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ABSTRACT

Transverse Field muon spin relaxation (TF-uSR) experiments were performed in external
magnetic fields 1.0, 2.7, 3.0, 4.5, 5.5, 6.0 and 7.0 T along the Bi2212 crystalline c-axis. For
the first time, the heterodyned fitting analysis technique shows that the field profiles on the
ab basal planes of single crystal Bi2212 are symmetric in all experimental fields 1.0-7.0 T
and at all experimental temperatures 2.0-90.0 K. The muon spin relaxation rates due to the
mixed state of Bi2212 were found to increase linearly from 0 us~' at the transition tem-
perature, 90.0 K, to about 1.0 us™! at the lowest temperature, 2.0 K. The relaxation rates
have much less field dependence than the temperature dependence and the field dependence
of the relaxation rate is of opposite sign to that seen for YBCO, which is undoubtedly due
to vortex lattice disorder caused by the weak coupling between the CuO planes. The scaled
magnetic field penetration depths H‘},—) were found to be independent of magnetic field B in

the temperature range 0-50.0 K. Fitting ,\):) by currently available models was attempted.
A proposed pancake vortex disorder mo@ strongly suggests pancake disordering at all
temperatures including 2.0 K, the lowest temperature reached in our experiment. Our ex-
periments and the computer simulation from the pancake vortex disorder model showed
that uSR data in this temperature and field range are attributed to the 2-D anisotropic
vortex characteristics of Bi2212.
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Chapter 1

Introduction

1.1 General Introduction

Muon spin rotation and relaxation has been used in this thesis work to investigate the static
and dynamic electronic and magnetic structures of the vortex state of the type II super-
conductors. The study helps us to better understand the vortex phase diagram and other
features of type II superconductors below the critical temperature. The static and dynamic
magnetic field behavior of the vortex state structure in highly anisotropic superconductors
such as BipSroCa, | Cu, O442n (BSCCO) is of a nature not usually encountered in the more
conventional superconductors. We used an array of weil characterized Bi,Sr2CaCu30g,
(Bi2212) single crystal samples in the BSCCO family to continue our study on the exotic
vortex behavior in these highly anisotropic systems.

The Bi2212 system has been studied extensively in the past ten years with NMR, STM
and ARPES techniques. However the research work on the magnetic field distribution f(B)
on the ab basal planes and the vortex lattice disorder in this highly anisotropic system was
sparse for applied external magnetic fields of several Tesla. The muon’s ability to occupy

interstitial and substitutional sites provides information on the magnetic field distribution



CHAPTER 1. INTRODUCTION 3

due to the disordered vortex lattice, which is not available to the other techniques listed
above.

In chapter 1, we will review briefly muon spin rotation and relaxation technique, which
was used in our study. In chapter 2, the general characteristics of the magnetic field dis-
tribution in type II superconductors will be discussed. The focus of Chapter 3 is to review
some background studies on Bi2212, where the effects of the vortex disorder on the magnetic
field distribution will be discussed. In Chapter 4, we will describe the experimental details
of this study, present the experimental data and analyze the results. Finally the pancake
vortex disorder model will be proposed and used to explain all the major features of the

experimental results.

1.2 Muons and the Origin of the Muon Spin Rotation Tech-
nique

Muons (positive muons or negative muons) were first discovered in a cosmic-ray experiment
in 1937 by Neddermeyer and Anderson and can be produced in various high energy processes
via elementary particle decays such as kaon decay or pion decay. In 1956 and 1957, T.D.
Lee and C.N. Yang theorized that processes governed by the weak nuclear interaction might
not have corresponding mirror image processes of equal probability, i.e., parity might be
violated. This parity violation was first observed in beta-decay of Co-60 by C.S. Wu et al.
Soon after that, experiments were performed at the Nevis cyclotron by R.L. Garwin, L.M.
Lederman and M. Weinrich and at the Chicago cyclotron by J.I. Friedman and V.L. Telegdi

in 1957, which showed a dramatic parity violating effect in the decay of pions to muons and
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the subsequent decay of muons to electrons and neutrinos. The Nevis experiment was the
precursor of modern uSR.

The Muon Spin Rotation, Relaxation and Resonance(uzSR) technique [Seeger 78, Chap-
pert and Grynszpan 84, Schenck 85, Chappert and Yaouanc 86, Cox 87, Brewer 94, Karls-
son 95, Schenck and Gygax 95, Schatz and Weidinger 95, Reotier and Yaouanc 97)] uses the
muon and its parity violating characteristics to probe various properties of materials and is
becoming a valuable tool in atomic, subatomic and other fundamental physics disciplines.
SR requires low energy muons in order to stop the beam in samples of convenient thickness
or stopping power, which are available in the required intensities only from the ordinary
two-body decay of charged pions. The pions are generated at rest in the surface layer of a
primary production target (C or Be), from which the muons emerge (in the rest reference
frame of pion) with a momentum of 29.7 MeV/c and a kinetic energy of 4.1 MeV. The
lifetime of a free charged pion is 26.03 ns.

From the electro-weak nuclear theory, we know the most remarkable feature of the
free positive pion decay is that it maximally violates the parity symmetry, causing the
muons to be emitted with perfect spin polarization. This is the greatest advantage of the
uSR technique as a magnetic resonance technique, whereas NMR and ESR rely upon a
thermal equilibrium spin polarization, usually achieved at very low temperatures in strong
magnetic fields. uSR begins with a perfectly polarized probe, regardless of conditions in the
medium to be studied. It also implies that muon spin degrees of freedom usually start their
evolution as far from thermal equilibrium as conceivable. The property of the muon decay
positron to be emitted along the spin of the muons is another consequence of the parity

violation in the weak interaction that allows us to read out the information encoded in the
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evolution of an initially polarized muon spin ensemble. The information is delivered to the
experimenter and scientist in the form of rather high energy (up to 52 MeV, see Appendix
A) positrons, which readily penetrate sample holders, cryostats or ovens and the detectors
used to establish the time and direction of the muon decay. The decay probability of the
muon depends on the energy of the emitted positrons and the angle between the muon spin
direction and the direction of the positron’s emission. The asymmetry A(t, F) increases
monotonically with the positron’s energy and is 100% for the maximum energy. In real
experiments, low energy positrons do not penetrate materials to trigger the detectors, or
are curled up by applied field, so the eﬂjciency for detecting positrons f(E) is energy F
dependent, forcing an integration over A(t, E) - f(E)dE to obtain the average asymmetry
A(t), where E is also a function of the spanned solid angle.

As a useful microprobe, uSR is extremely sensitive to the magnetic environment; for
example, neighboring dipoles as small as 0.001 uzp can be detected. uSR is also an effective
probe for changes in spin arrangement such as spin flip transitions, spin reorientations, or
antiferromagnetic transitions etc. In summary, 4uSR can easily detect small distributions in
the field at the muon site and is sensitive to rather subtle distortions in the spin structure

or ordered magnets.

1.3 Muon Spin Depolarization Asymmetry

SR measurements fall into three geometric categories: longitudinal (LF), transverse (TF),
and zero (ZF) field, depending on the direction of the applied magnetic field relative to the

direction of the initial muon spin polarization. Fig. 1.1 and fig. 1.2 show the schematic
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diagram of a TF-u4SR setup and an experimental histogram.

B —mmmmm—— l)I(
-_— L
- z
muonl-""“-’-_ Y
e :
D detectors

Figure 1.1: A typical TF-uSR experiment setup.

The decay positrons are usually collected and time stamped in the up (U), down (D),
left (L) and right (R) detectors. The detection rate in any of these four detectors with
direction d; is equal to:

Dg(t) = N(t) a; (1 +P(t) - dy) (1.1)

For transverse field uSR, the equation above can be written as
Dr(t) = No €7 a; [1 + & Gr(t)cos(w,t + ;)] (1.2)

where N(t) = Ny e™* is the muon decay rate in the sample. a;, ¢; and ¢; are for the detector
efficiency, sensitivity and phase of detector to the muon'’s polarization, ﬁ(t), i denotes up,
down, left or right detectors. Usually, these four detectors are arranged so that they are
7 (1.57) out of phase sequentially. The four positron histograms show that this is always
the case in the spectra when the external applied magnetic field is low. For example, the
four phases from our 70 G transverse-field calibration run are 2.036(5), 0.454(5), -1.164(3)

and -2.699(6) radian in sequence. The muon spin-asymmetry (raw asymmetry) plot can be
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™
BSCCO, B=19 G, T=100 K

(]

10000

N1

Figure 1.2: Asymmetry of the muon radiocactive decay. (a) The polar diagram shows the proba-
bility of a decay positron being emitted at an angle 6 to the instantaneous spin vector; (b) A uSR
histogram, showing the radioactive decay curve modulated by the muon polarization precession.

constructed in the standard way by taking the ratio:

_U@) - D(t)

= U®+ D) (1.3)

A(t)

where A(t) is the asymmetry of muon spin relaxation, which is directly proportional to
the autocorrelation function (S,(t) - S,(0)), where S, is the Pauli spin operator and the
brackets refer to an average over all possible nuclear states. U(t) and D(t) are the positron
count rates in the up and down detectors, which are approximately 7 out of phase. From

the formula of error propagation, we know the error of A, o4 can be written as (¢ is implied
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in each of the following U and D)

\/(2 Uop)?+ (2 D oy)?
(U + D)?

- WUDW+D) o p 2.y (1.4)

(U + D)?

gq =

Assuming U(t) = Ng e™*t (1 + A(t)) and D(t) = Np e~ (1 — A(t)), the equation above

/ 1- A2
g = W (15)

Furthermore, the total counts Nt collected in the two up and down detectors can be derived

can be simplified to

as

Nr = /0 w(U(t) + D(t)) dt
= / oc’[z\roe-’“u + A(t)) + Noe (1 — A(t))] dt
0

lo ]
= / 2 Npe~Mdt
0

2 Ny
> (16)
Then eq. 1.5 can be further written as

_ 1— A2
94 = \(X Np e

et
A Nr

(1.7)

~

A plot of 04 vs. N is shown in fig. 1.3 from which we can understand why we usually set

up the appropriate experimental run time so that Nr is about 107. More generally, if the
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Figure 1.3: The asymmetry error as a function of total experimental counts in paired detectors.
Long dashed line: Nt = 105, dashed line: Ny = 10, solid line: Ny = 107.

detectors are not identical and there are background counts in each histogram, we know
Dp(t) = No e %a; (1 + & B(t)- d:) + By (18)
For up and down detectors, the equation above can be written as

Us(t) = N,e 7 [1+€P(t)]+ B, (1.9)

Ua(t) Nye % [1+€P(t)] + Ba (1.10)
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The muon spin depolarization function P(t) and its error o, can be derived as

al(t) — D(t)
P(t) aeqU(t) + €,D(t) -
. a(ey + €4)V/[D(t)ou]? + [U(t)aa]? (1.12)

[aeqU(¢) + eu D(2)]2

Here a = %’f and U(t) = Uy(t) — By, D(t) = Dy4(t) — By. If €, = €4, the equations above
can be simplified to the previous case. The corresponding theoretical expression for P(t)
in terms of intrinsic local field parameters in anisotropic superconductors was derived by
Barford and Gunn [Barford 88].

An alternate way to study the muon spin relaxation behavior is to observe the phase
diagram plot i.e. P'(t) vs. P(t), in which the instantaneous muon polarization P(t) and its
changing rate (or first derivative) are clearly shown. Pattern recognition techniques may be
further used to study this kind of plot.

In a uSR experiment the spin-polarized muons are assumed to stop at random positions
within the sample, thermalize rapidly on time scales of 1010 s without losing initial polar-
ization and then precess in the local internal magnetic fields B(r). The precession frequency
is 7, B, where v, = 135.5 M Hz/T is the gyromagnetic ratio of the muon. In almost all
known cases, the positive muon stops at interstitial sites due to the electrostatic repulsion
by atomic nuclei. In HTSC there is evidence that the muon binds to a negatively charged
oxygen ion, which may or may not belong to the CuO; plane. [Brewer 90] However, since
the vortex lattice spacing in a typical uSR magnetic field is much larger (several hundred
times) than the dimensions of the crystallographic unit cell, we still consider that the muon
stops randomly inside the sample. [Forgan 97]

In the vortex state of a type-II superconductor, muons experience a spatially varying
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Figure 1.4: (a) The predicted phase plot for a Gaussian Oscillating relaxation function; (b) The
experimental phase plot for a Bi2212 sample at T=2 K in an external magnetic field B=2.7 T. The
deviation from a simple Gaussian Oscillating relaxation function is clearly seen without fitting the
experimental data.

magnetic field due to the periodical arrangement of the vortices. If we assume the field
is along the z direction, the time evolution of the z or y components of the total muon

polarization is

P(t) = /:o f(B) cos(v,Bt + 0)dB (1.13)

where f(B) is the uSR line shape and 8 is the initial phase of the muon spin. The envelope
of the oscillating muon spin polarization P(t) decays or dephases with increasing time

according to the width of f(B).
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In the real material, there are perturbations of the periodic vortex lattice caused by the
random pinning of the vortices and fluctuations in temperature and the applied magnetic
field. All these additional sources of field inhomogeneity can often be accounted for by

multiplying the muon polarization function by a factor Gr(t), so that
Q0
P(t) = GT(t)/ f(B)cos(v,Bt +8)dB (1.14)
0

where Gr(t) can be a simple Gaussian or Exponential function to more complicated func-
tions.

If the local fields that the muons feel are not unique (there is a distribution of magnetic
field f(B) or f(|B]), for the difference between component and magnitude field distribution,
see [Wan 99A]), consequently the muons will precess under different frequencies which causes
a depolarization of the muons ensemble’s spins. The second moment of the field distribution
f(B) indicates how fast the muons depolarize and thus it is called the relaxation rate o.
It has been shown theoretically that o is highly sensitive to the type of disorder of vortex
lattice in HTSC. [Brandt 91] For example, randomly positioned stiff parallel flux lines
tend to increase o, whereas vortex-dot fluctuations may decrease 0. There are several
ways to extract the relaxation rate o: we can best guess and assume the depolarization
function P(t) to fit the uSR spectra in the time domain and thus extract the relaxation
rate parameter in the fitting procedure; the Fourier Transformation of uSR spectra indicates
the magnetic field distribution inside the sample, we then calculate the second moment of
the field distribution to get the relaxation rate. Note that the calculation of the second

moment from the discretized field distribution data depends on the field channel width A,
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there exists the following relation:

,2 - JBf(B)dB _ ( / Bf(B)dB)2

[ f(B)aB [ f(B)dB
Y. B*f(B)dB (23f(3)d3)2 a?
X /(BB "\ Xf(B)¢B ] 12

= dim-% (1.15)

Simulation shows that as long as the channel width A is smaller or comparable with the
second moment (relaxation rate), ogu, is a good estimate of 0. For any pSR spectra in
a 10 us time window, the ideal minimum relaxation rate we can extract from data is 0.1
ps~!. If we consider the channel width effect above, the minimum relaxation rate is about
0.29 us~!.

