
The University of British Columbia

Physics 438 Assignment # 3:

FLUID MECHANICS & LOCOMOTION

SOLUTIONS:

Tue. 06 Feb. 2007 — finish by Thu. 15 Feb.

Please hand in one assignment per group and list the names & Email addresses of all group members at the top of each sheet. In general, if

you think some necessary information is missing, make a reasonable assumption. But always write down what that assumption is. Always

estimate your uncertainty in any measured quantity, and don’t forget to specify all units. If possible, justify your input. For original comments

you may score bonus points!

1. NEAR SURFACE DRAG: (project by Natasha Szucs, April 2002) Natasha, a good swimmer, wants to quantify
the effect of near surface drag. For that purpose she swims with the dolphin kick at various depths y under the
water surface. She maintains a constant depth by watching a horizontal line on the pool wall. For every length
she swims she measures her travel time with a stopwatch on her wrist.1 The UBC pool is slightly shorter below a
depth of 1.50 m (see ∆x in table below). She also measures her pulse rate Fh, and only uses runs where it stays
close to the same value, 140 beats per minute.

Table 1 : Natasha’s distance ∆x, elapsed time ∆t and pulse rate Fh while swimming at depth y under water.

y [m] ∆x [m] ∆t [s] Fh [beats/min] avg. speed [m/s] ratio CDy
/CD3

0 25 26.24 140 0.953 1.282
0 25 26.37 136 0.948 1.295

0.5 25 25.45 140 0.982 1.206
0.5 25 25.15 140 0.994 1.178
1.0 25 23.85 140 1.048 1.059
1.0 25 27.73 140 0.902 1.432
1.5 25 22.95 144 1.089 0.981
1.5 25 22.95 140 1.089 0.981
2.0 22.86 21.90 140 1.044 1.068
2.0 22.86 21.56 144 1.060 1.035
2.5 22.86 21.60 140 1.058 1.039
2.5 22.86 21.44 140 1.066 1.024
3.0 22.86 21.15 136 1.081 0.996
3.0 22.86 21.23 140 1.077 1.004

(a) Calculate the average speed for each lap. ANSWER: u = ∆x/∆t. See the table above and the graph below.

1See Table 3.12, p. 125.
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LEFT: Average speed as a function of depth. Plausible uncertainties (“error bars”) have been
included and χ2-minimization fits shown as lines: the straight line represents a first order poly-
nomial fit (u = 0.951 + 0.047y) and the curved line represents a second-order polynomial fit
(u = 0.946 + 0.062y − 0.0053y2). RIGHT: Depth dependence of the drag coefficient relative to
that at a depth of 3 m.

(b) Assume a body shape like a flattened torpedo of cross section area A = 0.07 m2, and a drag coefficient
CD3

= 0.05 to calculate the average drag force F3 at a depth of y = 3.0 m. This is also the average
propulsion force generated by the swimmer. ANSWER: The Reynolds number for such a shape is given by
Re = D u/ν, where D ≈ 0.3 m is the diameter of the torpedo, u ≈ 1 m/s is a typical velocity and ν ≈ 10−6 m2/s
is the kinematic viscosity of water (from Table 3.4 on p. 86 of the textbook). Thus Re ≈ 3 × 105 and the flow is
very turbulent, so that most of the drag is hydrodynamic drag and we can ignore laminar drag (skin friction).
According to Fig. 3.18 on p. 92 of the textbook, this is just the range of Re in which the drag coefficient CD

suddenly begins to drop with increasing Re. Therefore we should expect dramatic differences between swimming
speeds of athletes with only slightly different thrust. However, the depth dependence is primarily due to
ventilation drag and/or wave drag, as shown in Fig. 3.22 on p. 95. The swimmer (even underwater) creates a
wave that travels with her, and must push along the “hump of water” that results; the size of this “hump”
decreases as she gets further from the surface. Once she is far enough below the surface that we can ignore this
effect, we should be able to use Boye’s formula on p. 93 for the hydrodynamic drag: Fh = (1/8)CD × πD2ρu2

with CD ≈ 0.03. This gives Fh ≈ 1.2 N at u3 = 1.066 m/s.

