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Abstract

Energetic positive muons stopping in insulators often form the hydrogen-like neutral
atom muonium by capturing an electron from the stopping medium. In this thesis it is
shown that some of this muonium is formed by free electrons. produced along the muon’s
radiolysis track, diffusing to the muon, and subsequently forming muonium. Electron
transport properties of the lattice play a role in delayed muonium formation in these
solids. Application of an electric field along the initial muon momentum reveals a strong
anisotropy of the spatial distribution of electrons in the vicinity of the muon, implying
that the muon’s direction of motion during thermalization is not completely lost by
multiple scattering. Estimates of the initial electron-muon separation and muonium
formation time are given.

Diffusion of muonium in cryocrystals has been studied with both transverse and longi-
tudinal field muon spin relaxation techniques. Experimental results are compared to the
theory of quantum tunnelling diffusion. In solid nitrogen at temperatures much smaller
than the Debye temperature of the lattice, the data and theory are in good agreement,
with a temperature dependence approaching the 77 law predicted by the theory of two-
phonon quantum diffusion. At higher temperatures the agreement is qualitative only. but
does show a key feature of two-phonon quantum tunnelling diffusion - a rapid increase
in hop rate as temperature decreases due to the reduction of the phonon scattering rate.

Muonium in solid Xe is an extreme case of a light interstitial atom in a heavy lattice.
This system was chosen to provide an example of tunnelling diffusion at relatively high
temperatures where lattice dynamics could be expected to play a role in determining the

muonium hop rate. The hop rate of muonium atoms in solid Xe was measured over a



range temperatures both above and below the Debye temperature and was found to vary
by nearly four orders of magnitude. However, the absence of a temperature dependence
in the activation energy leads to the conclusion that thermally-induced fluctuations of

barrier height are not significant in this system.
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Chapter 1

Introduction

This thesis is about two rather diverse topics within the field of muon spin rota-
tion/relaxation/resonance (uSR) spectroscopy: muonium formation in insulators and
quantum diffusion of muonium in simple insulating solids. They are linked by the nature
of the samples studied - they are van der Waals solids made of atoms or small molecules
so weakly interacting they are gases at room temperature. solidifying only at very low
temperatures and therefore called cryocrystals.

When energetic positive muons are injected into most insulating materials a fraction
of the muons capture an electron from the sample and form a neutral. light hvdrogen-like
atom, with the muon as its nucleus (chemical symbol Mu.) The chemistry of positive
muons is essentially the same as that of protons; those muons that don’t form muonium
atoms become bound into molecular ions instead. It has long been known that the fraction
of each of these chemical species - muonium and the diamagnetic fraction, referring to
the total electron spin density at the muon which is zero for a muon in a molecular bond
- vary among different insulating materials. [12| This is a relatively old problem in the
field of uSR and of interest to radiation chemists, but is not widely appreciated by many
researchers applying uSR to a growing number of areas in condensed matter physics
such as magnetism and superconductivity.

The first part of this thesis is about the use of electric fields in uSR experiments
to extract new information about end-of-track processes leading to muonium formation.

In some of these cryocrystals it is possible to influence the muonium and diamagnetic



Chapter I. Introduction 2

fractions with an external electric field applied either parallel to or anti-parallel to the
incoming muons’ direction of motion. This is the first observation of an electric field
having an effect on muonium formation in a solid. The presence of an effect, and its
dependence on orientation of the external electric field, imply that, at least sometimes.
the electrons that eventually become bound to muons originate far from the muons.
Thus, it seems that electron transport properties of the solid play a role in muonium
formation. An overview of this technique and the interpretation of results is given in
Chapter 4.

The main topic of this thesis is the use of the muonium that is formed in crvocrystals
for the study of quantum diffusion under one- and two-phonon coupling to the vibrational
modes of the lattice. Tunnelling diffusion of light interstitials is of great interest because
it is inherently quantum mechanical in nature. It provides us with a system in which
to study a quantum process subject to a dissipative coupling to a bath of excitations.
Muons and muonium are particularly good probes of quantum diffusion since the muon
has a mass about 1/9 that of hydrogen; its tunnelling amplitude is larger than that of
any ordinary atom in the same potential.

Previously, studies of muon diffision in Cu and Al identified a cross-over from high-
temperature, stochastic thermally-activated hopping to a low-temperature regime where
the coherent propagation of the muon was disrupted by scattering of electrons and
phonons. Minima in the muon hop rates occurred at about 50 K and 5 K in these metals
respectively. [42, 47] In metals the interaction of the muon with conduction electrons
serves to reduce the tunnelling amplitude and suppress the temperature dependence.
(50, 51]

More recently, diffusion rates of muonium in ionic solids KCl and NaCl have been

measured. [66, 43] Neutral muonium in insulating materials avoids the interaction with
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conduction electrons, so in these systems the dominant interaction between the inter-
stitial particle and its environment is with excitations of the lattice. In NaCl and KCl
the muonium hop rate also showed minima at about 30 K and 70 K respectively. In
the low temperature regime the scattering of phonons (or electrons) serves to diminish
the tunnelling bandwidth, so the key characteristic is a hop rate that increases as the
temperature drops.

Chapter 5 reviews the theory of phonon-mediated quantum diffusion (due mostly to
Kagan and Prokof’ev), with the emphasis on explaining the origin of the temperature
dependences one can measure and the influence of the phonon spectrum.

This thesis presents results from experiments in which diffusion rates of muonium in
van der Waals solids were measured. Measurements in both low and high temperature
regimes are discussed and results are compared with the current theory of quantum
diffusion in chapter 6.

The current theory of phonon-mediated quantum diffusion is successful in predicting
the observed temperature dependence of the muonium diffusion rate in solid nitrogen at
temperatures well below the Debye temperature. The measured temperature dependence
of the diffusion rate was found, for the first time, to be very nearly as strong as predicted
by theory. Moreover, these results demonstrate qualitatively the influence of static energy
level shifts, which inevitably become important at sufficiently low temperatures. Kadono
et al. also studied the influence of deliberately induced defects in a sample of KCI
doped with varying amounts of Na substitutional impurities. [45] In this inhomogenous
system the lattice has both situations present simultaneously. The muonium ensemble
was divided into two parts - one trapped by the static shifts and the other, far from
impurities, diffusing as in pure KCI.

At temperatures where the phonon scattering rate is sufficient to destroy the coherent

channel, tunnelling diffusion proceeds by stocastic, phonon-assisted hopping. Tunnelling
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at temperatures approaching the Debye temperature should be sensitive to the presence
of short-wavelength phonons since these excitations will cause the shape and height of the
barrier to tunnelling to fluctuate. Optimal configurations of atoms that define the barrier
are therefore expected to enhance the average tunnelling rate. Experiments on muonium
diffusion in solid Xe were carried out in an attempt to detect this effect. The results
do not show any on-set of this effect as the temperature rises. However. it is possible
that the diffusion mechanism in this system is dominated by a classical activation to an

excited state. obscuring the temperature dependence of the tunnelling rate.



Chapter 2

Muon Spin Rotation Spectroscopy

In the most general description Muon Spin Rotation/Relaxation/Resonance (collec-
tively called uSR) includes all experimental techniques that exploit the anisotropic decay
of spin-polarized muons for studying materials. This covers an enormous range of fields
of study, presently including various aspects of chemistry, magnetism. superconductivity.
semiconductor properties and quantum diffusion. The essential ingredient common to
all these experiments is that the muons interact with the material in which they have
been deposited in various ways that have observable effects on their spin polarization.
ultimately allowing one to extract information about the muon’s environment. In order
to understand how this is done we discuss the basics of muons. muon beams and details

of uSR experiments in this chapter.

2.1 Muons and Muon Beams

Muons are elementary particles, second-generation charged leptons about 207 times
more massive than electrons. Two properties of muons are key to the uSR technique:
(a) they have an intrinsic spin angular momentum (of £/2) and a magnetic moment
(several times larger than the proton magnetic moment) which provides a means for the
environment to couple with the spin, and (b) they are almost always created or destroyed
in weak interactions which maximally violate parity symmetry. Thus the positive muons
from 7+ decay are 100% spin-polarized and each decays anisotropically via the weak in-

teraction to an energetic positron whose momentum is correlated with the muons angular

(1]
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Mass, m, 105.658389(34) MeV/c?

Lifetime, 7, 2.19714(7) us

Charge, ¢ te

Intrinsic spin h/2

Magnetic moment, pu, 4.4904514(15) x 10-2¢ J/T
8.890577(21) px

Spin g-factor, g, 2.002331846(17)

Gyromagnetic ratio, v, = g, u,/h 135.69682(5) MHz/T

Table 2.1: Physical properties of muons. (1]

momentum at the instant of decay. The physical properties of muons that are important
to uSR are listed in Table 2.1.

Muon spin rotation requires an intense beam of spin polarized muons obtained from
the decay of charged pions (7*). The pions are first produced by the collisions of energetic
protons with the nuclei of a target, typically made of carbon or beryllium. in the proton
beam of a particle accelerator. Charged pions with mass m.+ = 139.5669 MeV /c? then

decay to produce one muon neutrino and one muon;

+

™t - ut+u, (2.1)

"o W, (2:2)

with a lifetime of 26.03 ns. Conservation of energy and momentum dictate the outcome of
the two-body final state: muons and neutrinos always have momentum 29.7885 MeV/c:
the muon always carries away the same kinetic energy of 4.119 MeV in the pion’s rest
frame. As a result of parity violation in the weak decay of the spinless pion. muon
neutrinos are always left-handed (their spin angular momenta pointing in the opposite
direction to their linear momenta), so that positive muons (anti-muons, to be precise)
produced in this way must also always have their spin angular momenta pointed exactly

backward along their momenta. Anti-neutrinos have their spins and momenta parallel.
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so negatively charged muons similarly produced have spins parallel to their momenta.

[t was standard practice early in the development of uSR to collect positive and
negative muons from pions that decayed while in flight down the secondary beamline. In
order to stop the maximum number of muons in the thinnest samples it was preferable
to select those muons with the lowest energy, so “backward decay” muons with momenta
(in the pions’ frame) opposite to the pions’ momenta (in the lab frame) were usually
chosen for experiments; however these are not entirely spin polarized and still have a
relatively high momentum of ~40-120 MeV/c.

So far this discussion has been equally applicable to positive and negative particles.
but this ends when either pions or muons are stopped in matter due to the different
chemical nature of negatively and positively charged particles in matter. Negative pions
that stop in the target behave like heavy electrons and rapidly cascade down to tightly
bound orbitals where they almost always undergo capture by the nucleus instead of
decaying to negative muons. Positive pions that have come to rest in solids take up
interstitial positions between atoms so they are too far from nuclei to be captured: as far
as pSR is concerned their lifetime is unaffected by any properties of the target material.

Perhaps the most important development in muon beam technology was the real-
ization that by removing the windows that isolated the primary and secondary particle
beamlines, and turning down the momentum tuning of the secondary channel. the low
momentum positively charged so-called surface muons could be brought out to an exper-
iment. [2, 3] Those positive pions that happen to come to rest just within the surface
of the pion production target decay to muons that need penetrate only a short distance
(a fraction of a millimeter at most) to escape from the target into the beamline vacuum.
with momenta up to the maximum of pf**=29.8 MeV/c.

These muons have a range of about 140 mg/cm? in water so they conveniently pene-

trate several thin windows but still stop in small samples, while the spins of the muons
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remain almost completely polarized. Surface muon beams are not mono-energetic since
muons will come from pions decaying at various depths into the pion production target:
those that start out deeper will spend more of their range and lose more energy on their
way out. The resulting muon spectrum rises with momentum, then drops sharply at
the “surface muon edge” at p;**. Secondary beamlines, usually with magnetic steering
elements and positron separators (E x B velocity selectors which remove positron con-
tamination from the muon beam) are tuned to transport muons in a narrow momentum
range Ap,/p, of a few percent, with p, usually chosen to be just below the surface muon
edge. in order to achieve the greatest beam intensity. Efforts to make still lower-energy
polarized muon beams continue to this day, the motivation being the desire to deposit
muons into extremely thin samples or with controlled depths into the surface layers of a
sample. Compared to backward decay muons, surface muons are easier to collimate and
focus into a clean, well-defined spot on a thin sample, minimizing the background due to
muons that miss the sample. Most important, they arrive at the sample virtually 100%
spin polarized.

The positive muon decays via the parity-violating weak interaction to produce an

energetic positron and two neutrinos:
pt — et +ve+ 0, (2.3)

with a lifetime of 7,=2.19714(7) ps that is unaffected by sample properties or experimen-
tal conditions. In this decay the three body final state allows for a spectrum of positron
energies from 0 to E**=52.3 MeV, since all combinations of neutrino and positron mo-
menta that conserve energy and momentum are allowed. The decay rate also depends
on the inner product & - § of the positron spin & and momentum 7 in such a way that
the positron is emitted preferentially in the direction of the muon spin at the instant of

decay. The probability per unit time of being emitted in a direction at an angle © to the
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spin is given by
LW(O)  Gmd
ded(cos®) ~ 19273

where the asymmetry of the decay a(e) is a function of the reduced positron energy

\(€)[1 + a(e) cos(O)] (2.4)

€ = Fot [ETP* and is given by

(2.5)

while the normalized spectrum of positron energies resulting from the available phase
space 1s

Ae) = 2(3 — 2¢)€. (2.6)

These functions of positron energy are shown in Fig. 2.1. along with their product. The
resulting angular distribution of decay positrons is shown in Fig. 2.2 for several values
of positron energy. Since both the number of positrons and their decay asymmetry rise
with energy, the asymmetry of the ensemble angular distribution is largely due to those
positrons with energies above about 2/3 of the maximum energy.

We cannot be certain in which direction a single muon spin was pointing from its
single decay positron. However, we can determine the ensemble average polarization by
measuring the angular distribution of positrons emitted in the decay of a large number
of muons. Fast scintillators and phototubes give nanosecond timing resolution but do
not yield any information about the positrons’ energies. If positrons of all energies are
detected with equal efficiency, we must integrate over the positron energy spectrum to
obtain a theoretical ensemble average asymmetry (a), = 1/3. In practice. this theoretical
asymmetry is never achieved due to the use of positron detectors that cover quite a
large solid angle, averaging over a range of 4 in Eq. (2.4) which reduces the observed
asymmetry considerably. With a few cm of absorber one can eliminate the low energy
positrons, which have a(e) < 0 and actually detract from the ensemble asymmetry. to

increase the measured asymmetry and improve the signal-to-noise ratio. If the positrons
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Figure 2.1: Muon decay asymmtery a(¢), energy spectrum A(e) and the product a(e)\(e)
ploted against the reduced positron energy e.

with energy ¢ < 0.5 are absorbed, for example, the asymmetry of the remaining ensemble
rises to 0.435. There is usually some material such as cryostat parts and sample mounts
between the sample and positron detectors that will stop some of the low energy positrons.
Overall. the maximum initial asymmetry measured by most spectrometers is typically

about 0.25.

2.2 Hardware for uSR Spectroscopy

An experimental area used for puSR is shown in Fig. 2.3, this one being the M20
channel at the TRIUMF laboratory. The uSR experimental apparatus is positioned at the
end of the secondary beamline, downstream from the final focusing quadrupole magnets.

The spectrometer consists of a set of Helmholtz magnet coils to produce a externally
applied magnetic field, a cryostat (or for some experiments an oven) for controlling sample

temperature, and a set of fast scintillation detectors that signal the passage of incoming
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Figure 2.2: A polar-coordinate plot of the rate of positron emission from muon decay as a
function of angle from the muon spin O, at various energies ¢. The distribution has axial
symmetry about the muon spin polarization direction, which points toward the right in
this plot.

muons and outgoing positrons. Most beamlines used for u SR incorporate spin rotators
into the positron separators that allow one to precess the muons spins in flight by 7/2
with respect to their momenta before they arrive at the experiment. This spin-rotated
mode allows the experimenter more flexibility in orienting the initial spin polarization
with respect to the applied field. This is especially useful when the experiment to be

performed requires a strong magnetic field transverse to the muon spin, which would

otherwise steer the beam off the sample.

2.2.1 Time-Differential uSR

By far the most common form of uSR experiment operates in the time differential
mode. An arrangement of detectors surrounding a sample is shown schematically in
Fig. 2.4. The positron detectors are usually mounted in pairs on opposite sides of the
sample; Back-Front, Left-Right and Up-Down, a geometry well suited to extracting the

signal, which we will come to shortly. Clever variations on this scheme have been used for
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Figure 2.3: A view of the M20 secondary channel and experimental area of the TRIUMF
laboratory, configured with a conventional uSR spectrometer capable of transverse and
longitudinal field measurements. (G.D.Morris)
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Figure 2.4: Schematic diagram showing an arrangment of a sample and five scintillation
particle detectors. Each muon triggers the thin muon (TM) detector on entering the
experiment. Later, the decay positron triggers one of the positron detectors.

special applications, to accomodate very small samples or very high magnetic fields for
example, but all of these perform essentially the same function of detecting the angular
distribution of positrons. We include in our example a magnetic field along the j-axis.
transverse to the initial muon polarization so that the spins undergo Larmor precession
in the £ — Z plane until the muons decay. Such experiments are termed transverse-field
(TF) experiments, giving a signal that demonstrates in an intuitive way the analogy
between pSR and traditional NMR. One can also perform experiments with no (zero)
external magnetic field (ZF) or with a longitudinal field (LF) parallel to the initial muon
spin, with no other change to the experimental apparatus.

