13.1. PERIODIC BEHAVIOUR

Simple
Harmonic
Motion

In the previous chapter we found several new
classes of equations of motion. We now add one
last paradigm to our repertoire — one so pow-
erful and ubiquitous in Physics that it deserves
a chapter all to itself.

13.1 Periodic Behaviour

Nature shows us many “systems” which re-
turn periodically to the same initial state, pass-
ing through the same sequence of intermediate
states every period. Life is so full of periodic
experiences, from night and day to the rise and
fall of the tides to the phases of the moon to the
annual cycle of the seasons, that we all come
well equipped with “common sense” tailored to
this paradigm.! It has even been suggested that
the concept of time itself is rooted in the cyclic
phenomena of Nature.

In Physics, of course, we insist on narrowing the
definition just enough to allow precision. For
instance, many phenomena are cyclic without
being periodic in the strict sense of the word.?

!Many people are so taken with this paradigm that they
apply it to all experience. The I Ching, for instance, is said
to be based on the ancient equivalent of “tuning in” to the
“vibrations” of Life and the World so that one’s awareness
resonates with the universe. By New Age reckoning, culti-
vating such resonances is supposed to be the fast track to
enlightenment. Actually, Physics relies very heavily on the
same paradigm and in fact supports the notion that many
apparently random phenomena are actually superpositions
of regular cycles; however, it offers little encouragement for
expecting “answers” to emerge effortlessly from such a tuning
of one’s mind’s resonances. Too bad. But I'm getting ahead
of myself here.

2Examples of cyclic but not necessarily periodic phenom-
ena are the mass extinctions of species on Earth that seem to
have occurred roughly every 24 million years, the “seven-year
cycle” of sunspot activity, the return of salmon to the river of
their origin and recurring droughts in Africa. In some cases

Here cyclic means that the same general pattern
keeps repeating; periodic means that the system
passes through the same “phase” at exactly the
same time in every cycle and that all the cycles
are exactly the same length. Thus if we know
all the details of one full cycle of true periodic
behaviour, then we know the subsequent state
of the system at all times, future and past. Nat-
urally, this is an idealization; but its utility is
obvious.

time ¢

Figure 13.1 Some periodic functions.

Of course, there is an infinite variety of possible
periodic cycles. Assuming that we can reduce
the “state” of the system to a single variable

[APwi)

¢” and its time derivatives, the graph of ¢(t)

the basic reason for the cycle is understood and it is obvious
why it only repeats approximately; in other cases we have no
idea of the root cause; and in still others there is not even a
consensus that the phenomenon is truly cyclic — as opposed
to just a random fluctuation that just happens to mimic cyclic
behaviour over a short time. Obviously the resolution of these
uncertainties demands “more data,” i.e. watching to see if
the cycle continues; with the mass extinction “cycle,” this
requires considerable patience. When “periodicity debates”
rage on in the absence of additional data, it is usually a sign
that the combatants have some other axe to grind.



can have any shape as long as it repeats after
one full period. Fig. 13.1 illustrates a few ex-
amples. In (a) and (b) the “displacement” of
q away from its “equilibrium” position [dashed
line] is not symmetric, yet the phases repeat ev-
ery cycle. In (c¢) and (d) the cycle is symmetric
with the same “amplitude” above and below the
equilibrium axis, but at certain points the slope
of the curve changes “discontinuously.” Only in
(e) is the cycle everywhere smooth and symmet-
ric.

13.2 Sinusoidal Motion

There is one sort of periodic behaviour that is
mathematically the simplest possible kind. This
is the “sinusoidal” motion shown in Fig. 13.1(e),
so called because one realization is the sine func-
tion, sin(z). It is easiest to see this by means
of a crude mechanical example.

