‘\ (:;.33-')
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For the nonrelativistic limit of (7.31) forv}0, we have

<5c82>>‘2 (V£0Y = i:%' 2‘:,’ S (9 Clu Sd?x,_Sce*\
>, )

£

F wad 2)C D % & (3.39)
x ém“ﬂ TR Sial %z Tew 0@, %) 39

: IS,
ST ST MR TS RS ORCAL N
’-\mﬁme_ w\r
wy
'}
% 6(‘4"’ (#3) Ee-’

v 6 &5 42 (T £2) P, NG, G ¢3.40)

Because of the spherical symmetry of the wave functions, we have

2. - n 1 - - . .
(% 13)~ ~ 580w 4 86-F08, ()
Hence
A ', 3
(5(5”>R(1’ $0) — — % __ 2 udaey ¢ Lu )y S .Sk,

5 3“}-#‘“9— u&.’o}

. o _ _ .
- & @ :- LD 7 e Z e cg‘(‘;‘.x,_)Cbeuua% & (#42)

Now decomposing the Pauli wave function into a Schrédinger wave function

and a spin part,

OE = WEY- Y - (3.u3)



and noting that

Zwa - (&) %

. & singlet = -3 x’s‘mq\e.\: (-’MLO
—(i) —(e) - Y, ..
6 . 6 x.t“"P‘e.\: = t’“?‘e't S5 (;J'QS)

the splitting due to (7.42) between the singlet and triplet is given by

A[(Sg") o)) = - %— g 2% Qdx,

3\'90.\'“3

+ .1 __ 3. _ - -
* P R W, (%) B8CE-¥0Y, (KW, (R) (#-1486)

Consider the termv=0 in (7.3l). Since %, is diagonal, and the upper
components of the wave functions have no 4 matrices, the contribution to
the hyperfine splitting in the nonrelativistic limit is due to the lower
components. Hence compared to (7.42), this term has an additional
factor of (ﬁe/me) (B“/mu). For the gxiound state wave function, Be. is of
order (xmg) and '1':“ is of order (xm,). Thus the contribution to the

hyperfine splitting due to this term is o times smaller than (7.46).

Al¢ s‘:’ Y wzor] = O 1o¢ ALYy, ool (34%)

From (7.47) and (7.23), we have

b eyt
ALAED) = Tom, Sttty T Peol®)
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* 3R, FOvR) Lar o] a1

For the first term of (7.35), we assume that the important
contribution comes from z of order o?m“ and x‘i of order 1/(am,). These
assumptions are motivated by the fact that the integrand of the integral
over z is largest when z 1is of order o?m“, and in nonrelativistic

problem xi_‘.‘ do scale as 1/(c(m“). With these assumptions, zxquoc, and

therefore in the first term of (14.2),

U TmE L 1 (3..9)

For the second term of (14.2), the important contribution comes from z
. . 2 .

of order mg. and hence the contribution, expected to be ot(m“/me) times

that of the first term, is neglected. Hence making the above mentioned

approximation and integrating over z, we find

. 2
(5‘8“‘)’ - -":s E—\\,,‘c‘cd.o‘;cmmSai.s&,_sfxssimég
w ° €crt >

nn'io0,0

% @um&@e (,) fv;u,. UL _;_u_ 3 @M [N ® e_h,cx,_)au ,S’-‘a‘—@?en‘@

Ceao+ Suo- Cen'- Eun

D ey - -
®N, @ v ® N @e\’cm (%.50)

" Consider the sum of the terms with\’=0,\’.#0 and v#O,\"=0
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] \ 2 LK
(5(:’> (»'=0) — ‘-'83‘—-35, C.‘cu,o)c:(u,o) Cax Scf\f-,sgﬂ_ﬁi*q
. U.‘\"

I P R L
® é:m.(;"tﬂ 6&,@,) — B ) B @D B ) LantF)

"% Eeo*Cuy-Carw - Eun
ey ey - -
b 3 D(i O‘L Tar— é‘u.“()ﬂa\ ée\’C"\) (;-5\)

If we replace all wave functions (including intermediate electron
states) by the Pauli approximation, and the energy differences by the
nonrelativistic energy differences, we can reproduce the nonrelativistic
result., However we treat the intermediate electron states
relativistically to examine the validity of the Pauli approximation in
that case. As in the nonrelativistic case, the electron intermediate

states are approximated by the free states. Thus

-axr o -
é_el‘\' (‘K:J @ef\' Q’-;) " 2 i;gr? Q;’_\ é"&ﬂ C.*\\

ee&>° €eo +€uo~Can ~€un €Cen €ao+ Cue- S Cun

- - O %
= - [pz' O(e,'\' @e.me. + e,u.c*' EEO- e,un] --—-———e o

Qo
- P e e:"-'-n*\:.

