
Averaging over the Boltzmann Distribution

Looked at as a probability
distribution over energy 
at a fixed temperature, 
the Boltzmann distribution 
is just an exponential decay.
If we assume that the 
density of states (the 
number of states per unit 
energy interval) is uniform, 
then we find a mean 
energy  <ε> = τ = kBT.

<ε> = τ = kBT

For a uniform 
density of states,

But what if the density of states is not uniform?  What if there are more 
available states per unit energy interval at low energy than at high energy 
(or vice versa)?  Then we have to include another factor in our averages: 

D(ε),  the density of states.  



Distributions & Averages
If “X” is a function of ε,  X(ε),  and the probability of a state of energy ε  
being occupied is given by  P(ε),  and the number of such states per unit 
energy interval is given by the density of states  D(ε),  then the average 
value of  “X”  is given by 

<X> = ∫ X(ε) P(ε) D(ε) dε / ∫ P(ε) D(ε) dε

where the integral (or sum, in the case of discrete states) extends over 
the entire range of possible values of ε.   The same formulation would hold 
mathematically for averages over momentum p or other properties, but the 
Boltzmann distribution gives us an explicit result for  P(ε),  so this one is 
easiest.   Moreover, the simplest thing to take the average of is  ε  itself.  

Note that normalization is accomplished by dividing by   ∫ P(ε) D(ε) dε .



Allowed Energies of a Particle in a  1D  Box

Recall that de Broglie's hypothesis implies a discrete set of allowed modes
for a particle confined to a box of length L: those with   λn = 2L /n   and so  
pn = h /λn = nh/2L  and  En = pn

2/2m = n2 h2/8m L2.    Now, the allowed values 
of  n  range over all positive integers and are uniformly distributed  -- i.e.  
 D(n) = constant.   But  En ≡ ε  is not!  The energy scales with  n 2  and so 
there are more allowed energies per unit energy interval at low energies 
than at high energies.   Mathematically we can write   D(ε) dε = D(n) dn    
so   D(ε) = D(n) dn/dε  ∝  dn/dε .     Since   ε  ∝  n 2,    n ∝ ε½    and we 

have    dn/dε ∝ ε-½    or    

D(ε) ∝ ε-½

There, wasn't that easy?   This is the result for a 1D box, where there is 
a uniform distribution of allowed  n  values.   In higher dimensions it's a 
bit more complicated . . . .



Allowed Energies of a Particle in a  2D  Box
Allowed modes for a particle confined to a 2D square box of width  L  are 
those with  px = nxh/2L,  py = nyh/2L  and  ε = p 2/2m = n 2 h2/8mA,  where    
A = L2  and   n 2 = nx

2 + ny
2.   Both  nx  and  ny  range over all positive 

integers and are uniformly distributed, but now  n  is not:  the number of 
allowed modes within  dn  of a given  n  is proportional to the area of an 
annulus of width  dn  and radius  n  in “n-space” -- namely   D(n) ∝ n .   

Now  D(ε) = D(n) dn/dε  ∝  n dn/dε .   We  

still have  n ∝ ε½  and so   dn/dε ∝ ε-½,  

giving    D(ε) ∝ ε½ · ε-½,    or

D(ε) = constant

in a two dimensional box.

In 3D we get    D(n) ∝ n 2   by an 
analogous 3D “n-space” picture.



Allowed Energies of a Particle in a  3D  Box
Allowed modes for a particle confined to a 3D cube of width  L  are those 
with  px = nxh/2L,  py = nyh/2L,  pz = nzh/2L  and  ε = p 2/2m = n 2 h2/8mV,  
where    V = L3  and   n 2 = nx

2 + ny
2 + nz

2.   As before,  nx,  ny  and  nz  
range over all positive integers and are uniformly distributed, but now the 
number of allowed modes within  dn  of a given  n  is proportional to the 
volume of a spherical shell of width  dn  and radius  n  in 3D “n-space” -- 
namely   D(n) ∝ n 2 .     Now  D(ε) = D(n) dn/dε  ∝  n 2 dn/dε .   We  

still have  n ∝ ε½  and so   dn/dε ∝ ε-½,  giving    D(ε) ∝ ε · ε-½,    or

D(ε) ∝ ε½

in a three dimensional box (the kind we are most familiar with).

Now we can calculate thermal averages in 3D:

<X> = ∫ X(ε) e-ε/τ ε½ dε / ∫ e-ε/τ ε½ dε



The Maxwellian Distribution of Speeds in a 3D Box

In 3D we have    D(ε) ∝ ε½   and    ε = ½ mv 2   or   ε ∝ v 2   where   v   
is the speed of a particle in the box.   The usual distribution conversion  
gives    D(v) dv = D(ε) dε    so   D(v) = D(ε) dε/dv  ∝  ε½ v  ∝  v 2.    
This is all we need to write down the thermal distribution of speeds in a 
3D box: 

P(v) D(v)  ∝  v 2  e-½ mv 2 /τ

This is the same as Eq. (22-14) on p. 503 of the textbook, except for 
the normalization factor that turns the  ∝  sign into an  =  sign, and of 
course the notation:   N(v)  ≡  P(v) D(v) .   

The Maxwellian distribution is even simpler in 1D and 2D . . . .