High Temperature SuperConductor (HTSC) materials are ideally suited to be investi-
gated by uSR, since implanted muons remain static over the temperature range below T¢. It
is possible that a muon might modify the superconducting properties over a region £ around
itself, however, this will not appreciably alter the magnetic field at the muon site. Since
the magnetic field at any point is determined by supercurrents flowing in a region ~ A3 in
size, which is many orders of magnitude larger than &, so we think the muons should still
be able to obtain an unbiased sample of the magnetic field distribution.

In general, there are three possible factors that contribute to the muon spin relaxation in
transverse field below T,: (1) inhomogeneity of the magnetic field due to the vortex structure
and imperfect field penetration in a type II superconductor; (2) static random local fields if
the superconductivity is associated with magnetic ordering; (3) dynamic processes due to

fluctuating local fields. [Kossler 87)
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The local fields B can either be intrinsic, as they are for ordered magnets and spin
glasses, or induced by an external field, as for the vortex lattice of a type II superconductor.
By measuring the distribution of precessing frequencies, in the mixed phase of a type-II
superconductor, the probability distribution or the line shape f(|B|) of the internal field
values can be extracted. The field distribution f(|B|) may be dependent on [Luke 00]
the lattice geometry, penetration depth, coherence length, temperature, field, i.e. the flux
distribution associated with a single vortex line, as well as the arrangement of the vortex
lines in space and time. (Note: for a single 2D pancake vortex, the magnetic field has a
component normal to the vortex axis [Clem 91], however, the average transverse component
vanishes due to the large amount of contributions from the entire FLL. [Kogan 81}) f(|B})
is obtained from the time evolution of the muons’ spins via a Cosine Fourier Transform
(CFT) on P(t). [Lee 93, 95, 97] It is known statistically that the variance (error bar) of
f(|B|) does not change even with the total sampled points N going to infinity, which means
the field distribution does not become more accurate as we take more sampled points from
P(t) (either by sampling a longer stretch of data at the same sampling rate, or by sampling
the same stretch of data with a faster sampling rate although they will affect the frequency
resolution).

Assume we have muon spin depolarization data P(t;) at time intervals ¢, = kT, where
T, is the sampling period and & = 0...M. For the simplest case P(t) = cos(wogt), it can be
proven that the discrete Fourier Transform of P(t) has the following form

M
Pw) = Y cos(wokTs) cos(wkT,)

k=0
sin gwo—w!ggM-i—l!T- ]
sin .(__1_“0‘2“’ LE

1
= i+ (1.16)
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The factor sin MM in the numerator predicts fast oscillations in the field profile,
which is certainly not what we wanted.

In reality, P(t) has a typical time window of width 10 us (square windowed), and the
field profile should be obtained through the convolution of the data’s Fourier transform
with the window’s Fourier transform. Since the square windowing causes large sidelobes in
the Fourier transform (FT), usually we use other window functions such as the Gaussian
window, Welch window, Hann window etc., which is called apodization, before we do the
FT.

A standard treatment of FT on uSR data was introduced as following: (1) Divide the
time spectrum by the contents of the first bin so that it only contains values between zero
and one; (2) Subtract the mean from this spectrum; (3) Multiply the time spectrum with
a window that we just introduced above; (4) Perform the Fourier Transform. [Martoff 81]

To simulate the vortex magnetic field distribution on the ab plane, we assume the
extreme 2D case so that the relaxation of the muon’s spin ensemble is determined mainly by
the inhomogeneity of field on the ab plane. In some specific cases, we may need to consider
the wavefunction and the fractal distribution of the muons. In the mixed state of HTSC
due to various vortex lattice configurations and vortex-vortex interactions, we generated
20x20 grids and nearest neighbor grids in triangular lattice (for most superconductors)
and square lattice (for V3Si, RNi;Bi;C(R = Er,Lu,Y), SraRuO, etc.) respectively, and
numerical simulations were carried out directly in the vortex lattice space to observe the field
distribution f(B). The ratio of the penetration depth \,; and the vortex lattice constant
a is chosen according to the experimental value. The results are shown in fig. 1.5 and fig.

1.6. As we can see, f(B) is more dependent on the particular form of single vortex B(r)
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(we used three different kinds of B(r) based on the current knowledge about the interaction
from the literature [ Clem 91, Schneider 95 ]). It was also found that the penetration
depth X affects the field distribution only weakly as long as A is much greater than the
lattice constant. Also notice the change of the difference between the peak position and the
left shoulder in different lattice configurations and single vortex B(r) forms. [Sonier 00A]
For general calculation of the magnetic field distribution, see the monograph of Greer and
Kossler [Greer 95].

Usually there is no difficulty to do so at low field. However, when the applied mag-
netic field is so high that the period of muon precession (7.38 ns in a field of 1 T) is
comparable to the time resolution of the uSR spectrometer, we need to study the effect
of time-shifted P(t) (due to the instabilities of electronics, formation of short-lived Mu
atoms or other fast chemistry effects [Brewer 94]) on the interpretation of f(|B]). Assume
P(t) = Gr(t) cos(wpt) where Gr(t) is the non-oscillating depolarization function and it can

be exponential, stretched exponential, Gaussian or other types. Using the notations

Peos(w) = /Gr(t)cos(wt) dt (1.17)

Pin(w) = /Gr(t) sin(wt) dt (1.18)
We can easily derive the FT of the time-shifted P(t) as follows:

Pipifr_cos(w) = /GT(t + 8t) cos[wo (¢ + dt)] cos(wt) dt

cos(wodt)
2

Prs(iso ~ ) = 220 g~ (119)

i ot ot
Pohift_sin(w) = _ﬁl_(t;)_)},m(wo -w) - ﬂSg—ll’sin(wo -w) (1.20)
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Figure 1.5: Simulated magnetic field distribution inside the vortex of HTSC. Left panel: triangular
lattice configuration; right panel: square lattice configuration. The field distribution by the nearest
neighbor approximation is still highly related to the 20x20 grid result.
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Figure 1.6: Simulated magnetic field distribution inside the vortex of HTSC. Left panel: triangular
lattice configuration; right panel: square lattice configuration. The field distribution by the nearest
neighbor approximation is still highly related to the 20x20 grid result.
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Note in the expression of Pypif:_cos(w), the 1st term is symmetric about wy, however, there
is a sign change of the 2nd term when w goes across wg. Just to see this behavior, we let

Gr(t) = e"*and use integral table results

! A
/0. € cos(wt)dt = m (1.21)
00
=Xt .- _ W
/0. € sm(wt)dt = m (1.22)
then
__ cos(wodt) A sin(wqét) w — wy

A series of line shapes Pyp;f_cos(w) as a function of wpdt is shown in the fig. 1.7. To
construct the real field profile Peos(wp — w) from the experimental data Py f; cos(w) and

Pipift_sin(w), we can do the following transformation

. 1
Pspift_cos(w) cos(wodt) — Pypife_sin(w) sin(wodt) = §Pcos(wo - w) (1.24)

In the uSR technique, we can obtain the field profiles either from asymmetry plots or from
individual histograms. During the data analysis, we often find that the phase factor in the
depolarization function changes with temperature for unknown reasons (it may be due to
the instability of the electronics). To evaluate the effects of this phase shift ¢ on the second
moment and skewness calculations of the field profile, we generate a depolarization function
(asymmetry plot) P(t) = e“’zz_'2 cos(wt + ¢) where 0 = 2 us~!, w = 20 Mrad/s. These
parameters are chosen so that there are no evident changes in the field profiles when the
phase shift ¢ varies from 0 to 0.5 (~30°). The ¢ dependent second moment (ideally the

second moment should be 2 us~') and the skewness plots are shown in the fig. 1.9.
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We can clearly see that the second moment and skewness are very sensitive to the phase
shift ¢. This result requests us to extract the phase parameter accurately after fitting the
uSR asymmetry plot.

To correct this phase-shift effect, we have modified the FT routine to obtain the correct
field profiles as introduced in the following procedure, which is also appropriate when we
analyze the individual histogram. We will now introduce another origin of the phase shift.
We know that the asymmetry A(t) is usually composed of two histograms coming from
two oppositely (7 out of phase) located detectors. However in reality, especially for high
precession frequency data, the two histograms are usually found not exactly = out of phase.
To consider this phase deviation ¢ from 7, we can do the following analytical analysis.
As usual, we assume the phase-shifted histograms are (we assume Gaussian depolarization

here, we can also use other depolarization functions instead)

222

Ny(t) = Noe 7[1+ Age™ "7 cos(wt)] (1.25)

Np(t) = Noe_i[l - Aoe‘“zz_‘2 cos(wt + @)] (1.26)

The asymmetry A(t) can be expressed as

Ny - Np
Ny + Np
o2:2 022
Age™ 2 cos(wt) + Age” 2 cos(wt + ¢)
22¢2 22¢2
2+ Age 7~ cos(wt) — Age~ "7~ cos(wt + @)
222

Age™ 7 cos(wt + %) cos(2)

1+ Age™ % sin(wt + £) sin(2)

A(t)

R

azkz 2
Age” 2 cos(wt + g) cos(g) - ?e'”m sin(2wt + ¢)sin¢ (1.27)

From the result above, we can see that, to the first order, the relaxation function is com-
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posed of two depolarized harmonics with frequencies w and 2w. The asymmetry amplitude
for the w harmonic is Ag cos(%), which is reduced by a factor of cos(%) from the original
amplitude Ag, there is a phase shift 2, which causes the changes on the second moment
and skewness of the field profile as we have discussed before. Since Ay is usually less than
0.4, the asymmetry amplitude for the 2w harmonic %&simﬁ is much less than Ag cos(%),
which is that of the w harmonic. All these conclusions have been verified through computer
simulation.

When the external applied magnetic field is high, besides the phase-shift effect studied
above, there are some other features we need to pay attention to such as: the radius of
decay positron orbits shrinks with increasing field which requires small detectors within
several centimeters of the sample; usually the time spectrum (histogram) consists of a large
number of small time bins which have a rather low number of counts with correspondingly
large statistical uncertainties. This circumstance makes the usual lab frame asymmetry plot

rather uninformative to the eye and is appropriate to be studied in the frequency space.

(Brewer 94]

1.4 The Rotating Reference Frame

In applied high magnetic field, the precession frequency of the muon spin is very high. If we
would still prefer to study the asymmetry in the time domain rather than in the frequency
domain, we could use the rotating reference frame scheme. To do this, we multiply the
muon spin polarization function P(t) by function cos(wrprt). The rotating-reference-frame

frequency wgrrr is chosen so that w, —wgrgF is small enough (usually between 3 and 15 MHz)
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to produce a reasonable number of oscillations over the analyzed time interval (w), is the
muon spin precession frequency in the laboratory frame). Note that after P(t) is multiplied
by function cos(wrrrt), two frequencies w, — wprr and wy + wrrr Wwill appear in the
resulting function. We either filter out the higher frequency through a Fourier Transform or
combine several time bin counts to get the lower frequency signal. There are two primary
benefits of performing such a transformation. The first is that the quality of the fit can be
easily and visually examined. It also allows the data to be packed into fewer bins, which
greatly enhances the fitting speed.

The figure 1.10 shows a typical muon spin precession signal in the vortex state of Bi2212
for magnetic fields of 3.0 T and 6.0 T applied parallel to the c-axis in our experiment. The
signals are displayed in a reference frame rotating at about 10 MHz below the Lamor
precession frequency of the muon. Dephasing of the signal arises from an inhomogeneous

distribution of magnetic fields associated with the vortex lattice.

1.4.1 Heterodyne Technique

The Heterodyne Technique is an improved variation on the rotating reference frame (RRF)
technique in which the data from all the detectors are also used. For a given spectrum, the
asymmetry is first obtained (subtract background, multiply by e**, subtract the average
value), then a heterodyned asymmetry is produced by multiplying the asymmetries just
obtained by cos(wit), where wy, is an angular rate near to and usually below the Lamor
frequency. Final asymmetry is obtained by summing over a number of channels to get rid
of the higher frequency component generated after the multiplication. For fitting purposes,

the predicted asymmetry is treated identically to the data. The advantage of this technique
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is that the phases in the cosine term of the asymmetry function need not be fixed. In this

way, we can make full use of all the experimental data, which is important at high magnetic

fields.

1.5 The Purpose of This Research

In this research work, we chose Bi2212 as sample because it is the most anisotropic 2D
superconductor discovered so far. We expect that the vortex pancake plays important
role on the magnetic field distribution inside the superconductor and we aim to obtain
important information on the vortex pancake configuration in the mixed state of Bi2212.
High transverse field muon spin rotation and relaxation technique was used to study the
sample because in this field range (1.0-7.0 T), very few research was carried out due to the
high requirements of electronic resolution, statistics and difficulty during the data analysis
process.

In the next chapter, we will review some general properties of magnetic field distribution
inside superconductor, then we will present our experimental data and compare them with

the results from a proposed pancake vortex disorder model.
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Figure 1.7: Simulated field profiles as functions of the time shift ét (unit:us) where wg = 80 MHz

and A = lus~t.
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Figure 1.8: The long dashed line is the result of a direct FT on the uSR spectrum (B = 2.7T and
T =90K) without phase correction; after correction, it shows the actual field profile (solid line).
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Figure 1.9: The effects of phase shift on the skewness and the second moment of the field profile.
The simulation procedure is described in the text.