= [R-(e - -
wvhere € = [me_ (er §m+ee°) ], Re(cn)>0, an.d where B, only acts on
exp(-cx‘a)/x‘z. The binding term -%/x, can be added because it is of

order o&zme_, while the leading term is of order L Now
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@ewcr,') g (P e+ BeMe % 4 € Sun Cep)

. + - ? - L4 - -—
With the aid of (7.52) and (7.53),

(51;\9(1,”\___03 — -10( E c* sy c.(u,\»fcf# 93%133&83*“

qns u:u'

e Chting

K L) @e\,&foﬂ >y QA R (€~ %n¥zce°) v

- U-L)

= (e.\

x @ (x_,)

R (LRI B )

Xay

— CH
+® cmwée\,.ua.)liva.xu3 x9P C*WQAC 3e. =

x & B FNB, R (3.50)

"3\

All the wave functions in (7.51) are approximated with the aid of
(7.36). With the repeated application of (7.37) and (7.38), we have in

the nonrelativistic limit

ée\,tc"z)é 623) £ TR DI & viacl °‘(e.\ @ ( \.@ Q&‘X
— L:T\r? cbe.\y CXy) QA,.P‘;Q& 5 s &‘3\ te)

% {F (Run) 3C40) [U9Wa D Ka] + r-v:.&e(*n\"ﬂ 19 0x2)

3 l'_va-\. h (.7"5\\ ] 3 d’“\&c_’.‘a\ ‘be\,c‘-‘ \S - (3.85)
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where only the terms contributing to hyperfine structure are retained.

With the aid of (7.55),

B
] L FNB G §e ,1@ ) {28, £
g
—(u\ —(E‘

2m, Mg A
) =Cn¥2,
‘u&) (:U. \ a - n Cn¥% 12
8; Yuz Fia Va3 3"'( V2w x..\Je
_.)1 )b \,CA) (3.56)

The analogous term with €,,-€ _ is neglected, since

¢

- -
Cuo=-Cun , ofm, (15%)
Also,

+ + v -
- - ¢ == - () - - e c.,y.\z
* — -

Qm»‘( ) ée‘.\s"""-) (<. "‘ua) x @......5 #u) &A“ng TFm

&m . &‘e’ -
Ny R IR
p< )Y

+ +
T AL I LT N T - AV

~CnY¥ s L
), g " \ -
*44 (Tnt ) S (e ) PR (3.89)



Now

Eeo = Me * O(ofrme) Me (2.59)

Hence the hyperfine splitting between the singlet and the triplet is

given by

Al¢ S‘:)‘ (v =0)] 1,'5- gn 2 Sex., S':f:f.,_ SfﬁaSoe*q

3m
N - X - =~ Cnba * o
* %OL%“}U)&C&:) Yoo mun(y'ﬂb 72'._-?" e‘,“z wM\'\ C"3)
% BCE %) W, Ra) WalR) (3.60)

The contribution from (7.50) in the case where v#o,v'#o and Yy =)3'=0 is
estimated to be O¢ times smaller than (7.60). This is so because an
additional -O-(w)effects an additional cross term between the upper and
lower components of the muon wave function. Hence there is an

additional factor of }h/m.u.' and |al! s xm, . Therefore

ATsPy 12 ALY (wizol) (.61)

By employing the same method, we find

ALZ<sP>] = - LIRS 7GR gt

3mm

+ b e~Cn¥ 4
* wm“"a Ve *2) Lx" ) ﬁf Y WintRal
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% SCE~F) W, (RN W LF) (7.62)

