
The University of British Columbia

Physics 438 Assignment # 4:

MORE MECHANICS & METABOLISM

SOLUTIONS:

Thu. 15 Feb. 2007 — finish by Thu. 1 Mar.

Please hand in one assignment per group and list the names & Email addresses of all group members at the top of each sheet. During

Reading Break you can gather information from the literature and attempt each problem on your own; then when you return you can

pool your information and ideas with the rest of your team and your final solutions should emerge quickly. As always, if you think some

necessary information is missing, make a reasonable assumption. But always write down what that assumption is. Remember to estimate

your uncertainty in any measured quantity, and don’t forget to specify all units. If possible, justify your input. For original comments you

may score bonus points!

1. THE ENERGY LOSS OF A HUNT:

(a) Search the literature to collect data about a fast hunter such as wild dog, leopard, or lion.1 Find mass M ,
top speed Ut, length of leg L, length of step while foot is on the ground S, period T = 2π/ω (either from
T = 1/n where n is the number of steps per second, or from the distance λ between two imprints of the feet
on the ground: T = λ/Ut, duration τ of the hunt, or the range R = Utτ . Treat the motion of the rear leg like
simple harmonic motion where the position of the foot relative to the vertical is x = A sin(ωt), where
A = S/2 is the amplitude, and U = ωA cos(ωt) is the velocity of the foot. The maximum foot velocity is
Umax = ωA, the instantaneous acceleration of the foot is a = ω2A sin(ωt), and the maximum foot
acceleration is amax = ω2A. ANSWER:

Cheetah, Acinonyx jubatus. (Fig. from Hildebrand, 1962)2

Body mass: M = 40 kg (Marker and Dickman, 2003).3

Average top speed: Ut = 14.8 m/s (Hildebrand, 1962).
Limb Length: L = 0.79 m (Marker and Dickman, 2003).
Average period: T = 0.31 s (Hildebrand, 1962).
Angular deflection of the limb: φ = 30◦ (Ahlborn, 2004).
Distance covered during hunt: Xhunt = 60 m.
Duration of hunt: τ = 5 s.

The parameters that control the speed U are stride length λ and stride frequency f (Alexander, 2003):4

U = λ × f . Therefore, we can calculate a stride length for a given speed and stride frequency:

f = 1/T = 1/0.31 s = 3.3 Hz and (at top speed) λ = Ut/f = (14.8 m/s)/(3.3 Hz) or λ = 4.48 m .

1Note: some misprints in the assignment as handed out have been corrected in this version.
2M. Hildebrand, 1962: “Further studies on locomotion of the cheetah”, Journal of Mammalogy 42, 84-91 (1962).
3L.L. Marker and A.J. Dickman, 2003: “Morphology, physical condition and growth of the cheetah (Acinonyx jubatus

jubatus)”, Journal of Mammalogy 84, 840-850 (2003).
4R.McN. Alexander, 2003: Principles of Animal Locomotion (Princeton University Press, 2003).
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To get the length S of a “step” requires some knowledge of the leg motion. If we treat this as the swing of a
straight rod of length L through an arc subtending 2φ = 60◦ at constant ω (ignoring the fact that this would be a
pretty bumpy ride), we can set U = Lω and pretend that the leg just keeps swinging around in a circle at the
same ω (like in a “Roadrunner” cartoon), in which case the step length S is the same fraction of the total stride
length λ as 60◦ is of 360◦ — namely 1/6. This immediately gives (at top speed) a step length S = λ/6 or

S ≈ 0.75 m . Alternatively, we can ignore the details of how the leg might bend during the step and simply
assume that it begins with the leg stretched out straight at a 30◦ angle in front (so that the shoulder is
L sin 30◦ = 0.79/2 m behind the foot at the moment the foot first touches the ground) and ends with the leg
stretched out straight at the same angle behind the shoulder (so that the shoulder is 0.79/2 m ahead of the foot

as it leaves the ground) for a total step length of S = 0.79 m , consistent with the estimate above.

(b) Assuming that the maximum acceleration of the foot is equal to the maximum acceleration of the body, find
the acceleration time t1 needed to reach top speed Ut = at1. ANSWER: The maximum acceleration of the
foot (in the context of simple harmonic motion) is amax = Aω2 where A is the amplitude, A = L sinφ
= (0.79 m)(sin 30◦) ⇒ amax = Aω2 = (0.79 m)(3.3 Hz)2 = 8.6 m/s2. Of course, this maximum horizontal
acceleration occurs at the end of the range of motion (e.g., for the “Road Runner” picture, when the leg is
horizontal) and at mid-stride the horizontal acceleration in this model would be zero; so we are bound to be
overestimating the maximum acceleration by something like a factor of two. The problem tells us to assume that
the acceleration of the foot is equal to the acceleration of the body, amax = a, so the time to reach top speed is
t1 = Ut/a = (14.8 m/s)/(8.6 m/s2) or t1 = 1.7 s .5

(c) Determine the speed-up distance s1 (similar to the free fall distance s = 1

2
gt2). ANSWER: The speed-up

distance is similar to free fall distance, but instead of gravity we use our calculated acceleration: s1 = 1

2
at21

= (0.5)(8.6 m/s2)(1.7 s)2 or s1 = 7.3 m .