CHAPTER 1. INTRODUCTION 27

02 - , -
B=3.0T T=933K | B=60T T=932K 4
4
01, 3 L 4|
oo s ﬁ i
; ’% it
° gﬁg %‘W
3 F 3
A
o1 b 7 . ;
i
-0.2 :
8=30T T=100K B=60T T=8.0K ;
01 r L x
2 Ag “ i
- 1t f.“
g 4 L (X34}
0% Fief
g t i 41 y { 1
g “ ¥ - i1 ! !
; :
-0.1 lr -1' '— 4
: [ '
| I |
! L [ . !
-0'20 2 4 6 8 0 2 4 6 8
T (us) T (us)
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Chapter 2

Magnetic Field Distribution

2.1 Local Magnetic Fields

We know that by determining the Larmor frequency from a transverse field 4SR histogram,
it is possible to determine the local magnetic field B,. Generally the total magnetic field

Ay

at the muon site B, can be expressed as follows: [Schenck 85]
B, =Bezt — Bpm + B + B + Bgjp (2.1)

where B, is the externally applied field (if any) generated by either Helmbholtz coils, elec-
tromagnets or superconducting coils, B pas is the demagnetization field due to the finite and
particular shape of the sample, B is the Lorentz field produced by magnetic polarizations
induced on the interior of a hypothetical spherical cavity around the muon site due to the
average bulk magnetization of the medium, B, is contact hyperfine field exerted on the
muon by its Fermi contact interactions with the net spin density of conduction electrons,
and Bg;p is the net field from the surrounding microscopic magnetic dipoles within the
Lorentz cavity appropriately thermally averaged over magnetically inequivalent sites. In-

terpretation of these fields requires knowledge of the muon site, including zero-point motion

28
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and any tunneling between nearby sites, and sometimes can be quite difficult. See [Kossler
85, Schenck 85, Brewer 94] for further discussions on this topic. Note that in the theoretical
scheme of calculating the field profile, due to the existence of finite field interval A, the

calculated value f.(B) deviates from the true value f;(B) by %— fi(B) i.e. [Wan 99]

[(B) = Ju(B) + 3 F(B) (2:2)

2.2 Lower and Upper Critical Fields B, and B,

The underlying physics of the high temperature superconductors (HTSC) has been revealed
in part by their internal magnetic fields both in the normal and superconducting states. For
A

a type II superconductor, the Ginsburg-Landau (GL) parameter x = z=- > —\};, and the

lower critical field B, can be expressed as [Abrikosov 57]:

1
B, = Z(lnn-{-O.OS) B (2.3)
Ink . .
= \/_T B, (in some literature) (2.4)
K

where B,y is defined in terms of the differences of the free enthalpies between the normal

and superconducting states: [Buckel 91]

B2
Gn - Gs == E‘Z—to'lv (2.5)

Similarly, with the aid of the GL parameter, the upper critical field B., is given by the

relationship:

Bea = V2 K Buy (2.6)
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In the equations above, we have expressed B.; and B, in terms of the GL parameter x and

B,. Sometimes we can also estimate them in terms of A and £ as

_ $olnk

Bcl ~ 41{A2 (2.7)
~ 20

Bc2 ~ 27!'52 (2'8)

In the equations above, B.;, B.; and B, are all temperature dependent. We can see that,
for type II superconductors, as x increases, B.; becomes smaller and B, larger. Recently,
in the cuprate superconductors, high magnetic field studies (up to 60 T) have revealed a
non-BCS divergent shape of the upper critical field. [Zavaritsky 00]

For anisotropic superconductors, the critical fields (B.; or B.) perpendicular to the
plane of the CuO; layers B, or B.;; may be different from those parallel components
Beyjor By. For example, for single crystal Y BaaCu3O7, Beoy (T = 0 K) =~ 525 T,
Bey (T =0K) ~230T and By, (T =11 K) ~ 0069 T, B, (T =11 K) ~ 0.012
T [Umezawa 88, Worthington 88, Bourdillon 94]. For theories on the calculation of the
upper critical field, see ref. [Kogan 81, Werthamer 66]. Generally, the upper critical fields
depend on both the crystal orientation 8 (the angle between c-axis and magnetic field) and
temperature T', and can be expressed as the following phenomenological formula which best

fits the experimental data:

T. - T) 27(9)

m2 1
T (sin®6 + —5 cos? )72 (2.9)
c

™

B (T, 0) = By(6) (

In high T, cuprates such as Bi2212, B, is considered to be a crossover field between the
normal state and a vortex liquid mixed state [Fisher 91] and SQUID magnetization measure-

ments show that this transition is not sharp. Below B there is another characteristic field
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B, p across which a transition (melting) happens from a 3D vortex mixed state (Abrikosov
lattice) to a 2D vortex liquid mixed state. Bsp is estimated to be around 1 T at T =30 K
[Kes 91]. In our uSR experiments on Bi2212, since the transverse fields are applied along
the crystalline c-axis (# = 0), it is important to study the lower and upper critical fields
along this direction so that we can determine whether the sample is in a mixed state before
interpreting any data.

Evidently our applied magnetic fields are much greater than the lower critical field B, ; ;
here we will only be concerned about the upper critical field in Bi2212. Some reports from
the literature are listed as follows: B, (T = 0K) = 122T [Kogan 81] (this result is too
optimistic and does not include the Pauli paramagnetic limiting effect, which will suppress
B, substantially [Pint 89]); B2y (T = 4.2K) = 20T [Guillot 89]; B2, (T = 0K) = 32T
[Datta 92]. Based on these experimental data on B, , for external magnetic field B = 7.0T,
the temperature at which the transition between the mixed and normal states happens is
estimated conservatively around 70 K [Wan 99]. For even lower external field, the transition
temperature will be even higher. Thus in the experimental field range, below 70 K, we can

expect that the Bi2212 is in a mixed state.

2.3 The Penetration Depth A\, Coherence Length £ and Core
Radius py

When a small magnetic field H < H,, is applied to a type II superconductor, the field is
expelled from the interior of the sample; while H;; < H < H., it becomes energetically

favorable for the field to penetrate the sample in the form of quantized lines-vortices. In the
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first case (Meissner state), the magnetic field only penetrates into the sample surface with a
characteristic length scale A, which is called the magnetic penetration depth. In the second
case (vortex state), the local magnetic field has a maximum in the center of the vortex core
and decays outside the core over the length scale A in the vortex.

The magnetic field penetration depth A is one of the fundamental scales of a supercon-

ductor and is given by the London formula

1 poe’n, 1
X Tme C1xel (2.10)

where pg is the vacuum permeability, e is the electron charge, m* is the effective mass
(in general a tensor) of the superconducting carriers and n; is the superconducting carrier
density. The correction factor is related to the coherence length £ and the mean free path
{. In the clean limit (§ < [), the correction factor essentially becomes unity. This is in-
deed the case for high T, cuprates, organic(BEDT), the HF superconductor U Pt3, and the
Chevrel-phase systems. Furthermore, if we assume the effective mass m* remains constant,
the temperature dependence A(T') reflects the quasiparticle density of states due to thermal
excitations and therefore probes the nature of the low energy excitations, the superconduct-
ing gap structure and the symmetry of the pairing state. Among the various techniques (ac
susceptibility, microwave cavity measurement, mutual inductance, far infrared reflectivity,
electron holography, inverted microstrip resonator technique etc.) to investigate the vortex
lattice, small angle neutron scattering (SANS) and muon spin relaxation (4uSR) experiments
are unique since they directly probe the bulk of the material. In the non-cubic superconduc-
tors, and especially high temperature superconducting materials, penetration depth may be

anisotropic and dependent on crystallographic orientations with respect to both magnetic



CHAPTER 2. MAGNETIC FIELD DISTRIBUTION 33

field and specimen surface. In muon spin relaxation measurements in a wide class of high
temperature superconductors, Uemura et al. reported a universal linear relation (Uemura
Plot) between T, and n,/m* at low carrier doping levels, whereas in heavily doped samples
saturation or a slight decrease was observed. [Uemura 89, 91]

The temperature dependence of the penetration depth based on an interpretation of the

London electrodynamics of a superconductor (Gorter-Casimir model) is given by [Schrieffer

88]
1

vV1-(T/T)*

A(0) is the penetration depth at T = 0 K and is simply c/w, for good bulk superconduc-

AMT) = \(0) (2.11)

tors where w, is the normal state plasma frequency. A good fit of experimental data to
the equation above is usually taken to mean that the pairing in high T. superconductors
is of the conventional s-wave type with no nodal points or lines in the energy gap func-
tion. In practice, sometimes the power index 4 in the equation above is generalized as a
phenomenological parameter n.

The general energy gap model based on the exponential specific heat law gives the

expression [Lewis 56]
A(0)

\/1 _ (2a+t)E(a/t)-2te—2/t
E(a)(1+2a)—2e—=

where a is a parameter related to specific heat, ¢ is reduced temperature T/T,, and E(z)

(2.12)

AT) =

oC =T

is the exponential integral function defined by E(z) = [ ¢—dr. If we assume o(T) x
1/A%(T), we can test the model from the experimental relaxation data. In practice, the
comparison may be obscured by extrinsic effects such as T-dependence pinning strength,

FLL thermal motion, different defect structures for samples of similar composition, i.e.
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heuristic factors affecting the topology of the FLL especially for the bismuth-based family
[Ansaldo 91 ].

A major question in high T, superconductivity is whether or not there are nodes in the
superconducting gap function (pairing state). In fact, recent experimental and theoretical
work on the symmetry of the order parameter in HTSC has led to the conclusion that for the
majority of the cuprate superconductors the symmetry of the order parameter is dominated
by a d;2_,2-wave component (the gap function has the form A(k) = Ag[cos(kza) —cos(kyb)].
[Harlingen 95, Scalapino 95] This is in contrast to the metallic low-temperature supercon-
ductors for which the order parameter is dominated by an isotropic s-wave component.
The problem of an isolated vortex line in a d,2_,2-wave superconductor was first seriously
considered by Soininen et al. using a simple microscopic model for electrons on a lattice
in the Bogoliubov-de Gennes formalism. [Soininen 94] They found an s-wave component
is induced near the vortex core with opposite winding of phase relative to the d,._,:-wave
component. Thus in the core region of an isolated vortex, the magnetic field distribution is
fourfold symmetric, whereas outside the core region, the field distribution is circular sym-
metric. In 1996, Xu et al. extended the two-component Ginzburg-Landau theory for an
orthorhombic crystal structure [Xu 96A], they concluded that for a field applied parallel to
the c axis, both s-wave and d;2_,2-wave order parameters exhibit two-fold symmetry when
the anisotropy < is greater than 1. Based on numerous studies on this topic, we now think
the actual order parameter present in hole doped HTSC likely is formed by a mixture of a
dominating d,2_ 2-component and other components such as an s- or dzy-component. (Al
98] Recently, Krishana et al discovered an anomalous plateau in the longitudinal thermal

conductivity of Bi2212 at high magnetic fields which they attributed to the opening of a
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second gap of d., symmetry. [Krishana 97] There have been numerous experiments devoted
to the study of the symmetry of the order parameter in the oxide superconductors, which
are divided into two categories: based on probing the quasiparticle excitation spectrum and
probing the phase of the order parameter in interferometer experiments. [AIlff 98] Extract-
ing the symmetry of the order parameter from the temperature dependence of the magnetic
penetration depth belongs to the first category.

In order to establish rigorous constraints on the pairing state fromn the temperature de-
pendence of the electromagnetic penetration depth, it is necessary to determine the asymp-
totic behavior at low temperature. {Annett 91 | For any pairing state with a finite excitation

energy, the change in A at low temperature is (AAT) = A(T) — A(0))
__A
AXT) x e kT (2.13)

and A in the exponent is the minimum value of the energy gap over the Fermi surface. For

pairing states with nodes on the Fermi surface
ANT) < T? (2.14)

where p = 1 for the simplest form of the gap with d-wave symmetry. In general, powers of
T. T?, T3, or T* are all possible depending on the types of nodes aud the orientation of the
applied field. [Gross 86, Annett 96] The limiting temperature dependence of A(T') as T — 0
K decides whether the superconductivity is conventional or unconventional [Shrivastava 96
|- Besides these theoretical considerations, there are many effects which may influence the

detailed form of the temperature dependence, including strong-coupling corrections, dirt,
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the precise shape of the Fermi surface etc.. [Annett 91] Also Roddick and Stroud [Rod-
dick 95] have described a simple model to consider the fluctuation effects and obtained a
linear temperature dependence in A(T). A variational calculation shows that this linear
T-dependence persists even when quantum effects due to charging and dissipation are in-
cluded in the model. Furthermore, in orthorhombic or tetragonal crystals, all singlet pairing
states other than s-wave would lead to such a linear temperature dependence. [Sigrist 87 |
Thus a linear temperature dependence A(T') may not be sufficient to be the signature of a
superconductor with the nodes at the Fermi surface.

At the same time, detailed 4SR investigations of HTSC have demonstrated that A can
be obtained from the muon spin depolarization rate o(T) ~ 1/A*(T) [Keller 94, Piimpin 90].
For an isotropic extreme type-II superconductor with a perfect triangular vortex lattice, the

depolarization rate o(T) is directly related to the penetration depth via [Brandt 88A]

o
o(T) ~ /(AB?) = o.osogrz% (2.15)

where ®g is the magnetic flux quantum. This equation is only valid for high magnetic fields
(Bezt > 2ugH.1) where the second moment (AB?) is field independent [Brandt 88A] and
the vortices are static without any thermal fluctuations and disordering {Harshman 91].
The distinctive increase in this depolarization rate parameter below T, is common to all
reported results for the oxide superconductors.

To accurately determine A for a specific FLL involves detailed modeling of the field
distribution. One such model relies on an approximate low-field solution of the Ginzburg-
Landau theory [Clem 75], which has been extended to higher fields later on [Hao 91] and

further simplified [Yaouanc 97].
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Generally, the relaxation rate o depends on both temperature T and magnetic field in-
duction H. Based on phenomenological Ginzburg-Landau (GL) theory, for superconductors

with GL parameter k = A/£ > 1, we know [Yaouanc 97]

ATH) = [ F(B)(B - BB
_ +ml : B 2
_ /_ 7 /V 5(B — B(r))dr(B — Bq)%dB

- l - 2

= 7 /V (B(r) — Bo)%dB

_ 1 iGr _

= v /V (EG:B(G)e Bo)%dB

Y IB(G) - By?
G

= Y IB.(G)]
G#0
_ (%) | _REIG) P
B (?) c§)51+,\2(T,H)G2 (2.16)

where R(£|G]) is the vortex core cut-off function. Usually, the penetration depth A(T, H)
is much greater than the vortex lattice constant i.e. A2(T, H)G? > 1, so the equation above

can be further simplified as

RE[G)) |2

G?