Now

Cn = Qmé - (eaa"e.u.n*eeo\z

~ .\‘Tgme‘(sm- EA‘\- Eeo) (#.63)

where & denotes nonrelativistic energy. Hence the factor
. meexp(—cx,z')/(wm) can be approximated by the free nonrelativistic
Green's function for the electron GZ ﬁ‘ ,':'E:_,EM-EM-fEeo). Hence the

hyperfine splitting due to the fourth order correction in Eg is given by

A[AE:“]- v o \enet Z“Soe*\gd-&gce*agd?-*uw CV-Q'-\J €%

3m
76 (%, K2 B ~E, +Eal)
% (""""—)l\, (“u\ C"a}&ac"\a"zam A“ eo

% Sac-Z \—%3) %°C§33 weat‘;z V) (:.6u0)

Examination of (7.48) and (7.64) indicates that the hyperfine
" splitting is same as the nonrelativistic result of Chapter 2 with the
electron intermediate states replaced by free states. The errors due to

the approximations, are estimated to be of nominal order oty .



8. ANALYTICAL CALCULATION OF THE HYPERFINE SPLITTING IN MUONIC sHe

In this Chapter, the analytical method discussed in Chapter 2 is

applied to evaluate the ground-state hyperfine splitting in muonic 3He.

In analogy with Equation (2.1), the Schrodinger equation for muonic

aﬂe is

where %“ and ie are the position vectors of the muon and the electron
relative to the nucleus, and where M, = m, m,/ (m +m) and
He = memnl(mefWu) are the reduced masses of the muon and the elecron
with respect to the nunleus, and mgis the mass af the nucleus. The

mass-polarization term -f;;fljmﬂ is negligible to the accuracy

considered here.

The hyperfine interaction in the ground state, which is a

generalization of Equation (2.2), is given by

BH = "2%5511~'2§*i5(3u3 - i%gg-. 'ziezé?csii';le;)



" A ReBy Tete) (2.2)

where .u = -gge/(2m, 5., &, = -q“e/(ZmA)E“ and &= -gﬂe/(Zn'},)-I.N are the
magnetic vectors of the electron, the muon, and the nucleus,
fespectively, and where mg is the proton mass. The nonrelativistic
ground-state wave function factorizes into a product of coordinate-space
and spin-space parts, so the level shift can be written as the spin-

space expectation value of the operator

6Hg = -aTu S, - bE,Se - cFe-Fn (%-3)

~ Where

3 o <% c5*3> (8.1)
b = 20« %le (37 o 5
3 myme % %*e) (¢.5)

c = L_geg'“ <§czes> (g-6)

and where < > denotes the expectation value in  coordinate space. The
leading contribution to b in powers of (He/qu) is calculated in

Chapter 2. The leading contribution to a and c are calculated in this

Chapter.

To evaluate the coordinate-space expectation value in (8.4) and

(8.6), perturbation theory is applied with the division
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H= Het 8V (%-%)
in which
He = Y Y 2 % (é.g)
2Mu  2Me, TR Xe
eV = -i—c;- %—; (%-9)

similar to equations (2.3) and (2.9).

The zero-order wave function for the ground state is given by
Equation (2.10). Thus, the zero-order contribution to the expectation

~values in (8.4) and (8.6) are

({.}] A
a'® - 2';& 3:3# S'f,‘ ga,,ge_w( xej‘z?c )% Rute)

= 166 CxM,Y® \
e I (310)

to o 3= = =
cto) - 2L Jadn Gy SekaUWo huRe) 5CRe ) WolHh, o)

9 9

"‘9

with the Fermi value &V = (8/3)&/ (mgm,) ((me)3 .

The first-order correction to the wave function is given by Equation

(2.12). The first-order correction in a is
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a®? - ‘:L_‘E ?_"ia.a. S&Ms&ew ’fu’
x W,(%, Xe) _ (%.12)

Substitution of (2.12) in (8.12) yields non-zero terms only for f =0

because of the orthogonality of the electron wave functions. Thus

Q™ = L;l;& 3:9#‘ s cfx P o) )3 w nco)w ncia

x \lacmtg“cz) . | (8\3)
where | -
Vex) = Sdewl, ze) SV Cx_,xe_)we_of.xej
T - X [otMex -1 & (xMgx + )€ TXMEE T (gan)

Only s-states contribute to the sum over n in (8.13), so the sum may be
replaced by the s-state reduced Green's function for the mucu'x",'s with one

coordinate set equal to zero.

