12.1. “SOLVING” THE MOTION

Equations of Motion

In the previous chapter we explored the process
of emergence of new paradigms in Mechanics,
using various mathematical identities to trans-
form Newton’s SECOND LAW into new equa-
tions whose left- and right-hand sides were given
names of their own, like impulse, momentum,
work, energy, torque and angular momentum.
Eighteenth-Century physicists then learned to
manipulate these “new” concepts in ways that
greatly clarified the behaviour of objects in the
material universe. As a result, previously mys-
terious or counterintuitive phenomena began to
make sense in terms of simple, easy-to-use mod-
els, rather than long involved calculations. This
is the essence of what Physics is all about. We
work hard to make todays’s difficult tasks easier,
so that we will have more free time and energy
tomorrow to work hard to make tomorrow’s dif-
ficult tasks easier, so that.. ..

Meanwhile, these new words made their way
into day-to-day language and introduced new
paradigms into society, whose evolution in “The
Age of Reason” might have followed other paths
were it not for Newton’s work.! The effects of a
more versatile and effective science of Mechanics
were also felt in blunt practical terms: combined
with the new science of Thermodynamics (to be
discussed in a later chapter), Mechanics made
possible an unprecedented growth of Mankind’s
ability to push Nature around by brute force,
a profitable enterprise (in the short term) that
led to the Industrial Revolution. Suddenly peo-
ple no longer had to accept what Nature dealt,
which enhanced their health and wealth consid-
erably — but in taking new cards they found

!Then again, maybe subtle sociological evolution had al-
ready made these changes inevitable and Newton was just the
vehicle through which the emergent paradigms of the day in-
filtrated the world of science. Let’s do the Seventeenth and
Eighteenth Centuries over again without Newton and see how
it comes out!

they also had a new dealer who was more mer-
ciless than Nature had ever been: Greed.

Here arises a perennial question: are the evils of
“technology abuse,” from pollution to exploita-
tion to weapons of war, the “fault” of scientists
who create the conceptual tools that make tech-
nology possible?? My own opinion is that we
scientists have a responsibility for our creations
in much the same way that parents have a re-
sponsibility for their children: we try to pro-
vide a wholesome and enlightened atmosphere
in which they can grow and fulfill all their po-
tential, offering our guidance and advice when-
ever it will be accepted, and setting the best
example we can; but in the end ideas are like
people — they will determine their own destiny.
The best scientists can do to guide the impact of
their ideas on society is to make sure the individ-
ual members of society have the opportunity to
learn about those ideas. Whether anyone takes
advantage of that opportunity or not is out of
our control. Whether irresponsible or malign in-
dividuals make evil use of our ideas is also out
of our control, though we can do our best to
dissuade them.?

12.1 “Solving” the Motion

Getting back to the subject of Mechanics. . .

One of the reasons the paradigms in the pre-
vious chapter emerged was that physicists were
always trying to “solve” certain types of “prob-
lems” using Newton’s SECOND LAw,*

F=mz

%I presume that I do not need to point out the distinction
between Science and Technology. Even though politicians
seem to be fond of the word “scienceandtechnology,” I feel
sure my readers are intelligent enough to find such a juxta-
position humourous.

3Some people feel that we should be prevented from hav-
ing new ideas until those ideas have been “cleared” as in-
nocuous. This would be hilarious if it weren’t so dangerous.

“Let’s limit our attention to one dimensional problems for
the duration of this chapter, to keep things simple and avoid
the necessity of using vector notation.



This equation can be written

= F 1)

to emphasize that it described a relationship be-
tween the acceleration I, the inertial coefficient
m [usually constant] and the force F. It is
conventional to call an equation in this form the
“equation of motion” governing the problem
at hand. When F 1is constant [as for “local”
gravity| the “solution” to the equation of mo-
tion is the well-known set of equations governing
constant acceleration, covered in the chapter on
FALLING BobDiIES. Things are not always that
simple, though.

Sometimes the problem is posed in such a way
that the force F' is explicitly a function of time,
F(t). This is not hard to work with, at least
in principle, since the equation of motion (1) is
then in the form

i = F() )

m

which can be straightforwardly integrated [as-
suming one knows a function whose time deriva-
tive is F'(t)] using the formal operation

v(t)z:'vz/xdt —/ (3)

— which, when multiplied on both sides by m,
leads to the paradigm of Impulse and Momen-
tum.

In other cases the problem may be posed in such
a way that the force F' is explicitly a function
of position, F(x). Then the equation of motion

has the form )

i=— F(2) ()
which can be converted without too much trou-
ble [using the identity adr = vdv ] into the
paradigm of Work and Energy.