2 ~ = By’
o’(T,H) =~ m(?) Gz¢:o

2
s () +e (2.17)

where f,(¢, G) is the vortex structure factor and also depends on field induction H through
the implied dependence of G(H).
Further, the field dependence of the penetration depth A can be the consequence of

interesting non-linear and non-local effects. Franz, Affleck and Amin have developed a
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means to calculate the field distributions assuming a regular vortex lattice and incorporating
the non-local effects enhanced by the presence of the nodes and also including non-linear
effects. [Franz 97] In the simplest case, assuming A(T, H) and f,(£, G) are H independent
and \(T') = '\(0)7:7%7;37 [Gorter 34], o(T) < 1 — (T/T.)*.

A weak temperature dependence of o for T < T, suggests there is an energy gap in the
spectrum of excitations [Aeppli 87, Harshman 87, Piimpin 90 |, as expected for conventional
s-wave pairing; a linear temperature dependence in o suggests a pairing state with nodes in
the gap [Scalapino 95], as found in YBa,Cu3Q0¢.95 [Hardy 93, Sonier 94] and BiySr2CaCuy0g
[Jacobs 95, Lee 96]. However, it was shown [Roddick 95| that the phase fluctuations of the
superconducting order parameter, as proposed by Emery and Kivelson [Emery 95], can
also lead to such a linear T dependence. Further, predicting the behavior of A and o in
the vortex state may need to include the nonlinear and nonlocal effects. [Amin 00] The
behavior of the temperature dependence of the penetration depth will be explained further
later in the Experiments, Results and Analysis section.

To explain numerous experimental results which deviated from the predictions of the
London theory, Pippard proposed the concept of coherence length. [Pippard 53] The co-
herence length £ is a measurement of the nonlocal response of the superconductor to the
applied magnetic field in the sense that the value of the supercurrent J measured at a
point r depends on the value of the vector potential A throughout a volume of radius &
surrounding the point r.

The high T, materials differ remarkably from conventional superconductors in that they
have much smaller coherence lengths. Consequently, these materials are in the extreme type

II and clean limit. Furthermore, fluctuation, boundary effects and anisotropy are all much
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stronger in these short £ superconductors. We now also know the coherence length £ is
the length scale for spatial variations in the superconducting order parameter or density of
the superconducting carriers. Compared with the penetration length A. there is less known
about £. In fact there have been very few measurements of ¢ deep in the superconducting
state of a high-T, superconductor. Estimates of £ can be obtained from the contribution of
fluctuations to measured quantities such as the specific heat, susceptibility or conductivity.
Scanning tunneling microscopy (STM) can be used to measure the vortex- core radius at
the sample surface, which provides an estimate of £&. For a type-II superconductor for H
near H_,, the magnitude of £ may be estimated from the measurements of the upper critical
field H.» using Ginzburg-Landau (GL) theory. At this field the vortices begin to overlap
and the superconductor undergoes a first order phase transition into the normal state. Since
the radius of a normal vortex core is about the size of the coherence length, then at H.»

there is a direct relationship with £. From GL theory,

P

§(T) =

However, reliable measurements of £ in this way are difficult due to the difficulties in the
accurate measurement of Ho(T'). In high T, materials, H.; is very large (several hundred
Tesla) at T = 0 and is therefore difficult to measure accurately. Measurements are generally
limited to temperatures near T, where H,, is considerably smaller. However, near 7, thermal
fluctuations of the vortex lines can depin or melt the solid 3D vortex lattice into a vortex
liquid phase. Furthermore, the equation above may not be valid for an unconventional
superconductor. Thus it is desirable to have direct measurements of the coherence length,

which in the vortex state is related to the size of the vortex cores, i.e. £ ~ pg, where pq is the
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vortex core radius [Caroli 64]. The vortex core structure was studied intensively in the past.
In principle both STM [Hartmann 93] and uSR [Sonier 97] can be used to characterize the
vortex structure factor f(£, G) or the size of vortex cores and thereby determine §. Ina SR
experiment, py is related to the high-field cutoff of the measured internal field distribution.
It was found in NbSe; [Sonier 97] that py decreases with increasing H, as a result of the
increased interaction between vortices. In YBasCu3Og 95, the temperature dependence of
&(T) was determined [Riseman 95] and no clear signal from the vortex cores was visible
below 3 T [Sonier 94, 97A].

As described by Uemura {Uemura 91], the effective Fermi temperature Tr in supercon-
ductors can be derived from a combination of the Fermi velocity vg nl/ 3/m' and the

relaxation rate o < ny/m*, following the relationship for a non-interacting electron gas:

kpTr x o'/?ul” (2.19)

The Fermi velocity was estimated using the proportionality to the coherence length £ =
hvp/(Ax). The energy gap A is calculated from a formula for s-wave superconductors in

the clean limit: A = 1.76kgT..

2.4 Skewness Factor a

The measurement of the magnetic field distribution in the vortex of type II HTSC via uSR
allows an investigation of the details of the flux structure [Lee 93], such as the effects of
random pinning [Brandt 88] and the dimensionality of the vortex structure [Brandt 91).

To quantify the shape of the field distribution, a skewness factor a, the variation of which
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reflects the underlying changes in the vortex structure [Lee 93, 95, 97, Aegerter 98], is defined
from the 3rd and 2nd moments of the field line shape. The parameter a is very sensitive
to structural changes of the vortex state which occurs as a function of temperature and
magnetic field. A value of a ~ 1.2 is typical for a static triangular FLL, whereas 1 > a > 0
either indicates a disordered static vortex structure or vortex dymamics in excess of the
typical uSR time scale (us). [Blasius 00] Notice that in real data analysis, this skewness
may be an artifact by the fast depolarization and apodization of the time-shifted uSR

spectra [Wan 99].

((B-B)3)s3

- — o\ L (2.20)
(B-By)
— (M3—3M1M2+12M13)3 (2.21)
(M; — M?)}

where M, = [ B" f(B)dB.

Table 2.1 Theoretical skewnesses for several commonly seen field profiles.

f(B) a(z)
Back-to-back Exponential fg(B) | ag(z) = Re=yEtey)d , where £ = 2&
(1+z3)_§ Ar

[yZE-1)@Ez-z2-1)+2 [ Tz-1)

(1~ 2)(1—z)2+z)

Back-to-back Gaussian f¢(B) ag(z) = , where = = %f

12 T
Back-to-back Line fr(B) ar(z) = L(-z—'-'l—z(mi“—-“i-‘;fﬁ, where z = -f‘
L _ [15(1+z+z2)] R

The definitions for Back-to-back Ezponential fr(B), Back-to-back Gaussian fc(B) and

Back-to-back Line fr(B) functions are as follows: ( the skewness doesn’t depend on the
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normalization factor which we have chosen as 1 )

e~ A(Bo-B)  for B < By
fe(B) = { e~*r(B-Bo)  for B > By
_ (B—8g)?
e *. , forB< B
fe(B) = _(B=Bg? ’
e ¥r , forB> B
fu(B) ku(B — Bo) +1, for B < By
L kr(B — Bg) +1, for B > By
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Figure 2.1: Theoretical skewness plots for ag, ac and ar.
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Chapter 3

BSCCO Family and Bi2212 System

3.1 Introduction to type-II superconductors

When the external magnetic field applied on a superconductor is between the lower critical
field H., and the upper critical field H,, for that specific superconductor, we say that the
superconductor is in a vortex state in which quantized flux lines or flux pancakes are formed
inside the superconductor. Numerous theoretical and experimental studies have revealed
new information that is essential to better understand the microscopic mechanism of type-II
superconductor. However, there is still no comprehensive theory of the high temperature
superconductors (HTSC). The symmetry of the order parameter is still being debated, the
mechanism and its relation to magnetic order is unknown, and there continue to be surprises

in the properties of flux vortices.

3.2 Introduction to BSCCO

We will only concentrate on the BSCCO family and Bi2212 superconducting systems here.
For a historical review of superconductivity from mercury to the ceramic oxides, see ref.
[Dahl 92]. In 1987, the ability of bismuth to form lamellar oxides was recognized, the

43
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single-layer Bi-Sr-Cu-O compound was discovered to have critical superconducting temper-
ature ranging from 9 to 22 K [Michel 87]. Superconducting bismuth cuprates were later
reported to form a family of layer-structure phases with ideal formulas Bi;SroCa,_,Cu,
04420 (BSCCO) with n=1 (Bi2201, T.(B = 0) = 10K), 2 (Bi2212, T.(B = 0) = 80K), and
3 (Bi2223, T.(B = 0) = 110K), depending on the number of (CuO,), layers. (Note the
critical temperature T, is magnetic field and doping dependent.) Bi;SroCa,—1CusO442,
(BSCCO) is even another subset of the A;B;Ca,—1CunO442, family where A=Bi or Tl,
B=Sr or Ba. The BSCCO system (Bi2223) was found to show promising superconduct-
ing and other properties that are appropriate for wire and tape applications using the
powder-in-tube (PIT) techniques [Zhou 95]. In BizSr,CaCu0s (BSCCO(n=2) or Bi2212,
space group: AZ2aa, Pearson code: 0S60, 7. = 92 K [Poole 00|, lattice parameters are
a = 0.5333 nm, b = 0.5485 nm, and ¢ = 3.076 nm, very stable in vacuum [Zakharov 00]).
the upper critical magnetic fields H.(T,#) are so large ( for example H(0,0) =31 T
[Naughton 88] or quite different estimation result H. =~ 100 T [Pint 89] ) that the standard
anisotropic Ginzburg-Landau (GL) theory yields c-axis coherence lengths £, of the order of
1 A [Naughton 88] . This is much less than the c-axis lattice spacing 30.6 A (30.86 A [Poole
00] ) and the Cu-O layer spacing 12 A [Naughton 88] or 15 A [Sunshine 88].

We consider the configuration in which B is along the ¢ axis, perpendicular to the ab
planes in Bi2212, so that each vortex line can be thought of as a string of pancake vortices in
the planes through which it passes. The vortex system is considered to be three dimensional
if the (x,y) positions of the pancake vortices in successive planes are strongly correlated so
as to define a continuous vortex line, or it can be two dimensional if the pancake vortices

in successive planes move essentially independently. Since the interplane Josephson force
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Figure 3.1: Crystal structures of Bi;Sr2Ca,,_;Cu, with n=0, 1 and 2.

constant is independent of B while the intraplane force constant is proportional to B, these
force constants will be equal at some characteristic crossover field B, [Fisher 91]. When
the applied field B is greater than B.,, the interaction between adjacent pancake vortices
in the same layer is stronger than the interaction between those in adjacent layers. This
causes the thermal fluctuations to have a quasi-two-dimensional character in the high-field
regime.

The interplane coupling in Bi2212 is very weak, therefore the Lawrence-Doniach pic-
ture would be more appropriate [Appel90], i.e., BSCCO should be described as a set of
discrete superconducting layers whose order parameters are coupled by Josephson interac-
tion [Kleiner 92]. BSCCO is also the most anisotropic HTSC discovered so far exhibiting
pronounced anisotropy in its thermodynamic and transport properties [Junod 94]; in the
simplest case, it is described by the effective mass or penetration depth ratio v (v goes to
infinity represents the 2D limit) perpendicular and parallel to the CuO; layers.

Currently scientific community believe that in BSCCO, in the extreme case (at higher
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fields or temperatures), vortex “pancakes” are formed with circulating currents confined
to the CuQO2 planes where the vortex cores threading the superconducting layers may be
thought of as wiggly lines. [Schneider 95 The pancakes interact with each other via a pair-
wise potential [Feigel'man 90] and via interlayer electromagnetic and Josephson coupling
[Daemen 93, 93A, Koshelev 96, Blatter 96]. This dimensional crossover from 3D to 2D
(vortex structure or magnetization-temperature m-T plane) is temperature and external
magnetic field (including both the magnitude and the direction) dependent. [Schneider
99] Recent studies [Aegerter 96, Lee 97] have shown that in BSCCO, the electromagnetic
interaction between the layers dominates over the Josephson coupling if the temperature
is lower than about 0.87.(0). Furthermore, a technique was developed for studying the
directionality of internal fields and research shows that for a Bi2212 sample, even at 2 K.
any applied field component perpendicular to the ¢ axis penetrates freely, as though the
material is transparent to applied magnetic fields in the ab planes. [Kossler 98| It was
also found that the ease of flux lattice melting in BSCCO is related to the weak interlayer
coupling. At low fields, the currents parallel to the c axis are vanishingly small and therefore
the Josephson coupling is very small too and the ordering is dominated by magnetic coupling
over a wide region of the B, T phase diagram. [Kossler 98] The pancake-vortex lattice in the
anisotropic or layered superconductors defines a tunable soft matter system with astonishing
properties. [Blatter 94] The interaction of 2D pancakes and the vortex lattice structure for

various magnetic field directions were studied previously. [Clem 91, Bulaevskii 92]
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3.3 Vortex Lattice (VL) Phases

In the mean-field limit the phase diagram of type II superconductors has three states: the
normal state (usually a metallic phase) at high fields, the mixed state (Shubnikov phase) at
intermediate fields in which the lines of magnetic flux are arranged in a triangular Abrikosov
lattice and the superconducting state (Meissner-Ochsenfeld phase) at low fields. Further-
more, in the mixed state as the temperature increases, thermal fluctuations destroy the flux
lattice near the mean-field transition line and a flux liquid phase enters the (H,T) phase
diagram through a first-order vortex lattice melting transition. [Nelson 88, Houghton 89,
Zeldov 95] Vice versa, as the temperature is reduced, the vortex liquid undergoes also a
first order phase transition to the flux lattice state. [Ruggeri 76] This first order melting
transition has been studied by resistivity measurements, observation of a jump in the mag-
netization, renormalization group, elastic theory, density functional theory and numerical
simulations. [Davoudi 01] The FLL in very anisotropic and extreme type II superconduc-
tors such as BSCCO are intrinsically soft due to both the quasi-two-dimensionality of these
compounds and the long range of vortex-vortex interactions. [Hetzel 92] It is now clear that
the response of the FLL to nonuniform perturbations with k # 0 such as thermal fluctua-
tions (with dominant Fourier modes at the boundary of the Brillouin zone of the reciprocal
lattice), softens rapidly with increasing anisotropy. The melting transition (see fig. 3.2) is
expected to be first-order according to the standard symmetry considerations [Landau 37]
and confirmed through theoretical calculation [Blatter 94], and the experimental observa-
tion of a jump in the magnetization measurement in Bi2212 [Pastoriza 94, Zeldov 95] or

by uSR [Lee 93] and SANS [Cubitt 93] experiments in Bij 15571 85CaCu20s..5 and Monte
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Carlo simulations of the frustrated XY model [Li 91, Hetzel 92]. The possibility of a first
order phase transition being due to decoupling of the different layers has been investigated.
[Glazman 91} Note that this first order melting line in the temperature-magnetic field plane
is considered to be unrelated to the depinning line T = Ty4,(H) where the flux lattice depins
itself and become more perfect through thermal excitations, which correspondingly gives an
increased neutron diffraction signal. [Cho 94, Forgan 97, Fuchs 98] We now know that in
the HTSC there exist several exotic vortex lattice (VL) phases owing to the weak coupling
between the superconducting CuO; layers (which gives rise to various flexible vortices),
short coherence length (which enhances their susceptibility to pinning) and high values of

T. (which allows the thermal effect to play a role in the vortex state).
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Figure 3.2: Bi2212 vortex phase diagram. [Blatter 94]

Experiments that probe the vortex state of HT'SC can be divided into three categories
[Sonier 00A], those that measure (i) thermal and transport properties, (ii) electronic struc-

ture, and (iii) the inhomogeneous magnetic field. Thermal conductivity, resistivity, and
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specific heat measurements belong to (i) and (ii), STM belongs to (ii), and SANS and mag-
netic imaging with SQUIDs belong to (iii). NMR and uSR probe both (ii) and (iii). uSR
measurement of the magnetic field in the VL phase is the main focus of this thesis.