Each muon enters the experiment with a velocity of about 1/4 of the speed of light,
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passing through a thin (0.125 mm) plastic muon scintillation detector (TM) which pro-
vides a “start” pulse to the data acquisition electronics. The muon then enters the sample
a few cm further downstream, where it comes to a stop and eventually decays. When one
of the positron detectors intercepts the outgoing positron, a “stop” pulse is generated
and the elapsed time is determined by a time-to-digital converter (TDC) - essentially a
stopwatch able to measure time intervals with a resolution of about | ns. The histogram
for that positron detector is then incremented in the bin corresponding to the measured
time interval. In most experiments the histogram time range extends up to 3 or 6 muon
lifetimes.

The high speed front-end logic of the data acquisition system. implemented in stan-
dard NIM electronics. is shown schematically in Fig. 2.5. The rest of the data acquisition
electronics consists of a histogramming memory, various support systems such as event
scalars and detector selection registers and a computer which controls the experiment
and reads out the data.

In order to measure the elapsed time we must know from which muon a given decay
positron originated. The easiest way to do this is to veto any event for which a positron
cannot be unambiguously paired with a muon. Each muon is given a fixed time interval
(“pile-up” gate) to decay, during which the arrival of another muon would veto the entire
sequence and both muons would be discarded. At meson facilities that produce pions
continuously (as opposed to those with pulsed primary proton beams), the muons arrive
at random time intervals. This and the dead-time of the TDC place a practical limit on
the mean rate at which one can take muons to about 50,000/s. Events in which two or
more positrons are detected within the data gate are also rejected by the TDC. Delays
are introduced into the positron “stop” signals so that the early part of each histogram
contains counts from uncorrelated start and stop signals. This allows the background

rates to be estimated from the part of each histogram before t = 0, the moment when
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Figure 2.5: Schematic logic diagram of the basic fast front-end electronics and signal
timing for time-differential uSR experiments. Two decay positron detectors are shown:
more may be added as required by the detector geometry.
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start and stop signals happen simultaneously.

Histograms are accumulated for each positron detector :=(B.F.L.R.U.D). each having

the form

o
-1
~

Ni(t) = No{bi +e ]l + a;(t)]}, (2.

where .V is the normalization, ;(¢) is the experimental asymmetry and b; is a time-
independent background. The single-histogram asymmetry is easily obtained from the

histogram by rearranging this;

ai(t) = [M — b,] Ct/r“ — 1. (:

[S™]
o
—

No

which can be fitted numerically to a model function to obtain estimates of .Vy and b;.
An example of raw histogram data from the Back counter is shown in Fig. 2.6a. In this
experiment a transverse magnetic field of 51.5 G caused the muons’ spins to precess at a
frequency w, = v, B = 2rx 0.699 MHz, which is apparent in the sinusiodal oscillations
in the asymmetry. Figure 2.6b is the asymmetry ag(t) extracted from the raw data using
Eq. (2.8); the solid line is a theoretical asymmetry representing the sum of two signals

with different (exponential) relaxation rates.

2.3 Data Reduction

We are interested in extracting the asymmetry, the signal manifesting the influence
of the muon’s environment on its spin. Ultimately we will want to fit the experimental
asymmetry to a model function in order to measure some physical property. but ideally
the experimental asymmetry should be obtained independently of the model function.
One way of extracting the signal from the raw data is to make use of the symmetry of the
detectors on opposite sides of the sample. With this geometry the two detectors view the

same positron angular distribution, but from diametrically opposed directions, so that
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the counts in the two histograms are (for the Back-Front pair)
Nog(t) = No{bes + [1 £ app(t)]e'™ }. (29)

We can then calculate the asymmetry a, for the (B,F) pair

_ [NB(t) — Nobg] — [V (t) — Nobe] .
a(t) = [Ng(t) — Nobg] + [Np(t) — Nobg]’ (2.10)

naively assuming a common asymmetry a,(t) = agr(t). [deally, the efficiency (probabil-
ity of a particle being detected) of all positron detectors would be the same. as would be
the solid angle they subtend. In general neither of these actually holds. so corrections
are needed to avoid distorting the signal. [t is easy to see, for example, that if the sample
were closer to the B positron detector than to F, then B would intercept (all other things
being equal) more positrons by virtue of its larger solid angle. and because it averages
over a greater range in O, the amplitude of the precession signal in our TF experiment
would be lower. Photomultiplier tube characteristics, operating voltages and discrimi-
nator settings will have a direct bearing on the efficiency of each detector. [t would be
a difficult task to match a pair of detectors so they had identical characteristics: fortu-
nately, it is not necessary to do so. If we allow for differing efficiencies n; and asymmetries
A;P;(t), where P.(t) is the spin polarization along the z-axis, which is common to the

Back and Front detectors, then each histogram is described by
Ner(t) = No{bp.r + 18 [l £ AprPu(t)]e/™} (2.11)

and the experimental asymmetry is now

n8[l + ApP:(t)] — n¢[l — Ap P (¢)]
e[l + AsP:(t)] + 7¢[l — ApP:(¢)]
I—a+(l+af)AsP.(t)
I+ o+ (L—aB)AsP.(l)

a.(t) =
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in which @ = npg/ng and 3 = Ap/Ag. Rearranging this we obtain a function of the

experimental asymmetry a(t) corrected for differences between detectors.

l —a—(1l+af)a.(t)

(1= ad)a.(t) = (1 +ad)’ (=13

AsP.(t) =

This introduces two free parameters a and 3 that can be obtained by fitting a model
spin polarization function to the experimental asymmetry. The same procedure can be
carried out for the other pair of detectors on the z or y axes. (Usually there is no need
to use detectors on more than two axes since there can never be any asymmetry along
an axis that is always perpendicular to the muon spin.)

Returning to our example TF experiment, Fig. 2.7 shows the corrected asymmetry
extracted from the (B,F) pair of detectors. The evolution of the muon spin polarization
is essentially the same as the familiar free induction decay signal of nuclear magnetic
resonance. The most obvious characteristic is the Larmor precession frequency, giving the
mean magnetic field at the muon site. We will need to draw on everything we know about
the sample from other sources in order to interpret the polarization relaxation function.
For example, if we know the sample contains atoms possessing magnetic moments then
we expect the muon will be subject to internal fields which may fluctuate in time or in
space (or both). In this case, muons will experience different local fields and so precess at
different frequencies, which would be reflected in the loss of coherence of the precessing
muon ensemble. In other cases, the disappearance of polarization may be entirely due
to one or more chemical reactions. The loss of polarization then simply reflects the
amount of the muon ensemble that has undergone a chemical reaction. This must be
the case for the signal seen in our Ne sample, where there are no nuclear magnetic
moments present. The amplitude of the muon signal decreases with time because the
muons pick up stray electrons and so form neutral muonium atoms (a topic that will

occupy much of our attention in chapters to follow) which behave entirely differently
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- the “diamagnetic” muon signal gradually vanishes with time. In either case we need
to have some idea qualitatively what may be happening to the muon before we can
extract quantitative information by fitting a model polarization function. Measuring the
polarization function is the easy part; deducing the correct model is usually challenging.
but yields all the physics.

We have discussed here only the most common sorts of uSR experiments. Other
techniques, falling under the general label of Time-Integral uSR. are described elsewhere.

[5. 6] including level-crossing resonance experiments and RF-uSR.
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Figure 2.6: (a) A histogram from the “Back” positron detector of a time-differential
experiment on a sample of liquid Ne. (b) The asymmetry ag(¢) extracted from the same
histogram according to Eq. (2.8). The oscillations are due to the Larmor precession of the
muons’ magnetic moments in an externally applied transverse magnetic field of 51.5 G.
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Figure 2.7: The corrected asymmetry obtained from the Back-Front histogram pair using
Eq. (2.13). Error bars shown and all parameter errors obtained in fitting are derived from
counting statistics.



Chapter 3

Cryocrystals as pSR Samples

3.1 Cryostats and Techniques

The sample environment suitable for typical muon spin relaxation experiments must
allow a beam of muons into the sample, allow the decay positrons to escape and allow one
to control the experimental variables, usually temperature and applied magnetic field at
the sample. Meeting these requirements imposes several conditions on the experimental
apparatus; most important of these (in the sense that is it the easiest requirement to
violate unintentionally) is that the total mass of material in the path of the low mo-
mentum surface muon beam must be small enough that the muons reach the sample
without appreciable attenuation or scattering. The range of these low energy (4.2 MeV')
muons is about 140 mg/cm? of low-Z material. This places a practical upper limit of
about 70 mg/cm?® on the total mass of material present in beamline windows. air gaps.
muon detectors, cryostat windows, coolants and heat shields if we are to avoid stopping
a significant number of muons before they reach the bulk of the sample. Normally. this is
not a difficult technical problem for the majority of samples that are room-temperature
solids. In the case of Van der Waals solids that condensed from room-temperature gases,
this is made much more difficult by the need for the sample to be held within a miniature
pressure vessel, which is in turn surrounded by vacuum in order to provide thermal isola-
tion. Crystals of these solids are grown from the liquid, under a pressure slightly greater

than their equilibrium vapour pressure at the melting point, typically 100 - 700 mbar

22
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depending on the material. Even in the solid phase, the equilibrium vapour pressure
can be a considerable fraction of an atmosphere. Therefore. the cryostat must simul-
taneously provide the contradictory conditions of thin beam windows and considerable
mechanical strength. To make matters more difficult it must also be able to withstand
changing pressure at crvogenic temperatures due to thermal cycling. In addition to this.
the cryostat must provide a way for the sample gas to be piped into the sample space
from room temperature outside the cryostat.

The cryostat used for the majority of the results presented here was a commercial
Janis Supertran continuous—flow coldfinger cryostat with modifications enabling the con-
densation of room-temperature gases to liquids that were subsequently frozen to solid
samples of a size suitable for plSR. Samples filled the volume of a cell measuring 22 x
22 x 6 mm machined from a solid block of copper, with the open square faces covered
with 0.012 cm thick transparent Mylar windows. (Figures 3.8 and 3.9 show the coldfin-
ger cryostat and the sample cell in detail.) These windows were epoxied to the copper
cell. providing a gas-tight seal, and backed up with a copper frame to provide strength
against peeling under the strain due to the pressure differential. Sample gases passed
from outside the cryostat to the cell via a stainless-steel tube that entered the cell on
its top edge. Condensation of sample gases within the tube was prevented by a heater
wound about the tube over its entire length inside the cryostat. Cooling of the cell was
provided through its attachment to the cold finger on the cell’s bottom edge. A heater
mounted on the top edge of the cell served to ensure that the top of the sample. near the
exit tube, was the warmest part and to allow the establishment of a temperature gra-
dient down the sample during sample preparation. Sample temperature was measured
with either carbon glass resistive thermometers or GaAlAs diode thermometers set into
the edge of the copper cell. Temperatures down to about 4 K were attainable with this

system.



Chapter 3. Cryocrystals as uSR Samples 2.

3.2 Growing Cryocrystals

Common experience has shown that the best crystals are obtained by slowly freezing
the liquid sample by cooling from the bottom, and allowing the solidifving front to pass
upward through the sample. Visual inspection of the sample during its growth is essential.
so that the temperature gradient and rate of change of temperature can be controlled by
seeing exactly what part of the sample is freezing at any given time.

Samples in this work were always prepared by allowing ultra high purity gas from a
clean gas handling system into the cell, which was maintained at a temperature approxi-
mately midway between the melting and boiling points. The sample cell was filled slowly-
keeping the temperature from rising as the heat of vaporization was taken up. A large
amount of heating power. typically 6 W, was applied with the cell top heater in order
to establish a temperature gradient down the walls of the cell, enabling one to carefully
control the solidification of the sample. By adjustment of the heating and cooling power.
the boundary between liquid and solid was made to slowly sweep upward through the
sample. After the sample was entirely solid, which typically took 4 hours, the thermal
gradient was removed and the sample maintained at a temperature a few degress below
the melting temperature for several hours to allow the sample to anneal. Samples so
produced were completely transparent, with no visible defects: however, it is known [20]
that samples prepared in this way are polycrystalline, with grain dimensions on the order
of | mm. Very slow crystal growth, much slower than used here, is required to prepare
truly single crystals, even of much smaller size. The nature of the crystal structures was

not further investigated.
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Figure 3.8: The interior parts of the coldfinger cryostat used for uSR experiments on
solidified gases. The samples were condensed from the gas phase and frozen solid in the
cell visible at the tip of the cold finger. Sample gas was allowed into the cell through the
thin stainless tube, which was equiped with a heater to prevent blockages. (G.D. Morris)



Chapter 3. Crvocrystals as uSR Samples

Figure 3.9: The sample cell used to condense gases to solids (approximately twice actual
size), showing the attachment point to the cold finger and heater on the top of the cell.
The flow of heat from top to bottom created a temperature difference of about | K down
the cell walls. This is necessary to grow void-free crystals by ensuring that the sample
freezes from the bottom up. The sample could be seen through the tranparent mylar
windows enclosing the front and back faces of the cell. (G.D. Morris)
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Figure 3.10: A sample of Ne being condensed and frozen; (a) The cell partially full of
liquid Ne. (b) The cell full of Ne, some of which has solidified around the edges of the
cell. (G.D. Morris)
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3.3 Properties of Solid Nitrogen

Many properties of solid (and liquid) nitrogen are reviewed very thoroughly in an
article by T.A. Scott [20]; the most important characteristics are briefly reviewed here.

The isolated nitrogen molecule N, has dimensions. defined by the surface enclosing
95% of the electron density, of about 3.39 A diameter x 4.34A in length. Spectroscopic
studies of the vibrational (stretch) modes of the molecule indicate that in the condensed
states the molecule is slightly distorted by interactions with neighbouring molecules.

Nitrogen exists as two stable isotopes - 99.63% is YN with nuclear spin 1 and 0.37%
is "N with spin 1/2. With such a small fraction of *N, the properties of solid. natural

N, and solid pure '*N, are virtually indistinguishable.

3.3.1 Crystal Structures

Solid nitrogen has three known crystal structures - labelled a-. 3- and ~-N; - in the
P —T plane. [20] The v phase exists only under high pressures - greater than about 3500
atm. well beyond pressures attainable in thin-walled cells and is therefore not presently
accessible with low energy surface muon beams.

The a phase exists under equilibrium vapour pressure and at temperatures below
T,3=36.61 K. in which the N, molecules are centred on the sites of an fcc lattice of
space group Pa3. In this structure the molecules are oriented (on average) lengthwise
along body diagonals of the cubic cell. The x-ray structure vields a lattice constant
a=5.660(2) A at 20 K. [23]

Above T,p, also at low pressures, the § phase has the molecular centres on a hep lattice
of space group P63/mmc. The unit cell has dimensions @ = 4.036A and ¢ = 6.630A. [21]

The molecules’ orientations on this lattice are not fixed.
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3.3.2 Librational Modes in Solid Nitrogen

The most important differences between the a and 3 phases involve the librational
motions of the N, molecules. Motional narrowing of the nuclear quadrupole coupling by
three orders of magnitude and disorder detected in the x-ray structure indicated that
molecules in the higher temperature 3 phase do not have their orientations fixed with
respect to the lattice: they are disordered by precession-like motion about the ¢ axis.
with the molecular axes making an average angle of 54.7° to the é-axis. [22]

Raman scattering studies have been able to measure the absorption lines correspond-
ing to the high frequency (2200-2500 cm™') molecular stretch mode and the lower fre-
quency (<130 cm™!) librational and lattice modes at temperatures from 3.6 K to above
the o — 3 transition. under equilibrium vapour pressure. [24] As temperature is increased
within the a phase, the mean amplitude of librations away from the preferred orientations
grows. This is apparent as a slight broadening of the molecular stretch line with increas-
ing T, which is expected when the molecules are no longer in identical environments.
beginning at about 7=25 K and continuing into the 3 phase.

The low frequency lines, which are sharp at low temperatures in the o phase. gradually
become less distinct as the temperature rises to T,g, and become very broad features
above T,s. This was interpreted as consistent with the build-up of large amplitude.
anharmonic librations in the o phase and a fully disordered, precessional motion in the
3 phase.

The disorder introduced by librations is of a short-ranged nature, but since these are
soft modes, they are excited at relatively low temperatures - they fall among the acoustic

phonons in the excitation spectrum of the lattice.
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Muonium formation in Insulators

A great deal of the early work and a much smaller fraction of current work in the
field of kSR deals with the question of what determines the final chemical state of the
muon when it stops in a sample. This has been an important part of the development of
USR as a tool, and recent developments may have an impact on both the interpretation
of SR data in general and potential uSR related technology (such as ultra-slow muon
beams) in the near future.

