
Se
tion 2: COUNTING MODES IN 2D 1k-SPACEThe wavenumber k � 2�� of a wave has a spe
ialsigni�
an
e in both 
lassi
al and quantum physi
s. Be-
ause waves are quantized (they 
an only o

ur in \pa
k-ets" of energy h� = �h! and momentum h=� = �hk) weare often in the position of asking what possible valuesk 
an have, and 
ounting the number of allowed k val-ues. From this pro
edure arises the notion of \k-spa
e"and the density of states in k-spa
e, whi
h may seemrather exoti
 on the �rst en
ounter but with whi
h ev-ery physi
ist ultimately be
omes intimately familiar.The following arguments apply to any sort of wave (orwavefun
tion) that is 
on�ned to a �nite region and 
on-strained to have nodes at the boundaries.1 Counting Modes in 1D
In a one dimensional \box" of length L, the \allowed"wavelengths are �n = 2Ln 
orresponding to wavenum-bers kn = n�L . Thus the smallest posssible wavenum-ber, and the \distan
e" (in k-spa
e) between su

essiveallowed wavenumbers, is Æk = �L . There is ÆN = 1 al-lowed \state" per Æk. Put another way, the \density"of allowed states per unit wavenumber is�k � ÆNÆkor, for this one-dimensional (1D) 
ase,�k1D = L� :Note that n > 0 ) k > 0. We are drawing standingwaves, 
os kx = 12 �eikx + e�ikx� (we 
hoose x = 0 atthe 
entre of the box, for symmetry), for whi
h \nega-tive" k values have no independent meaning.2 Counting Modes in 2DIn a re
tangular box of width Lx and height Ly themodes whi
h have nodes at all boundaries are prod-u
ts of sinusoidal fun
tions of the form 
os kxx �
os kyy,

where kx = nx �Lx and ky = ny �Ly . Now the situationis a little more 
ompli
ated, sin
e ~k = kx{̂ + ky |̂ is ave
tor. In fa
t, we 
all it the waveve
tor instead of thewavenumber; the wavenumber k � j~kj is then given byk =qk2x + k2y :Why do we bother with the magnitude k instead ofsti
king to the intrinsi
ally multidimensional ve
tor ~k?Well, when we do kinemati
s we are often 
on
ernedwith the kineti
 energy, whi
h is a s
alar quantity de-pending only upon the magnitude of the momentum p(and upon the e�e
tive mass, if any) of the parti
le inquestion. Sin
e we have dis
overed that photons (forexample) are in some sense parti
les whi
h have energy" = �h! and momentum p = �hk, we 
an 
on
lude that" = �h
k (for massless parti
les only) and so, if all wereally 
are about is the energy " of a given mode, theonly thing we need to know is its wavenumber, k.But we still need to 
ount up how many modes have(approximately) the same wavenumber k. This is wherewe have to return to the two-dimensional pi
ture andbegin talking in terms of k-spa
e.

There is one allowed kx for every Ækx = �=Lx and oneallowed ky for every Æky = �=Ly, so there is altogetherÆN = 1 allowed ~k for every \k-area" element ÆAk =Ækx �Æky in two-dimensional k-spa
e. (Yes, this is gettinga little weird. Pay 
lose attention!) Note that ÆAk =�2=A where A = Lx �Ly is the a
tual physi
al area of thebox in normal spa
e. This element of k-spa
e 
ontainsexa
tly ÆN = 1 allowed state, so on
e again we mayde�ne the density of states in k-spa
e, �k � ÆN=ÆAk or,for this two-dimensional (2D) 
ase,�k2D = A�2 :Note that the density of states in k-spa
e is proportionalto the physi
al area of the region to whi
h the waves are
on�ned.



Se
tion 3: COUNTING MODES IN 3D 2How many su
h states have (approximately) the samewavenumber k? This is a 
ru
ial question in many prob-lems. To estimate the result we draw a ring in k-spa
ewith radius k and width dk. Re
alling that only positivevalues of nx and ny are allowed (standing waves and allthat), we only 
onsider the upper right-hand quadrant ofthe 
ir
ular ring; its \k-area" is thus dAk = 14 � 2� k dk.At a density of �k2D states per unit k-area, this gives�2 �k2D k dk = �2 A�2 k dk or A2� k dk states in that ringquadrant. We 
an express this as a density of wavenum-ber magnitudes in terms of the distribution fun
tionD2D(k) dk = A2� k dkwhi
h is de�ned as the number of allowed modes whosewavenumbers are within dk of a given k. Note that thenumber in
reases linearly with k, unlike in the 1D 
asewhere it is independent of k.3 Counting Modes in 3DIn three dimensions, the extension is straightforward:~k = kx{̂+ ky |̂+ kzk̂ with kx = nx�=Lx, nx = 1; 2; 3; � � �et
. Now there is ÆN = 1 allowed ~k for ea
h \k-volumeelement ÆVk = Ækx �Æky �Æky = � �Lx� �� �Ly � �� �Lz � = �3V ,where V = Lx�Ly �Lz is the a
tual physi
al volume of thethree-dimensional box to whi
h the waves are 
on�ned.This gives a density of modes in k-spa
e of�k3D = V�3 :The \volume" of k-spa
e having wavenumbers within dkof k = j~kj is now the positive o
tant of a spheri
al shellof \radius" k and thi
kness dk: dVk = 18 � 4�k2 dk andthis shell 
ontains �k3DdVk allowed modes, so the den-sity of wavenumber magnitudes (distribution fun
tion)in 3D k-spa
e isD3D(k) dk = V2�2 k2 dk :Note that in this 
ase the density in
reases as the squareof the wavenumber. In fa
t, we 
an generalize: if d isthe dimensionality of the region of 
on�nement, thenDdD(k) dk / kd�1 dk. In ea
h 
ase, the density of statesin k-spa
e is dire
tly proportional to the size of the real-spa
e region to whi
h the waves are 
on�ned. Moreroom, more possibilities.