The SR technique has proven to be a powerful tool for studying the VL phase. [Lee 93,
Riseman 95, Sonier 97] To date much attention has been paid to the VL melting and pinning
effects in BSCCO and YBCO. [Sonier 00] We know that a characteristic structural feature
in Bi2212 is the presence of CuO; planes and high anisotropy <, suggesting strongly two-
dimensional (2D) physical properties (for a beautiful experimental demonstration of the 2D
character see [Busch 92, Safar 92]). Normal-state resistivity [Martin 88, Jihong 88]. upper
critical fields [Palstra 88, Murata 87, Naughton 88] and transport critical current [Martin 89]
measurements indicate that the superconducting sheets (CuQO-» planes) are weakly coupled
and spaced 15 A apart along the c axis [Sunshine 88]. This coupling between sheets or layers
may be treated as a spacial symmetry-breaking perturbation, as discussed theoretically by
several groups [Hikami 80, Ito 81] or more recently a combination of tunnelling Josephson
currents and electromagnetic interactions [Dalmas 97]. When increasing the magnetic field
or the temperature, one expects to observe changes in the typical 3D flux-line-lattice field
distribution due to either disordering or motion of the vortices [Harshman 91, Inui 93], a
reduction of its dimensionality [Brandt 91, Harshman 93] or its melting to a glass phase
or vortex liquid phase [Duran 91, Blatter 94, 97, Brandt 95, Ryu 96, Gingras 96, Lee 97].
Actually, it has been recognized that the magnetic phase diagram of many superconductors
contains a vortex liquid regime, in which the magnetization behavior is fully reversible and
the transport data show flux flow. [Hao 91]

Generally, at low temperature and for an external field less than the crossover field
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B., [Aegerter 98] (B, = 1T for Bi2212; for a general review of magnetic field induced
dimensional crossover phenomena in cuprate superconductors, see {Schneider 99]), a stable
lattice of extended flux lines is observed due to an attractive electromagnetic interaction
between pancake vortices in different layers which is sufficient to align the vortex cores along
the c direction, and its uSR signature is a typical strongly asymmetric field distribution
(Monte Carlo simulation shows that this asymmetry depends on the specific form of B(r)
[Wan 99]) with a pronounced tail towards high fields, showing that some of the muon spins
precess in the local field produced by flux cores, which is supported by the occurrence
of Bragg peaks in the neutron diffraction experiments [Cubitt 93]. Note that although
a dimensional crossover is a very possible interpretation, there are other explanations for
the observed changes of uSR line shape in Bi2212 as the applied field is increased across
B.,. For example, it has been proposed that the Abrikosov lattice transforms to a phase of
entangled vortices at high field; this is a pinning-induced transition from a weakly disordered
Bragg glass phase to a strongly disordered vortex glass (or pinned fluid) phase. [Sonier
00A and references therein] Studies on the vortex lattice with n-fold symmetry show that
generally the field distribution f(B) is located between By (B is the magnetic field at
the center of the lattice cell, which is farthest away from the vortex cores) and By (By
is the highest field inside the vortex core, without which, there will be no high field cut-
off By and the field distribution extends to infinity) with only one maximum at By,
(contributed by those points with n-fold symmetry). In numerical simulations, the finite
jumps of f(B) at By and By are caused by the finite field histogram sampling interval
AB, the probability peak found around B; is caused for the same reason. If the sampling

interval AB is reduced, f(B) and f(By) becomes closer to zero, and the false peak around
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By, will disappear. [Wan 99] Changing the magnetic field tunes the relative importance of
the attractive interlayer interaction and the long-range repulsion between vortices in the
same layer. Drastic changes occur when B.; exceeds B, or the temperature exceeds the
melting temperature T;,. [Caillol 82] In this case, the energy required for short-range tilt
deformations of flux lines becomes smaller than that for shear deformations within the
planes, so that the layers of pancakes may move with respect to one another and the core
positions in nearby layers no longer coincide. [Lee 95] The field distribution becomes more
symmetric, and simultaneously the neutron Bragg peaks disappear indicating the long-range
coherence of the flux lattice is destroyed. The change of the shape of the field distribution
is quantized by the skewness factor a as we discussed before, which was used by S. Lee et
al. [Lee 97] to explore the low field (B,T) phase diagram of BSCCO. They found that there
is vortex disorder over wide regions of B and T. Certainly above 20 K or so the flux lattice
should be melted for fields even much less than 2.7 T. The melting line can be determined
with a Lindemann criterion [Houghton 89, 90, Blatter 96] by comparing the free energy
of the 3D VL to the free energy of a collection of 2D liquids [Caillol 82]. In this picture
the vortex lattice is expected to melt when the root-mean-square (RMS) thermal average
of the vortex displacements from their equilibrium position < u? >1/2 exceeds some small
fraction ¢ of the intervortex spacing L. Typically the Lindemann number ¢, is of the order
0.1. In an earlier measurement on a BSCCO sample, evidence was also found that the flux
lattice melts at high field and low temperature, [Kossler 00] which leads into the higher field
measurements, i.e. this thesis work.

Note that the first-order vortex lattice melting transition happens not only in BSCCO

but also in YBCO, in which the thermodynamics features of the transition were studied
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in detail. [Dodgson 98] In a high external magnetic field, the Bi-2212 system consists of
an array of pancake vortices that are uncorrelated in the ¢ direction but may order two
dimensionally within each stack of CuO, planes. This interpretation is supported by the
numerical results [Schneider 95] and experiments [Vinokur 90, Glazman 91, Bernhard 95].
The B, is on the order of ¢9/A2, where ¢g = 2.07 x 10~ 3T'm? is the quantum of flux
[Aegerter 96]. B, is about 2000 G for \g,=1000 A . There are also reports that B is
about 650 G, which is determined by the field at which the pinning energy for a pancake
vortex is comparable to the energetic cost of deforming the vortex-line lattice. [Lee 93,
Cubitt 93, Aegerter 98]

Recent uSR [Blasius 99] and transport [Hellerqvist 94, Fuchs 98] experiments on under-
to-overdoped Bi2212 crystals have also been interpreted as evidence for a two-stage VL (or
vortex matter) transition: first the intralayer coupling of the pancake vortices is overcome
by thermal fluctuations, then the interlayer coupling is lost. These two processes occur
independently at different temperatures. There is also theoretical study on the instabilities
of VLL in BSCCO, which predicts the chain state, the equilibrium lattice that is similar
to the Abrikosov lattice at large fields but crosses over smoothly to a pinstripe structure
at low fields. All the features mentioned above happen not only in Bi2212 but also other
anisotropic HTSCs.

There are many other important applications of 4SR to the study of superconductivity
that do not involve measurements in the vortex state, such as studies of the antiferro-
magnetic and spin-glass phases, measurement of relaxation rates associated with phase
transitions and detection of spontaneous internal magnetic fields in heavy-fermion and un-

conventional superconductors. [Sonier 00A]
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3.4 Vortex Dynamics

In Bi2212, the small coherence length and quasi-two-dimensionality determine that the
vortex or flux dynamics (flux pinning and flux motion which includes flux flow FF, flux creep
FC, flux jump FJ etc.) plays an important role in its electronic and magnetic properties
[Tsuneto 98]. The properties of viscous flux flow, flux creep and pinning in anisotropic
superconductors have been under intensive investigation. In particular, the anisotropy of
the flux-flow conductivity was investigated within the time-dependent Ginzburg-Landau
(GL) theory with the anisotropic mass tensor. [Ivlev 91]

We know that in the mixed state of ideal (homogeneous, supercurrent J,(r) = 0) or
nonideal (inhomogeneous, supercurrent J,(r) # 0) type II superconductors, at lower tem-
peratures, the magnetic environment (ME) is static and determined by the London equa-
tions indirectly, which is the result of solving Maxwell equations or minimizing Gibbs free
energy, We also consider appropriate vortex core cut-off to avoid the logarithmically diver-
gent B(r) at the vortex core (behavior of Bessel function Ko(r = 0)), the inhomogeneities of
the internal magnetic field cause a line broadening in the magnetic resonance experiments
(ESR and NMR) or an enhanced spin-relaxation rate in 4uSR. At higher temperatures, ME
is closely related to the vortex or flux dynamics. We now know, in Bi2212, that the energies
required to misalign the 2D pancake vortices are very small and so that as temperature ap-
proaches T, thermal energies can strongly disrupt the alignment and break up the pancake
stack. [Clem 91] Remarkably, the condition for this thermally induced breakup is exactly
the same as that for the Kosterlitz-Thouless transition. [Kosterlitz 73, Clem 91] For a

complete description of vortex dynamics and recent experiments, see [Huebener 79, Wu 00}.
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Since the Lorentz force per unit volume of the flux-line lattice (FLL) f; < J; x B, a
flux line can be in a static equilibrium only if the total supercurrent arising from all other
sources is zero at that position, which is fulfilled in a uniform or undistorted lattice array.
The Lorentz force tends to drive the vortices down the flux density gradient. The flux
line can be also in equilibrium if there is pinning force f, (proved to be associated with
defects experimentally) to balance with it. In the dynamic case, the individual flux line is
subject to three additional forces: the Magnus force f, [De Gennes 66], the frictional or
damping force f,, and the elastic restoring force f,; [Ketterson' 99]. Equilibrium and non-
equilibrium problems involving elastic lattices and disordered media, such as the dynamics
of driven lattices, appear in a variety of systems. Vortex motion through thermal activation
is responsible for a number of non-linear phenomena within the class of anisotropic HTSC
materials. The energy barrier U, over which vortices jump from one state to a neighboring
state via the thermal activation, was measured recently [Wu 00] to study the vortex diffusion
and phase diagram in a Bi2212 single crystal. A consequence of the flux motion is a finite
electrical field E = v x B which causes dissipation or voltage noise in the superconductor.
To recover the desired property of dissipation-free current flow, the FLs need to be pinned by
defects such as vacancies, precipitates, dislocation loops, stacking faults, grain boundaries
etc.. The mechanism of flux pinning and vortex motion in type II superconductors was
reviewed recently by Wordenweber. [Wordenweber 99]

If the FLL deviates from its ideal configuration (a perfect triangular array) due to
dislocations, microscopic disorder, variations in the macroscopic average field, etc., the
theoretical uSR lineshape will lose its sharp features at the minimum, cusp and maximum

fields. This suggests that the experimental field lineshape can’t be adequately fitted by the
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theoretical lineshape for the ideal FLL alone. In this case, it was found that uSR data can

still be fit to the theoretical lineshape convoluted with a distribution of fields [Herlach 90]

1 1 B- 8,22
Nsmeared(B) = / ‘/2—‘”66 o n(B’)dB, (3.1)
Brandt [Brandt 88] showed that this convolution is consistent with how random disorder
and distortions in the FLL due to flux pinning modify the lineshape from the ideal case.

We assume the vortex displacement is given by
85(2) =ry(2) — 1} (3.2)

where r{ is the location of the v flux line in the ideal FLL, then it was estimated that the

root mean square of the vortices’ displacement has the following value [Riseman 94}

ckgz

k2 + k2 E

It was shown that a second moment of field & = 16 Gauss corresponds to disorder in the
FLL of /(%) =~ 6%. [Riseman 94]

The vortex dynamics in single crystal Bi2212 at lower fields 3 and 4 kG [ Harshman
91 ] indicates motional narrowing effects associated with vortex motion. A field-dependent
localization transition is observed around 30 K. Analysis of data shows that most of the
vortices are potentially mobile. The resuits are found to be consistent with a thermally

activated depinning picture.