This chapter lays the groundwork by first discussing models of muonium formation
and evidence from conventional uSR experiments that lead us to consider another mech-
anism - that electrons, stripped from atoms of the sample along the track of the muon.
diffuse large distances through the sample to form muonium by recombination with the
(positively charged) muon. Second, results from pSR experiments in which an electric
field was applied to the sample are presented. These experiments unambiguously demon-
strate that. at least in some cryocrystals, muonium formation depends on the electron
transport properties of the sample. [t is quite likely that this is at least part of the
answer to a long-standing puzzle regarding the differentiation of muons into diamagnetic
and muonium fractions in so many (electrically) insulating materials - solids, liquids and
gases.

This chapter is not an exhaustive discussion of electric-field uSR (EF-uSR). It is
intended only to re-examine muonium formation in light of new results from cryocrystals.

introduce the technique of using an electric field in pSR, and to show that the amount

30
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of muonium formed depends on the ability of radiolysis electrons. initially released by
the muon much further from its final position than previously thought, to reach the
stopped muon. Cryocrystals and cryoliquids have been instrumental in the discovery of
this technique, so it is fitting that this be included in a thesis primarily concerned with

muonium diffusion in cryocrystals.

4.1 Models of Muonium Formation

Muonium is a light hydrogen-like neutral atom composed of an electron bound to a
positive muon (Mu = e~ 4+ u*), commonly produced when muons are implanted in non-
metals including gases, liquids and solids ranging from semiconductors to fullerenes. One
of the oldest unanswered questions in the field of uSR is “How s muonium formed when
a muon stops in one of these materials?” The literature on this subject records a number
of experiments devoted to answering this and the related question. * What properties of
the sample influence muonium formation?” Until recently only reasoned guesses based
on indirect evidence have been possible.

Following the first observation of muonium in highly purified water by uSR [7] the dia-
magnetic fraction (free u* and u*-substituted molecules) was measured in the presence
of electron scavengers [8]. The increase in diamagnetic fraction with the concentration
of NO3 ions was attributed to an increased probability of thermal, unsolvated muons
becoming hydrated and subsequently forming MuOH by fast proton transfer, instead of
capturing an electron to form muonium. One model proposed to explained this behavior
pictured the muon losing kinetic energy near the end of the track by the creation of free
electrons, ions and radicals in a radiation spur [8, 9]. The thermal muon in the vicin-
ity of the terminal spur could then form muonium by simply capturing a free electron

from among the spur products. This model was borrowed from the analogous theory of
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positronium formation when positrons are injected into condensed media [10].

Another model of muonium formation proposed that the eventual distribution of
muons among various states is determined by processes that occur while the p* is still
losing its initial kinetic energy [18, L1, 12, 13]. At high velocity (as from a surface muon
beam) the muon should behave like any fast charged particle and undergo energy loss by
Bethe-Bloch ionization of the medium: no significant amount of muonium should form
until the kinetic energy has dropped to several tens of keV. where the muon velocity
becomes comparable to the orbital velocity of electrons of the medium. Then charge
exchange collisions become important as the muon undergoes a rapid series of several
hundred electron pickup and stripping cycles, shedding energy each time atoms of the
medium or the muonium is ionized.

At an energy of order 100 eV charge exchange is no longer dominant and the fraction
of muonium at these energies is expected to be influenced by the relative electron affinities
of the muon and atoms of the sample. In materials with ionization potentials smaller than
that of muonium (13.5 eV) most muons are expected to emerge from this stage as hot
muonium atoms. Further thermalization of both muons and muonium atoms will continue
by elastic and inelastic collisions with neutral atoms and hot atom reactions which may-.
depending on the stopping medium, produce p*-substituted molecules and/or molecular
ions. The final distribution of muon charge states will be determined by the reactions
that u* and Mu undergo in the last few steps. [n low pressure rare gases there is a strong
correlation between muonium formation and ionization potential of the gas, which seems
to support this model.

The principal distinction between these two models lies chiefly in when and at what
energy muonium is formed. “Hot” muonium formation is a “prompt” process, occurring
during a time when the muon is rapidly losing energy, within a few tens of ps after

entering a condensed sample. Muonium formation after the muon has come to thermal
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equilibrium with its surroundings requires time for electrons to diffuse to the muon. and

is therefore termed “delayed” muonium formation.

4.2 Muonium Formation and Electron Transport in Insulators

4.2.1 Muonium in Solid Nitrogen

Muon spin relaxation experiments were carried out on samples of solid, pure nitrogen
using conventional time-differential transverse field (TF) techniques. In the low temper-
ature a phase a large muonium signal and a smaller diamagnetic muon signal together
account for virtually all the muon polarization. In 3-N, and ¢-N, some of the diamag-
netic fraction appears as an additional fast-relaxing signal (with initial asymmetry Aé
and relaxation rate /\fD ) and all the asymmetries are temperature dependent. The total

asymmetry therefore has the form

A(t) = Amuexp(—Auat) cos(—waul + Ovu)

+[A} exp(—Aht) + AD exp(=At)] cos(wpt). (4.1)

The slowly-relaxing diamagnetic asymmetry A}y and muonium asymmetry Ay, ob-
tained are shown in Fig. 4.11. The most striking feature in the temperature dependence
of these is the obvious anticorrelation between them at temperatures near T, . suggest-
ing the presence of competing processes in which the stopping muon either captures an
electron to form muonium, or eventually becomes incorporated into a molecular ion.
Since only half of the muonium asymmetry is experimentally observable, (the other half
oscillating too fast to be resolved - see Appendix A) loss of some of the diamagnetic
species to muonium formation results in an increase in the muonium asymmetry half as

large. The total A} + Aé + 2Apmy 1s nearly temperature independent. Since the free
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electron mobility in 3-N, increases with temperature below T, like the muonium frac-
tion. this strongly suggests that transport of electrons through the lattice is involved in
muonium formation in solid nitrogen. The electron mobility measured in solid nitrogen
by Loveland et al. is shown in Fig. 4.12. From 63 K down to 33 K the mobility u.(7T)
is constant at about 1.7x1073 cm?~!'V~!: it then decreases gradually to half this value
at T,5{19]. The available mobility data below T,s doesn’t reveal the trend in a-N, but
it does indicate that the mobility is sharply increased to about 2.0 x 107 3cm?s~!V~! in
the a phase. Over this range in 7 the muonium asymmetry changes by about the same

fraction as the electron mobility, at least in the 3 phase.
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Figure 4.11: Muonium and slowly relaxing diamagnetic asymmetries measured in solid
nitrogen.
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4.2.2 Muonium in Neon

Muonium was found to be abundant in solid Ne as a long-lived species. amounting
to 80% of the total asymmetry. In liquid Ne muonium accounts for about 5% of the
asymmetry. The complete absence of muonium in Ne gas was once considered a key
argument that the crucial factor to muonium formation was the relative size of the
ionization potential of the stopping medium compared to that of muonium. [18]. Clearly.
this is not the complete picture, at least for solid rare gases. Ne has a vacuum ionization
potential of 22 eV, well above that of muonium, so that once the muon kinetic energy
has fallen below about 8 eV. it is impossible for muonium to be formed by a hot muon

colliding with a Ne atom. Likewise, once the muon has reached thermal equilibrium with
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Figure 4.12: Electron mobility in solid nitrogen measured by Loveland et al. [19] using
a direct time-of-flight method. Various symbols indicate different samples.
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the lattice, muonium cannot be formed by simply abstracting an electron from a nearby
atom. Formation of muonium while the muon is still energetic ought to be unaffected by
the phase of the material. at least in the condensed phases. Since muonium is abundant
only in solid Ne, it appears to be a result of properties unique to the solid phase. Free
electrons in solid Ne are known to have an extremely high mobility. on the order of
2000 cm/V-s, about the same as in typical semiconductors, and 6 orders of magnitude
less in the liquid phase where they form voids in the liquid due to their zero-point motion
pushing Ne atoms apart. Taken together the evidence indicates that it is the electron
transport properties of the crystalline state that enable formation of some of the muonium

in solid N, and almost all the muonium in solid Ne.

4.3 uSR in Electric Fields

A fundamental experiment that has the potential to show whether motion of free
electrons is involved in Mu formation is to measure the muonium polarization function
in a sample to which an external electric field has been applied. The idea is very simple
- if an external electric field does have an effect, then the muonium must be formed from
a free electron and muon that are initially well separated. When muonium is formed
directly by collisions of energetic muons with neutral atoms. the muon and electron
are never separated by a distance sufficient to allow a modest external field to have
much effect against the overwhelming coulomb force between charged particles in close
proximity.

Previously, only a very few uSR experiments have been performed in which samples
were subjected to electric fields. [to et al. investigated the effect of an external electric
field on the muonium signal in liquid hydrocarbons with fields up to 20 kV/cm and in

fused quartz up to 60 kV/cm, observing no effect on either the asymmetry or relaxation
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rate. [14, 15]

4.3.1 Liquid Helium in an Electric Field

The first p SR experiments in which an external electric field had a measurable effect
was performed by Krasnoperov et al. in superfluid and normal helium. [28. 26. 27] In the
superfluid, in zero electric field, about 90% of the muons formed muonium atoms. The
effect of an external electric field was asymmetric: a field along the initial muon direction
sharply decreased the muonium amplitude. [n the opposite direction the amplitude first
reached a maximum (at 50V /cm) then decreased more gradually as the electric field
increased. In normal liquid He the mobilities of both positively and negatively charged
particles are much lower and consequently the formation times longer. A small muonium
signal was detected in a very weak magnetic field of 0.4 G. With an electric field pushing
the charged particles together, the formation time was reduced so that muonium formed
over a shorter time with less dephasing, resulting in a larger muonium amplitude. For
both of these samples the results were interpreted in terms of the motion of a positively
charged helium “snowball” and a negatively charged “bubble” that form around the
muon and electron respectively. [t was concluded that the electrons were distributed
asymmetrically with respect to the thermal muon at the end of the muon’s track. [t was
estimated that the muons came to rest some 300-400 nm further downstream than the
electrons.

In the present work this technique has been extended to other samples, demonstrating
muonium formation via the convergence of electrons and muons in solids for the first
time. The principal result is definitive data showing that the muon is not isolated from
its own radiolysis track products, and that electrons from the track do reach the muon in
insulating solids. We now have strong evidence that muonium is often formed as a result

of recombination with these electrons and some estimates of the distances and timescales



Chapter 4. Muonium formation in Insulators 38

involved.

4.3.2 Solid Nitrogen in an Electric Field

An electric field was applied to a sample of solid nitrogen (s-N,) by the addition to
the sample cell of two fine wire grids outside the sample cell spaced 3.0 mm from the
mylar cell windows. High positive and negative voltages (with respect to ground) were
then applied to the grids to establish an electric field through the sample. Conventional
time-differential spectra were measured by TF uSR with the electric field either along or
opposed to the direction of the incoming muon beam, producing the asymmetries shown
in Fig. 4.13. A positive E denotes an electric field parallel to the muon’s momentum (the
conventional forward direction); negative F in the opposite direction. The magnitude £
is simply the potential difference between the grids divided by the separation of 1.2 cm.

The results unambiguously indicate directional asymmetry in the effect of an electric
field. With £ in the +3 direction the muon fraction was increased and muonium de-
creased. With the direction of the electric field reversed, the asymmetries change in the
opposite way. This is consistent with a mechanism for muonium formation in which free
electrons generated in the muon’s radiolysis track neutralize the positive muon. Applying
an external electric field drives these electrons either toward or away from the stopped
muon, increasing or decreasing the likelihood of muonium formation by putting more or
fewer electrons in the vicinity of the thermal muon. Muonium formation in this way is
always exothermic and therefore can proceed after the muon has come to thermal ener-
gies. Assuming this model, we can conclude that the electrons originiate predominantly
behind the muon. This model implies that the muon stops downstream from the end of
its ionization track, more or less preserving its direction of travel while slowing down.

In order for the external field to have much effect on the trajectory of electrons in

the Coulomb fields of nearby ions and the muon, the electron that eventually reaches the
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muon must be far enough away from them, at least for part of the time-of-flight. One
way for this to happen may result from the end of the cyclic charge exchange part of
the muon track. A hot muonium atom can undergo a collision with a neutral atom and
ionize itself, leaving the electron in the lattice while the bare muon can continue on with
the last few eV and eventually come to rest further down stream. In this picture neither
the electron or muon are in the immediate vicinity of any other ion. Most importantly.
this electron that has been carried in a muonium atom away from the ion from which it
came is the closest one to the muon and therefore is the electron that reaches the thermal
muon first. This model implies that the direction of travel of the muon. at the verv end

of the track. is still on average in the direction of the muon beam.
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Figure 4.13: Slowly relaxing diamagnetic asymmetry As and muonium asymmetry Ay,
(boxes and circles respectively) measured in a sample of solid nitrogen at T=20 K with
an external electric field applied either along (£ > 0) or opposite (£ < 0) to the incoming
muon beam direction.
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In order for an external electric field to have an appreciable effect on the motion of
electrons in the vicinity of the muon, the magnitude of the external electric field would
have to be comparable to (or larger than) the electric field due to the muon’s charge.
One can then estimate the typical initial distance between the electron and muon from
the electric field dependence of the asymmetries. An electric field of about 3 kv/cm falls
midway on the curve between E = 0 and saturation of the effect. Taking the electric field
of the muon at the electron to be Ey = 3.0 kV/cm, one may conclude that the typical
electron-muon distance is approximately R = \/e/eFy = 60 nm, in which ¢ = 1.3 is the

dielectric constant of solid nitrogen.

4.4 Delayed Muonium Formation

Muonium formation involving electrons originating in the radiolysis track depends on
the transport of these electrons to the muon under the influence of their mutual Coulomb
attraction and any external fields. The associated time-of-flight can be large enough to
have an observable effect on timescales accessible by uSR if the initial separation is great
enough.

While a muon awaits the arrival of an electron its spin will precess in an external
transverse magnetic field at the muon Larmor frequency w,, and if it decays during this
time it will contribute to the diamagnetic signal. Those muons that do not decay while
in a diamagnetic state will, upon forming muonium, begin to precess in the opposite
sense at the characteristic frequencies wy; and wo3, possibly contributing to the muonium
signal instead. (A complete discussion of the muonium signal is given in Appendix A. In
weak fields we may characterize the muonium signal by the average frequency wy,.) The
elapsed time between muons entering the sample and the arrival of electrons at the muons

will have some distribution, so the coherent diamagnetic polarization will be converted
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to muonium polarization over a range of times, with a corresponding distribution in the
apparent initial phase of the muonium precession. Since w,, is very small compared to the
muonium precession frequencies, the dephasing is almost entirely due to precession in the
higher frequency final state starting at different times. The conversion of coherent muon
polarization to partially dephased muonium polarization results in a measureable loss of
asymmetry whenever the formation time is comparable to or larger than the muonium
precession period. Delayed muonium formation is experimentally observable in principle
in the shape of the diamagnetic relaxation function G,(t), but it is more easily observed
in the resulting muonium amplitude and phase after all Mu formation is complete. A
stronger magnetic field results in proportionally more dephasing and therefore a reduced
polarization of the delayed part of the muonium ensemble. One can thus estimate the
characteristic time of muonium formation from the magnetic field dependence of the
amplitude of the muonium signal.

At any time the instantaneous polarization is the vector sum of all muon spins present
including diamagnetic, delayed and prompt muonium. If the distribution of formation
times is D(7) [the probability of muonium formation between times 7 and 7 + dr is

D(7) d7] then the total polarization at time ¢ is
. ¢ :
Py = (1=fo) [t = [ Dinyar] i
1 ¢ _; :
+=(1 - fo)/ e~ MGy (8 = T)D(7)e™* G, ()dT
2 0
1 .
+5 foe T M Gua(8), (4.1)

in which fo is the prompt muonium fraction. For clarity here we are ignoring the splitting
of the muonium signal that would be apparent in transverse fields greater than about
10 G. In fitting the data, one must replace the single muonium signal above with the
usual sum of two components at frequencies w;, and wy3. The first term in Eq. (4.1) is

the coherent diamagnetic polarization remaining at time ¢{. The second term is the sum
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over all phases of the accumnulated delayed muonium ensemble. The third term is the
prompt muonium polarization.

After all muonium formation is complete, the resulting muonium precesses at the same
frequency and undergoes spin relaxation according to the same function as the prompt
muonium fraction. In this way the long-time muonium ensemble can be characterized
by a single amplitude and phase. Figure 4.14 shows the asymmetry of the muonium
ensemble (the total muonium signal) in liquid nitrogen at T = 75 K in various transverse
magnetic fields, obtained by fitting the uSR spectra starting at ¢ = 50 ns. The solid
line is the empirical maximum asymmetry Ao multiplied by the theoretical polarization

in Eq. (4.1), and in which the distribution of formation times is

e—r/fdcl .