¥
% Wanglo) Wyng R 2 o 2N

°E".uns ™

* [““M’J = 2 (HEMX) + 2o - RaeM, x ] (%.\5)
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uhere'f=0.5772.;. is Euler's constant. Evaluation of (8.13) with the
aid of (§.14) ’and (8.15) yields a result of order (H./M“? a'® for a*W,
which is negligible to the accuracy considered here. The term a*? may
be regarded as the correction to the muon density at the origin due to
the perturbation of the muon wave function by the electron. Only the
fraction of order (He/qu? , of the'electron charge distribution inside

the muon Bohr radius is effective in modifying this density. The

quantity c*V is

e 9ed -
¢ = BB é—‘—,-,—- §%, Sk wh s, %)

% § R W, (%, %) (%-16)

Because of the orthogonality of the muon wave functions, only the n=0

term in (2.12) survives upon substitution in (8.16). Hence,

c® = HOX Fedn_ Sa.*w () T, Wen(0) Wen (R)
: ™40 Eeo - Een

V() We o CR) (81F)

where

= =& Or2um,x) e WX (g1)
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Only s-states contribute to the sum over n in (8.17), so once again the

s-state reduced Green's function may be employed, which is given by

P “’enscmwens x) . OCM;" - (MgX

— e
"#° Eeo- Eens ™
]
P 2a(20¢tMar) + %_--'Y - o(M._._%] (%.\9)

Substitution of (8.18) and (8.19) in (8.17) yields

e = AV, &in g,_gﬂ m {— + (!'.Lzzn%

+ -+

+ (22 {;)( e ¥+ ol (PeTent2e1d ($.26)
An alternate derivation of the leading term in (8.20) is obtained by
applying Zeemach's formula to take into account the effect of the finite
charge distribution of the effective nucleus on the electron-nucleus

hyperfine interaction'® The fractional correction in c is given by

AC . _ 243%ey, -
P - P (g.2.1)

where a, = 1/(®Hg) is the Bohr radius of the electron, and where

(30, = Jr o U5 A si-2) B c8) (4.22)
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The quantities £, and £, are electric and magnetic distribution factors
respectively, of the effective nucleus, which are normalized to unity.
For this problem

Fel3) = 28 - 1y, (w2

(g-23)
P (F) = SCH) (g.21)
Substituting (8.23) and (8.24) in (8.22) yields
{2, = - 2 (g.28)
em ~ Lok, :
which upon substitution in (8.21) yields
Ac = AV. el ™My 3 Me_ '
FTh e T ™ (2.26)

vwhich is the leading term of (8.20).

Diagonalization of §Hy in (8.3) yields the eigenvalues

Q¥bsC
[re

+ (a*+ s &= ab-be - c.n.)“z

&\.2 - -‘-:

(¥.2%)
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(.2%)
Both A, and A, are doubly degenerate,

and A, is quadruply degenerate,
corresponding to angular momentum 1/2 and 3/2,

respectively.

In the
present case, a>>b and a>>c, so A, and A, are well approximated by

Az 3. (%.29)
-~ - 2— b—‘.‘.‘—c— ses s (% '30)
Ay =TSN
where the omitted terms are higher order in b/a or c/a. The smaller
‘splitting is given by
AV = Az-23
= 2 (o) (g.31)

to lowest order in b/a and c/a.




9. SUMHARY

The results are summarized in this Chapter. The corrections due to
the anomalous magnetic moments of the electron and muon are added to the
nonrelativistic results and comparisons are made with other theoretical

as well as experimental findings.

The nonrelativistic results for muonic “He are based on constants
. 9 ]
R, = 3.289842x10° MHz, & = 137.0360, m,/me = 206.7686 and m‘/me = 7294.

The zero-order hyperfine splitting AV, is

-

AV, = §v,—. C\+%}'3 = 4L¥3.2% MHz Cq.)