13.2.1 Projecting the Wheel

Imagine a rigid wheel rotating at constant an-
gular velocity about a fixed central axle. A bolt
screwed into the rim of the wheel executes uni-
form circular motion about the centre of the
axle.® For reference we scribe a line on the wheel
from the centre straight out to the bolt and call
this line the radius vector. Imagine now that
we take this apparatus outside at high noon and
watch the motion of the shadow of the bolt on
the ground. This is (naturally enough) called
the projection of the circular motion onto the
horizontal axis. At some instant the radius vec-
tor makes an angle 6 = wt + ¢ with the hor-
izontal, where w 1is the angular frequency of
the wheel (27 times the number of full revolu-
tions per unit time) and ¢ is the initial angle
(at ¢ = 0) between the radius vector and the

3Note the frequency with which we periodically recycle
our paradigms!

Figure 13.2 Projected motion of a point on the
rim of a wheel.

horizontal.* From a side view of the wheel we
can see that the distance x from the shadow of
the central axle to the shadow of the bolt [i.e.
the projected horizontal displacement of the bolt
from the centre, where x = 0] will be given by
trigonometry on the indicated right-angle trian-
gle:

cos(f) =

=8

(1)
The resultant amplitude of the displacement as
a function of time is shown in Fig. 13.3.

The horizontal velocity v, of the projected
shadow of the bolt on the ground can also be
obtained by trigonometry if we recall that the

“The inclusion of the “initial phase”
scription completely general.

¢ makes this de-

= o = rcos(f) = r cos(wt+e)
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Figure 13.3 The cosine function.

vector velocity ¥ is always perpendicular to
the radius vector #. I will leave it as an exer-
cise for the reader to show that the result is

v, = —vsin(f) = —rwsin(wt+¢) (2)

where is the constant speed of the
bolt in its circular motion around the axle. It
also follows (by the same sorts of arguments)
that the horizontal acceleration a, of the bolt’s
shadow is the projection onto the & direction
of @, which we know is back toward the centre
of the wheel — i.e. in the —& direction; its
value at time ¢ is given by

v = TwW

a, = —acos(d) = —rw? cos(wt+¢) (3)

2

2
v . .

where @ = — = rw?® is the magnitude of the
r

centripetal acceleration of the bolt.

13.3 Simple Harmonic Motion

The above mechanical example serves to intro-
duce the idea of cos(d) and sin(f) as func-
tions in the sense to which we have (I hope)
now become accustomed. In particular, if we
realize that (by definition) v, =& and a, = %,
the formulae for wv,(t) and a.(t) represent the

3
derivatives of x(t):
r cos(wt + @) (4)
= —rw sin(wt+ ¢) (5)
= —rw? cos(wt + @) (6)

— which in turn tell us the derivatives of the
sine and cosine functions:

d
p cos(wt+¢) =

d
7 sin(wt + ¢) =

—w sin(wt +¢)  (7)
w cos(wt + @) (8)
So if we want we can calculate the n'" deriva-
tive of a sine or cosine function almost as easily
as we did for our “old” friend the exponential
function. I will not go through the details this

time, but this feature again allows us to express
these functions as series expansions:

exp(z) = 1 +z +32° +32° +328 +--
cos(z) = 1 —322 +hat —
sin(z) = z —%Z?’ 4.

(9)
where I have shown the exponential function
along with the sine and cosine for reasons that
will soon be apparent.

It is definitely worth remembering the SMALL
ANGLE APPROXIMATIONS

For 6 <1, cos(f)
and sin(6)

~

2
~
~

0.

13.3.1 The Spring Pendulum

Another mecahnical example will serve to estab-
lish the paradigm of SiMPLE HARMONIC MoO-
TION (SHM) as a solution to a particular type
of equation of motion.?

®Although we have become conditioned to expect such
mathematical formulations of relationships to be more re-
moved from our intuitive understanding than easily visualized
concrete examples like the projection of circular motion, this
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Figure 13.4 Successive “snapshots” of a mass
bouncing up and down on a spring.

