Metabolism & Allometry

log body mass

Jan 11th, 2007

Physics Model of an Animal

•Mass & Energy are conserved In = Out All loses accounted for

•Is the model testable? Measurements to test theory

·Unifying principles can describe phenomena

Zoologist's Model of an Animal

Fuel + $O_2 = \Delta H$ + waste

Heat of reaction, $\Delta H = \Delta m h$

i.e. flight

How do we measure metabolic rate?

Measure O_2 , and fuel, intake to estimate energy (ΔH)) required to hover (ΔW)

Fuel + O2 = ΔH + waste

 $\Delta H/\Delta t = \text{metabolic rate or power } \Gamma$

Mass specific metabolic rate Γ/M

Hummingbird muscle: mass specific power Γ/M ≈ 100 W/kg (highest among vertebrates)

(Chai & Dudley, 1995, Nature)

Measuring Γ in other animals (usually at rest)

Allometry: how things scale with mass

Range of body sizes: 10²¹

Mycoplasma: <10⁻¹³ g

Blue whale: >10⁸ g

(Giant sequoias excluded for now)

How big is a blue whale?

How much of a difference is 10²¹?

10²¹

Blue whale

Does size matter?

Mycoplasma: <10⁻¹³ g

Blue whale: >10⁸ g

"You can drop a mouse down a thousand-yard mine shaft; and, on arriving at the bottom, it gets a slight shock and walks away, provided that the ground is fairly soft. A rat is killed, a man is broken, a horse splashes." `On being the right size', by J. B. S. Haldane (1928).

How to study the consequences of size: Scaling

Allometric equations: $Y = aM^{\alpha}$

log(mass)

Allometric equations: $Y = aM^{\alpha}$

log(mass)

log(mass)

Size matters, but why?

Sleep scales too, but with brain size, not body size:

14 hrs/day

4 hrs/day

Scaling transcends biology: F/M

(Marden, J. H. 2005. J. Exp. Biol.)

What determines the allometry of metabolic rate?

- Energy demand of all cells
- But is it supply limited? (see West et al., 2005)

Smaller animals live fast, but die young

 A gram of tissue, on average, expends the same amount of energy before it dies in any animal.

Metabolic rates (in W) of mammalian cells

Energy requirements of cells are situation dependent

West, G. B. et al. 2005

Resting or basal metabolic rate (BMR) scales: 4M^{3/4}

Metabolic rate is dynamic

Metabolic rate is dynamic

Keep this in mind for the staircase olympics

Consequences of scaling of Γ , an example Blood vol. = M^1 log(Y) $\Gamma = 4M^{3/4}$ $\gamma_{\rm o} = {\rm M}^{-1/4}$ log(mass)

Diving capacity = 1000 m deep, 1 hr long

Allometry of diving capacity

Maximum Duration (min)

Other consequences: migration

$\Delta H = \Delta m h$ $\Gamma = \Delta H / \Delta t$		
	Ruby throated hummingbird	Humpback whale
Г/M	high	low
Migration	Alaska - Mexico	Alaska - Mexico
Fasting capacity	low	high

Advice for assignments

 State your assumptions and justify them with first principles if possible

Advice for assignments

 Look up data from published resources to include in your physical model or to compare your calculated results. Include a copy of the article with your assignment (no monographs please).

 Compare your results and conclusions with other animals, or even man-made machines.

Advice for building physical models

- Build a model or theory to predict, then test with data
- Start simple, add complexity slowly
- Model after machines that we know more about

Alexander, R. M. (2005). Models and the scaling of energy costs for locomotion. J. Exp. Biol. 208,1645 -1652.