Gaussian Wave Packets
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The general FOURIER EXPANSION IN PLANE WAVES is  W(r, 1) = / a(k)e® D PL where we

must remember that w is a function of k, not just a constant; the DISPERSION RELATION w(k)
determines all the key physical properties of the wave such as PHASE VELOCITY V, = kw/k? and
GROUP (PHYSICAL) VELOCITY V, = Vj w.

The picture is a lot simpler if we assume that all waves propagate along the & direction, giving the

I-dimensional version W(x,t) = /Oo a(k)e' "D dk  with v, = w/k and v, = dw/dk.

The Gaussian distribution of wavenumbers
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has a mean wavenumber (k) = k, and a variance {(k — (k))*) = o} (so that oy is the standard
deviation of k).
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At t =0, we have W(x,0)=¢(x)= 5 / exp l—gl e dk
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so that dk' = \/20,du, we have

If we now let u =
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Completing the square, u? —iv20au = (u — %x) + %:1;2, giving
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The definite integral has the value /7 (look it up in a table of integrals!) giving
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A Jekeror wp(z) = Aexp |—=—| e*”  where o, = —
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That is, the rms width of the wave packet about its initial mean of (z) = 0 is

((x — (2))?) = 0, = 1/o), and the product of the # and & widths obeys the UNCERTAINTY
RELATION o,0, =1 att=0.



Normalization: The requirement that the particle be somewhere at t = 0 provides the
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numerical value of A: / Vo de=1= Az/ exp [_:1;_] dx = A’o, /Oo e du  where

u = x/o,. Again the definite integral equals /7, giving 1 = A%0,\/7 or A = Tk
\ o/ \/

We have now fully described ¢ (x) = ¥(«,0).

Dispersion: What happens at later times? Each plane-wave component of W(zx,1) has a
different £ and therefore progapates at a different velocity v = p/m = hk/m = dw/dk = v,. Thus
they all move away from = = 0 at a different rate and become spread out or dispersed [hence the
name “DISPERSION RELATION” for w(k)] relative to their average position [the centre of the wave
ko
acket] at (z(t))=|—| 1.
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The width of the wave packet, o, therefore increases with time from its minimum value o,(0) at
t = 0. The time dependence can be calculated with some effort (not shown here); the result is
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The normalization constant A will decrease with time (as the spatial extent of the wave packet
increases) in order to maintain / Y*1p de = 1. Thus the probability of finding the particle

within dx of its mean position <:1;_(t)> steadily decreases with time as the wave packet disperses.

Examples: It is instructive to estimate the rate of dispersion (i.e. how fast the wave packet
spreads out) for a few simple cases:

e First consider an electron that is initially confined to a region of a size 0,(0) = 0.1 nm (i.e.
roughly atomic dimensions) in a gaussian wave packet. For simplicity we will let k, = 0 —
that is, the electron is (on average) at rest. If the electron is free (as we have assumed
throughout this treatment) then its wave packet will expand to /2 times its initial size in a

2
fime £, = %a (0) = 1.72 x 1071

e If the same electron is confined much more loosely to a region of a size 0,(0) =1 pm, the
time required for it to disperse until o,(t) = \/501,(0) is 10® times longer: ¢, = 17.2 ns.

o The same electron initially confined to a 1 mm sized wave packet will take 0.0172 s to
disperse to a wave packet 1.414 mm in size; and so on.

e A one-gram marble localized to within 0.1 mm will delocalize spontaneously (the physical
meaning of dispersion) to 0.1414 mm only after ¢, = 1.89 x 10** s — that is, 6 x 10'° years!