As discussed in a previous chapter, the spring
embodies one of Physics’ premiere paradigms,
the linear restoring force. That is, a force which
disappears when the system in question is in its
“equilibrium position” zy [which we will define
as the = =0 position (zy = 0) to make the
calculations easier| but increases as x moves
away from equilibrium, in such a way that the
magnitude of the force F' is proportional to
the displacement from equilibrium [F' is linear
in x| and the direction of F is such as to try to
restore x to the original position. The constant
of proportionality is called the spring constant,
always written k. Thus F = —kx and the
resultant equation of motion is

(5w

Note that the mass plays a role just as essential

is a case where the mathematics allows us to draw a sweep-
ing conclusion about the detailed behaviour of any system
that exhibits certain simple properties. Furthermore, these
conditions are actually satisfied by an incredible variety of
real systems, from the atoms that make up any solid object
to the interpersonal “distance” in an intimate relationship.
Just wait!

as the linear restoring force in this paradigm.
If m — 0 in this equation, then the accelera-
tion becomes infinite and in principle the spring
would just return instantaneously to its equilib-
rium length and stay there!

In the leftmost frame of Fig. 13.4 the mass m is
at rest and the spring is in its equilibrium posi-
tion (i.e. neither stretched nor compressed) de-
fined as = 0. In the second frame, the spring
has been gradually pulled down a distance xyax
and the mass is once again at rest. Then the
mass is released and accelerates upward under
the influence of the spring until it reaches the
equilibrium position again [third frame]. This
time, however, it is moving at its maximum ve-
locity vmax as it crosses the centre position; as
soon as it goes higher, it compresses the spring
and begins to be decelerated by a linear restor-
ing force in the opposite direction. Eventually,
when x = —upna.y, all the kinetic energy has
been been stored back up in the compression of
the spring and the mass is once again instanta-
neously at rest [fourth frame|. It immediately
starts moving downward again at maximum ac-
celeration and heads back toward its starting
point. In the absence of friction, this cycle will
repeat forever.

[ now want to call your attention to the acute
similarity between the above differential equa-
tion and the one we solved for exponential de-
cay:

(12)
and, by extension,

(13)

¥ =Kz

the solution to which equation of motion (i.e.
the function which “satisfies” the differential
equation) was

w(t) = zge "t (14)

Now, if only we could equate x? with —k/m,
these equations of motion (and therefore their



13.4. DAMPED HARMONIC MOTION

solutions) would be exactly the same! The prob-
lem is, of course, that both & and m are in-
trinsically positive constants, so it is tough to
find a real constant x which gives a negative
number when squared.

Imaginary Exponents

Mathematics, of course, provides a simple solu-
tion to this problem: just have k be an imagi-
nary number, say

o)

and w 1is a positive real constant. Let’s see if
this trial solution “works” (i.e. take its second
derivative and see if we get back our equation of
motion):

where 7 =

twt

z(t) = zpe (15)

i = dwmpge'! (16)

i = —wizeet (17)

or i = —w’w (18)
k

= ¢/— 19

SO w - (19)

OK, it works. But what does it describe? For
this we go back to our series expansions for the
exponential, sine and cosine functions and note
that if we let z = i, the following mathemat-
ical identity holds:®

¢'? = cos(f) + i sin(h) (20)
Thus, for the case at hand, if 0 = wt
probably knew this was coming] then

[you

zg et = xy cos(wt) + ixg sin(wt)

— i.e. the formula for the projection of uniform
circular motion, with an imaginary part “tacked

5You may find this unremarkable, but I have never gotten
over my astonishment that functions so ostensibly unrelated
as the exponential and the sinusoidal functions could be so
intimately connected! And for once the mathematical oddity
has profound practical applications.

on.” (I have set the initial phase ¢ to zero just
to keep things simple.) What does this mean?

I don’t know.