The first-order hyperfine splitting when the intermediate muon states

are restricted to the ground state,lfv?,is

q - W Mo Mea ® Mﬁ % (Me \2
VY = Ave[ % ot C“ﬁ}») Ine -8 (F‘%)

)]

+ 0((EeY en(32))1 = 16-02 Mun, €q.2)

The first-order hyperfine splitting when the intermediate muon states

are restricted to the excited states, zsds is

- 97 =
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e _ 3/
Mo = Ve 3-32 He + 25, (BeY “+ o Lieyere 13

= -L46.2 +1-2 MHg, (3.2)

vhere Sy, = 2.840.2 and the Fermi value is

- (XMe)® = LB1G.A1 Mua, (9.4

The numerical results for A\)e. and the contribution to the first-order

hyperfine splitting Av? due to mass-polarization term are

A\’.e (num) = ~L5.6F MHx q.5)

A'D:“ (um) = 0.08 MWz, ‘é_g)

The second-order hyperfine splitting is of order Av.(l{e/l‘l_u? ln(}zu/ﬂe_).

Hence the analytical result for the hyperfine splitting is

AV = AV + A+ A ..,

- \ _ ™M 2 ™ 3,2 "
AV, il 3 F—\f; > 3 51]:, (-?“-3-‘) +0 i(h—:af:\ 2“%.\ 3

LLBU.E * 2.4, ™MWz, (9.%)

while the numerical result is
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AV (hum) = AV, + A2 + BYF cnumy + AVT cnum)

+oLave(ReYonie ] = Lus3.8 + 12MKe,
€q-%)
A variational calculation of Huang and Hughes gives 4455.2%1.0 HHz.q
brachman's calculation using a Born-Oppenheimer approximation reproduces
the two leading terms of AV and yields 4450 HHz‘,'° vhile a later
calculation in which first Fermi contact term is rewritten as a global

operator, yields 4450 HHz!‘ Clearly all the results are in good

agreement with the one obtained in this thesis.

The main correction to the nonrelativistic result is due to the
lowest order anomalous magnetic moments of the electron and muon. The

corrected g-factors for the electron and muon are

oL

These factors shift the hyperfine freqency by AV, = 10.5 MHz. Higher
order self-energy and vacuum-polarization corrections can be roughly
approximated by the hydrogenic value%,3 and are of order N‘A\’,. These

corrections are discussed elsewhere¥ '

but they are smaller than the
. current uncertainty in the nonrelativistic result. Also other
relativistic corrections may contribute terms of order O?AV,. Hence the

corrections amount to 10.5% 0.6 MHz. Hence the corrected analytical and

numerical values are given by
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AV = LLE3.0 £ 3.0 MHz, (9.10)
AV inum) = LLEL.3 £ V-8 MWz | (q.\\a)

I1f the second-order hyperfine splitting [given by Equation (6.38)] is

‘added to (9.\1a), we get

AV tnum) = LLGL-9 ™MWz €q.i1b)

The results are in good agreement with the result of the experiment at

SIN : 4464.95(6) Hsz, and with the preliminary experimental result at

LAHPF : 4464.99(4) MHz3

The hyperfine splitting in muonic 3He is given by
AV(3He) = 3 e ro(R)+ 0 ()

where the values for a,b and c in the two lowest orders of perturbation

theory are
@ = 18 x(xm ?9-"3 =3-3 0¥ MRz €q.13)
Mo
b =

Q9 ™ )
BV Sedu o - 3T + 260, (Y]

Lhel.F ™MHz €a.n)

i



- 101 -

AV 9e8n ™ amM
-9 o 14 211

\0a1.-5 ™MHz €9.15)

based on the constants m./m, = 1836.15, m,/mg = 2.993, g = 4.25525,
g™ G, % 2[1+%/(21)], and other constants given earlier in this
Chapter. The corrections due to the anomalous magnetic moments of the
electron and muon are accounted for in g-factors of the electron and
' muon. The uncertainty in the hjrperfine splitting arises mainly from the
uncertainty in b, which is similar to the uncertainty for muonic Uye.
To the accuracy considered here, &V ("He) = b(“He), where the difference,
b("He)-b@He) = 1,2 MHz, is due to the difference in the reduced masses.
Hence employing the experimental valuea,' Ay (MHe) = 4465.0 HHz,. a

semiempirical estimate for the muonic SHe hyperfine splitting is:
AV(CHe) = & LoCHe)+ c]

= % LAV(HHE) + C + b(CHe) - bliHe))

L\GG- 5 Oy ™MWz | CRY-Y)

Drachman has calculated this quantity by rewriting the Fermi contact
term as a global operator and evaluating it with the wave function given

11}
by (2.10). His value is 4163 MHz.