12.1.1 Timing is Everything!

If the equation of motion is the “question,” what
constitutes an “answer”? Surely the most con-

venient thing to know about any given problem
is the explicit time dependence of the position,
x(t), because if we want the velocity v(t) = 4,
all we have to do is take the first time deriva-
tive — which may not be entirely trivial but is
usually much easier than integrating! And if we
want the acceleration a(t) =0 = &, all we have
to do is take the time derivative again. Once you
have found the acceleration, of course, you also
know the net force on the object, by NEWTON’S
SECOND LAw. A problem of this sort is there-
fore considered “solved” when we have discov-
ered the explicit function x(¢) that “satisfies”
the equation of motion.

For example, suppose we know that
x(t) = o cos(wt), (5)

where w is some constant with units of radi-
ans/unit time, so that wt is an angle. The time
derivative of this is the velocity

& =w(t) = —w xgsin(wt)

[look it up if needed] and the time derivative of
that is the acceleration

i=19=a(t) = —w zycos(wt).

Note that the right-hand side of the last equa-
tion is just —w? times our original formula for
x(t), so we can also write

i = —w? . (6)

Multiplying through both sides by the mass m
of the object in motion gives

ma = F = —mw? ,

which ought to look familiar to you: it is just
HOOKE’S LAW with a force constant k = mw?.
Rearranging this a little gives

k/m,

which may also look familiar.... More on this
later. Note, however, that we can very easily de-
duce what is going on in this situation, including
the type of force being applied, just from know-
ing x(t). That’s why we think of it as “the
solution.”



12.1. “SOLVING” THE MOTION

12.1.2 Canonical Variables

Let’s write the equation of motion in a general-

ized form,
1
— F (7)

m

g =

where I have used “q” as the “canonical coordi-
nate” whose second derivative (§) is the “canoni-
cal acceleration.” Normally ¢ will be the spatial
position z [measured in units of length like me-
tres or feet], but you have already seen one case
(rotational kinematics) in which “¢” is the angle
§ [measured in radians|, “m” is the moment of
inertia Ip and “F” is the torque ['p; then a
completely analogous set of equations pertains.
This turns out to be a quite common situation.
Can we describe simply how to go about for-
mulating the equations of motion for “systems”
that might even be completely different from the
standard objects of Classical Mechanics?

In general there can be any number of canoni-
cal coordinates ¢; in a given “system” whose
behaviour we want to describe. As long as we
have an explicit formula for the potential energy
V' in terms of one or more ¢;, we can define the
generalized force

ov

Qi = " o0, (8)

If we then generalize the “inertial coefficient”
‘th

m — i, we can write out ¢ equation of
motion in the form
. Qi
G = — (9)
Yoo

which in most cases will produce a valid and
workable solution. There is an even more gen-
eral and elegant formulation of the canonical
equations of motion which we will discuss to-
ward the end of this chapter.

I am not really sure how the term canonical
came to be fashionable for referring to this ab-
straction/generalization, but Physicists are all
so fond of it by now that you are apt to hear

them using it in all their conversations to mean
something like archetypal: “It was the canonical
Government coverup...” or “Thisis a canonical
cocktail party conversation....”

12.1.3 Differential Equations

What we are doing when we “solve the equa-
tion of motion” is looking for a “solution” [in
the sense defined above] to the differential equa-
tion defined by Eq. (7). You may have heard
horror stories about the difficulty of “solving dif-
ferential equations,” but it’s really no big deal;
like long division, basically you can only use a
trial-and-error method: does this function have
the right derivative? No? How about this one?
And so on. Obviously, you can quickly learn to
recognize certain functions by their derivatives;
more complicated ones are harder, and it doesn’t
take much to stump even a seasoned veteran.
The point of all this is that “solving differen-
tial equations” is a difficult and arcane art only
if you want to be able to solve any differential
equation; solving the few simple ones that oc-
cur over and over in physics is no more tedious
than remembering multiplication tables. Some
of the other commonly-occuring examples have
already been mentioned.

12.1.4 Exponential Functions

You have seen the procedure by which a
new function, the exponential function ¢(t) =
qo exp(kt), was constructed from a power series
just to provide a solution to the differential equa-
tion ¢ = k¢q. (There are, of course, other ways
of “inventing” this delightful function, but I like
my story.) You may suspect that this sort of
procedure will take place again and again, as
we seek compact notation for the functions that
“solve” other important differential equations.
Indeed it does! We have Legendre polynomi-
als, various Bessel functions, spherical harmon-
ics and many other “named functions” for just



this purpose. But — pleasant surprise! — we
can get by with just the ones we have so far for
almost all of Newtonian Mechanics, provided we
allow just one more little “extension” of the ex-
ponential function. . ..