What! How can I say, “I don’t know,” about
the premiere paradigm of Mechanics? We're
supposed to know everything about Mechan-
ics! Let me put it this way: we have happened
upon a nice tidy mathematical representation
that works — i.e. if we use certain rules to ma-
nipulate the mathematics, it will faithfully give
correct answers to our questions about how this
thing will behave. The rules, by the way, are as
follows:

Keep the imaginary components
through all your calculations until
the final “answer,” and then throw
away any remaining imaginary parts
of any actual measurable quantity.

The point is, there is a difference between un-
derstanding how something works and knowing
what it means. Meaning is something we put
into our world by act of will, though not always
conscious will. How it works is there before us
and after we are gone. No one asks the “mean-
ing” of a screwdriver or a carburetor or a copy
machine; some of the conceptual tools of Physics
are in this class, though of course there is noth-
ing to prevent anyone from putting meaning into
them.”

13.4 Damped Harmonic Motion

Let’s take stock.
found that

z(t) =

In the previous chapter we

[constant] — 0 =nt
K

"I am reminded of a passage in one of Kurt Vonnegut’s
books, perhaps Sirens of Titan, in which the story of creation
is told something like this: God creates the world; then he
creates Man, who sits up, looks around and says, “What'’s
the meaning of all this?” God answers, “What, there has to
be a meaning?” Man: “Of course.” God: “Well then, I leave
it to you to think of one.”



satisfies the basic differential equation

T = —KT or a = —KUv
defining damped motion (e.g. motion under the
influence of a frictional force proportional to the
velocity). We now have a solution to the equa-
tion of motion defining SHM,

i=—wlr =

where

W = —

and I have set the initial phase ¢ to zero just to
keep things simple. Can we put these together to
“solve” the more general (and realistic) problem
of damped harmonic motion? The differential
equation would then read

i = —wlr — ki

(21)
which is beginning to look a little hard. Still,
we can sort it out: the first term on the RHS
says that there is a linear restoring force and an
inertial factor. The second term says that there
is a damping force proportional to the velocity.
So the differential equation itself is not all that
fearsome. How can we “solve” it?

As always, by trial and error. Since we have
found the exponential function to be so useful,
let’s try one here: Suppose that

x(t) = zg ! (22)

where zy and K are unspecified constants.
Now plug this into the differential equation and
see what we get:

i = Kxgel't = Kz

and
= Klzpelft = K2z

The whole thing then reads

K’z = —w?zr —kKzx

which can be true “for all x” only if

K?=—-w? — kK or K+ kK +w?=0

which is in the standard form of a general
quadratic equation for K, to which there are
two solutions:

—k £ VK2 — 4w?
2

Either of the two solutions given by substitut-
ing Eq. (23) into Eq. (22) will satisfy Eq. (21)
describing damped SHM. In fact, generally any
linear combination of the two solutions will also
be a solution. This can get complicated, but we
have found the answer to a rather broad ques-
tion.

K =

(23)

13.4.1 Limiting Cases

Let’s consider a couple of “limiting cases” of
such solutions. First, suppose that the linear
restoring force is extremely weak compared to
the “drag” force — i.e® Kk > w = \/% Then

VK2 —4w? =~ k and the solutions are K =~ 0
[i.e. x =~ constant, plausible only if z = 0]
and K = —k, which gives the same sort of
damped behaviour as if there were no restoring
force, which is what we expected.

Now consider the case where the linear restor-
ing force is very strong and the “drag” force ex-

tremely weak — i.e. K < w = \/% Then
VK2 —4w? ~ 27w and the solutions are K =~

—%K +iw, or’

a(t) = mpef (24)

~ xo exp(kiwt — t) (25)

xy X e (26)

8The “>” symbol means “...is much greater than...” —

. ..is much

there is an analogous “<” symbol that means
less thamn....”