(c) Since the heart rate is about the same at all depths one can assume that the propulsion force too is the same
at all depths. Calculate the drag coefficient ratio CDy

/CD3
as function of depth y. ANSWER: In

unaccelerated motion at constant velocity, the propulsion force is exactly balanced by the equal and opposite drag
force, so if one is constant, so is the other. Since Fh ∝ CD × u2 (everything else is constant), a constant Fh

implies CD ∝ u−2 or CDy
/CD3

= (u3/uy)
2 . This can be used to calculate the ratio as a function of y. See

the table and graph above. Note however that the data “jump around” a lot, indicating large systematic
uncertainties (hardly surprising) so we would be foolish to take the simple linear or second order polynomial fits
too seriously. All we can really conclude is that “deeper tends to be better” from the standpoint of the drag
coefficient, and possibly that the improvement levels off after the first meter or two.

(d) What advice should the UBC coach give to the swimmers? ANSWER: (i) Be grateful you’re in a sport for
which UBC provides a facility — as opposed to (for instance) Track & Field, for which UBC alone, among all the

major Universities in the civilised world, has no facility (track) whatsoever! (ii) On the start, always swim
underwater for as far and as deep as rules allow. (There are strict limits on this, for obvious reasons.) (iii)
Natasha may decrease her lap time by swimming at a greater depth, but of course she must return to the surface
to breathe. There is also another reason to stay at the surface: air is thinner than water! A swimmer may try to
propel herself not only forward, but also upward, so that her shoulders are only partly in the water, thereby
reducing the frontal area pushing against the water and therewith the drag force.2 In addition, the wave itself may
be utilized to a certain extent, especially with butterfly and breast strokes. If you observe competitive swimmers

2In effect, the swimmer is trying to emulate the water-walking basilisk lizard!
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you will always see an upward and downward oscillation, which is partly used to overcome the wave, especialy in
the butterfly.

Surface waves aren’t bad for everyone. The largest whales may be able to harness the energy from waves for their
own propulsion3 and dolphins are able to save energy by riding waves.4

Humans are not as well-streamlined as marine mammals: the drag coefficient for a towed human is nearly 3.5
times greater than a towed harbor seal.5

2. RED FINGERS: Swirl one arm around as fast as you safely can. Measure the length L of your arm and the
time ∆t10 it takes for 10 revolutions, so that you can determine the period τ .

(a) Calculate the average speed of your fingers. ANSWER: Assuming that you hold your shoulder fixed and are
flexible enough to swing your arm in a circle, you can use v = rω with r = L and ω = 2π/τ to calculate v. For a
typical L = 0.8 m and τ = 0.6 s this would give v = 8.4 m/s.

(b) Determine the radial centrifugal acceleration and the additional pressure in the blood vessels in your fingers
due to the motion. Compare this pressure to the systolic pressure generated by your heart (∆ph ≈ 120 mm
Hg), and comment why your fingers are red. ANSWER: The radial acceleration of your fingers is given by
a = rω2 or a = v2/r. For the typical values above, this would give a = 88 m/s2. Compare the acceleration of
gravity, g = 9.81 m/s2; it is as if your arm were hanging down in a gravitational gradient that starts at zero (at
your shoulder) and increases linearly to 8.9g at your fingers. Because the “artificial gravity” is not constant, you
can’t just multiply ρgL by 8.9 to get the addidtional hydrostatic pressure at your fingers; you must use the average

a (which, because a changes linearly with r, is just half the value at your fingers) or take the integral of a(r)ρdr,
which amounts to the same thing. The result (for the above typical values) is p = 35, 000 N/m2, or about 1/3 of
an atmosphere, or over 2 1

2
times the typical systolic blood pressure of 13,300 Pa. No wonder your fingers are red!

If the same blood pressure were produced in your head for any length of time, you would be in grave danger of an
aneurysm or stroke. Fortunately the blood vessels in your extremities were designed to handle such extremes.