APPENDIX A

The question of stability in calculating the numerical solution of
(3.5) for E<O with the use of the recursion relation (3.13) is discussed

in this Appendix.

The asymptotic behavior of the wave function satisfying (3.5) is
given by Equations (3.16) and (2.21). Our interest is in solving (3.13)
" with the exact eigenvalue Eg. But due to roundoff errors and the
inexact knowledge of E,, we solve (3.13) with EJE,. The general
solution of (3.13) with E3E, can be spanned by any pair a(x),B(x) of
linearly independent solutions. We are interested in the special case
vwhere the asymbtotic behavior of A(x) is given by Equations (3.16) and

(3.21):

A) oc Mex | XM, x <<i ca.\)

JT2EMg %

Y -
Ay o (Mgx) e , KM X >> 1 CA.2)

_ where V = [-O?HQI(ZE)fi. For small x «Kqug<<1), any solution that is
linearly independent of A(x) diverges at the origin. Hence 1a(x)/B(x)]
is an increasing function of x, and therefore as explained in
Appendix D, the procedure of calculating A(x) recursively in the

direction of increasing x is stable. For large x «xq“x>>1), any

- 102 -



- 103 -
solution that is linearly independent of A(x) diverges at infinity.
Hence |a(x)/B(x)! is a decreasing function of x, and therefore as
explained in Appendix D, the procedure of calculating A(x) recursively
in the direction of decreasing x is stable. Thus we calculate A(x)
recursively starting from small x going in the direction of increasing
x, and starting from large x going in the direction of decreasing x (and

match the functions in between).



APPENDIX B

In this Appendix, the scaling properties of the Coulomb Green's

function are derived.

The Coulomb Green's function satisfies

2 2 —
(-%.“- Z%- BE)GGLFLE) = B (F%) (8.1)

With the change of variables y,=mZx,, y‘=mZx.,Vz'-e-) (mz)zv:' and we

obtain

V2 _x_ _E Yo ¥ 2,3
CE-F e ) ar (e Lo )= 856G (B2)

comparing it with
2 i g— = - -
CH-Z-EIHEFE = €90 8.3
where H is independent of m and 2, we obtain

GE T E) = WAE HMER, mER,, E_) (8.L)

mzg*

If G and H are expanded into angular and radial parts

GGy % E) = z.n Gy, (%2 24,8 Vg () or R ) (8.5)
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WG RE) = 5 Holta 2B IV prrkEaI Vo) (8.6)

then

G, (%2 X B) = M EH, tmxs wiEw,  E0) (8.7)



APPENDIX C

In this Appendix, it is shown that the relative errors involved in
making the approximations in (4.65) in deriving the analytical

asymptotic formula for large z, tend to zero as z tends to infinity.

We first make approximation I in (4.85), i.e., we replace the
Green's functions for the electron and muon by the corresponding free
" green's functions given by (4.66) and (4.67). Then we show that the
relative error involved in making approximation II, namely evaluating
all ground-state wave functions at'§‘=§2#§a, tends to zero as z tends to
infinity. Then we make approximation II in (4.65), and show that the

relative error involved in making approximation I tends to zero as z

tends to infinity.