D(r) =

Tdel
[Although it is possible in principle to obtain D(r), which may be a complicated function
of the spatial distribution of electrons, the present data are not sufficient to reveal the
real shape of D(t).] The characteristic formation time 74 estimated in this way was
14(4) ns and the muonium asymmetry (in the limit of B — 0) resulting from delayed
formation was
Agat = % ¥ D(r)dr = 0.011(2),

< Jo

while prompt muonium contributed Aqfy = 0.038(2). From this we conclude that delaved
formation accounts for at least 22% of the muonium in liquid nitrogen. (Muonium formed
by the “delayed” process within a time very short in comparison to the precession period
is indistinguishable from the prompt hot muonium fraction, so the “delayed” fraction
could be larger.)

Similar experiments on solid nitrogen and rare gas solids have not shown magnetic
field dependence of asymmetries, presumably because the time of flight is too short due

to greater electron mobility and/or reduced distance.
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Figure 4.14: Total muonium asymmetry measured in liquid nitrogen (T=75 K) at long
times where delayed muonium formation has ceased. The solid line represents a fit to
theory. yielding a characterictic muonium formation time of 0.014(4)pus.

If the electrons were initially much further away from the muon than the width of
their spatial distribution, then the maximum muonium formation rate could be displaced
from ¢ = 0 by an amount 7. In this case, if the prompt muonium had time to precess
one or more full revolutions while the electrons were diffusing to the muon, the total
muonium polarization would be a periodic function of magnetic field. This would vield

a direct measurement of the formation time

1
H= ——————
2ryMu B’

where B is the period in magnetic field. Such convincing evidence of delayed muonium

formation has not yet been observed, but is possible in principle.
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4.5 Implications of Delayed Muonium Formation for uSR

Until now it has always been assumed that the muon could be considered an extremely
dilute impurity, inserted one at a time into a sample without much affecting the bulk of
the sample, and certainly not beyond the immediate vicinity of the muon. We now know
that the electrons generated along the muon track do interact with the muon on time
scales important to uSR. It is probable that in all insulators, including semiconductors.
at least some of the muonium results from the delayed formation process.

There are two principal concerns related to this. First, there is the question of how
much the muon and muonium signals in various (insulating) materials are affected by
direct interaction with the stray electrons. For both muons and muonium, the most
obvious affect would be a contribution to the relaxation rate of the polarization function.
Second, the bulk properties of the sample in the vicinity of these stray electrons may also
be affected, and have an indirect influence on the muon or muonium signals. In both
situations it is possible that a misleading result could be obtained in the measurement
of other unrelated phenomena. At the present time neither of these potential problems
can be ruled out. More electric field experiments on a variety of “conventional™ samples
will be necessary to determine the circumstances under which such effects may safely
be ignored, but until such time that this is fully understood, practitioners of uSR in

insulators should bear this in mind.
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Quantum Diffusion I: Theory

5.1 An Introduction to Quantum Diffusion in Insulators

The theory of quantum tunnelling diffusion in the presence of strong coupling to lattice
excitations has been developed in large part by Holstein, [31] Andreev and Lifshitz.
[32] Flynn and Stoneham, [33] and most recently by Kagan, Klinger. Maksimov and
Prokof’ev. [34. 35. 36. 40] The derivation of the principal equations which appear in the
literature regarding one- and two-phonon mediated tunnelling diffusion is outlined here.
Some details are omitted in the interest of keeping this discussion to a readable length
but these may be found in the review articles, most recently by Kagan and Prokof’ev.
(53] Although much of this has been published previously, the literature lacks a concise
treatment of quantum diffusion that would serve experimentalists well. It is hoped that
a short review of this model will serve as a guide to the uninitiated in understanding the
theory, and in particular the origin of temperature dependences which one can measure.

We are concerned here with the tunnelling diffusion of a light, neutral interstitial atom
in an otherwise (nearly) perfect insulating crystal. The picture one should have in mind is
of the particle, such as a muonium or hydrogen atom, occupying interstitial sites between
atoms of an otherwise regular lattice at temperature T. The interstitial’s potential is
minimized by nearby lattice atoms relaxing slightly from their usual equilibrium sites
to take on a new configuration where each atom resides in a potential well not very

different from the perfect lattice. In the absence of a Coulomb interaction with conduction
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electrons. the dependence of the interstitial’s potential on the displacement of nearby
lattice atoms from their equilibrium positions is the principal interaction. The interstitial
then is in a potential minimum partly of its own making and is therefore said to be self-
trapped. The neutral interstitial together with the associated lattice distortion is called
a small polaron. For example, electrons in semiconductors can induce a small polaron
which extends over many more lattice sites and results in a large increase in effective
mass.

Owing to the mass of our interstitial Mu atom (much heavier than electrons) the
characteristic tunnelling bandwidth Ag is small compared to energies of typical lattice
excitations wp (we set i = kg = | thoughout this chapter) and, for the experiments de-
scribed here. also small compared to the temperature of the lattice. At low temperatures
where the number of lattice excitations is sufficiently small, the interstitial atom can prop-
agate almost freely in a band-like (Bloch) state. At higher temperatures scattering with
lattice excitations (phonons) occurs. more so as the number of excitations increases. and
in this regime the diffusion rate decreases with increasing temperature. This results from
the “dynamical destruction of the band” when there are sufficient numbers of phonons
that there is a significant probability of scattering during the time the interstitial spends
at a given site. Under these conditions diffusion of the interstitial can still proceed via
quantum tunnelling though the barrier, though the scattering results in the loss of phase
coherence of the particle wavefunction. Therefore, in this regime the particle diffusion is
said to be incoherent.

One can imagine that if the interstitial atom diffused to a site where the surrounding
atoms were intitially unadjusted to its presence, the lattice would eventually respond, on
a time scale set by the lattice vibrational modes, by re-establishing the polaron at the
new site. It is much easier for the intersitial to diffuse by tunnelling from one site to

another if the lattice fluctuates into a configuration so that, effectively, the entire polaron
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tunnels to the new site. When a particular fluctuation of the lattice brings the potential
at an adjacent site into resonance with the interstitial’s present potential, the interstitial
can tunnel to the new site through the barrier. Transient configurations may also lead to
an increase of the tunnelling rate by shifting the atoms that define the potential barrier to
positions where the height and width of the barrier are reduced. In this model thermally
excited fluctuations of lattice atoms’ positions in these ways will play an important role
in determining the tunnelling rate. In both the low- and high-temperature regimes it is
through the temperature dependence of the phonon population that one can indirectly
vary the particle’s diffusion rate. This provides us with the principal experimental handle
on the problem.

Generally the spectrum of lattice excitations can be divided into two parts: those that
follow the interstitial particle adiabatically and those that are too slow to respond before
the particle has moved. In the case of a light interstitial such as muonium in a lattice of
much heavier atoms, the entire phonon spectrum must be considered non-adiabatic. The
interstitial can easily follow the motion of the atoms. but the lattice can only respond
slowly to the motion of the muonium atom, and therefore sees the muonium at its average
position at the centres of the (slightly modified) potential wells. We can therefore treat
the problem by writing the wave function of the system as a product of fast intra-well
states and slow environmental states in the adiabatic approximation.

We shall assume that the diffusing particle occupies the lowest energy state of the
intrawell part of the wave function, so that the overall temperature dependence of the
hop rate is due to the overlap of states of the lattice. Intrawell degrees of freedom will
play essentially no role since they are associated with relatively high energy excitations.
We are therefore interested in calculating the transition rate Wy, from state ¥,(R,), the
wave function of the lattice when the particle is at R, to ¥,,(R;), where m,n label the

configuration of the lattice.
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5.2 Renormalization of the One-Phonon Interaction

We would like to be able to write the wave functions of the lattice with the particle
present. ¥ (R;). in terms of the normal modes of the lattice without an interstitial.
However., ¥, (R,) is an eigenfunction of the Hamiltonian which includes the lattice-

interstitial interaction.

H = HO + Hint

= Y wps(bhbs +1/2) + Hin, (5.1)
3

while the wave functions of the lattice without the interaction ¥(®) is an eigenfunction of
‘Ho - the Hamiltonian of the bare lattice.
By performing a transformation of the one-phonon interaction we can write these

wave functions in the same basis, allowing us to evaluate the overlap.

We define the polaron operator A, a unitary operator. relating these two complete sets of

wave functions by the sum

Um(Ri) = D Anm (R UL (5.

n

Ot
[§V]
~—

The operator A(R;) here describes, in terms of the normal modes of the lattice, how the
lattice wave functions change when the lattice responds to the presence of the interstitial
at site R,;.

Overall, the method of calculating the interstitial diffusion rate will be to describe the
shifted atomic positions in both the initial and final states in terms of linear combinations
of non-interacting environmental states, which include temperature-dependent numbers

of phonons. The overlap between initial and final states is then given by the coefficients
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in these sums. Most of the following derivation will be the evaluation of the temperature
dependence of these coefficients.
Fermi's Golden Rule then gives the transition rate

§(E, — En) (5.3)

Wip = 2722 37 [(E Q1A (R) AR W) [
mn

We will consider two cases of coupling to lattice excitations - corresponding to the
linear and quadratic terms of a Taylor expansion of the Hamiltonian - which govern
the behavior at high and low temperatures respectively. In this theory, displacements
of atoms from their equilibrium positions in a harmonic potential are being written in
terms of the normal modes of the lattice.

Let us first consider a very simple example to introduce the idea of writing oscillator
displacement in terms of operators. In general. the Hamiltonian of a harmonic oscillator

is the sum of kinetic and potential energies

2 2.2
_ P muwiq -
o= ot (5-4)
= w(a'a +1/2) (5.3)

where p and ¢ are the momentum and oscillator displacement and the raising and lowering

t mw . 1
S R el
mw . 1 -
@ = T g (5.6)

It follows that we can write the displacement of the harmonic oscillator from equilibrium.

[ 1
q= 2mw(a + af). ( .

operators are defined as

in terms of these operators,

O
-~1
~—
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Analogously, the displacement of atoms in a lattice can be written. in terms of a sum

over the phonons present,

l .
— bT xkg-R. 5.
oR) = 5 [z bo + bla)e (

in which &% (bs) is the operator that creates (annihilates) a phonon of frequency w;.

ot
oo

where £3 = (+k. A), the wavevector and branch index respectively.

5.3 Linear Coupling; One-Phonon Diffusion

In the case of a particle-phonon coupling linear in (b5 + btg) we write the Hamiltonian
of the excitations of the lattice plus the interaction between the lattice atoms and the
interstitial muonium (which, in the adiabatic approximation is at the centre of the well.

so this Hamiltonian depends on displacements of the lattice atoms only)
H = Ho+ Hine = Y wyl(bhbs +1/2) + 3 Cs(bs + b 5). (5.9)
3 3

where the sum is over all phonons present. The coupling constant Cs x /&3 governs
the strength of the interaction with the interstitial. [54, 53]
The effect of the polaron deformation and the origin of the associated trapping po-

tential become apparent in calculating A,,. We start by using a normal oscillator shift

e” in which
. Cs C
— ZBpt _ 28 5.10
S ; (wa 3 e bg) ('J )
to define new operators 55, EL,
- - - C;
by = eSbge ™S = by — <2 (3.11)
wg
Cs

Bt — oSpoo-$
bl = eSbge™® = b}, —
wg
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Substituting these operators into the Hamiltonian, Eq. (5.9) becomes (noting that

C3=C-3)
” St |Cs)? - .
= ng(bgbg +1/2) — — (5.13)

“g
which simply corresponds to a new set of harmonic oscillators with a shift in energy. but
the one-phonon interaction has now been eliminated.

The wave functions we need to construct are then

U, (R,) = e Sul (5.14)
C3(Ri) +  Cs(Ry) o
= — b, — b gl 5.1
eXp{ ;( wg ° wg  ° " 5-15)
We are now able to write the matrix elements of A
C.
Aim = (\D$,°’|exp{—§:—‘ib},— @b[,} | W)y, (5.16)
8 «/3 wa

The polaron effect corresponds to the diagonal elements A,

| |C
A =exp {—-— Z
2
¢

2
w‘;' (2N + 1)} (5.17)
which, with the number of phonons of frequency ws now a function of temperature

3

l

1 =
{bgbg) = Ng(T) ~ gy

reduces to (suppressing an overall constant)

_ ICy|? wg -
Ann =exp {— XB: 27 coth (ﬁ) . (5.19)

[t is usual in the literature to define the “polaron exponent™ as the sum

2
oT) =Y 'f"i coth(wg/2T), (5.20)
8 -wa

so that the polaron effect manifests itself as a renormalization (reduction) of the raw
tunnelling bandwidth A,
A(T) = Age™®D, (5.

Ot
N
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5.4 Barrier Fluctuations

A second effect, called by Kagan and Klinger fluctuational preparation of the barrier
(FPB). will always tend to increase the tunnelling rate. Thermal motion of the atoms
that define the potential barrier between two sites will sometimes raise and other times
lower the height of the barrier. The total tunnelling rate will be determined largely
by the rate during the time when the atoms take on configurations most conducive to
the transition: the path of least resistance contributes the most. Both of these effects
depend on the thermal fluctuations of atomic positions. and so are expected to have a
larger influence as temperature rises. Barrier fluctuations will have their greatest effect
at high temperatures since long-wavelength phonons simply shift whole regions of the
lattice without changing the relative positions of atoms close to the interstitial. Short
wavelength phonons will produce shifts in the separation of adjacent atoms. the ones that
define the shape of the barrier, and are excited at temperatures approaching the Debye
temperature. The transition rate including the effects of both polaron deformation and

barrier fluctuations is

Wia = 2088 3 [(Un(Ra) A (R)PARI G R S(E + Ea = Bn) (5

(w1}
| S
o
—

where £ is any small energy shift that may exist between initial and final sites, which must
be taken up by differences in phonon energies, and the coupling to barrier fluctuations is

characterized by the operator

. Bgbl + Bj3bs §
B = ;#—, ({).23)

where &y is the frequency of the interstitial in its harmonic potential well, included as a
normalization factor to make B dimensionless.

Expanding the square of the matrix element in Eq. (5.22) and writing the §-function
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in terms of its Fourier transform, we can write the hop rate as an integral over time
o .
W = AS/ (ATY(R1)eB A(R)AN(Ra, £)ePOA(R,, 1)) e dt (5.24)
—oo

= [ Ry (5.25)

(S]]
(8]
Ot

The rest of the problem is in the calculation of Fi(t), which contains all the physics.
Expanding each part in terms of the creation and annihilation operators 5. 3. (for

which we have the commutator [bg, bs] = | since phonons are bosons)

(A(R2)ePA(RL)) = (exp{(Ca(R2)b] — C5(R2)bs)/ws}x (5.26)
exp{(Bs(R1, R2)bl; + B3(R1, R2)bs)/w} x

exp{(C3(R1)bs — Cs(RL)b})/ws})

= eB°H exp Ca Bﬁ blr &—& .bg (5.27)
38 wﬁ wo Wg wo

where the factor €2 is a scalar resulting from the commutators which arise in the product

of these operators. in which

Bo=Y - B_5[Cs(R1) + Ca(Rz)]

3 wgwo

(5.28)

Doing the same calculation with the second set of time-dependent operators. [with
bg(t) — bge™*“s'] and then calculating the expectation value of the product of all six

operators gives the result

e F1) = exp {230 -y [(@ + &) (@ Bﬂ) (2Ng + 1)

3 wg wo wg wo
2

B .
G Bl v, 4 L)e~wat

wp LUO

_ G _Bs

N@e"“ﬂ‘] } (5.29)

wg3 wo
which now becomes a function of temperature through the temperature dependence of

the phonon population.

e~F) = exp{230+4G Zl:—

' ] {coth(wg/2T)[1 — cos(wgt)] + isin(wst)}
B
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- IB
-y CoB; +,Cﬁ g [cos(wgt) — isin(wgt) coth(wg/'ZT)]}
3 wawo
with
1 2 _
G(T) = 5 ; | GI coth(w;/2T). (2.31)

Introducing two more sums over the phonon spectrum
2, W8, p 02 .
Qph(w) = 7T Z Cal” + —21Bo|"| 6(ws —w) (5.32)
0

CQBB + CEB@

Wg

(wg — w) (5.33)

h(w) =3

I
results, with more algebra, in the general expression

Fi(t) = =2By, —4G(T) +/i(j7rTs(12:;1h((w/9T [cosh(w/2T) — cosh(iwt — w/2T)]
+ %Wh((w/)—ﬁ [sinh (iwt — w/2T)] (3.34)

By shifting the contour on the complex plane, this is

leh(w)

27T) — ,
w 7T sinh(w/2T) [cosh(w/2T) — cos(wt)]

Fi(t) = —2Bo —4G(T) +/

Ot
[FV]
Ot
~—

sin(wt) (5.3

dw  t1h(w)
+/Usinh(w/2T)

Due to the presence of the oscillating terms, ¢~Fi(Y) is peaked about ¢t = 0. and so
makes the largest contribution to the integral in Eq. (5.25) near ¢, = 0. For small
wt and w/2T several approximations can be made to further simplify these expressions.
leading to an expression that yields its (approximate) temperature dependence in a more

intuitive way.