3. HOW DOES THE FLEA GET YOU? A flea can be modeled as a sphere of 1 mm diameter with a density
close to that of water. The flea accelerates at an average rate of 200 g (≈ 2000 m/s2), achieving a takeoff velocity
that allows it to reach a potential host at h = 0.35 m above ground.

(a) What is the takeoff velocity? ANSWER: First let’s assume that air drag is negligible, in which case the
initial kinetic energy K0 = 1

2
mv2

0 must equal the gravitational potential energy mgh at the top of the (presumed

vertical) trajectory, i.e. v0 =
√

2gh or v0 = 2.62 m/s . Now let’s check to see if it is reasonable to neglect

drag. The Reynolds number of a sphere of D = 10−3 m moving at u = 2.62 m/s through a medium with
kinematic viscosity ν = 16 × 10−6 m2/s is Re = Du/ν = 164 so the flow of air past the flea is laminar
throughout and the Stokes friction force is FD = 6πrηu, where η = 18 × 10−6 kg·s−1·m−1 is the viscosity of air
and r = 0.5 × 10−3 m, giving FD = 0.44 × 10−6 N initially. Thus the deceleration due to air friction is
af = FD/m where m = 4

3
πr3ρ = 0.52 × 10−6 kg, or af = 0.85 m/s2 — about 0.087g. This additional

deceleration is a small fraction of the deceleration due to gravity, and only gets smaller as u decreases, so it is not
a bad approximation to neglect air friction – certainly our calculated v0 is off by less than 10%.

(b) How long is the acceleration phase? ANSWER: Assuming a constant acceleration of a0 = 2000 m/s2,

v0 = a0t0 gives t0 = 0.00131 s = 1.31 ms .

(c) What force is required to obtain this acceleration? ANSWER: We calculated m = 0.52 × 10−6 kg earlier;

thus F0 = ma0 gives F0 = 1.047× 10−3 N .

(d) What is the power (force × velocity) at takeoff? ANSWER: Since (assuming constant acceleration) the
velocity is initially zero and grows linearly with time to a final value of v0, the power is initially zero and grows
linearly with time to a final value of F0v0. The average power is thus half the final power, or

〈P0〉 = 1.37 × 10−3 W .

3Bose and Lien, “Energy Absorption from ocean waves: A free ride for cetaceans”, Proc. Roy. Soc. Lond. B. 240, 591-605
(1990).

4Williams et al., Nature (1992).
5T.M. Williams and G.L. Kooyman, “Swimming performance and hydrodynamic characteristics of harbor seals Phoca vitulina”,

Physiological Zoology 58, 576-589 (1985).
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(e) Make a reasonable assumption about the muscle mass involved in a jump and calculate the power
requirement per kg of muscle. Given that a typical muscle output is ≈ 100 W/kg, comment on your answer.
ANSWER: Let’s be generous and assume 1/5 of the entire mass of the flea is muscle used in the jump. That

would be about 10−7 kg. The power-to-mass ratio would then be 14,000 W/kg . Even if the flea were all

muscle, we would get 2620 W/kg, which is a little implausible! There must be something else going on. Oh yes. . .

(f) Before a jump, the flea stores energy in a pad of resilin, a rubber-like protein built into each hind leg, about
30 µm thick and 80 µm in diameter, with an energy storage capacity of about 1.5 × 106 J/m3. How much
potential energy could the flea store in each pad? How long would it take the flea to put that much energy
into each pad? ANSWER: The volume of a disc 30 µm thick and 80 µm in diameter is 0.151× 10−12 m3, so

it could store 0.226 × 10−6 J . Assuming that the “mouse to elephant” allometric relation holds, the flea’s

resting metabolism is about Γ0 = 4m3/4 ≈ 0.78 × 10−4 W. If the flea stores energy in its resilin pads at roughly
this rate, it will take about 0.0029 s or 2.9 ms for the flea to store up enough energy for another jump.
(Presumably it will eventually get tired if it keeps this up, but it can obviously jump pretty often!)