(d) Calculate the kinetic energy K which the animal attains at top speed. ANSWER: This is straightforward:

K = 1

2
MU2

t = (0.5)(40 kg)(14.8 m/s)2 or K = 4380 J .6

(e) Assuming that K was obtained by the application of an average force F acting during the time t1 or over the
distance s1, the energy equation reads K = F × s1, from which F can be found. ANSWER: Given

K = 4380 J and s1 = 7.3 m, we use F = K/s1 to get F = 600 N .

(f) Find the total energy expense of the hunt, Etot = F × Xhunt and express it in mass of body fat burned,
taking into account a reasonable inefficiency of converting the body fat into muscle fuel.7

ANSWER: Etot = FXhunt = (600 N)(60 m) or Etot = 36 kJ . Such a short sprint would not normally be
reflected in the conversion of fat to fuel, but rather governed by anærobic metabolic pathways. The muscle
biochemistry and histology of cheetah locmotor muscles show a high capacity for glycolysis and indicate that they
are well equipped for anærobic metabolism.8 Nevertheless, the energy has to eventually come from some form of
“chemical fuel”, and if the cheetah had no other source than its own body fat, it would have to “burn” a mass
∆M = Etot/ηh where η ≈ 25% is the efficiency of utilization for work and h = 32 × 106 J/kg is the specific

energy content of fat. This gives ∆M = 0.45 × 10−2 kg or ∆M = 4.5 g . (The cheetah needs to be successful

at least once in every few hundred tries or she will get pretty skinny!)

5This seems pretty quick, but within reason. A Thomson’s gazelle reaches 15 m/s starting from rest in approximately 5 seconds
(Elliott et al., 1977); but the gazelle is more of a middle-distance runner, whereas the cheetah is Nature’s ultimate “power sprinter”.
Assuming that the acceleration of the body and the foot are equal may be an oversimplification. If we throw in a factor of two to
give the average acceleration between 8.6 m/s2 and zero, we get t1 = 3.4 s, which is still a little quicker than the gazelle but a lot
more challenging for the cheetah.

6This value is consistent with Kh = 270 J calculated for just the hindlimb of a cheetah by M. Hildebrand and J.P. Hurley,

1985: “Energy of the oscillating legs of fast-moving cheetah, pronghorn, jackrabbit and elephant”, Journal of Morphology 184

23-31 (1985).
7There is an assumption in the wording of the question that the same force F is applied throughout, even after the cheetah

has reached top speed Ut and ceased accelerating. On one hand, as any sprinter can attest, running at top speed is not effortless,
even though acceleration is finished; there is friction to overcome, and merely moving one’s legs back and forth that fast takes
an enormous amount of work! On the other hand, this does not translate into an externally applied net force F . However, if we
approximate the net rate of work as being the same (namely the maximum the animal can manage) throughout the run, and we
know that it mostly goes into acceleration at the beginning, we can get a fair estimate of the net energy expended by pretending
that the original F is exerted through the entire distance Xhunt.

8T.M. Williams, G.P. Dobson, O. Mathieu-Costello, D. Morsbach, M.B. Worley and J.A. Phillips, 1997: “Skeletal
muscle histology and biochemistry of an elite sprinter, the African cheetah”, Journal of Comparative Physiology B 167, 527-535
(1887).
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2. LANDING ON YOUR FEET: Two young people jump down from a height of h = 2.0 m onto the forest floor
which has a mud hole and a rocky flat. The boy (Mb = 70 kg) lands with stiff legs on the muddy ground, which
“gives” so that he depresses the ground by ∆y = 5 cm when being decelerated from the impact velocity U0 to rest.

(a) Determine the impact speed U0. ANSWER: You can use either the constant acceleration equation

U2
0 = 2gh or the conservation of energy 1

2
MbU

2
0 = Mbgh to get U0 = 6.26 m/s .

(b) Calculate the deceleration (negative acceleration) of the the boy’s center of mass during landing, and
determine the average force on the soles of his shoes during impact. ANSWER: We have little choice but
to assume the mud exerts a constant force Fb during the boy’s impact, absorbing his entire kinetic energy
K = 1

2
MbU

2
0 as work W = Fb∆y done on the mud. Thus Fb = MbU

2
0 /2∆y = (70 kg)(6.26 m/s)2/(2 × 0.05 m)

or Fb = 27, 468 N or 40 times his weight. Ouch!