Chapter 4

Experiments, Results and Analysis

4.1 Experimental Methods

4.1.1 Bi2212 Sample Description

The Bi2212 sample (the exact cation stoichiometry is Bi; S7) 94CaggsCus 9703+ with
T, = 90K and 0.03 stoichiometric error) we used in this study was made from multiple
(about fifty in total) high purity single crystals, each with approximate dimensions 3x3x0.1
mm3. The crystals were assembled into a flat mosaic sample with their ¢ axis aligned,
and mounted on a pure aluminum plate. The aluminum plate sample support is used
because of its very slow relaxing background uSR signal. The same sample has been used
in previous studies. [Kossler 87, 98, Harshman 87, 89, 91] Growing BSCCO single crystals
by using the directional solidification method is also being developed in the department here,
some Bi2212 samples with size 2X4 mm? have been produced in the lab, and the X-Ray

Fluorescence (XRF) method was used to characterize the stoichiometry of the samples.
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4.1.2 Experimental Setup

Transverse Field uSR (TF-uSR) measurements in external magnetic fields 1.0, 2.7, 3.0, 4.5.
5.5, 6.0 and 7.0 T along the Bi2212 crystalline c-axis were made on the M20 beamline at
the Tri-University Meson Facility (TRIUMF) in Vancouver, Canada. Off c-axis low field
experiments were also carried out on these samples and data were analyzed by the Positive
Wavelet Transform technique [Wan 99], however these low field data are not the focus of
this thesis. This thesis mainly studies the high field data on Bi2212 which have rarely been
studied by uSR researchers.

On the M20 beamline, we denote the upstream beam axis by z, the up vertical by y
and use x = y x 2. The muon’s polarization was rotated from roughly along the beam to
approximately vertical using a crossed-field separator upstream of the sample. The decay
positrons emitted from the implanted positive muons are collected and time stamped in the
up (U), down (D), left (L) and right (R) detectors. Four histograms containing around 30
million events were aquired with time resolution 0.3125 ns. (These parameters are used in
computer model simulations later in this thesis) Sample temperature was controlled between

2 K and 100 K in a He-flow cryostat.

4.1.3 Relaxation Function and Fitting

The four muon spin precession histograms were fitted all at once by the heterodyned tech-
nique introduced in chapter 1 combined with a nonlinear least-squares minimization Fortran
routine. A summation of one Back-to-back Gaussian signal and one pure Gaussian back-

ground signal was used to fit the experimental data. The relaxation function used in the
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fitting procedure is as following:

4 2,2
P(t) = Z {a,- Z b.b.g. - cos(wt + ¢;) + bie™ "7~ cos(wot + ¢i)} (4.1)

i=1l

where the b.b.g. function in the equation is

_ (w-wg)?
e L for w < wy
bb.g. = (w—wo)? K (4.2)
e
e R, forw?>uwy

In the depolarization equation 4.1, there are a total of 16 independent parameters. The
Back-to-back Gaussian field profile doesn’t have an explicit analytical form of depolarization
function P(t) in the time domain; the Fortran fitting program was developed to carry out
this fitting task.

Because the field distribution f(B) can’t be described by a simple function, instead of
using the second moment of f(B) as the relaxation rate o of the muons, we used a derived
parameter wgye = (wr + wr)/2 as 0. Further, we used wqifs = wg — wr as indicator of the
asymmetry of the field profile. [Kossler 00] A positive wg;sy suggests a field distribution
with a tail on the right, a negative wgiss suggests a field distribution with a tail on the
left. We assumed the asymmetric distribution of the lineshape in the Back-to-back Gaus-
sian function. In this general way, the final fitting results will give us information on the

asymmetries of the field distribution f(B).

4.1.4 The Asymmetry/Skewness of f(B)

To obtain the skewness wgiss of f(B) at each temperature, we first used the fitting results

from the previous run as the current input initial guess values of the 16 parameters; we
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then let the program fit on wy;fs. For all data, it is very interesting and surprising that the
fitting program terminated with an excellent 2 (most of them are around 1.05) and gave
small wg;rs values (around 0.1) with comparable corresponding errors. Thus we suspect
that the field profile f(B) may be symmetric at all temperatures. To confirm this, we then
fixed the wy;s; value at 0 and obtained the fits to experimental data again, which shows
excellent x2 and the same fitting values statistically for the remaining 15 parameters. By
doing so, we concluded that the field distributions f(B) are symmetric at all temperatures
and in all fields studied.

It was found that one oscillating signal with asymmetry amplitude about 0.08 comes
from muons stopped inside the vortex of the sample; the other slow relaxing oscillating signal
with asymmetry amplitude about 0.006 comes from muons stopped in the sample holder,
i.e. background. The signal with amplitude 0.08 is symmetric at all fields and temperatures,
which is the most interesting and important feature obtained from our experimental data.
Data analysis also showed that the background signal amplitude gets smaller at higher

fields. In any case, the background signal is 10 times less than the vortex signal.

4.2 Field Profiles and Relaxation Rates

4.2.1 Typical 4SR Spectrum and Field Profile

Due to the high precession frequency, a modified Cosine Fourier Transform was used to
obtain the field profiles at different temperatures and fields. The final field profile is the
average of the four histogram results (experimental data show that the differences between

the field profiles extracted from different detectors are negligible and are consistent with
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Figure 4.1: uSR spectrum and the corresponding field profile (B=2.7 T, T=10 K).

each other). A typical uSR spectrum and the corresponding field profile on the ab basal
plane are shown in fig. 4.1.

It is not evident from fig. 4.1 how the signal behaves, because the precession frequency
is too high in the time window. To visualize the relaxing precession signal, we showed
the asymmetries both above and below the superconducting transition temperature 7, in
a rotating reference frame. From fig. 4.2, it is clear that the relaxation rates are higher at

lower temperatures.

Typical field profiles at different temperatures in external field B=2.7 T are shown in

fig. 4.3.
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Figure 4.2: Typical muon spin relaxation signals and corresponding fitting results above and below
T. in a rotating reference frame. Only 1 out of 4 histograms was shown here.

4.2.2 Review of Previous Study

Before we discuss our experimental results of field profiles, relaxation rates and asym-
metry/skewness of f(B) on Bi2212, we review here some relevant studies on Bi2212. The
internal field distribution of the same sample in external fields 3, 4 and 15 kG was measured
before by Harshman et al. [Harshman 91], where a rather narrow and symmetric distri-
bution was observed at temperatures higher than 30 K. At lower temperatures, the line
shape becomes broadened and asymmetric. Further analysis suggests a motional narrowing

of the internal field distribution arising from the constrained vortex motion, which freezes
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Probability

Figure 4.3: Typical field profiles (average FT of 4 histograms) on the ab plane in B.; = 2.7T, the
horizontal axis was calibrated to the average field Bg.

out with decreasing temperature at these fields. Further, the narrowing of the distribution
could be due to one or more of several causes: motion of straight flux lines, curvature of flux
lines or breaking-up of flux lines into pancakes. [Forgan 97] In the case of flux entanglement
[Nelson 88] or the disordered vortex disks of the Lawrence-Doniach (LD) model [Lawrence
70|, the measured line shape would be narrower. It was predicted that in high fields, due to
the inter-vortex interactions, the vortex disordering becomes increasingly more important
than the motional narrowing and vortex correlation effects. In any cases, the narrowing of

the field profiles is associated with the dynamics of the pancakes. It’s interesting to notice
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that a back-to-back cutoff exponential function [Harshman 89] was used to analyze the field
profiles in the lower fields.

Another BSCCO sample (Bis 551 85CaCu203+5) was studied by the TF-uSR tech-
nique in several low fields 100, 200, 300 and 450 G. [Lee 95] It was found that the tempera-
ture and strong field dependences of the relaxation rate can be described by a 2D pancake
model [Clem 91] after considering the thermal fluctuations of the vortices about their aver-
age positions and vortex lattice melting transition at a critical or crossover field B... Lee’s
sample was also used by Aegerter to probe the angular dependence of the disorder crossover
field by TF-uSR (up to 2000 G) and torque magnetometry techniques [Aegerter 98] where
the crossover field was found to scale only with the field component in the ¢ direction.

Most recently, underdoped Bi2212 was studied by Blasius et al. and evidence was found
for a partial restoration of the vortex lines at higher fields (up to 1 T), which is suggested
to be related to the increase of vortex-vortex interaction and the subsequent change from

single-vortex pinning to collective pinning. [Blasius 00]

4.2.3 Our Results and Expianations

Our high transverse field (1.0, 2.7, 3.0, 4.5, 5.5, 6.0 and 7.0 T) uSR experiments (the upper
critical field for this sample is estimated as 44 T [Harshman 91] so that the sample is
assumed in a mixed state) shows that, in a unique external magnetic field, the precession
frequency of the muons almost remains constant at all temperatures. It suggests that the
external magnetic field is very stable during the whole experimental period.

The experimental muon relaxation rates as functions of temperature and field are shown

in fig. 4.4. In this plot, the wy,e values are the total relaxation rates, which include the con-
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Figure 4.4: Total muon spin relaxation rates in 1.0, 2.7, 3.0, 4.5, 5.5, 6.0 and 7.0 T external
magnetic fields. The relaxation rates increase from 0.2-0.3 pus~! above transition temperature to
0.6-1.0 us~! at lowest temperature and increase only slightly at higher magnetic fields(less field

dependence).

tributions from various sources: vortex, nuclear dipole, instrument broadening, background
etc..

In order to study the vortex state solely, we need to filter out all effects except the vortex
lattice on wqeye. The nuclear dipole, instrumental broadening, magnetic field gradient and
background contributions to the relaxation rate w, were subtracted from the total relaxation
rate waye according to formula w,. = m, where w,, is determined from data above

the superconducting transition temperature T, because above T;, no vortex is formed inside
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Figure 4.5: Superconducting muon spin relaxation rates in 1.0, 2.7, 3.0, 4.5. 5.5, 6.0 and 7.0 T
external magnetic fields. The general behavior of the relaxation rates is consistent with the direct
observations of the field profiles and the uSR spectra in the rotating reference frame.

the samples. Thus the pure superconducting relaxation rates w,. are obtained (fig. 4.5).
We can see from the plot, in the temperature range studied, ws.(T') demonstrates linear
temperature dependence behavior. At lowest temperature, the superconducting relaxation
rate wsc(0) at all fields is about 0.8 us~!. w,, are also found to be almost field independent
for early data sets at 2.7, 4.5, 5.5 and 7.0 T and increase only slightly with increasing fields
for another set of data at fields 1.0, 3.0 and 6.0 T.
For comparison purpose, in fig. 4.6 we have shown wgye, wyifs vs. T in superconducting

YBCO in magnetic fields 1.0, 3.0 and 6.0 T. It is clearly seen that wgye vs. T in YBCO has
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the similar behavior as that in Bi2212, however, wgiss vs. T shows that the field distribution
f(B) develops asymmetry between 0.5 and 1.5 us~! below the transition temperature T,
and maintains it down to the lowest temperature in the experiment. Furthermore, from fig.
4.6, we can see that the higher the magnetic field, the lower the transition temperature T;

T, drops from around 88 K at 1.0 T to 81 K at 6.0 T, which is consistent with the general

knowledge about the superconductors.

Y8Co
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Figure 4.6: w,,. and wqiss obtained on superconducting YBCO in magnetic fields B=1.0, 3.0 and
6.0 T using the same analysis procedure introduced in the text. wgy. vs. T in YBCO shows similar
behavior to that in Bi2212, however, wy;ss vs. T shows that the field distribution f(B) develops
asymmetry between 0.5 and 1.5 below the transition temperature T, and maintains it down to the
lowest temperature in the experiment.

Overall, the field dependence of w,.(T') in Bi2212 is weak and small, which can be
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explained excellently by a recently proposed dynamic pancake disorder model, which we
will study later in detail. [Kossler 02]

In this model, disorder is introduced by randomly displacing the pancake layers, and the
magnetic field probability distributions are calculated for a range of applied fields, degrees of
disorder and other parameters. Computer simulation shows that the field distribution f(B)
narrows and loses asymmetries rapidly with increasing disorder. In fact, it was observed
although not in such high field that Bi2212 single crystals display considerable lower values
of the relaxation rates due to random pinning. [Ansaldo 91, Lee 93, Aegerter 96, Sonier00]
By contrast, in optimally doped YBCO, local pinning broadens the uSR line shape thus
increasing the relaxation rate due to the random displacements of 3D vortex lines. [Brandt
91]

We know that a weak temperature dependence of relaxation rate for T < T, suggests
there is an energy gap in the spectrum of excitations [Aeppli 87, Harshman 87, Piimpin
90] as expected for conventional s-wave pairing (“conventional” means the gap function of
superconducting pairing state has the full crystal point group symmetry), which is certainly
not the case in our data. Our relaxation data at low temperatures show a linear temperature
dependence, which may suggest a pairing state with nodes in the gap [Scalapino 95] of
Bi>SroCaCuz0s [Jacobs 95, Lee 96] since it was also shown [Roddick 95] that the phase
fluctuations of the superconducting order parameter, as proposed by Emery and Kivelson

[Emery 95], can also lead to such a linear T dependence.
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Figure 4.7: Normalized experimental penetration depths and several theoretical predictions.

4.3 Penetration Depths

Experimentally, the penetration depth can be studied through various &)mplementary tech-
niques such as SR, dc magnetization, torque magnetometry, rf-resonance method etc.. uSR
is especially suited to measuring the penetration depth X because it does not require special-
purpose samples such as thin films or spheres of controlled dimensions. The penetration
depth A\, (T') of Bi2212 (estimated between 400 and 500 nm from the literature) was studied
before by Waldmann et al. up to 14 Tesla through the reversible magnetization measure-

ment by torque magnetometry. [Waldmann 96] A linear temperature dependence of Agy(T)
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at low temperatures was observed in a sample with high maximum 7. Samples with sig-
nificantly reduced T, showed a quadratic temperature dependence. The results were shown
to be consistent with a d;:_,2-wave model with resonant impurity scattering.

A superconductor with s-wave pairing exhibits a finite excitation energy with a minimum
energy gap Amin- Therefore for clean superconductors A(T') at low temperatures varies as
AMT) = A(0) x exp(—Amin/keT) (exponential model). [Miihlschlegel 59, Tinkham 75] This
model seems to be able to fit our data at the lower temperature end, however it fails at
intermediate and high temperatures. Thus our data do not support a pure s-wave pairing
with a constant gap.