With approximation I, h(z) in (4.65) becomes

+ -
hez) 2 MEb § S S Wy, Ba) Vol Fod

e-*s2 o~bexs,

k3
xaq_ %3\ %2-\
MatM . ) + - —_— -
- et (i Sod s % Fa )Wt B0
. .e~b'u:ﬂ3§’ e—-bep‘a‘ \

xa‘z xa‘ *\ (Co\)
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Let h‘(z) be the first term of (C.1). By expanding wo(iz,il) around ?:3

WoliaR) = Wolhy ) + Gari) aWeGia,Rad\g oz,
+ (R-R3)- W, (g FMlz, 2wy - oo c.2)

and then integrating explicitly the terms exhibited in (C.2),

h,2) = D% 08 0. S, \W, 5, Z3 T o Butaz ~bexay

un2
Ka2%3, %12
4
x L1+ O(Qb_{__s.) + Oy g
ST
~ Yet d%a S = = 3 o~ Buraz ~Peta
‘ Melo Qo S, S\, Ry #ad\ € 5

“r Hag¥ay R
- A

bab,(be+b,) ' c.3)

as z-+» 08, where A is independent of z. Thus we have shown that the
relative error involved in making approximation II in the first term of
(C.1) tends to zero as z tends to infinity. The same is true for the

second term of (C.1).

With approximation II, h(z) in (4.65) can be written as

heey & S S S, 1 W03 3V G (5 70 B o )

% G,MCQS .»;2-.» Eot® D ;““"‘"2'
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- Sd?xa Sa?uSoe*. VWo (23 Zy) ¥ Gel¥a 71 Bao—ED
* G (% B B) o (c.ud

Let g|(z) be the first term of (C.4). Expanding the green's functions

in terms of the free Green's functions with the aid of (2.45), we obtain

9,2 = §8%; S Seie, W, iy, %, 3% G5 (Fg o, Eeom B

O = = 1
®x G, Ry %, ELo+E) s

3 - - .3 -
+ ST, S S, W, %3O 63 €%y Ty Eer®) %
(7Y

O e
% Gg (R 7\, Eeo-B) Gy (Fa By B 2 ) %“-9-_
¥ Sl Sy Seea S, \WoeRy o2\ G Gy R Bes )
o . O o -
* G, G Ru, B 8 T G Fa Bt By +o000 €C.5)

The first term in (C.5), g“(z), is same as (C.3). The second term in

(c.5), g,z(z). is evaluated with the aid of (2.26a) and the relation

~b¥Xay, : 3 -S5%au
& = dwy, &

The leading contribution of the second term is
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8

(c.3?)
be, (berb, YLt be_«-\gqbz— b;', 1 3

Q.Y @

where B is independent of z. In the limit z-poo, \go(2)/9g,, (z)} = 0.
Similarly the relative contribution of the third term in (C.5) tends to
zero as z—=+00 . Thus we have shown that the relative error involved in
making approximation I in the first term of (C.4), tends to zero as z
tends to infinity. The same result can be shown for the second term of

(C.4).



APPENDIX D

In this Appendix, we explain in a qualitative way why in some cases
one has to use the recursion relation in a particular direction for

LD
numerical stabil1ty."

Consider a three term recurrence relation of the form
Y(e+2) + G QR+ + U2 = O (D.V

where by0. The general solution can be spanned by any pair u(l),v(1)
of linearly independent solutions. We are interested in the special

case where such a pair has the property

Livn l&iﬁa\ = O,

L4 00 13 () (q>'=!)

Serious problems then arise if one attempts to compute u(l) with (D.1)
for increasing 1. To see this, consider y(1) to be the computed value
of u(l). If we generate y(l) using only approximate values y(0)su(0),
y(1)4u(l) (due to rounding, for example), but recurring with infinite
precision, the computed solution y(l), in general, will be linearly

independent of u(l), i.e.,
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Y(g) = eu()+ daste) , d*o, (D.3)

Hence in the limit 1-$00,

\\am— ueey \ - 00 o.u)
we

Thus the relative error of y(1), the intended approximation to u(l),
becomes arbitrarily large. On other hand, consider the computation of
v(1l) for increasing 1. Let the computed value of v(1) be z(1). Then
the relative error in z(1l), the intended approximation to v(l), tends to
" zero as 1 tends to infinity. Thus the procedure of evaluating v(1)
recursively in the direction of increasing 1 is stable, while the
procedure of evaluating u(l) recursively in the direction of increasing
1 is not stable. By similar arguments, if Yu(l)/v(1)] increases as 1
decreases, thevprocedure of evaluating v(1l) recursively in the direction
of decreasing 1 is not stable while the procedure of evaluating u(l)

recursively in the direction of decreasing 1l is stable.
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