
Gaussian Wave PacketsThe general Fourier expansion in plane waves is 	(~r; t) = Z 1�1 a(~k)ei(~k�~r�!t)d3k where wemust remember that ! is a function of ~k, not just a constant; the dispersion relation !(~k)determines all the key physical properties of the wave such as phase velocity ~vp � ~k!=k2 andgroup (physical) velocity ~vg � ~rk !.The picture is a lot simpler if we assume that all waves propagate along the x̂ direction, giving the1-dimensional version 	(x; t) = Z 1�1 a(k)ei(kx�!t)dk with vp = !=k and vg = d!=dk.The Gaussian distribution of wavenumbersa(k) = A�kp2� exp"�(k � k�)22�2k #has a mean wavenumber hki = k� and a variance h(k � hki)2i = �2k (so that �k is the standarddeviation of k).At t = 0 , we have 	(x; 0) �  (x) = A�kp2� Z 1�1 exp "�(k � k�)22�2k # eikxdkor  (x) = Aeik�x�kp2� Z 1�1 exp"� k022�2k # eik0xdk0 where k0 � k � k�If we now let u � k0p2�k so that dk0 = p2�kdu, we have (x) = Aeik�x�kp2� � p2�k Z 1�1 e�u2 � eip2�kxudu = Ap�eik�x Z 1�1 exp h� �u2 � ip2�kxu�i du:Completing the square, u2 � ip2�kxu =  u� i�kp2x!2 + �2k2 x2, giving (x) = Ap� exp "��2kx22 # eik�x Z 1�1 e�z2dz where z � u� i�kxp2The de�nite integral has the value p� (look it up in a table of integrals!) giving (x) = A exp "��2kx22 # eik�x or  (x) = A exp"� x22�2x# eik�x where �x = 1�kThat is, the rms width of the wave packet about its initial mean of hxi = 0 isqh(x� hxi)2i = �x = 1=�k and the product of the x and k widths obeys the uncertaintyrelation �x�k = 1 at t = 0.



Normalization: The requirement that the particle be somewhere at t = 0 provides thenumerical value of A: Z 1�1  � dx = 1 = A2 Z 1�1 exp"�x2�2x# dx = A2�x Z 1�1 e�u2du whereu � x=�x. Again the de�nite integral equals p�, giving 1 = A2�xp� or A = s 1�xp� = s �kp� .We have now fully described  (x) � 	(x; 0).Dispersion: What happens at later times? Each plane-wave component of 	(x; t) has adi�erent k and therefore progapates at a di�erent velocity v = p=m = �hk=m = d!=dk = vg. Thusthey all move away from x = 0 at a di�erent rate and become spread out or dispersed [hence thename \dispersion relation" for !(k)] relative to their average position [the centre of the wavepacket] at hx(t)i =  k�m! t.The width of the wave packet, �x, therefore increases with time from its minimum value �x(0) att = 0. The time dependence can be calculated with some e�ort (not shown here); the result is�x(t) = vuut�2x(0) + " �ht2m�x(0)#2:The normalization constant A will decrease with time (as the spatial extent of the wave packetincreases) in order to maintain Z 1�1  � dx = 1. Thus the probability of �nding the particlewithin dx of its mean position hx(t)i steadily decreases with time as the wave packet disperses.Examples: It is instructive to estimate the rate of dispersion (i.e. how fast the wave packetspreads out) for a few simple cases:� First consider an electron that is initially con�ned to a region of a size �x(0) = 0:1 nm (i.e.roughly atomic dimensions) in a gaussian wave packet. For simplicity we will let k� = 0 |that is, the electron is (on average) at rest. If the electron is free (as we have assumedthroughout this treatment) then its wave packet will expand to p2 times its initial size in atime t2 = 2m�h �2x(0) = 1:72 � 10�15 s.� If the same electron is con�ned much more loosely to a region of a size �x(0) = 1 �m, thetime required for it to disperse until �x(t) = p2�x(0) is 108 times longer: t2 = 17:2 ns.� The same electron initially con�ned to a 1 mm sized wave packet will take 0.0172 s todisperse to a wave packet 1.414 mm in size; and so on.� A one-gram marble localized to within 0.1 mm will delocalize spontaneously (the physicalmeaning of dispersion) to 0.1414 mm only after t2 = 1:89� 1024 s | that is, 6 � 1016 years!