(5.36)

cosh(w/2T) — cos(wt) == w? [ L t] sin(wt) _ wt

877 T 2 sinh(w/2T) © w/2T



ot
N

Chapter 5. Quantum Diffusion I: Theory

and

2T 2
coth(w/2T) = [1+ nd }

Using these approximations and defining the following functions enables us to write
an expression for the hop rate in which all the sums over the phonon population have

been integrated out.

|Bs|? |Cs|? .
= E E=1/4 E 3
1/Ey =4 A s / i (5.37)
IBG|2 CJBB
~=1/4 — =4 E -
/ “;wﬁ Wg ¢ 3 wWows
In terms of these functions we obtain
Wi = (AgeB0)2e E/THT/Ee /Oo dt exp{4(E + v)Tt* — i(Tt} (5.38)

This integral can be solved exactly, giving a simple expression for the hop rate

Bo\2 2
o= VT (o) exp{ Ly _CT } (5.39)
2 (E+7)T T E, 16(E+~)

If the coupling to barrier fluctuations turns out to be negligible (that is. letting all

the Bs’s go to zero) then we recover the familiar expression

VAL _ET <
Wiy, = Y—= 3.0
2= JETe (540)

giving the hop rate of the particle and associated polaron in the absence of any effect of
barrier height fluctuations, which was originally obtained by Flynn and Stoneham. Here.
E is just the barrier height which would exist between two adjacent polaron-deformed
sites.

The motivation for making all of these approximations was to allow one to write a

simple expression for the hop rate. It turns out that the existence of an upper cut-off
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frequency (essentially the Debye frequency wp) in the sums over the phonon modes makes
it possible to calculate the integrals in the general form. Eq. (5.35), by numerical methods
without making any further approximations. This approach is taken in the analysis of

Mu diffusion in solid Xe.

5.5 Quadratic Coupling: Two-Phonon Limited Diffusion

The second case we consider has the coupling to lattice excitations taking a form
quadratic in atomic displacements so we now write the Hamiltonian. in terms of the

same shifted-mode phonon operators as before, as

H o= wp(bhbs +1/2) + Y Cap(bs + bL5)(bar + b7 5.). (5.41)
3 ag"

We continue in the same framework we used in solving the one-phonon problem.
Again, we are interested in finding out how much the initial and final states overlap. so
we want to construct these states in terms of unitary tranformations of the environmental
states. Now the full polaron operator in Eq. (5.24) becomes, with an additional unitary
operator for the two-phonon interaction, A = \;A,. Again, we write the transition rate.

making use of the Fourier transform of the é-function.
Wi = A /x dt (e=BU A(£)T A(0)eB)S(€ + E, — E)). (5.42)

Here A; is composed of two parts that arise from the cross terms in the product (bz +

bt 5) (b + b7 ).

Cagibhby  Coabsbl,
Ay = exp{—Zl: AE'TR7H 288 BEJ}

88’ Wwg — Wgr wg — Wwg!

Corblbly C[,B,bgbg,] }

(5.43)
wg + war wg + wgr

X exp {— Y
Jelen

There are two kinds (not counting complex conjugates) of two-phonon terms in this:

those of the form bgbg that create (or annihilate) two separate phonons, and those of the
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form bgbg: that annihilate one phonon and create another, therefore allowing scattering
of one phonon from one state to another. The largest contribution to the transition rate
comes from those terms where the shift of the phonon frequency due to scattering is
small: wg = wy . For this reason the scattering part of the two-phonon interaction is said
to preserve the phonon population, but strictly speaking it is not precisely unchanged.
We are in a regime where coherent (band) diffusion is partially ruined by the scattering
of phonons. Further, in the limit of a small shift in phonon frequencies so that w3 = wy.

we have approximately
e.ug/T

ZV@(lV_@I + l) =~ m
and we shall see the usual phonon density of states enters as g(w). not as a density of

two-phonon states. Keeping only the scattering terms from Eq. (5.43)

Cugibhby — C2abgbh, .
z\gzexp{z e he 867670 } (5.44)

34 Wwg — Wy
We write out the matrix element by the same method as we used for the one-phonon

interaction and consider now each mode as separable,

(e7PUA(E) AT(0) 7B = (e7BM A (£) Ay(t) AL(0) AT(0) e~BO))

= (e7BUWAL(t) AT(0) e BOV (A, (1) AL(0)). (5.45)

We see that renormalization of the tunnelling bandwidth Aq by the I-phonon interaction
still holds, but now we are also including what will turn out to be a reduction of the
effective bandwidth due to the contribution of the two-phonon interaction, corresponding
to the terms of the form b};bg: in (Al AS).

By the same method as we used earlier, we write out the expectation value in terms

of the boson operators

(A2(R2,t)'A2(R1,0)) =

2 (wg — wpr)? (wg ~ wgr)?

< IZ[|035'(32)|2bLba'babfr |Ca( Ry ) [2b5b5:b5b%
8e’
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_ cgaI(Rz)cz,g,(Rl)+cag.(R»caa,(Rl)bgbalbgbgt]> 5.46)

(wp — wg)?
2
= -y 'Cf’ﬁ’(g;:i‘f‘;;(&)l Na(Ng + 1) (5.47)

ag’

For small frequency shifts wg — wy this is, to very good approximation.

wmax dy Qo (T, w .
(A} Az) = exp {— /0 ii——z(?r—T—l coth (w/QT)} (5.43)

with

Qg(T,w) = TI—TZ ICSB’(RQ) - Caﬁ'(R[)P

30 Wwg — wpgr

(1V5 - ./\/'31)6(0)3 — wgr — w’) (549)

We have put Q,(T) in this form so we can write

/Wmu dw Q3(T) cosh(w/2T') — 1 /Wmu dw Q(T) | — cos(wt)
0 w wT sinh(w/2T) 0 w w7 sinh(w/2T)
= —O,(T)|¢| (5.30)

in which we have dropped the time-independent term, since it is small for temperatures
low compared to typical w, and the frequency dependence of 2, since we are in the limit
of small differences between phonon frequencies.

The hop rate is then
Wi = Agef/”/ eit=altl gy (5.51)

-
What is the function Q,(T)? Here it is clear that Q, (which is always a positive. real
quantity) takes on the role of an exponential relaxation (or damping) rate of the transition
amplitude. The initial and final states during the tunnelling transition have almost
exactly the same energy, but phase coherence is lost in the process of scattering phonons.
Coherence is suppressed when the transition time 7 is relatively long so that Q,7 > 1.

4

The integral in Eq. (5.51) converges to

2A830(T)

W= mi Ty
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The temperature dependence of the hop rate is then determined by the de-coherence
rate Q,(T') and the interplay with the typical site-to-site energy shift £. In the following
section we will show that Q,(T') is a strongly increasing function of temperature and also

explore the influence of the phonon density of states on the diffusion rate.



Chapter 6

Quantum Diffusion II: Experimental Results

6.1 Two-Phonon Quantum Diffusion

At temperatures well below the Debye temperature of the host solid. the tunnelling
diffusion rate will be determined by the full coherent transition amplitude as long as the
rate of loss of phase coherence, Q,(T), is small compared to the inverse of the under-
barrier transition time. Without scattering, the mean free path can exceed the lattice
constant so the particle propagates in a band-like state. As the temperature is increased.
two things happen: the enhanced phonon population causes a very rapid increase in
Q,(T'), suppressing the coherent channel; meanwhile the hop rate due to the one-phonon.
thermally-activated tunnelling mechanism increases exponentially. The contribution of
one-phonon hopping becomes dominant when 2, exceeds Ag. providing a natural divi-
sion of the temperature scale. For the purpose of discussing quantum diffusion. “low™
temperature means temperatures where the 2-phonon incoherent channel. though partly
diminished by phonon scattering, still exceeds the contribution of thermally-activated
hopping mediated by the one-phonon interaction. In this section we will consider in
more detail the predictions of theory in the incoherent regime and compare these with
experimental results.

Previously we showed that the incoherent diffusion rate in the presence of an interstitial-

lattice coupling quadratic in lattice displacements (i.e. two-phonon coupling) is
Azq,

I/TC=2m (61)

60
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where the tunnelling bandwidth renormalized by the one-phonon interaction is
Ao = Agexp[By — o(T) + G(T)] (6.2)

with Ag the bandwidth in a perfect lattice and £ the typical site-to-site static level shift.
The temperature dependent parameters in the exponent characterize the polaron effect
and barrier fluctuations and are respectively

Z Icﬁ

- Cs(Ry)|?

coth(wg/2T) (6.3)
‘)wa

and

G(T) =1/2>_|Bs|* coth(ws/2T). (6.-4)
3

The de-coherence rate ,(T") was defined in terms of the two-phonon coupling parameters

Css:(Ry, Ry) = C3(Ry) — Csp(R2) and phonon numbers Vg by

2
(e, T) = 77 3 122 Bl

38 wg — Wy

(Vg — Ng)b(wg — wygr — w). (6.3)

Recalling that the largest contribution from phonon scattering comes from those terms

where (wg —wg) — 0, we can write the difference V3 — V3 in this limit as

. . dN
Ng — Ng = d—(wgr — wg)
dd/T

=~ Tl — ) (6:6)

In this limit Qy(w,T') becomes frequency-independent and is given by
hm Q(T) =7 _ |Cppr(Ri, Ra)|*Na(Ngr + 1)8(ws — wpr). (6.7)
fefed
Frequency independence of the damping rate Q,(T) implies that two-phonon scattering
is an example of an Ohmic coupling to the medium in the Caldeira-Leggett theory of

dissipation. [38, 39] In order to obtain the hop rate as an explicit function of temperature
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we approximate the summation over phonons by an integral over the phonon density of

states g(w)
w/T
e

0(T) = [ doMe)g @) oy (6.3)
where A(w) = |C33|? is the matrix element in Eq. (6.5) averaged over the branches of the
phonon modes.

At this stage it is possible to determine the temperature dependence of the hop rate
at least qualitatively for temperatures T < Op. Solids generally have phonon spectra
that at long wavelengths - the only modes excited at low T - closely follow the Debye
model with g(w) o w? and the coupling constant |Cg[*> x w3. In the low temperature
limit Eq. (6.8) then gives us Qo(7T) o T".

We are now in a position to consider the qualitative temperature dependence of the

interstitial diffusion rate. In the case that Q; > €, Eq. (6.1) reduces approximately to

2A2
/7. = ) (6.9)
and where Q,(T) < £ to
IA2
Lt = “AO?_,Z(T) (6.10)

Since Q,(T') always increases monotonically with temperature we have two possible situ-
ations. We expect that at sufficiently low temperatures (but still large compared to the
bandwidth) there is the possibility that Eq. (6.10) applies and in the low temperature
limit T <« ©p we have 1/7. o< T7. In this case the scattering of phonons actually helps
the diffusing particle to overcome the static level shifts £&. The other possibility (generally
at some higher temperature) is that the static shifts are comparatively small in which
case Eq. (6.9) applies and 1/7. o« T~7; phonon scattering then hinders the band-like

diffusion in the periodic potential of the lattice.
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6.2 Muonium Diffusion in KCIl

Although nominally outside the terms of reference of this thesis. the following example
serves to illustrate the application of the preceding theory. to clear up an historical
misunderstanding and to provide continuity with recent studies of muonium diffusion.

Experiments performed by Kiefl et.al. [66] and MacFarlane et.al. [67] measured the
muonium hop rate in KCl over a wide temperature range, clearly showing the position of
the minimum hop rate. characteristic of the crossover from two-phonon limited diffusion
to one-phonon activated diffusion, at Ty, = 70 K. The measured hop rate below T ;,
was fitted to a power law relation D(T') o< T, yielding a value @ = 3.3(1). It was noted
at the time that the low temperature limiting value of a predicted by theory was 7 (or 9
in a perfect fcc lattice if the sites are symmetric with respect to the phonon modes): the
discrepancy with the measured result remained unexplained.

To answer the question of why the hop rate in KCl did not follow a -7 dependence.
Kagan and Prokof’ev argued in their 1990 paper [34] that if one used the real phonon
spectrum in Eq. (6.8) one could obtain agreement with the measured T-dependence.
They wrote also in their review article [533] that the “experimentally found temperature
dependence in this region is considerably weaker than that predicted by the limiting law
[T~7]. That is, however, associated not with the loss of the dominant role by two-phonon
processes but with the real structure of the phonon spectrum of these crystals.” Their
calculation of a with the real phonon spectrum in Eq. (6.8) obtained the result a = 3.5.
We will show here that their interpretation of the role of structure in the phonon spectrum
1s not correct. The relative weakness of the temperature dependence (i.e. reduction of
a from 7) is a result predicted by this theory, which would be present even if the actual

phonon spectrum were entirely Debye-like. The structure present in the phonon density
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of states of KCl is not responsible for this. Here we will repeat the calculation performed
by Kagan and Prokof’ev, and also the case where the phonon spectrum is a featureless.
smooth Debye-like function.

The total phonon density of states of KCI, measured by inelastic neutron scattering
[53]. is shown in Fig. 6.15. The damping rate £,(7T") can then be calculated using this
spectrum for g(w) in a numerical integration over phonon frequency w. (The Debye
temperature of KCl is about 230 K. but the real phonon density of states has its upper
cut-off at Awpyay/ks = 305 K.) In this calculation, g(w) is normalized so that its integral
is unity. which does not affect its T-dependence, only an overall factor. The correct
normalization of the phonon density of states can be obtained by calculating the lattice

specific heat

L d [ wglw) ;. (6.11)

N=var ) =r_1

Figure 6.16 shows the temperature dependence of Q,(T), along with the result ob-

tained if it is assumed that g(w) « w?. Figure 6.17 shows the temperature dependence

of the power law exponent
T dQy(T)

oT) =0, —ar

for the same cases.

The principal cause of the weak temperature dependence of the muonium hop rate in
KCl is that the temperature where the hop rate minimum occurs is already a sufficiently
large fraction of @p that the entire phonon spectrum contributes to ;. The population of
low frequency phonons for which w/T <« 1 increases only linearly with T'; the temperature
dependence of €, drops off. Since the temperature at which the minimum hop rate
occurs is 70 K, a substantial fraction of the Debye temperature, we are far from the low
temperature limit where one obtains a = 7. [t can be seen from the graph that this is the

case whether the real spectrum or a Debye-like g{w) is used. It is an intrinsic property
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of two-phonon diffusion, not the structure in the spectrum. that causes €1;(T) to be
characterized by a lower a at temperatures greater than about Op/10 or so. The structure
in the real g(w) has a small effect on Q,(T'), as can be seen, but the overall shape of the
function is hardly affected. A weak temperature dependence of the 2-phonon diffusion
rate will occur in any crystal for which T, (the temperature where the crossover between
two-phonon and one-phonon regimes occurs) happens to be more than about ©p/10. so
that two-phonon diffusion is important at relatively high temperatures. Related to this.
it must be stressed that the T*" dependence is expected only in the low temperature
limit T « Op. It is a simple exercise to show that in the high temperature limit (several
times Op), Q(T) x T?. At all intermediate temperatures. the characteristic exponent
a is a function of temperature, and it is not very meaningful to apply a single value to
a over a range of temperatures. [t is also possible that the coupling to high-frequency
modes doesn’t follow the simple low frequency limiting behavior. If this is the case. the

model will fail completely at higher temperatures.

6.3 Experimental Results in Solid Nitrogen

In solid nitrogen muonium diffusion was studied using both longitudinal and trans-
verse field muon spin rotation/relaxation techniques. From the relaxation rates of the
muon polarization one can extract the muonium hop rate as a function of temperature.
This is compared to the behavior predicted by theory, finding agreement at low temper-
atures only.

With a weak longitudinal magnetic field of a few Gauss applied to the sample, the
muon and electron spins in muonium are strongly coupled by the hyperfine interaction.
As the muonium atom diffuses among atoms of the host lattice, the nuclear hyperfine

(nhf) interaction between the spins of the muonium electron and the randomly-oriented
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Figure 6.15: Phonon density of states g(w) of KCl, from MacPherson and Timusk.
Can. J. Phys. 48, 2917 (1970)

lattice nuclear moments undergoes fluctuations. The resulting time-dependent effective
magnetic field felt by the muonium atom excites transitions among states of the muonium
atom. and the original polarization of the muon spin is lost. Figure 6.18 shows the
temperature and magnetic field dependence of the muon asymmetry measured in s-N,
in longitudinal field. To a good approximation, in weak magnetic fields the muon spin

polarization relaxes with an exponential time dependence
P,(t) = P,(0)e~t/T (6.12)
where the relaxation rate 1/7| depends on the hop rate 1/7. according to

(6.13)



Chapter 6. Quantum Diffusion II: Experimental Results 67

0, Arb.Units
B
n

102 i { , 2 lz
10° 10 10 10
Temperature, [K]

Figure 6.16: Dashed line: Q,(T) calculated in the case where g(w) is the real phonon
density of states of KCl. Solid line: the same calculation performed assuming a Debye
model.