(c) The girl (Mg = 65 kg) lands on the rock, but in order to reduce the impact force she lands with soft knees
and moves her center of gravity relative to her feet by ∆y = 0.5 m as she lands. What is the average impact
force on the soles of her feet during the landing? ANSWER: The velocity on impact U0 is the same for
both. For the young woman we use the same equation, except that ∆y is 10 times bigger and her mass Mg is
less, so the average force is more than ten times smaller: Fg = MgU

2
0 /2∆y = (65 kg)(6.26 m/s)2/(2 × 0.5 m) or

Fg = 2, 551 N or 4 times her weight.

3. DIFFUSION AND METABOLIC RATES OF A NUDIBRANCH: A certain nudibranch of mass M =
0.005 kg living in 10◦C waters off Vancouver Island carries its gills (mass m) outside its body. Assume that (i)
the gills are 10% of the total body mass, (ii) the gills are tree-like structures that have branches with an average
diameter of D = 500 µm, filled with fine capillary vessels of diameter d = 10 µm right under the skin of the gills.
(See sketch.)

(a) Determine the surface area A of the gills that contributes to the diffusion exchange of oxygen.
ANSWER: Mass of nudibranch: M = 0.005 kg. Mass of gills: m = 0.0005 kg. Gill volume
Vg = (0.0005 kg)/(1000 kg/m3) = 5× 10−7 m3. Gill ‘trunk’ diameter dg = 500× 10−6 m. Gill capillary diameter
dc = 10 × 10−6 m. If we treat the entire gill volume as one long cylinder of diameter dg, its length Lg can be
deduced from its volume Vg = π(dg/2)2Lg: Lg = Vg/π(dg/2)2 = 2.55 m. Then we can calculate its surface area

as Ag = πdgLg = π(500 × 10−6 m)(2.55 m) or Ag = 4 × 10−3 m3 .

(b) Calculate the diffusion flow rate of oxygen Ṅ02
[molecules/sec] into the gills. (See Sect. 4.1.3; assume first

that the blood returning from the body into the gills is completely deoxygenated.) ANSWER: The
diffusion flux Ṅ02

= AgD∆n/∆x, Where Ag is the area over which diffusion occurs, D is the diffusion coefficient
and ∆n is the change in concentration over a given distance ∆x.
Here Ṅ02

= [(4 × 10−3 m2)(18 × 10−10 m2/s)(1.63 × 1023 molecules O2/m3 H2O)]/(10 × 10−6 m) or

Ṅ02
= 1.17 × 1017 molecules O2/s .

(c) Use the relation between Ṅ and Γ which is derived in Section 4.3.3 to determine the metabolic rate of the
nudibranch. ANSWER: Ṅ02

= JO2
/MO2

= (3.4Γ)/(MO2
∆H).

Thus 1.17 × 1017 molecules O2/s = (3.4Γ)/[(32 × 1.6 × 10−27 kg)(30 MJ/kg)]
so Γ = [(1.17 × 1017 molecules O2/s)(32 × 1.6 × 10−27 kg)(30 MJ/kg)]/3.4 = 5.3 × 10−8 MJ/s or

Γ = 0.053 W .

(d) Assuming that for these animals Γ = aM3/4, determine the metabolic constant a.

ANSWER: Γ = aM0.75
⇒ a = Γ/M0.75 = 0.053/0.0050.75 or a = 2.82 .
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(e) Look into the literature to assess if the assumption is reasonable that the blood returning from the body into
the gills is completely deoxygenated. If not, how would this change your answers? ANSWER: Many
references show curves similar to those in Fig. 4.17 on p. 145 of the textbook, indicating that essentially all
hæmoglobin oxygen bonding sites are empty when in equilibrium with a reservoir at zero partial pressure of O2.
However, living tissue is unlikely to have zero partial O2 pressure at any time, so this is not too helpful.

The “Bohr effect” (see above) helps squeeze more O2 out of hæmoglobin sites by filling them with CO2 supplied
by the same tissues, which helps but does not really answer the question. Figure 4.18(b) on p. 146 suggests that
the equilibrium O2 partial pressure in venous blood returning to the lungs is about 5 kPa, compared with about
12.5 kPa for oxygenated blood leaving the lungs, which means that venous blood is still about 40% oxygenated.
Since ∆n is the O2 concentration difference between the water (which we assume has the same O2 partial
pressure as air, namely about 20 kPa) and the deoxygenated blood, if the latter has pO2

≈ 5 kPa instead of zero
as assumed above, it will reduce Ṅ02

by a factor of 15/20 = 0.75, and the other calculations should be adjusted
accordingly.


