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The WAVENUMBER k = — of a wave has a special

significance in both classical and quantum physics. Be-
cause waves are quantized (they can only occur in “pack-
ets” of energy hv = hw and momentum h/A = hik) we
are often in the position of asking what possible values
k can have, and counting the number of allowed k val-
ues. From this procedure arises the notion of “k-space”
and the density of states in k-space, which may seem
rather exotic on the first encounter but with which ev-
ery physicist ultimately becomes intimately familiar.

The following arguments apply to any sort of wave (or
wavefunction) that is confined to a finite region and con-
strained to have nodes at the boundaries.

1 Counting Modes in 1D
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In a one dimensional “box” of length L, the “allowed”
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wavelengths are )\, = — corresponding to wavenum-
n

nmw
bers k, = T Thus the smallest posssible wavenum-
ber, and the “distance” (in k-space) between successive
allowed wavenumbers, is 0k = X There is 6N = 1 al-

lowed “state” per 0k. Put another way, the “density”
of allowed states per unit wavenumber is
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or, for this one-dimensional (1D) case,

L
Pkip = ; .

Note that n > 0 = k > 0. We are drawing standing
waves, coskr = % (e“” + e’““) (we choose z = 0 at
the centre of the box, for symmetry), for which “nega-
tive” k values have no independent meaning.

2 Counting Modes in 2D

In a rectangular box of width L, and height L, the
modes which have nodes at all boundaries are prod-
ucts of sinusoidal functions of the form cos k,x-cos kyy,

where k, = nml and ky = nyl. Now the situation
L, L,

is a little more complicated, since k= kil + kyj is a

vector. In fact, we call it the wavevector instead of the

wavenumber; the wavenumber k = |k| is then given by

k= \/k2+E.

Why do we bother with the magnitude k instead of
sticking to the intrinsically multidimensional vector k?
Well, when we do kinematics we are often concerned
with the kinetic energy, which is a scalar quantity de-
pending only upon the magnitude of the momentum p
(and upon the effective mass, if any) of the particle in
question. Since we have discovered that photons (for
example) are in some sense particles which have energy
€ = hw and momentum p = hk, we can conclude that
¢ = hck (for massless particles only) and so, if all we
really care about is the energy € of a given mode, the
only thing we need to know is its wavenumber, k.

But we still need to count up how many modes have
(approximately) the same wavenumber k. This is where
we have to return to the two-dimensional picture and
begin talking in terms of k-space.
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There is one allowed k, for every 0k, = w/L, and one
allowed k, for every ok, = m/L,, so there is altogether
SN = 1 allowed k for every “k-area” element dA, =
0k, -0k, in two-dimensional k-space. (Yes, this is getting
a little weird. Pay close attention!) Note that A, =
72 /A where A = L,- L, is the actual physical area of the
box in normal space. This element of k-space contains
exactly 0N = 1 allowed state, so once again we may
define the density of states in k-space, p, = IN/d Ay, or,
for this two-dimensional (2D) case,
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Note that the density of states in k-space is proportional
to the physical area of the region to which the waves are
confined.



How many such states have (approximately) the same
wavenumber k7 This is a crucial question in many prob-
lems. To estimate the result we draw a ring in k-space
with radius k£ and width dk. Recalling that only positive
values of n, and n, are allowed (standing waves and all
that), we only consider the upper right-hand quadrant of
the circular ring; its “k-area” is thus dAy = 1 - 27 k dk.
At a density of py,, states per unit k-area, this gives
5 Pkop kdk = %% kdk or %kdk states in that ring
quadrant. We can express this as a density of wavenum-
ber magnitudes in terms of the distribution function

A
Dup(k) dk = o— kdk

which is defined as the number of allowed modes whose
wavenumbers are within dk of a given k. Note that the
number increases linearly with £, unlike in the 1D case
where it is independent of k.

3 Counting Modes in 3D

In three dimensions, the extension is straightforward:
E = kyi+ kyj + k.k with k, = nym/L,, n, =1,2,3,--
etc. Now there is 6N = 1 allowed k for each “k—volunrsle
element 0Vi, = ok, -k, -0k, = (£ )-(£) - (£) = %,
where V' = L,-L,-L, is the actual physical volume of the
three-dimensional box to which the waves are confined.
This gives a density of modes in k-space of

4
Pksp = .
The “volume” of k-space having wavenumbers within dk
of k = |K| is now the positive octant of a spherical shell
of “radius” k and thickness dk: dV}, = % -4rk? dk and
this shell contains pg,,dV} allowed modes, so the den-
sity of wavenumber magnitudes (distribution function)
in 3D k-space is

Dsp(k) dk = Y k*dk .
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Note that in this case the density increases as the square
of the wavenumber. In fact, we can generalize: if d is
the dimensionality of the region of confinement, then
Dyp (k) dk o< k! dk. In each case, the density of states
in k-space is directly proportional to the size of the real-
space region to which the waves are confined. More
room, more possibilities.