Frequency = Imaginary Rate?

Suppose we have

q(t) = qoe.

It is easy to take the n™ time derivative of this
function — we just “pull out a factor A\” n times.
For n = 2 we get § = \?qoe or just

j= \q. (10)

Now go back to the example “solution” in
Eq. (5), which turned out to be equivalent to
HOOKES’S LAW [Eq. (6)]: & = —w? x, where
w = y/k/m and k and m are the “spring con-
stant” and the mass, respectively.

Equations (10) and (6) would be the same equa-
tion if only we could let ¢ =  and \? = —w?
Unfortunately, there is no real number whose
square is negative. Too bad. It would be aw-
fully nice if we could just re-use that familiar
exponential function to solve mass-on-a-spring
problems too.... If we just use a little imagi-
nation, maybe we can find a A whose square is
negative. This would require having a number
whose square is —1, which takes so much imag-
ination that we might as well call it ¢. If there
were such a number, then we could just write

(11)

That is, the rate A\ in the exponential formula
would have to be an “imaginary” version of the
frequency w in the oscillatory version, which
would mean (if the solution is to be unique) that

A = w.

et = cos wt.
It’s not.

Oh well, maybe later. ...

12.2 Mind Your p’s and ¢’s!

Earlier we introduced the notion of canonical co-
ordinates ¢; and the generalized forces (); de-
fined by the partial derivatives of the potential
energy V with respect to ¢;. I promised then
that I would describe a more general prescrip-
tion later. Well, here it comes!

If we may assume that both the potential en-
ergy V(qi,q¢;) and the kinetic energy T(q;,q;)
are known as explicit functions of the canonical
coordinates ¢; and the associated “canonical
velocities” ¢;, then it is useful to define the
Lagrangian function

L(gi,4) = T(¢,d) — Vg, i)

in terms of which we can then define the canon-
ical momenta

(12)

oL

" g,

These canonical momenta are then guaranteed
to “act like” the conventional momentum ma
in all respects, though they may be something

entirely different.

(13)

How do we obtain the equations of motion in this
new “all-canonical” formulation? Well, HAMIL-
TON’S PRINCIPLE declares that the motion of
the system will follow the path ¢;(t) for which
the “path integral” of L from initial time ¢,
to final time o,

to

7= rad (14)

t1
is an extremum [either a maximum or a mini-
mum]|. There is a very powerful branch of math-
ematics called the calculus of variations that al-
lows this principle to be used® to derive the LA-
GRANGIAN EQUATIONS OF MOTION,

oL
) = 15
i = 5. (15)
Because the “¢” and “p” notation is always

used in advanced Classical Mechanics courses

"Relax, we aren’t going to do it here.



12.2. MIND YOUR P’S AND @Q’S!

to introduce the ideas of canonical equations of
motion, almost every Physicist attaches special
meaning to the phrase, “Mind your p’s and
q¢’s.”  Now you know this bit of jargon and
can impress Physicist friends at cocktail parties.
More importantly, you have an explicit prescrip-
tion for determining the equations of motion of
any system for which you are able to formulate
analogues of the potential energy V and the

kinetic energy T

There is one last twist to this canonical business
that bears upon greater things to come. That is
the procedure by which the description is re-cast
in a form which depends explicitly upon ¢; and
pi, rather than upon ¢; and ¢;. It turns out
that if we define the Hamiltonian function

H(gi,pi) = Zdz’pz’ — L(gi, i) (16)
then it is usually true that
H=T+YV (17)

— that is, the Hamiltonian is equal to the total
energy of the system! In this case the equations
of motion take the form

om . OH
Qz—api bi = 8%’

(18)

So what? Well, we aren’t going to crank out any
examples, but the Lagrangian and/or Hamil-
tonian formulations of Classical Mechanics are
very elegant (and convenient!) generalizations
that let us generate equations of motion for
problems in which they are by no means self-
evident. This is especially useful in solving com-
plicated problems involving the rotation of rigid
bodies or other problems where the motion is
partially constrained by some mechanism [usu-
ally an actual machine of some sort]. It should
also be useful to you, should you ever decide to
apply the paradigms of Classical Mechanics to
some “totally inappropriate” phenomenon like
economics or psychology. First, however, you
must invent analogues of kinetic energy V' and

potential energy T and give formulae for how
they depend upon your canonical coordinates
and velocities or momenta.

Note the dramatic paradigm shift from the force
and mass of Newton’s SECOND LAW to a com-
plete derivation in terms of energy in “mod-
ern” Classical Mechanics. It turns out that this
shift transfers smoothly into the not-so-classical
realm of QUANTUM MECHANICS, where the
HAMILTONIAN H takes on a whole new mean-
ing.



