
Coulomb's Law

Think of  q1  as the source of “electric field lines”  E  pointing away from it 
in all directions.  (We assume it is a positive charge.)  

Then  F12 = q2 E  where we think of  E  as a vector field that is “just there 
for some reason” and  q2  is a “test charge” placed at some position where 
the effect  (F)  of  E  is manifested.   We can then write Coulomb's Law 
a bit more simply: 



Fundamental Constants

kE ≡ 1/4πє0  =  c2  x 10 -7  =  8.9875518 x 10 
9 V·m·C-1

є0  =  10 7 / 4πc2  =  8.8542 x 10 
-12 C2·N-1·m-2

c  ≡  2.99792458 x 10 
8 m/s
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dq = Q dθ /2π

dq/dθ = Q/2π

Electric Field on axis from a 
uniform RING of Charge Q

dE = kE dq/R2

ℓ

Evaluate electric field  E  at test point:
superimpose (add up) contributions  dE  
from each element of charge  dq  until all 
the  Q  is accounted for.
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dq = Q dθ /2π dq/dθ = Q/2π

┴ components cancel

Electric Field on axis from a 
uniform RING of Charge Q

dE = kE dq/R2dE'

dq' = dq

Axial (//)  
components 

add up.
dE// = kE dq/R2 • ( ℓ / R)  where the last term is obtained    
                                        geometrically (parallel triangles).

ℓ

SYMMETRY:  For each  dq  on one 
side of the ring, there is an equal  
dq'  on the other side (directly 
across) whose horizontal field 
component exactly cancels that of  
dq.  So we can forget about those 
components of  E.
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dq = Q dθ /2π dq/dθ = Q/2π

┴ components cancel

Electric Field on axis from a 
uniform RING of Charge Q

dE = kE dq/R2dE'

dq' = dq

Axial (//)  
components 

add up.
dE// = kE dq/R2 • ( ℓ / R)

      =   kE (Q /2π) dθ / (r 2 + ℓ 2 ) • [ ℓ / (r 2 + ℓ 2 )½]

      =   kE Q  ℓ (r 2 + ℓ 2 )- 3/2 • dθ /2π

ℓ

But if we add these all up, each  dθ  gives the 
same contribution, and the  dθ 's add up to  2π. 

The total field on axis is thus

E// = kE Q  ℓ (r 2 + ℓ 2 )- 3/2

pointing along the axis.  
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Electric Field on axis from a uniform RING 
of Charge Q

ℓ

 E  =  kE Q  ℓ (r 2 + ℓ 2 )- 3/2

We should always check to see if we get the right 
behaviour in various limiting cases.  Here there are two:

  ℓ >> r :     E  →  kE Q / ℓ 2      i.e.  Coulomb's Law   

  ℓ → 0 :     E  → 0             i.e.  the field cancels in the 
 centre of the ring.

(This follows by 
symmetry.)



r

dq = σ •2πr dr

Charge per unit area  σ = Q/πR2

Electric Field on axis from a uniform DISC 
of Charge Q

dE = kE dq  ℓ (r 2 + ℓ 2 )- 3/2

ℓ

dr R

A DISC is composed 
of many RINGS.  

E = kE (Q/πR2)•2π ℓ ∫
R
 r (r 2 + ℓ 2 )- 3/2 dr

(not the easiest integral in the world, but “doable”)

Result:            E = 2πkE σ [ 1 - ℓ (R 2 + ℓ 2 )- ½ ]

0

Note limits as  ℓ  >> R  and  ℓ  << R 



Note limits:

  ℓ  >> R :   Let  R/ℓ ≡ ε << 1;   then                           
(1 + ε 2 )- ½ ≈ 1 – ½ ε 2 =  1 –  R 2/2ℓ 2,  

giving  E = 2πkE(Q/πR2) [1 – 1 + R 2/ℓ 2]  or

E = kEQ / ℓ 2          i.e.  Coulomb's Law    

  ℓ  << R :   E  →  2πkE σ  =  σ /2         That is,

Charge per unit area  σ = Q/πR2

Electric Field on axis from a uniform DISC 
of Charge Q

ℓ

R

Q

  E = 2πkE σ [ 1 - ℓ (R 2 + ℓ 2 )- ½ ]

when you get so close to the surface
of the disc that the edges are lost in 
the distance, the field points away from 
the surface and is constant in space.
(There is an easier way to show this.)