The penetration depth calculation by the simple anisotropic extension of the BCS theory
shows a power law of temperature behavior A(T') — A(0) o (T/Ay)® at low temperatures
[Gross 86] where a = 1 is an indication of line nodes in a 3D system (or point nodes in a
2D system) in the d;2_,> state. It is believed that the d;:_,2 symmetry is very probable
in HTSC through the results of phase-sensitive experiments. [Harlingen 95] In fact, all of
the possible non-s-wave spin singlet pairing states of a superconductor with tetragonal or
orthorhombic symmetry and a spherical or cylindrical Fermi surface have line nodes in the
gap leading to a linear temperature dependence [Gross 86, Annett 91], A(T') — A(0) < T, in
the clean limit. We know that to the first order, the Taylor expansion of any temperature
dependent function at T = 0 will have this linear temperature dependence, thus we need to
be very careful during the data analysis. Strong impurity scattering may change the behav-
ior to A(T) — A(0) T for both s- and d-wave models. [Arberg 93] It was also found that for
a d-wave superconductor with resonant scattering even a small impurity concentration may

give rise to a quadratic temperature dependence below a crossover temperature T*. Above
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T* the linear term is conserved. [Hirschfeld 93] The study of the penetration depth at low
temperature is a comprehensive issue, which includes contributions from extrinsic origins
such as the demagnetization effect, weak link effect, and crystalline effect. and intrinsic
origin such as the superconducting gap structure and the symmetry of pairing mechanisms.
[Maeda 92] Unconventional pairing mechanisms in different classes of superconductors were
given in a recent review article [Annett 99] where the bismuthates, fullerenes and LiT%,0;
are clearly s-wave, SroRuO; is almost certainly p-wave, while for other systems, such as
the borocarbides, organics and the C15 Laves phases, the various experiments can be con-
tradictory and so it is not possible to draw a definitive conclusion at this stage.

From our result in fig. 4.7, we can see that, at low temperatures (less than 20 K), data
are not significant statistically to tell the differences between the linear and square power
law models. At higher temperatures, that the power law predictions deviate from the
experimental data suggests excitations from some other pairing mechanism, very possibly
an s-wave component induced near the vortex core. [Berlinsky 95, Franz 96, Xu 95, 96]
From the standpoint of the spontaneous symmetry breaking, in a bulk sample with perfect
crystal symmetry, the order parameter transforms according to an irreducible representation
of the crystallographic point group. [Sigrist 91] For example, in a crystal of tetragonal
D4 symmetry, only d;2_,: symmetry is allowed. However, near interfaces, surfaces or
impurities, which may be affected by the external magnetic field, the d,2_,2-wave order
parameter fluctuates spatially and hence induces components of other symmetry. [ Choi
97 ] Recent angle-resolved tunneling, angle-resolved scattering and torque measurements
performed on Bi2212 and other hole-doped cuprates support a two order parameter (OP)

scenario: the one responsible for pairing has d;2_,2 and the other responsible for phase
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coherence, has an anisotropic s-wave symmetry. [Mourachkine 99]

4.4 Field Profile: Skewness Discussion

From the plots of skewness ag(z) (see fig. 2.1)

[\/;ri(" —U@z-22-1)+ ;\/é(,,. — 1yt
[(1-2)1 -z +2]2

ag(z) = (4.3)
of the Back-to-back Gaussian function (where z = %f) and the skewnesses of other func-
tions, it can be seen that skewness always changes sign sharply when the field profile is
close to but not symmetric. [Wan 99] Further, the skewness definition based on the second
and third moments of the field profiles (eq. 2.20) is not sensitive to the asymmetry of the
field profiles at all when z = gf» is much greater than 1. Considering the accuracy of the
field profiles obtained from Fourier Transforms, we need to have a better way to identify
the asymmetry or the skewness of the field profiles. As recommended by Kossler, [Kossler

00] parameter (cg — or) or (6g — or)/(or + o) was used to denote the skewness of the

field profiles.

4.4.1 Back-to-back Gaussian and Back-to-back Exponential Field Profiles

We assumed the asymmetric Back-to-back Gaussian field profiles during the fitting proce-
dure. First we obtained excellent fits (x?) with the parameter wg;y fixed at zero, which
leads us to suspect that the field profiles are indeed symmetric. We then let the parameter
waifs go and allow the fitting program to give a fitting result; the final fitting results still

give us a value around zero with comparable error bar. In this way, we drew the conclusion
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that the field distribution is symmetric in all experimental fields and at all experimental
temperatures. This suggests that in such high fields (far beyond the critical field B.), ab
planes totally lost registry and correlation with other layers and no phase transition was
observed as reported in refs. [Lee 93, Bernhard 95, Aegerter 96, Lee 97, Blasius 99] As far
as we know, there are no similar high field results obtained on Bi2212, which makes this
thesis work more interesting.

To check the behavior of the skewness of the field profiles and the muon spin relaxation
rate as functions of temperature which we have obtained from the uSR data, we used a
similar method but another fitting function to analyze the same data. It can be proven

that the P(t) of a Back-to-back Exponential field profile has the following analytical form

L SR -
P(t) = R(eiwot+e) 3t gt
AL+ Ar
cos(wot + ¢)(1 + AL Agt?) + sin(wot + ¢)(Art — ALt) @

(1 + A2£2)(1 + A%¢?)

where wg, AL, Agp and ¢ are four parameters characterizing the shape of the field profile
and also determining the uniqueness of P(t). This function was implemented in the Fortran
data analysis program to fit all 4 histograms of U, D, L and R detectors in the time domain.
In this straightforward way, the results tell us the general features of uSR data and field
profiles. For each run, a 19-parameter fit was obtained, from which the values of Ay and
Ar were extracted. %ﬁ‘:, an indicator of the skewness of the field profile, as a function
of temperature, is plotted in the following figure. The second moment of the Back-to-back
Exponential field profile or the relaxation rate of the muon spin, A = \//\% +X, asa
function of temperature, is also plotted in the same figure. From the figure we can see that

the relaxation rate is almost field independent, which is the same conclusion we drew from
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the Back-to-back Gaussian function analysis; the skewness is between 0 and 0.1, which is
very small (see fig. 2.1), indicating the field profiles are very symmetric. It is also interesting
to note that at low temperatures, Ag — A is slightly negative, which suggests a small tail
to the left side of the field profile. This interesting feature is successfully simulated in our

pancake vortex disorder modelling later.
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Figure 4.8: Muon spin relaxation rate A and %ﬁl‘v an indicator of the skewness of the field profile,

as functions of temperature in external magnetic field B=2.7, 4.3, 5.5 and 7.0 T are obtained from
the Back-to-back Exponential fittings as described in the text.
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4.5 Pancake Vortex Disorder Theory

4.5.1 Vortex and Vortex Disorder

When a type II superconductor’s temperature is within the characteristic T,-T,> range and
an external magnetic field is applied, the material is in a mixed state. In this state some
magnetic field enters the material. This infiltration occurs at pinning sites called vortices,
where it is energetically favorable for the magnetic field to enter the sample. These vortices
form a so-called Flux Line Lattice (FLL). Experiment has shown that in most cases the
energetically favorable form of the FLL is a triangular grid.

Generally, an FLL entering a sample can be modelled as spaghetti strands. However,
a spaghetti strand is a continuous line that is well ordered, which may not mirror the
reality of a flux line within BSCCO. In fact, many macroscopic properties of HTSC besides
BSCCO carry the signature of a layered structure. It is well known that the copper plane to
copper plane coupling in BSCCO is quite weak. This led J. Clem to posit pancake vortices,
vortices referred to only one plane, as the building blocks of vortex lattices in BSCCO, i.e.
the stacked pancake model. [Clem 91] This model better describes the disorder that occurs
in a flux line as it penetrates a superconducting material. As more pancakes/layers are
added. the stack becomes unstable and shifts until the point is reached where the position
of the top of the stack has little correlation with the position of the bottom, and disorder
is complete. This corresponds well with what occurs in reality. As the temperature of a

superconductor is increased, the disorder of the flux lines within the sample increases.
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4.5.2 Magnetic Field Calculation

J. Clem has provided a solution for the magnetic field arising from one pancake vortex
and shown that a regular lattice built from such pancakes produces the field distributions
expected for the usual London solution vortices. [Clem 91] The stacks of pancake vortices
would be easily longitudinally disordered as a consequence of the very weak interlayer
coupling. In order to model our uSR data on Bi2212, a means to calculate fields from
disordered stacks of pancake vortices has been developed. It is the effect of this disorder of
vortices on the magnetic field distribution f(B) in which this thesis is particularly interested.

To calculate the fields from the vortices, we first calculate the fields for a regular array.
For these regular array fields, we assume that the field is parallel to the ¢ axis and then use
two different approaches, first, the reciprocal lattice approach, and second the direct sum
of the fields from individual vortices. Thdse will then be used with the field calculations for
a disordered array of individual pancake vortices to determine the field distributions for the
overall disordered system. The schematic diagram for a disordered pancake vortex system

is shown in fig. 4.9.
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Figure 4.9: The general disorder vortex picture used in our process of magnetic field calculation.
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4.5.2.1 Reciprocal Lattice Calculation of B/ (r)

Since we assume the field is parallel to the ¢ axis these calculations become identical to

those of the isotropic case with A = Ags. Thus:

b(r) = ) _b(G)e'C*
G

b(G) = B / b(r)e "G Td’r
o,
8—6262/2

1+ A2G? (45)

b(G) =

The G's are the reciprocal lattice vectors, and B is the average field strength over the FLL
unit cell. The exponential term with £ is used to approximate the results of a finite vortex
core. For the present calculation £ was taken to be small and constant. Thus the effects
seen in the line shape which might be interpreted as being associated with core size effects

are, in our calculations, arising only from disorder.

4.5.2.2 Single Vortice Field Bsy(r)

In the isotropic case, the magnetic field from a single, three-dimensional vortex is:

_ P . P\
b= >Ko(2): (4.6)

where K, is the zero order Bessel function of imaginary argument and Z is a unit vector
in the z direction. [De Gennes 89] The overall field distribution can then be obtained by
summing the fields from an array of such vortices. It has been found that the sum must be

taken over a very large array if the average field is to be accurately reproduced.
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4.5.2.3 Pancake Fields Bp(r)

The field distribution for a pancake vortex associated with a single layer has been found by

Clem. [Clem 91] This field distribution is:
b = pb,(p, 2) + 2b:(p, 2) (4.7)

where g and 2 are the unit vectors in cylindrical coordinates (6 = £cos¢ + gsing) . The

field components for such a vortex in an infinite stack of superconducting layers is:

® .
be(p,2) = 5——e ™"/ (48)

L )
bo(pr2) = o (e Ze (49)

where ® is the magnetic flux quantum, A is the thin-film screening length, ), is the effective
penetration depth (A = (sA/2)}/2, s is the spacing between sheets), and r = (p? + z2)!/2.

These fields are summed to produce the magnetic field from a lattice of pancake vortices.

4.5.2.4 Obtaining the Magnetic Field Probability Distribution f(B)

The final spatial magnetic field in the sample is determined by
B(r) = Bgrr(r) — Bsy(r) + Bp(r) (4.10)

Once the spatial field values are found we determine in the usual way the probability

distribution f(B) of the values contained in the data.
£(8) = [ 8(B(z.y) - B)dA (4.11)

Here A is the area associated with one flux quantum.



CHAPTER 4. EXPERIMENTS, RESULTS AND ANALYSIS 78

4.5.3 Calculation: Including Disorder

First we compared the fields calculated with a regular array of pancakes to those obtained
for a regular array of single vortices. Excellent agreement was found.

To calculate the fields including disorder we first calculated the fields in the reciprocal
vortex lattice space for a regular lattice (assumed to be triangular) and the corresponding
fields in real space, then subtracted the fields for nearby regularly arranged single three-
dimensional vortices. Finally we added the fields from a disordered array of pancake vortices
corresponding to the 3 dimensional vortices that we had subtracted.

The pancake disorder was generated by considering the pancakes in a given layer to be
regularly arranged, but to allow this two dimensional lattice to wander from a central plane
position in a random walk. Thus if r;(z) is the £ component of the position to which the

ith central pancake has wandered, then
rz(i+1) =rz(i) +sc- 6, (4.12)

where sc is a scale factor in kAand 6, is a random number chosen from a gaussian distribu-
tion of unit 0. The y component and the values for layers below the central plane (negative
i) are chosen similarly.

A further complication was that since the wandering after many layers could become
larger than a vortex lattice spacing it was necessary to map the wandered position of the
central pancake back to within the direct lattice 2 dimensional Wigner-Seitz cell centered
on the central-plane pancake array origin.

We determined the z component of the magnetic field in the central plane and then

determined the magnetic field distribution f(B) from this. We found that with large sc the
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average field dropped off slightly. This is a consequence of the loss of central density even
with the remapping described above.

There are 6 parameters we can vary in the modelling process: the average magnetic
field By, the penetration depth A, the scale factor sc, the total pancake layers nsh, the
number of vortices subtracted and added npanzy and the number of averaging nave. We
will systematically study the effects of all these parameters on the characteristics. especially

the average relaxation rates and the asymmetry of the field profiles.

4.5.4 Other Theories

The influence of different kinds of lattice deformation on f(B) was studied by Brandt.
[Brandt 88A, 91] A qualitative theory was given by Koshelev [Koshelev 96] to explain this
phenomenon, where the high field tail or the excess magnetic field 4B in the vicinity of a
wandering vortex line is determined by pancakes belonging to this line at distances smaller
than vortex lattice constant a from the given point, i.e.

$B=Bys ¥ =, 10 = VEZ + ()P (4.13)

r
ry<a n

Here r, is the distance of the pancake in the nth layer from the chosen pancake in the
zeroth layer. s is the interlayer distance. Based on these assumptions, it was found when
the random wandering distance is at the cut-off value 2, = a, the high field tail disappears

and correspondingly the field distribution f(B) becomes symmetric.
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4.5.5 Modelling Results
4.5.5.1 Smearing Factor smear

From fig. 4.10, we can see that the field distribution f(B) calculated from the model
generally has sharp peaks and edges, which is rarely observed in experiments due to various
broadening effects in the sample or instruments. To get the modelling results close to the
observed field distribution, we add appropriate smearing to f(B) similar to the technique
introduced in eq. 3.1 in chapter 3. The appropriate smearing will make the field distribution
f(B) smoother but still maintain the general shape of f(B). After some trials, we chose
the smearing factor smear=9 gauss. The smearing effect can be seen in fig. 4.11. The same

smearing factor was used in all the calculations later.

4.5.5.2 Effect of Parameter npanzy on f(B)

In the previous section, we decided to use the smearing parameter smear=9 gauss. There
are still 6 parameters that need to be decided, B, A, sc, nsh, npanzy and nave, where B is
the average magnetic field in the sample, A is the penetration depth, sc is the scale factor,
nsh is the total number of layers we are considering, npanzy is a parameter indicating how
many disordered vortex lines we are modelling, and nave is the number of times we repeat
the same model calculation.