®There is a general rule about exponents that says, “A
number raised to the sum of two powers is equal to the prod-

uct of the same number raised to each power separately,” or



13.6. THE UNIVERSALITY OF SHM

where 7 = k. We may then think of [i K| as
a complex frequency'® whose real part is +w
and whose imaginary part is . What sort
of situation does this describe? It describes a
weakly damped harmonic motion in which the
usual sinusoidal pattern damps away within an
“envelope” whose shape is that of an exponen-
tial decay. A typical case is shown in Fig. 13.5.
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Figure 13.5 Weakly damped harmonic motion.
The initial amplitude of z (whatever z is) is
Xy, the angular frequency is w and the damping
rate is . The cosine-like oscillation, equivalent
to the real part of wzpe'“!, decays within the

envelope function zye 7.

13.5 Generalization of SHM

As for all the other types of equations of motion,
SHM need not have anything to do with masses,
springs or even Physics. Even within Physics,
however, there are so many different kinds of
examples of SHM that we go out of our way
to generalize the results: using “¢” to represent

The word “complex” has, like “real” and “imaginary,”
been ripped off by Mathematicians and given a very explicit
meaning that is not entirely compatible with its ordinary dic-
tionary definition. While a complex number in Mathematics
may indeed be complex — i.e. complicated and difficult to
understand — it is defined only by virtue of its having both
a real part and an imaginary part, such as z = a+:b, where
a and b are both real. I hope that makes everything crystal
clear. ...

the “coordinate” whose displacement from the
equilibrium “position” (always taken as ¢ = 0)
engenders some sort of restoring “force” @ =
—kq and “u” to represent an “inertial factor”
that plays the role of the mass, we have

)

for which the solution is the real part of

(27)

. k
q(t) = g’ where  w = \/g (28)

When some form of “drag” acts on the system,
we expect to see the qualitative behaviour pic-
tured in Fig. 13.5 and described by Eqgs. (22)
and (23). Although one might expect virtually
every real example to have some sort of fric-
tional damping term, in fact there are numerous
physical examples with no damping whatsoever,
mostly from the microscopic world of solids.

13.6  The Universality of SHM

If two systems satisfy the same equation of mo-
tion, their behaviour is the same. Therefore the
motion of the mass on the spring is in every re-
spect identical to the horizontal component of
the motion of the peg in the rotating wheel, even
though these two systems are physically quite
distinct. In fact, any system exhibiting both a
LINEAR RESTORING “FORCE” and an INERTIAL
FACTOR analogous to MASS will exhibit SHM.!!
Moreover, since these arguments may be used
equally well in reverse, the horizontal compo-
nent of the force acting on the peg in the wheel
must obey F, = —kx, where k is an “effective
spring constant.”

U Examples are plentiful, especially in view of the fact that
any potential energy minimum is approximately quadratic
for small enough displacements from equilibrium. A prime
example from outside Mechanics is the electrical circuit, in
which the charge () on a capacitor plays the role of the
displacement variable x and the inertial factor is provided
by an inductance, which resists changes in the current I =

dQ/dt.



Why is SHM characteristic of such an enor-
mous variety of phenomena? Because for suf-
ficiently small displacements from equilibrium,
every system with an equilibrium configuration
satisfies the first condition for SHM: the linear
restoring force. Here is the simple argument: a
linear restoring force is equivalent to a poten-
tial energy of the form U(q) = 3kq¢* — i.e.
a “quadratic minimum” of the potential energy
at the equilibrium configuration ¢ = 0. But if
we “blow up” a graph of U(g) near ¢ = 0,
every minimum looks quadratic under sufficient
magnification! That means any system that has
an equilibrium configuration also has some ana-
logue of a “potential energy” which is a mini-
mum there; if it also has some form of inertia
so that it tends to stay at rest (or in motion)
until acted upon by the analogue of a force,
then it will automatically exhibit SHM for small-
amplitude displacements. This makes SHM an
extremely powerful paradigm.

