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Animal Locomotion

Edweard Muybridge, 1887 using a series of 50 electrically
triggered still cameras at 0.022sec interval (45fps)

Edweard Muybridge, 1887 using aseries of electrically triggered still cameras at 0.022sec int

Photographic study of locomotion began with a bet (1872)

Leland Stanford Eadweard Muybridge

Comissionedto estabiishwhether agalloping
"unstpported transit’ horse ever hes all four feet off the ground
simutaneotsly with new photogrephic 2
tecnology

zoopraxiscope
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Muscle Properties
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Wheels in nature: why so few?

Limbs as propulsors
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Over a series of strides the average vertical force must equal the animels weight

Howto run faster &its
metabolic cost
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Running: support and swing phases
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Limbs as propulsors
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Caost of transport (for marine mammels)
E, =cM¥U

Speedis nvariant of M(50kg |
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mi-Aquatic Mammals

Marina Mammals

Fnergetc Costs (4 kg m )

Fish
o1 1 e 100 1000 10000
By Moo

1000

Lirbs bearing weight

“amivorans W05
and somall mamuals

i n 100
log bone diameter

Why don't these animals
experience stresses that
break bones?

Bigger animals accommodate for larger stresses by changing posture

CHIPMUNK GALLOPING

"y HORSE GALLOPING
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Limbs (bones & muscles) bearing weight: scaling
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Moments (cross-product of force vectors and moment arms) around joint must be balanced:
external moments produced by the ground force are counteracted by musde moments.

F.xr=GxR EMA=/R=GF,

With a straighter limb posture, lower joint moments and muscle forces are reguired to exert the same,
ground contact force . P

How to measure EMA

FRAME (@ 60 Hz)
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Detsrm'ning moment arms and ground reaction forces
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Periodic motion & Resonance

Store mech Ein elastic oscillations, via elastic structures, and recover that
E only if the timing is right: resonant frequency f
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Periodic motion & Resonance 5

Stare mech Eiin elastic oscillations, via elastic o
structures, and recover that E only if the timingis g
right: resonant frequency f g
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Saving energy (30-70%) with resonance: jellyfish bells modeled as a harmonically forced,
damped oscillator (Demont & Gosline, 1983) . -
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Runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing themto
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Highlights for next week

Tuesday: Dan Dudek Thursday: John Gotsline37