Let’s first look at the parameter npanzy and study the rest of the parameters systemat-
ically later. We calculated the field distribution f(B) in four cases nave=2, 4, 8, 16 (with
the rest of the parameters fixed). The results are shown in fig. 4.12, which indicates that

our model is almost independent of this parameter. Macroscopically this means that the
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Figure 4.10: A serial plot of magnetic field distributions showing the effect of the pancake disor-
der scale factor sc. It can be seen clearly from these plots, as sc increases, the field distribution
becomes more narrowed and symmetric and having a complicated multi-peak structure. Due to the
broadening of the field profile, the multi-peak structure is hardly discernable in experiments.

field distribution f(B) does not depend on the beam size or sample size, which is reasonable.

We chose npanzy=4 in all the following modelling process.

4.5.5.3 General Effects of Scale Factor sc

From the previous section, we know that sc is an important parameter indicating the am-
plitude of randomness of pancakes relative to the vortex lattice spacing a. In fig. 4.10, we
showed the general effect of sc on the field distribution f(B) without any smearing. By

increasing the amplitude of sc (for comparison, the vortex lattice constant is 0.3 kA in this
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Figure 4.11: This plot shows that an appropriate smearing factor will both smoothen and maintain
the field lineshape.

case), we observed the changing of the symmetry and shape of the field distribution. The
result is what we expect statistically according to the Central Limit Theorem. Naturally if
we assume the sample temperature T is monotonically related to sc, it is not difficult to un-
derstand why the relaxation rate (second moment) and asymmetry of the field distribution
are functions of temperature T.

In some previous research work, each pancake vortex is assumed to be under the influence
of an effective potential well U(p). It was shown [Clem 91] that at very low temperature,

where KgT < ¢2/1672X (X is the 2D screening length), the root-mean-square displacement



CHAPTER 4. EXPERIMENTS, RESULTS AND ANALYSIS 83

B=27T
A=1.5kA

nsh=1000
nave=4

02+
smear=9 gauss

1(8)

npanxy=2,4.8,16

L

Q1+

26600 26800 27000 27200 27400
8 (gauss)

Figure 4.12: This plot shows that in our model the field distribution f(B) is almost independent
of parameter npanzy. Macroscopically this means that f(B) does not depend on the beam size or
sample size.

Prms of a 2D pancake vortice is small, the stack of 2D pancake vortices thus withstands
thermal agitation, holds itself together and produces a field distribution similar to that of
a straight 3D vortex, which is certainly our case when sc is much smaller than the vortex
lattice constant a. However as the temperature increases, sc increases, g2, will initially be
approximately proportional to KgT, then a divergence of pr,s Occurs at a temperature Tj, =
¢2/16m2K g, where the thermal energies required to misalign the 2D pancake vortices are
KgT, = ¢3/1672), which can strongly disrupt the alignment and break up a straight stack.

It is remarkable that this condition for the thermally induced breakup of an isolated stack
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of 2D pancake vortices is exactly the same as that for the Kosterlitz-Thouless transition
of an isolated superconducting thin film of screening length A. [Beasley 79| Furthermore,
the gradual change of the field profile f(B) as a function of temperature T suggests that
there is no phase transition existing in such high magnetic field and this temperature range,
which is consistent with the previous conclusion that there is no phase transition above the
crossover field B,,.

To see how the fitting program works on our Bi2212 data, we showed one of the results
in fig. 4.13. The uSR data we picked here were taken in B=2.7 T and at T= 2 K. From
the plot, we can see that the fitting is quite satisfactory, which shows the correctness of our
whole fitting scheme. At such low temperature, the model also gives us the rapid relaxation
of muon spins, as we expected.

Fig. 4.14 shows the scale factor sc dependence of the field lineshape f(B). For a typical
field B=2.7 T, the vortex lattice constant is about a=0.3 kA. When sc is very small, the
field profile f(B) is asymmetric and almost independent of sc. When sc increases to about
0.10 (1/3 of the vortex lattice constant a=0.3 kA), the symmetry of f(B) changes suddenly
with the disappearance of the high field tail. The corresponding numerical results are shown

in fig. 4.17. The same feature appears in different fields, see fig. 4.16 and 4.18.

4.5.504 Wayey wdiff vS. B

To investigate the dependence of waye and wgisy on the magnetic field B in our model, we
chose a typical set of parameters A=1.5 kA, 5¢=0.2, nsh=1000, npanzy=4, nave=4 and
the results woye, wyifs vs. B are shown in fig. 4.19. From the plot, waye and wyiss seem to

have less dependence on B than on the scale factor sc. This result excellently explains our
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Figure 4.13: A comparison between the model calculation (sc¢=0, nave=3, smear=9 gauss) and the
b.b.g. fit for the experimental data at B=2.7 T and T=2 K.

experimental data on Bi2212 that the muon spin depolarization rates are almost independent
of magnetic field B, see fig. 4.5. It is also interesting to note that wg,. does not have a
monotonic dependence on B in this model, which explains the behavior of wgye vs. B in fig.
4.5. In addition, wg;rs vs. B shows that for a quite large range of B, wysf is very small

and less than 0.3. This is also consistent with our experimental data.
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Figure 4.14: Random walk scale factor sc dependence of the simulated field profiles.
4.5.5.5 wWapey Wdiff VS. A

In this section, we are going to see how wq,e and wy;fy behave as functions of penetration
depth A. As we know from the fundamental theory in the second chapter, without any
vortex disorder the relaxation rate wgye is approximately proportional to Xl’f’ SO we expect
Wave to decrease with increasing A. We calculated wgye, waifs vs. A in our model. The
results are shown in fig. 4.20. From the figure, we can see that indeed wgye has a smaller
value at bigger penetration depth A. At fixed A, wgye at sc=0 is bigger than at sc=0.2,

which is consistent with the results presented in fig. 4.17.
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Figure 4.15: Smearing factor (unit: gauss) dependence of the simulated field profiles.

While we increase the values of penetration depth A, it was found that, with higher
disorder, the field lineshape goes from very asymmetric at sc=0 to steadily symmetric at
5¢=0.2 with a slight tail on the right side of f(B). However at very small penetration depth
such as A=1.0 kA, the field profile even appears to have a slight tail on the left side of f(B)

(negative wyiss) as modelling results tell us, see fig. 4.20 and fig. 4.21.
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Figure 4.16: Plots of w,ye and wyiss as functions of the pancake disorder scaling factor sc. (B=1.0
T)

4.6 Conclusion

The comparison between our pancake vortex disorder model with the transverse field muon
spin relaxation (TF-uSR) data in external magnetic fields 1.0, 2.7, 3.0, 4.5, 5.5, 6.0 and 7.0
T shows excellent agreement. The model recovers all the important features discovered in
the experiment. For the first time, a heterodyned fitting analysis technique shows that the
field profiles on the ab basal planes of single crystal Bi2212 are symmetric in all experimental
fields 1.0-7.0 T and at all experimental temperatures 2.0-90.0 K. The muon spin relaxation

rates due to the mixed state of Bi2212 were found to increase linearly from 0 us™! at
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Figure 4.17: Plots of w,,. and wqifs as functions of the pancake disorder scaling factor sc. (B=2.7
T)

transition temperature 90.0 K to about 1.0 us~! at the lowest temperature 2.0 K. The
relaxation rates have much less field dependence than the temperature dependence and the
field dependence of the relaxation rate is of opposite sign to that seen for YBCO, which is
undoubtedly due to vortex lattice disorder caused by the weak coupling between the CuO
planes. The scaled magnetic field penetration depths H"m— were found to be independent
of magnetic field B at temperature range 0-50.0 K. Fitting ;?55 by currently available
models was attempted. The proposed pancake vortex disorder model strongly suggests

pancake disordering at all temperatures including 2.0 K, the lowest temperature reached in
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Figure 4.18: Plots of wa,,. and wyifs as functions of the pancake disorder scaling factor sc. (B=6.0
T)

our experiment. Our experiments and the computer simulation from the pancake vortex
disorder model showed that uSR data at this temperature and field range are attributed to

the 2-D anisotropic vortex characteristics of Bi2212.
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Figure 4.19: Plots of w,,. and wyiss as functions of applied fields.
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Figure 4.20: Plots of wsv. and wyisy as functions of penetration length A.
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Figure 4.21: In our Bi2212 data, some of the field profiles appear to have a slight tail on the left
(low field) side. Our model shows that with the appropriate choice of parameters in our model, the
field profile can have a tail on the left, which was considered to be unphysical before.



Appendix A

Pion and Muon Decays

Derivation of linear momentum 29.7 MeV/c and kinetic energy 4.1 MeV of u* from free
7+ decay process:

s pt +u, (A.1)
According to the laws of conservation of energy and linear momentum, we have

2
My c2=mu c2+—p—+pc (A.2)
2m,

where p is the linear momentum of muon or muon neutrino. Plug in m, ¢ = 139.5673
MeV and m, ¢® = 105.67 MeV into the equation above, we can solve p = 29.7 MeV /c and
By = £ =41 MeV.

Derivation of the maximum positron kinetic energy 52.325 MeV from surface muon
process: (Notice that there are other possible muon decay channels, i. e., u* = et + 7, +
Ve + with branching ratio ~ 0.014 and p* — e* + U, + v, + €t + e~ with branching ratio
~ 3 x 107%)

pt=oet+uv.+7, (A.3)
The positive muon decay is a three-body decay. The kinetic energy of the emerging positron

may therefore vary continuously between zero and the maximum kinetic energy Ei_max-

94
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The total energy is conserved, so we have

my =m,c+Ex_max + E,, + Ey, (A.4)
For relativistic positron, we have
E%2 = (m. & + Ex_max)? = p°c® + (me ¢?)? (A.5)
which can be simplified to
2 Ei_max Me C° + E’,f_,,,ax = pzc2 (A.6)

According to the conservation of linear momentum, the positron’s momentum p can be

written as:

E,, A

C

With all these equations in mind, we know

= me & + Ex_pax +pc

Solving this equation for E_nax, We can get

(my &2 —m, 2)?

Elc—max = 2 m. 2 (A.Q)
u

52.325 MeV

(m, ¢ = 105.67 MeV, m, ¢® =0.51100 MeV)



Appendix B

Kubo-Toyabe Relaxation Functions

Derivation of the Gaussian static zero-field Kubo-Toyabe relaxation function
Galt) = 3 +3 (1- &%) 7 (B.1)
from the known formula
Ga(t) = 3+3 [ PUB)costr/Ble) 4B ®2)

2
where P(|B|) = ‘/;%}2- e'lzgrlf.

1.2 [ [2|B]? _1m?
Gg(t) = §+ 3 /0 —T3e T cos(y,|Blt) d|B|
1 8 X , .2 1B
=3 + W /0 r?e" cos(\/i'y,,f‘tz) dr (let z = -ﬁ )
1 8 o0 2 _12 .
= -4 — %% cos(bz) dz (let b= v2v,It) (B.3)
3 KL 0
Integrating by parts,
% 2 2 1 b2 o0 2
/ z°e”* cos(bz) dz = (= — —)/ e ¥ cos(bz) dz (B4)
0 2 4
Furthermore,
© 2 | Y A
/ e * cos(bz) dz = ?R(—/ e~ =+ gr) (B.5)
0 2 —0o0
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Note the function e~2+ = jg analytic, so we can do a contour integral in the upper half

complex plane to solve this integral, and the result is

B 1 o,
R(E/ e =t dr) = EC_T/ e Tdz
—oo
52
4

- VT - (B.6)
2
Plugging these results back in sequence, finally we get
1 2 2,2y a2
GG(t)=§+§(l—At)e 7 ( where A =+,T ). (B.7)
Derivation of the Lorentzian static zero-field Kubo-Toyabe relaxation function
1 2
Gr(t) = 7+ Z(1 - At)e™ (B.8)
3 3
based on the magnetic field magnitude distribution
P(B|) = iili_ (B.9)
7 ([2+[B|*)? '
We know that the following relation between G, (t) and P(|B|) exists:
1 2 [ '
Gr(t) = 3 +§/0 P(|B|) cos(v, |B| t) d|B| (B.10)
1 8 [ z? |B|
= § g/o mcos(bx) dz (assume z = _F_ and b= ‘)‘“Ft)
1 8 1 [* r?
=3 + 3 5[.00 '—(1 T 2)2 cos(bz) dz
1 8 1 [ z? ..
= 3 + 3x 3 /;oo m[cos(ba:) + isin(bz)] dz
= 1.3 lf—Leﬂnatz(' half circle contour in th lane)
= 3t 3P aran cisa circle contour in the upper plan
c
= 18 Tt _be ) (using the Residue Theorem)
= 3%3:°1 g esidue Theorem
1 2 Y
=3 + 5(1 — At)e™ " (where A = 4, T")
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It is interesting to note that another way to derive the Lorentzian static zero-field Kubo-

Toyabe relaxation function is to convolute the Gaussian static zero-field Kubo-Toyabe re-

22

laxation function with “class” of muon site distribution p(A) = %-j‘g e 247 j.e.
o0
cue) = /0 p(8) Galt)da (B.11)
.. 2,2y -3¢
= € &7 [3 += (1 — At 2 ldA (B.12)
§ + (1 —At) e~ (B.13)
Now we do the integrations in the equation above separately,
°° 2 A _21 1
I = 0 TAZE adA (let z = K)
- °° A [2 82
- 0 3 g
1
= = B.14
3 (B.14)

® 72 A At 2 A"’c"’
= W e~
II /(; \/;Aze 23 3e dA
2X (2 [ a2 1
= 22 -1 -
3 \/—/o e dz (let z A)
2 o ® _azt- b 1 7 _avas
= 3 e ' (integral table: e Zdr = 3\ 3¢ (a > 0,b>0))(B.15)
0
00
I = / 3ie (—-A2t2) -2 A
0 A?

™
Atz 00 _ 2 _ 2,2
- _2_3__\/% / =27~ %2"dA (use the same integral table again!)
0
-t

= —-%Ee (B.16)
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Finally, adding up I, I1, I11, we get

G(t) = I+IH+111

_ 1.2 —At
= 3-i-3(l At) e™.
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(B.17)
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