13.6.1 Equivalent Paradigms

We have established previously that a LINEAR
RESTORING FORCE [F' = —kx is completely
equivalent to a QUADRATIC MINIMUM IN PO-
TENTIAL ENERGY U = 1kz?. We now find
that, with the inclusion of an INERTIAL FACTOR
(usually just the MASS m), either of these phys-
ical paradigms will guarantee the mathematical
paradigm of SHM — i.e. the displacement =z
from equilibrium will satisfy the equation of mo-

tion
(t)

where ., is the amplitude of the oscillation.
Any z(t) of this form automatically satisfies the
definitive equation of motion of SHM, namely

= Tpmax COS(WE + @) (29)

d’z 9
and vice versa — whenever z satisfies Eq. (30),
the explicit time dependence of = will be given
by Eq. (29).

Linear Restoring Force

F=—-kx

X

Quadratic Potential Minimum

& Inertial Factor m

SHM
dt” $
X = X COs(wt + @)
Vo= —w X, sin(wt + @)
a = —w X, cos(wt + @)
w = k/m

Figure 13.6 Equivalent paradigms of SHM.

13.7 Resonance

No description of SHM would be complete with-
out some discussion of the general phenomenon
of resonance, which has many practical conse-
quences that often seem very counterintuitive.'?
[ will, however, overcome my zeal for demon-
strating the versatility of Mathematics and stick
to a simple qualitative description of resonance.

121t is, after all, one of the main purposes of this book to
dismantle your intuition and rebuild it with the faulty parts
left out and some shiny new paradigms added.



13.7. RESONANCE

Just this once.

The basic idea is like this: suppose some system
exhibits all the requisite properties for SHM,
namely a linear restoring “force” @) = —k ¢ and
an inertial factor p. Then if once set in motion it
will oscillate forever at its “resonant frequency”
w = \/%7 unless of course there is a “damp-
ing force” D = —kuq to dissipate the energy
stored in the oscillation. As long as the damping
is weak [k < \/%], any oscillations will persist
for many periods. Now suppose the system is
initially at rest, in equilibrium, ho hum. What
does it take to “get it going?”

The hard way is to give it a great whack to start
it off with lots of kinetic energy, or a great tug to
stretch the “spring” out until it has lots of poten-
tial energy, and then let nature take its course.
The easy way is to give a tiny push to start up a
small oscillation, then wait exactly one full pe-
riod and give another tiny push to increase the
amplitude a little, and so on. This works be-
cause the frequency w is independent of the
amplitude qy. So if we “drive” the system at
its natural ‘“resonant” frequency w, no matter
how small the individual “pushes” are, we will
slowly build up an arbitrarily large oscillation.'?

Such resonances often have dramatic results. A
vivid example is the famous movie of the col-
lapse of the Tacoma Narrows bridge, which had
a torsional [twisting] resonance® that was ex-
cited by a steady breeze blowing past the bridge.
The engineer in charge anticipated all the other
more familiar resonances [of which there are
many| and incorporated devices specifically de-
signed to safely damp their oscillations, but for-
got this one. As a result, the bridge developed

130f course, this assumes & = 0. If damping occurs at
the same time, we must put at least as much energy in with
our driving force as friction takes out through the damping
in order to build up the amplitude. Almost every system has
some limiting amplitude beyond which the restoring force is
no longer linear and/or some sort of losses set in.

' (something like you get from a blade of grass held be-
tween the thumbs to create a loud noise when you blow past
it)

huge twisting oscillations [mistakes like this are
usually painfully obvious when it is too late to
correct them] and tore itself apart.

A less spectacular example is the trick of getting
yourself going on a playground swing by leaning
back and forth with arms and legs in synchrony
with the natural frequency of oscillation of the
swing [a sort of pendulum]. If your kinesthetic
memory is good enough you may recall that it
is important to have the “driving” push exactly
% radians [a quarter cycle] “out of phase” with
your velocity — ¢.e. you pull when you reach the
motionless position at the top of your swing, if
you want to achieve the maximum result. This
has an elegant mathematical explanation, but I

promised. ...