Equation (6.13) also predicts the presence of a 1/T; maximum where 7. = 1/w;;. Such
maxima are evident in the relaxation rates, which peak at different temperatures depend-
ing on the field, allowing one to make an unambiguous determination of the diffusion rate
independent of the absolute scale of the relaxation rate.

Figure 6.19 shows examples of muonium spin precession signals measured in a weak
transverse field (WTF) of 5 G. In weak magnetic fields the two observable muonium
frequencies w;, and wy3 are very nearly equal (see Appendix A for definitions of these

and the other muonium frequencies wy and wy) the splitting between these two lines is

Woa — Wy = \/wg + 4(.4)3_ — Wy, (614)

and in fields B <« By this is approximately 2w? /wp. In a transverse magnetic field of
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Figure 6.17: Temperature dependence of the exponent o = %‘3—‘? calculated for KCl
with the real phonon spectrum (dashed line) and Debye-like phonon density of states
(solid line).

8 G or less, and when the muonium relaxation rate is greater than about 0.25 us~!.

“beating” of the two triplet muonium frequencies is not apparent within the 10 us time
range of the histogram; the muonium spin precesses with one signal at the mean frequency
WMy = (wi2 +we3)/2 = 1.3961 MHz/Gx B. (However, in slightly larger magnetic fields.
or if the spin relaxation rate is extremely low, the beat envelope will masquerade as
a Gaussian relaxation function which, if one mistakenly fitted the asymmetry with a
single signal, would result in a misleading contribution to the real relaxation rate.) The
asymmetry measured in s-N, was fitted to a sum of signals for fast and slowly relaxing

diamagnetic fractions and the muonium fraction:

Ty

A(t) = et/ [AfD cos(wut + ¢p)e™"!
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+AS cos(w,t + op)e /T2

+ Antu cOS(wmat + <D'.\Au)"-’—t/Ti“u] +b (6.15)

In transverse field the polarization relaxation function depends on the particle hop
rate due to the motional narrowing of the precession frequency linewidth. Assuming that

the local (effective nhf) field correlation function is described by
(B(t)B(0)) = &%~/ (6.16)

(where 7. is the correlation time and ¢4 is the width of the field distribution) the relaxation
function is [56]

G.o(t) = exp{=6°T2(t/1. — | + e7/)}. (6.17)

In the case of sufficiently slow hopping when t/7. « 1. the TF relaxation function

approaches the Gaussian form of the static limit

Goalt) = 7072

~ e W/ (6.18)

independent of r., with relaxation rate 1/7T, = §. In the case of fast hopping the effective
nhf field is averaged over many sites resulting in the motional narrowing of the linewidth:

the relaxation function tends to an exponential form:

Goo(t) m e %7

~ e YT (6.19)

with the smaller relaxation rate 1/T; = §°r.. In the limit of fast hopping the TF and LF
experiments should give the same relaxation rates. Figure 6.20 shows examples of the
relaxation function for several correlation times corresponding to mean hop rates from 0

to 50 ps~t.
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Figure 6.21 shows the muonium spin relaxation rates measured in s-N, by TF and LF
pSR experiments. The qualitative temperature dependence of the relaxation rates and
the hop rate is entirely consistent with the following interpretation. At low temperatures
(T < 3K) muonium is nearly static; the TF experiment measured a T-independent relax-
ation rate as expected in the slow-hopping limit. Between about 9 K and 20 K the TF
relaxation rate drops. as expected if the muonium diffuses faster as temperature rises.

The LF relaxation rates in 4, 8 and 12 G reach their maxima. where
wi(B)1(T) = 1

is satisfied, at progressively higher temperatures. Between about 11 K and 15 K the
relaxation rate in LF becomes field-independent and approaches the TF relaxation rate.
also indicating that the hop rate increases with temperature in this part of the data.
Making use of Egs. (6.13),(6.18) and (6.19) we can extract the muonium hop rate
1/ as a function of temperature, as shown in Fig. 6.22. The LF experiments measured
a diffusion rate increasing as 7% up to 15 K. The TF data extend this to higher
temperatures where the correlation time 7. is so short that the LF relaxation rate becomes
nearly independent of magnetic field and approaches the TF relaxation rate. Between
about 20 and 30 K the hop rate reaches its maximum; the TF relaxation rate become

1

T-independent at about 0.4 us™'. If the hop rate here is limited only by the coherent

tunnelling bandwidth, we can estimate

% h

Ag =
0 2\/§Tc

[t is also possible that the relaxation rate due to the motionally averaged nuclear hyperfine

= 0.003 K kg.

interaction with N; moments is even smaller, but is overwhelmed by spin relaxation due
to other causes, such as the muonium atoms diffusing to chemically active impurities or

impurites with electronic moments such as O, that immediately depolarize any muonium
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atom that strays near. Above about 50 K the TF relaxation rate increases as the hop
rate drops with increasing temperature, a key characteristic of incoherent (2-phonon)
quantum diffusion. although theory predicts a much weaker temperature dependence at

such a large fraction of the Debye temperature.

6.4 Numerical Calculations: Solid Nitrogen

Figure 6.23 shows the phonon density of states g(w} of solid nitrogen at 22 K. mea-
sured by Cardini et al.[57]. With this spectrum Eq. (6.8) may be evaluated by numerical
methods. assuming a particle-phonon coupling AMw) o w?, giving Q,(T) as shown in
Fig. 6.24. Since we do not know the coupling constant we cannot attach an absolute
scale to ;; only the temperature dependence is obtained. Also shown is the case where
the phonon spectrum is taken to be due to a Debye-like density of states g(w) x w? over
the entire phonon spectrum; the two outcomes are not very different.

At low temperatures (T « Op = 83.5 K), theory predicts that Q5(T) should be
proportional to T7. This should hold up to temperatures of about 10 K. where the
temperature dependence should drop off gradually to a T? dependence for T ~ @p
and greater. (The high temperature regime is mentioned here only to exemplify the 73
behavior; s-N, melts at 63 K).

[t is not necessary that £ itself be temperature-dependent for there to be a cross-
over from the low-temperature, defect-dominated behavior to the higher temperature.
homogeneous regime. Since Q,(T') is always a monotonically increasing function of T.
it may be that £ simply becomes negligible and the hopping behavior changes from
Eq. (6.10) to Eq. (6.9) at a temperature near 20 K. At sufficiently low temperatures ),

will inevitably drop below £ and the behavior we expect in the limit of T — 0, as long

as the damping rate is sufficient that we still have incoherent tunnelling, will always be
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a hop rate 1/7. o« T7. However. there is reason to believe that £ may be temperature
dependent in s-N,. It is known that the a-N; lattice undergoes a transition at about
22 K, below which the molecules take on preferred orientations, rotating at a fixed angle
about the diagonals of the cubic unit cell. Above this temperature they are free rotators.
and the muonium atom should see the same averaged potential well at each site. The
orientational disorder introduced by this transition may be responsible for creating level
shifts that hinder tunnelling according to Eq. (6.10).

Impurities in the sample evidently do not affect the muonium diffusion rate at low
temperatures. Experiments were performed on samples of s-N; with CO concentrations
of 0.01% and 0.1%. Carbon monoxide has the same molecular mass as N, and freezes in
the lattice as a random substitutional impurity. The results are shown in Fig. 6.25 along
with the results from the most carefully annealed sample of solid ultra high purity N,. At
temperatures where muonium diffuses rapidly (between 20 and 30 K) the TF relaxation
rate 1/T; increases with CO concentration, up to 40 us~! with 0.1% CO. well above the
rate measured for nearly static muonium in pure N, at low temperatures. This is due
to muonium diffusing to the CO where it undergoes a fast chemical reaction to form a
diamagnetic species, so the relaxation rate measures the time-of-flight of the muonium
to the site of the CO molecule. However, at low temperatures the relaxation rates are
independent of impurity concentration. Thus the static shift £ that seems to become
important at low temperatures is not due to impurites, at least at this level: its origin
seems to be intrinsic to s-Nj.

The very strong temperature dependence predicted by the two-phonon model is con-
vincingly demonstrated in the case of muonium diffusion in solid a-N, below 15 K. At
higher temperatures, particularly 30-50 K, theory predicts a much weaker dependence
than was measured, as was the case for KCI, so we cannot claim to fully understand

muonium diffusion quantitatively in this temperature range. However, the rapid increase
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in hop rate as temperature decreases is still strong qualitative evidence that the muonium
is diffusing by incoherent quantum tunnelling mediated by phonon scattering. [t is pos-
sible that this quantitative failure of the model results from the breakdown of our (rather

simple) assumptions regarding the frequency dependence of the coupling constants.
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Figure 6.18: Asymmetries measured in solid N, at various temperatures in weak longi-
tudinal magnetic fields of (from bottom to top in each plot) 4, 8 and 12 G.
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Figure 6.23: Phonon density of states g(w) of solid nitrogen at 22 K, data from Ref.[57].
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6.5 One-Phonon Quantum Diffusion in Solid Xe

Understanding the most important ways phonons affect the tunnelling rate is the
key problem in quantum diffusion of neutral interstitials. Short-wavelength phonons
produce the greatest relative motion of adjacent atoms, so these should have the greatest
influence in re-shaping the potential barrier between sites. We can therefore expect that
the effect of barrier fluctuations on the tunnelling rate should be most apparent when
these phonons are excited - at temperatures comparable to the Debye temperature.

The influence of the thermal motion of lattice atoms on the diffusion rate via barrier
fluctuations is probably best detected by measuring the hop rate over as wide a range of
temperatures as possible, so that the onset of barrier fluctuations becomes apparent. while
tunnelling diffusion still dominates over classical over-barrier diffusion. A light interstitial
can follow the fluctuations of the lattice adiabatically, and also has a larger bandwidth
for tunnelling. It follows that the most favourable conditions for detecting the effect of
thermal fluctuations on the tunnelling rate would be with a light interstitial in a lattice
with a low Debye temperature. In such cases the lattice can be hot enough for the entire
phonon spectum to be appreciably excited, but still at temperatures where quantum
effects should dominate interstitial diffusion. Muonium diffusion in solid Xe is an extreme
example of a light particle in a heavy, weakly interacting lattice, (mxe/my. = 1158) and
as such offers the best possibility to date of detecting the effect of lattice dynamics on
light interstitial quantum diffusion.

Earlier we drived an expression, Eq. 5.35, for the hop rate at intermediate tempera-
tures where the interstitial diffuses by phonon-mediated activated hopping. This can be

rewritten in the form

/e = 4a3exO=9) [ i [P0 (6.20)
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in which
2(G—¢)=;{%2—%2}coth(;—;) (6.21)
and
B(t) = Xaj{ % " g—: 2} :i():h“’;; (6.22)
g(t) = 23 GoBa sinwal (6.23)

v T M W/,
s Wawo sinh 2

The couplings are assumed to follow the long wavelength asymptotic behavior. [53]

ICal? = Apwa®p (6.24)
B, |? Wer .
= = = \g—= o, (6.25)

Replacing the sums over phonons by integrals over the phonon density of states this

is approximately

w Op

—_ — 9
3G - ¢) /du,g coth(QT) [AB@D A d] (6.26)
/dwg(w cos wt [\B—+A@—D} (6.27)

@D w
1 sin wt

U(t) =2(A,Ap)? 2

(&) 5) /a’wg smhi'iT (6.28)

In the literature the high temperature behavior is obtained by expanding Eq. (6.20)
in a small region about ¢ = 0, which contains most of the contribution to the integral.

However, this leads to the approximate expression

Q(A e )2 1/2 [ E T Tflza (6.29)

1 ik S S = ___>B
[ = x| Tt By T 6B+ )

with six parameters, which we defined earlier in Eq. (5.38), that is unwieldy to use in

fitting the data since the parameters are not independent, but are related through various
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Figure 6.26: The phonon density of states of solid Xe used in the numerical evaluation
of integrals over the phonon spectrum.
functions of the phonon spectrum. A more satisfactory approach is to evaluate Eq. (6.20)
directly with only 3 parameters and without making the approximations in Eq. (5.36).
The integrals above are calculated here by numerical methods to yield hop rates as a
function of the dimensionless coupling constants A, p, temperature and an overall scale
factor due to the normalization of the phonon spectrum. Figure 6.26 shows the phonon
density of states g(w) of solid Xe used in the numerical evaluation of Egs. (6.26. 6.27.
6.28), adapted from data by Klein [59].
However, we shall need the measured hop rate before we can proceed with this calu-

lation, so first we digress to the experiment.
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6.6 Experimental Results in Solid Xe

Muonium spin polarization spectra were measured in solid Xe by both TF and LF
methods. The relaxation of the polarization in the LF case occurs as a result of the
motion of the Mu atom among atoms of the host lattice, some of which are isotopes with
nuclear moments. The nuclear hyperfine (nhf) interaction between the electron bound
in the Mu atom and surrounding nuclear moments leads to an additional term in the

Hamiltonian describing Mu spin dynamics:
Vaht = Y_ AnG5, - da(t). (6.30)

This problem is made tractable by approximating this interaction with an effective time-
dependent magnetic field B.g(t) which fluctuates both in direction and magnitude as a
result of the motion of the Mu atom. The Fourier transform of B.g(t) gives the spectral
function J(w) of the fluctuating effective field. Transitions among the states of the Mu
atom differing in energy by hwi; = h(w; — w;) are induced in proportion to J(w;;). hence
changing the muon spin state and irreversibly reducing the muon spin polarization. The
resulting muon spin polarization function was calculated by Celio and Meier [63] and
Celio and Yen [64, 65].

For slowly diffusing muonium where 1/7, is small compared to all transition frequen-
cies except the smallest - wy; - the relaxation function is well approximated by a simple
exponential with a relaxation rate

8°r,

2 2"
l + wi,7

/T, = (6.31)

The temperature dependence of this relaxation rate is shown in Fig. 6.27, demonstrating
that, at least for temperatures from 40 to 120 K, the muonium hop rate increases with

temperature.



Chapter 6. Quantum Diffusion II: Experimental Results 86

In general the time evolution of the muon polarization is a complicated function of
the inverse correlation time 1/7., the exchange coupling é and LF field B. which can
be calculated numerically by the algorithm due to Celio. The muonium diffusion hop
rate 1/7. at each temperature is extracted from the LF data by simultaneously fitting
the polarization functions measured in several different magnetic fields to the complete
theoretical polarization function. The resultant temperature dependence of the Mu hop
rate is shown in Fig. 6.28.

[n order to elucidate the nature of the peculiar change in relaxation rate at tempera-
tures above T = 130 K, a TF experiment on a sample of solid '*Xe was also performed.
The resulting relaxation rate 1/7; is also shown in Fig. 6.27. Since *¢Xe atoms do not
have nuclear moments there should not be any contribution to spin relaxation due to
dipolar broadening. Electric field u SR experiments were unable to cause any change
in the polarization function at any temperature, so we cannot be certain exactly what
caused the addition relaxation, however it is probably of a chemical nature. and comes
into effect at high temperatures where the muonium is most rapidly diffusing. We will
therefore restrict ourselves to temperatures below 120 K where this anomalous contribu-
tion to the relaxation rate in longitudinal field is negligible.

The same results are also presented in the form of an Arrhenius plot in Fig. 6.30.
The hop rate as a function of temperature can be fitted quite adequately to an Arrhenius

function,

/7, = voe~EslkeT (6.32)

representing a simple over-barrier classical hopping mechanism with hop attempt rate
vo and activation energy E,. Such a fit yields vy = 1.75(1) x 10'? s~!, about twice the
Debye frequency, and a barrier height F, = 0.0482(2) eV. It is difficult to immediately

rule out this mechanism on grounds of the barrier height, since it is not unreasonable.
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Figure 6.27: Muonium spin relaxation rates in solid Xe. Longitudinal relaxation rates
I/T, measured in natural solid Xe in various magnetic fields (triangles:1431 G. cir-
cles:725 G, squares:363 G, stars: 72 G and crosses:21 G). The other points (diamonds)
are 1/T, measured in solid **Xe.

(We shall, however, discuss a calculation of the shape of the potential well of Mu in Xe
in Section 6.8, which estimates the depth of the potential well to be about 1 eV.) On
the other hand, the indicated attempt frequency is more than a factor of 10 smaller than
what one expects. The attempt rate on the barrier in the case of over-barrier activation
would be the zero-point frequency &g of the particle in the well. Since the interaction
between atoms of a van der Waals solid has the same origin as the barrier to diffusion
of muonium atoms we can make a rough estimate of @y by assuming that the interstitial
occupies a site where it is subject to a potential similar to that which holds the lattice
atoms at their equilibrium positions. Assuming a harmonic potential, we may scale the

Debye frequency by the root of the ratio of the lattice atom’s mass to the interstitial’s
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mass:
@o 2 \/Mxe/MMu wp = 34wp. (6.33)

Measurements of the vibrational frequencies of hydrogen and deuterium embedded in
solid Xe agree quite well with this approximation. [58., 60] Consequently, this result
allows us to rule out classical over-barrier hopping being responsible for the observed
hop rate since the expected frequency is about 17 times larger than the Arrhenius plot

indicates.

6.7 Numerical Evaluation of 1-Phonon Diffusion Theory

The direct evaluation of Eq. (6.20) by numerical methods was performed to generate

the theoretical function used in fitting the temperature dependence of the Mu hop rate
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Figure 6.28: Muonium hop rate in solid Xe extracted from the LF data by simultaneous
fits to data in different magnetic fields at each temperature.
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in terms of three parameters; the tunnelling bandwidth Ay, and dimensionless coupling
parameters Ag and Ap. Since the phonon spectrum includes an arbitrary normalization
that is folded into the coupling parameters, the overall normalization is arbitrary. How-
ever. the ratio of the coupling parameters tells us their relative strength, and determines
the course of the temperature dependence.

Figure 6.29(a) shows an example of the integrand of Eq. (6.20), a function of time.
The point to be made here is that the high temperature expansion of the general theory
is clearly not appropriate for all values of the coupling constants. The structure in this
function away from ¢ = 0 is due to phonons in the middle of the phonon spectrum: the
highest frequencies contribute most to the region near ¢ = 0.

Numerical evaluation of the integrals is made difficult due to the oscillatorv nature of
the integrand, which contains terms in cos(wt) while wt ranges from zero to. in principle.
infinity. However, the existence of an upper cut-off in the phonon spectrum at the Debve
frequency allows one to carry out the integration to a time ¢ such that an accurate
estimate of the integral in the limit that ¢ — oo can be made. (The program that
performs this calculation is discussed in Apppendix B, complete with the code.) Fitting
the data with hop rates calculated in this model gives the parameter values A, = 1.19(1)
and A, = 38.8(1). The resulting curve is also shown by the solid line in figure Fig. 6.30.
The values of the parameters imply that the suppression of tunnelling due to the polaron
self-trapping is overwhelmingly large in comparison to the benefit gained from barrier
height fuctuations. A fit with the model of Flynn and Stoneham, with the hop rate
given by Eq. (5.40) in which the barrier fluctuations do not enter, gives a similar fit
with parameter values Ay = 2.50(5) ps~! and activation energy £ = 0.0508(2) eV, also

essentially indistinguishable from the full one-phonon theory.
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6.8 Activated Tunnelling From Excited States

There also remains the possibility that the Mu tunnels rapidly from excited states.
in which the barrier height and width would be reduced, so that the temperature de-
pendence in the hop rate we measure is merely due to the temperature dependence of
the probability of muonium occupying an excited state. We consider here a calculation
of the vibrational frequency and the energy level separation of the harmonic oscillator
modes of the muonium atom in the potential well defined by the xenon cage.

When several levels may be populated the total tunnelling rate from one potential
well to another is the sum, assuming the states are populated according to the Boltzman

distribution.

1
uT) = > vie E/kaT (6.34)

where E, is the energy of level 7, v; the tunnelling rate from that level and Z = 3, e~E:/*aT
is the partition function. In the FCC Xe lattice there are two sites, tetrahedral and
octahedral, where the muonium atom may find space between the Xe atoms. We can
calculate the shape of the potential well for these sites by summing the Xe-Mu pair
potentials over the nearest Xe atoms at these sites, and from this obtain estimates of the
energies of states in the harmonic well.

The Xe-H pair potential, at close distances r where the interaction is strongly repul-

sive, is approximated using the Born-Mayer potential
Vem(r) = Ae™™" (6.35)

with A=1023.3 eV and 8 = 3.068 A. [61]
The Lennard-Jones (6,12) potential for the Xe-H pair

Vi =1 [(7‘0/7‘)12 - 2(7”0/7')6] (6.36)
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with depth n=7.08 meV and equilibrium separation ro = 3.82 A [62] is probably less
accurate here since the equilibrium distance between each Xe atom and caged Mu atom
is much shorter than the isolated Xe-Mu pair equilibrium separation of the Lennard-jones
potential. (The lattice constant of solid Xe at 30 K is 6.197 A.) If the Xe cage around the
Mu atom does not relax, the Mu atom is 0.72 A into the repulsive term of the potential.
not near the minimum where the Lennard-Jones potential is more appropriate.

Within about 1A of the equilibrium position of the Mu atom in the Xe cage this

potential is very well approximated by a harmonic oscillator potential
VBM(") = l/QDBN[lT‘ — I‘QIZ + const. (637)

where [r — rg| is the displacement from the equilibrium position ro at the potential
minimum in the well, and Dgy is the restoring force constant. The energy levels of the

quantum harmonic oscillator are spaced by an amount

hwsho = hy\/ Dpm/m (6.33)

for a particle of mass m in the well. Along the (111) direction in solid Xe the resulting
constant is Dgy = 1.12 e\//A2 and this gives the Mu vibrational energy hwsp, = 0.202 eV,
compared to the activation energy obtained from the Arrhenius plot £, = 0.048 eV. A
similar calculation with the steeper Lennard-Jones potential and also with the Born-
Mayer potential at the tetrahedral site, which allows less volume for the Mu atom. gives
yet higher excitation energies.

If the Xe atoms are allowed to move away from the Mu atom, relaxing the strain
imposed by the short Xe-Mu distance, the larger space for the Mu atom lowers the energy
levels. The size of this shift can be estimated by iteratively minimizing the potential
energy of Xe atoms and the Mu atom in a finite cluster of atoms. This calculation was

done for 2 5 x 5 x 5 unit cell cluster, with the Xe atoms at the surfaces of the cluster
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held at fixed positions of the undisturbed Xe lattice, and a Mu atom at the octahedral
site of the central unit cell. After allowing all of the interior Xe atoms to find their new
local potential minima, the new sites of the 6 nearest-neighbour Xe atoms that define the
octahedral site are found to be displaced 0.20 A away from the Mu atom. The potential
of the Mu atom was then computed along the (111) direction through the octahedral
site, with the lattice atoms now fixed, as shown in Fig. 6.31. (The heavy Xe atoms will
not be able to follow the fast motion of the Mu atom.) Near the octahedral site the
Mu potential is characterised by a force constant d = 0.485 eV/A?2, and is indicated by
the dashed line. The first few energy levels of the resulting quantum harmonic oscillator
E, = hwgo(n + %) are also shown, in which hwg, = 0.131 eV, about 2.7 times larger
than the measured activation energy E,.

We should conclude from this that classical thermal activation to excited states cannot
be ruled out as being responsible for the temperature dependence of the Mu diffusion
rate; the similarity of the calculated energy to the measured activation energy is simply
too close for this question to be settled by this model. If muonium diffuses in solid Xe
by quantum tunnelling, there is no evidence that barrier fluctuations play a role at any
temperature, even under the most promising conditions for its detection.

At the temperatures being considered here there is a difficulty with any model in-
volving coupling to phonons: the lack of knowledge of the frequency-dependence of the
coupling parameters at frequencies that are no longer small compared to the Debve fre-
quency. Further progress in understanding exactly how the interstitial couples to lattice
excitations at frequencies where the solid is no longer Debye-like is clearly necessary if
we are to fully understand the role of phonons in quantum diffusion. For example, direct
measurement of the coupling constants as a function of wave vector (and polarization
with respect to the lattice) are in principle possible by measuring the muonium hop rate

while injecting phonons of a single wave vector at low temperture. This would have
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an enormous advantage over the indiscriminate thermal excitation of the entire phonon

spectrum which has been the only method used thus far.
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Figure 6.29: An example of the integrand (top) and integral (bottom) of Eq. 6.20
calculated with the phonon spectrum of solid Xe and parameter values A,/Ag = 65. The
difficulty in evaluating these multiple integrals arises from their oscillatory nature; the
integral approaches a small constant value as ¢ — oo. The parameters in this relatively
forgiving example were chosen to make the limiting value of the integral visible by eye.
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with the interstitial Mu at the centre.



Chapter 7

Conclusions

This thesis has presented experimental results about two separate topics within the
field of muon spin rotation/relaxation/resonance (SR) spectroscopy: The role of elec-
tron transport in muonium formation and quantum diffusion of muonium in insulators.

These are summarized separately below.

7.1 Muonium Formation via Electron Transport

The first part of this work presented results from £SR experiments in which the muon
and muonium asymmetries in insulators were measured in the presence of an externally
applied electric field. These experiments have found that an electric field can. in some
insulators, influence the fraction of muons that form muonium atoms. Furthermore.
the amount of muonium formed depends also on the orientation of the electric field
with respect to the initial momentum of the muon. These results imply that there is
an anisotropic spatial distribution of electrons with respect to the muon. and that the
electric field influences the probability of forming muonium by drifting these electrons
either away from or toward the muon.

[t can be concluded that muonium is formed, at least sometimes, from electrons that
move considerable distances through the sample to the site of the muon. A modest
electric field having any effect at all implies that the electron spends some time (between
being stripped from an atom and finding the muon) in a low-field region far from these

charged ions. Previously it had been thought that muonium formed when an electron

97
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was stripped from at atom and promptly captured by the passing muon. which then
thermalized with no further ionization. In this scenario the bare electron would never
be sufficiently far from the muon or the ion left behind that an external electric field
could compete with the Coulomb fields of their positive charges. It is likely that in most
insulators that both mechanisms occur to varying degrees. For example, in solid nitrogen
the magnetic field dependence of the muonium amplitude showed that at least 22% of
the muonium was formed by the delayed mechanism, the remaining muonium fraction
being formed rapidly would include hot (prompt) muonium.

One way for the delayed process to come about is by a hot muonium atom. after
moving away from the last ion from which the electron came, undergoing a collision with
a neutral atom, ionizing the muonium and putting the electron back into the lattice
with a fraction of the muonium kinetic energy. The muon sometimes would continue on.
still with the last few electron-volts of its initial kinetic energy, and eventually thermalize
further downstream. In this picture neither the electron or muon are left in the immediate
vicinity of any other ion. The electron is in an otherwise undisturbed region of the
lattice where the magnitude of the Coulomb field of the muon can be comparable to
the externally applied field, so the external field can affect the electron’s subsequent
trajectory. Most importantly, this electron is the closest one to the muon and therefore
is the one that reaches the thermal muon first. The asymmetry of the electron distribution
also implies that the direction of travel of the muon, at the very end of the track. is still
predominantly in the direction of the muon beam.

Currently, one technology being developed for producing beams of spin polarized
muons with kinetic energies of a few eV relies on cryogenic insulating materials, such as
the solid rare gases, as moderators.[29, 30] A good understanding of low energy end-of-

track processes of charged particles in general - which is still lacking - will be valuable
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in selecting materials that should minimize muonium formation, and maximize the prob-

ability of these siow muons escaping the moderator surface.

7.2 Quantum Diffusion in Insulators

Diffusion of interstitial muonium in insulators was studied by making use of the effect
of the motion of the muonium atom on the spin polarization relaxation functions in both
transverse and longitudinal magnetic fields.

Quantum diffusion of neutral interstitials in insulators is dominated by the interaction
of the particle with excitations of the lattice. These excitations are manifested in the
displacements of the lattice atoms from their equilibrium positions. which results in the
loss of translational symmetry (for the bare interstitial), reducing the tunnelling rate.
For muons in metals this interaction is neglible compared to the Coulomb interaction
with conduction electrons. Quantum diffusion of neutral interstitials in insulators gives
us a means of studying this interaction.

Scattering of phonons results in a reduction of the effective tunnelling bandwidth.
At temperatures where the incoherent channel has not been completely quenched the
key characteristic of 2-phonon quantum diffusion (in an otherwise perfect lattice) is an
increasing hop rate as the temperature decreases. Below about T = Op/10 theory
predicts that the hop rate will follow a T=7 power law. At a higher temperature this
strong temperature dependence drops off as the phonon spectrum becomes fully excited.
Structure in the phonon density of states is not very important to the overall temperature
dependence of the hop rate.

At sufficiently low temperatures the site-to-site static level shifts that are always
present in a real crystal will inevitably become important. The small difference between

energy levels must be made up by differences in phonon energies, and in this situation
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the 2-phonon hop rate increases with temperature as 77, below about T = @p/10. This
interplay between the phase damping rate €2, and typical static shifts £ was demonstrated
by muonium diffusion in solid nitrogen. Between about 4 K and 20 K the muonium
hop rate follows a 767!} power law, slightly weaker than the predicted T7 law for the
case in which small static shifts are present, well below the Debye temperature. At
higher temperatures, between 32 k and 46 K the hop rate was found to decrease with
rising temperture, qualitatively consistent with theory for the case that 2, completely
dominates the static shifts. However, the measured temperature dependence was found to
be much stronger than theory predicts at such a large fraction of the Debye temperature.
assuming that it is phonons that are being scattered.

It is thought that at higher temperatures activated tunnelling diffusion of polarons
should be sensitive to the fluctuations in the height and width of the potential barrier
separating interstitial sites. The most favourable conditions for detecting this would
therefore be at temperatures where short-wavelength phonons are excited. These phonons
should cause the greatest relative motion of adjacent atoms which define the shape of
the barrier.

Muonium diffusion in solid xenon was studied in an effort to detect thia effect. however
the data did not reveal a temperature dependence in the apparent activation energy.
Furthermore, the results are consistent with diffusion from an excited state, so that the
temperature dependence we measure reflects the thermal population of this excited state.
A simple calculation based on Xe-Xe and Xe-H pair potentials shows that the separation
of levels in the Xe cage, deformed to allow room for the muonium interstitial at the
octahedral site, would be about the same as the measured activation energy.

It would appear that current theory is adequate for modelling phonon-mediated quan-
tum diffusion at temperatures where solids are Debye-like and only the long-wavelength

phonons are excited. Exactly which excitations are important at higher tenperatures
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has not yet been resolved. Perhaps the next stage in experimental work is to measure
directly the contribution of various modes, not by measuring temperature dependences.
but by measuring the diffusion rate while exciting only a narrow part of the excitation

spectrum.
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Appendix A

Muonium Spin Polarization Function

In this Appendix we derive from first principles the eigenvalues and states of muonium.
in the simplest case of free muonium in vacuum with a static magnetic field applied. The
polarization functions with the applied magnetic field oriented either transverse to or
along the initial muon spin are calculated. Spin relaxation is not considered in this
calculation.

In the situation being considered the Hamiltionian of the muonium atom.

H = h—:iga“-ae+geg—880§—gi‘§-58¢7;: (A1)
includes the Zeeman terms for the muon and electron spins, and the interaction between
these spins. In order to determine the time dependence of the muon spin polarization we
diagonalize this Hamiltonian and calculate the elements of the muon spin operator. In
doing so we will obtain the muonium states and corresponding energies, which determine
the precession frequencies observed in the muon spin polarization signal.

We start by defining a set of states of the muonium atom in terms of the individual

9. = 2.002331846
ge = 2.002319304386

p, = 4.4904514 - 10726] . T
fe= 928.47701 - 10-26J . T~

Table A.2: Muon and electron g-factors and magnetic moments.
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electron and muon states,

o =dlol, 6.y ==l (A.2)

e

the superscripts on ¢°" referring to the muon and electron spins projected onto the
quantization axis, which we take to be the Z direction.

The spin operator o = (0%, 0Y,0°) has components given by the usual Pauli matrices
and the muon and electron spin operators act only on their corresponding parts of the

muonium wave function.

The operator in the first term of the Hamiltonian
& 2\ &
0. 0,9 =(0,,08.0.) (0;.0!.07)0" (A.3)
can be written in terms of raising and lowering operators which are defined by

of =of+i06! and o7 =of —io?, (A.4)

by expanding its first two terms into

1
olgl = I(GI + 0. ) (o +07)
l
= 1(0:’0:%—0:0{ +o 0t +0,07) (A.3)
and similarly
l
olol = —Z(a:aj A NE (A.6)

The third term follows trivially from the definition of the spin along the quantization

axis for both the muon and electron,

o4} = 6¢7, withé=%landi=p,e. (A.7)



Appendix A. Muonium Spin Polarization Function

108

The hyperfine interaction term is then the sum of Eqgs. (A.5.A.6.A.7) and we obtain

o, 0. =

Finally. noting that

+ 5+ + 5+ + o+ + .+
-o,0, +t0,0, +o,0, —0,0,

- - 4+ z =z

o, +o,0])+o,0,.
267 6 #

+ - - 6 -
(0i0; +0,00)0" =

0 5=~

Eq. (A.8) simplifies to

N —

1
Lt - -+ - -
I(auae t+oj0; +to 0] +o, 0,

o, 0.0 =6v0" + (1 — 65,)0™.

) + 00

(A.10)

For the two § = v = %1 cases it then immediately follows that the eigenvalues are

given by

fzw1

and

where we have defined

with

We = Gepte B/ R

1

L
w0 + 5(9ens — gunu) B

1
4—ﬁw0 + hw_

| 1
Zhwo - ;):(ge/‘B - gu.uu)B
1

—hwg — hw_

4

1
Wy = i(we tw,)

and w, =g.u,.B/h.

(A.13)

(A.14)

(A.15)

(A.16)
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In order to diagonalize the Hamiltonian in the other two cases where § # v we define

linear combinations of the basis vectors
Wy = cosB 0~ F +sind 67~ and ¥4 = —sinB o~ + cosd 0T . (A.1T)

where the parameter J turns out to depend on the magnitude of the field B. as will be

shown below.

Operating with the full Hamiltonian on the first of these, we obtain

hw, R hw — - e z z
Hy, = [T"o;a; +—8—°(a:ae +o;07) + B(EERg: 4 Debegry) o)
h h hw_
= %(—1#’2) + [% sing3 + —u;— cosﬂ} ot
hw huw_
+ [% cosf3 - —“; sinﬂ} ot . (A.18)

If v, is to be an eigenfunction of the Hamiltonian we must have both

hwo(sin8 + z cos3) = C cosi3 (A.19)

hwo(cos3 — zsinB) = C sinf (A.20)

where C is an arbitrary constant and we have defined

2
=2t (A.21)
Wo
from which it follows
z = [tan(283)]7". (A.22)
Equation (A.18) can now be simplified to
, hw hw
Hiy = ==t + - (tanf + )i, (A.23)
and by using the trigonmetric identity
i
2tanf = tan(28) (1 —tan®8) = ;(l — tan’3) (A.24)
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to substitute

tanf3 +

we obtain the final result

hwo 2

Hiy = [—T + ﬁ(wo

110

1/2
= [tanzﬂ + 2z tand + 1:2] /

= [tan2,3 + (1 — tan®3) + 1:2}

- (1 +I2)l/2

/4 + Wi)l/z] Wy = hwats.

A similar calculation. operating on the wavefunction v,. vields

,le 2

Hyy = l:—T ~ h(wg

/4 + wi)‘”} Va = hwgtis, (A.27)

The results so far are summarized in Figure A.32, which shows the four eigenvalues

as functions of the magnetic field B.

We shall see that the polarization signal has components at frequencies determined

by the transition energies fiw,; = h(w; — w;) between these states. These frequencies are

w2 =

Wz =

Wiz =

A.1 Transverse Field

(.4)2 1/2
wo/2 +w_ — (TO +wi> (A.28)
w-z 1/2
—wo/2 +w_ + (T° +wi> (A.29)
Qw_ (A.30)
wz 1/2
wo/2 + w_ + (TO +wi) : (A.31)

Now that we have the eigenvectors and eigenvalues of all four muonium states it is a

straightforward task to calculate the matrix elements of the muon spin operator. Initially,

the muon beam is virtually 100% spin polarized in any pSR experiment using surface
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Energy [GHz]
o

0.00 0.05 0.10 0.15 0.20 0.25
Magnetic Field, [T]

Figure A.32: Breit-Rabi energy level diagram of the four states of muonium in a magnetic
field.

muons. I[n the case of a transverse field experiment the initial muon spin direction is

perpendicular to the applied magnetic field, conventionally along the T axis. so we have

an initial muon state given by
‘ L - 2
lou(t =0)) = —\/—§(|¢>I) +lo2))- (A.32)

Since electrons of the stopping medium (which are captured by muons to form muonium)
are unpolarized, we have two initial muonium states possible - with the electron spin
either up or down. It is has always been assumed that these are formed with equal
probability; no observable departure from this has ever been reported, so we have equal

contributions from each of the initial states

|61) = |6.(0)¢¢) and (A.33)
[62) = |u(0)eC)-
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Considering the first of these we can write, using Eq. (A.17),

1 . )
l91) = W("DH) +]o7)) (A.34)
l ) , e
= —\/—5—(|<D'++) + cosB |,) — sinf |wy)). (A.35)
At a later time £. when the initial state has evolved under the Hamiltonian. we have

. ot )
r —tHt/h — —tHt[h) . —tHt/h;
oie MM g) = [Tt + cosd e My,)

—sing e= M/ [,)] (A.36)

Expanding the Hamiltonian in terms of operators and the wavefunctions in terms of the

basis states. we have

+ p
o, +<7“

22

[e7™1|¢**) + cosB e™(cosB [¢7F) +sind [0¥7))  (A.37)
—sing e~**!(—sinf |0~ F) + cosB |677)) ]

[2e7“" |67 1) + 2cos’3 e™“2! |t ) + 2 cosd sinBe 2! o™ 7)

’

o
3

+2sin?8 e7“*!|¢*F) — 2s5in3 cosB e o™ 7) ],

(A.38)

giving
l

Jﬁe—th/hlq)l) - [ e—iwltl¢—+> + (cos2[3 e~'“?t 4 5in%3 C‘iwqt)lo++>

N
S

+(cosB sing e™*“2' — cosB sind e~ “!)[o7) ]. (A.39)

So we have, for that fraction of muonium formed with electron spin “up”, the contri-

bution to (o) of
(élle‘}“/ﬁaﬁe"ﬂt/hlél) = cos? cos(wiat) + sin®B sin(wy4t). (A.40)
The other fraction, with an initial state in which the electron spin is “down”,

61(0) = (D) +6) @ 161) = Zs(67) 167N (A
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is treated in a similar way, giving

e~ MM gg) = \—lf;e“"”‘"’%sinﬂ [12) + cosd [a) +07). (A.42)

and a contribution to the spin polarization of
(¢2|eiH‘/ﬁaie"iH‘/ﬁ|¢2) = sin?8 cos(wayst) + cos®8 cos(wayt). (A.A43)
The total polarization is simply the sum
Pi(t) = é {coszﬂ [cos(wizt) + cos(waat)] + sin?3 [cos(wiat) + COS(w'z:}t)]}. (A.4d)

In weak magnetic fields of not more than about 8 G the difference between «, and
wo3 1s small enough that it can usually be ignored; the signal appears to have only one
component at the average muonium frequency w_. In higher field the splitting that orig-
inates with the hyperfine interaction term of the Hamiltonian is immediately apparent in
the polarization function as beating of the these two components, the hyperfine frequency

«o can be obtained from the difference of the two frequencies

]1/2

wWyz — W2 = [wg + 4&)3_ — Wo- (’\15)

For unperturbed muonium (in vacuum, for example) the hyperfine frequency is wq/(27)
= 4463 Mhz. [4] (In condensed matter nearby molecules can cause a distortion of the Is
orbital of the muonium electron, changing the electron spin density at the muon which
is reflected in a shilt of the hyperfine frequency.)

Since the high frequency transitions wy4 and w4 are not resolved by the timing elec-
tronics of most uSR spectometers, those terms average to zero, and in fields sufficiently
weak that the amplitudes of the remaining signals are approximately equal, the polar-

ization function reduces to

PI(t) = — [cos(wiat) + cos(wast)] . (A.46)

| —
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A.2 Longitudinal Field Polarization

In the other case of interest the initial muon polarization is along the magnetic field
direction. We are then interested in the time dependence of the Z component of the
muon’s spin in longitudinal field (LF). Since muons are produced (usually) from the decay
of a charged pion (essentially at rest near the surface of the pion production target) into
a two body final state via

t =t 4+, (AAT)
and since neutrinos always have negative helicity, the muon beam produced also has
negative helicity. The initial polarization of the muon, having stopped in a sample. is
therefore in the —2 direction. Again, muonium is formed with an electron captured from
the medium with equal probablity of having spin “up” or *down” with respect to the

quantization axis. We are interested in the matrix elements

(o7 |t are MM 07") (A43)
and
<¢_+Ieiﬁtlho_ze—iﬂt/h|¢—+> (:\.‘lg)

The first muonium state is an eigenfunction of the Hamiltonian and the matrix ele-

ment given by Eq. (A.48) is therefore simply
(67" |e™aZe ™ |¢™7) = —1. (A.50)
Equation (A.49) can be written
(cosB (| — sinB (¥al)e ™/ aZe™ A (cos [1hy) — sinB |w)). (A.51)
Thus, using Eq. (A.17) once again,

(02) = —(cos®B — sin®B)? — 4 cos?B sin?3 cos(waat)). (A

n

]}
o
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Noting that (cos?3 — sin?3)? = 1 —sin?(28) and that

l
.2 _
sin®(248) = Tl
thjis can be written
. | | }
(o) =—-1+ T2 112 cos(woqt) (A.33)

where z = 2w, [wyp.
The total muon polarization P} in longitudinal field is then the sum of these two

parts, with muonium formed with equal probability in each state, giving

P4

1 2 -
" = m [1 + 21‘ + COS(ng4t)] (.’\')4)

The frequency wqy4 in Eq. (A.534) is sufficiently high that in most experimental situ-
ations, at this time, it is not directly observable in the data as an oscillatory signal. so
this term is effectively averaged to zero by the timing resolution of the spectrometer.

Thoughout this calculation we have not considered any relaxation of the muonium

spin polarization.



Appendix B

Numerical Integration of a Highly Oscillatory Function

The complete program code that performs the numerical integration of Eq. (6.20) is
given here. The evaluation of this integral is made complicated by the oscillatory nature
of the integrand. and that we are integrating over both w and ¢ in terms like cos(wt).
Fortunately, there is a natural upper cut-off in frequency given by the highest lattice
modes (approximately the Debye frequency) but ¢ still runs from 0 to oc.

The key to integrating this function is to determine how far out in time one actually
needs to integrate in order for the integral to converge. Since the integrand oscillates
about zero and always decreases in amplitude as ¢ — oc, the integral also oscillates as
the upper limit in time is taken to infinity, and the range of these oscillations decreases as
t — oc. This code decides when to stop integrating by comparing the range of oscillation
of the integral to the mean of the last local minimum and maximum values of the integral.
When the range of oscillation is a (pre-set) small fraction of the mean value, the value of
the mean is taken to be the estimate of the integral in the limit ¢ — oc. The algorithm
requires the integrand to have its maximum value at ¢ = 0 and an envelope that decreases

monotonically with time..

#define float double

#include <math.h>
#include <stdlib.h>

#include <stdio.h>

116
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#include "1ph_hr_2.c"

void hop_rate_(double *, double *, double *, double *, double *);

void main()

{

float temperature, lp, lb,delta, hop_rate;

FILE *fp;

fp=fopen("1iph_hr_2d.out","w");

1p=38.801;
1b=2.5;

delta=0.079194;

fprintf(fp, " lp=if \n", 1lp);
fprintf(fp, " 1lb=%f \n", 1b);

fprintf(fp, " delta=)f \n", delta);

for(temperature=38; temperature<=116; temperature += 3.0){
hop_rate_(&temperature, &delta, &lb, &lp, &hop_rate);
fprintf(fp, " 4E %E \n", temperature, hop_rate);

}

fclose(fp);
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/*¥ 1PH_HR_2.c calculates hop rate in lphonon model, with polaron
and flucuational barrier preparation by direct numerical integration.

Phonon spectrum of solid Xe is includedin function g(w).

*/

##define float double

#include <stdlib.h>
#include <stdio.h>

#include <math.h>

float my_int(float (*func)(float), float a, float b, long int n);
float t_int(float (*func) (float));
float f1(float);

float f2(float);

float f1_approx(float);

float f2_approx(float);

float fg(float);

float g(float);

float f_of_t(float);

float f_of_t_test(float);

float f_approx(float);

float sqr(float);

float coth(float);
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float hop_rate(void);
float f_lb(float);
float f_lp(float);

float sign(float);

/* global variables and constants used by several functions */
float t, tp, omega, omega_d, th_d, 1lb, lp, delta, gf;

float hbar, kb, ff;

float bb_fctr, bb_om;

long int nn;

void hop_rate_(double *ptp, double *pdelta, double *plb, double *plp,

double *hpr)

float time_range, t1, t2, dt, dtime, tt, foft, z1,z2;
float 11,12;

long int n_cur, curve, nn_max;

hbar = 1.055E-34; /* Plank’s constant */
kb = 1.381E-23; /* Boltzman'’s constant */
ff = hbar/kb;

th_d=64.0; /* Debye temperatrue of Xe */

omega_d = kb*th_d/hbar;

tp=+*ptp;
1b=*plb;
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1p=*plp;
delta=*pdelta;

nn=4000;

if (tp>=110) nn=8000;

gf= my_int(*fg, 0.0, omega_d, 8000);
21=2.0%t_int (*f_of_t);
*hpr=sqr(delta*kb/hbar)*z1;

return;

/* t_int integrates an oscillatory function of time, whose amplitude
decreases with time, from zero up to such time that the amplitude of
oscillation of its integral is small compared to the mean, which is taken to be
the limiting value of the integral. I.e., it goes as far out as it needs

to so that it is clear to what value it is converging */

#define FUNC(x) ((*func)(x))
float t_int(float (*func)(float))
{
float a,sum, del, m, maxval, minval,cc;

int goodmax, goodmin,conv=0;

del=4.0E-17; /* fixed step size in seconds */

cc=1.0E-2; /* Convergence criteria: (max-min) < 0.0l*mean */
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maxval=0.0;

minval=0.0;

sum=0.0EQ;
a=del/2.0; /* start offset at centre of first interval */
m=0.0EQ;
while('conv){
goodmax=0;
goodmin=0;
while(!goodmax){
sum += FUNC(a + mxdel);
m++;
if (sum<=maxval) goodmax=1; /* found new maxval */

else maxval=sum;

minval=maxval;
while(!goodmin){

sum += FUNC(a + m*del);
m++;

if (sum>=minval) goodmin=1; /* found new minval */

else minval=sum;

if( (maxval-minval)< cc*(maxval+minval)*0.5) conv=1;

else{
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goodmax=0;
goodmin=0;

maxval=minval;

¥

return((maxval+minval) *0.5%del);

}
#undef FUNC(x)

/* My dumb, brute-force integrator */
#define FUNC(x) ((*func) (x))
float my_int(float (*func)(float), float a, float b, long int n)

{

float x, sum, del, m;

del=(b~-a)/n;

sum=0.0;

a=a+del/2.0;

for (m=0; m<=n-1; m++){
sum += FUNC(a + m*del);

}

return(sum*del);

3§V
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#undef FUNC(x)

float f_of_t(float x) /* the function of time that gets integrated */

{

float f, psi_bar, psi;

t=x; /* passes time to global variable t */

psi_bar = my_int(*f1, 0.0, omega_d, nn);

psi my_int(*f2, 0.0, omega_d, nn);

f=exp(psi_bar+gf)*cos(-psi); /* im part = sin(psi) dropped */

return(f);
}
float f1(float w) /* integrand for Psi bar - fcn of omega */
{

float 1l_fctr, v;
if(w==0.0) return(0.0);
1_fctr=(lb*hbar*w)/(kb*th_d) + lp*kb*th_d/(hbar*w) ;

v=g(w)*1_fctr*cos(w¥t)/sinh (hbar*w/(2.0%kb*tp)) ;

return(v);
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float f2(float w) /* integrand for Psi - fcn of omega */

{
float 1_f,v;
if(w==0.0) return(0.0);
1_f = 2.0%sqrt(1lb*lp);

v=l_f * g(w) * sin(w*t)/sinh((hbar*w)/(2.0%kb*tp));

return(v);

float fg(float w)

{
float tmp,v;
if(w==0.0) return(0.0);
tmp=(1b*hbar*w) / (kb*th_d) - lp*(kb*th_d)/(hbar*w);
v=g(w)*tmp*coth((hbar*w) /(2.0%kb*tp)) ;
return(v);
}

/* Real g(w) for s-Xe by simple linear interpolation between points*/
/* Data read from a graph in Klein’s Rare Gas Solids , p964 ? */

float g(float omega)
{
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float x, y, t_dist;

long int 1;

float yy[70] =
{0.0,0.07,0.15,0.30,0.45, .6,.9,1.1,1.32,1.7,
2.0,2.2,2.7,3.1,3.8, 4.25,5.0,5.7,6.3,7.1,
8.0,9.3,10.6,11.7,13.0, 14.8,16.5,18.6,21.0,24.5,
34.0,34.93,35.86,36.77,37.71, 38.64,39.57,40.50,41.43,42.36,
43.29,44.21,45.14,46.07,47.00, 28.0,27.9,27.8,27.6,27.2,
27.0,26.0,25.0,23.0,21.0, 18.5,36.0,43.0,51.0,

64.0,33.0,22.0,10.0,0.0,0.0,0.0,0.0,0.0};

x=omega*(97.9/12.57E12) ; /* scale interpolation variable */
i1=x;
1f (x<=10){

y= 0.019%x*x; /* at low omega like omega~2 */

return(y/1.7217424E14);

}

if(i>=64){ /* above cutoff -> zero */
y=0.0;

}

else{
y=yy[il + (x - (float) i)*(yyl[i+1] - yy[il);

}

return(y/1.7217424E14); /* normalized so its integral is 1.0000

It
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/* def some math */
float sqr(float x)
{

return(x*x) ;

float coth(float x)

{

return(cosh(x)/sinh(x));
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