BIOL/PHYS 438 Zoological Physics

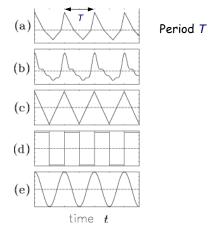
- Logistics
- Review of the physics of Waves
 - Basic phenomenology: period & wavelength
 - SHM in time and space: "the" Wave Equation
 - Phase vs. Group velocities: Dispersion
 - Reflection & Refraction: Snell & TIR
 - Electromagnetic waves: spectrum, color
 - Thin Film Interference: butterfly colors

Logistics

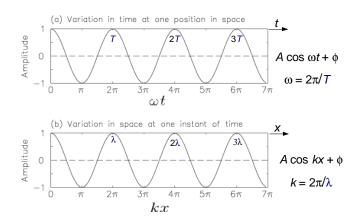
Assignment 1:	Solutions now online!
Assignment 2:	Solutions online soon!
Assignment 3:	Solutions online soon!
Assignment 4:	due next Tuesday
Assignment 5:	due Thursday after next

Hopefully your **Projects** are underway by now . . .

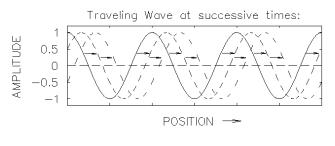
Periodic Phenomena



Sinusoidal Wave



Phase Velocity



 $y(t) = A \cos(kx - \omega t + \phi)$

 $c = \lambda/T = \omega/k$

"The" Wave Equation

Suppose we know that we have a traveling wave $A(x,t) = A_0 \cos(kx - \omega t).$

At a fixed position (x = const) we see SHM in time:

$$\left(\frac{\partial^2 A}{\partial t^2}\right)_x = -\omega^2 A \tag{8}$$

(Read: "The second partial derivative of A with respect to time [*i.e.* the *acceleration* of A] with x held fixed is equal to $-\omega^2$ times A itself.") *I.e.* we must have a *linear restoring force.*

"The" Wave Equation, cont'd

Similarly, if we take a "snapshot" (hold t fixed) and look at the *spatial* variation of A, we find the oscillatory behaviour analogous to *SHM*,

$$\left(\frac{\partial^2 A}{\partial x^2}\right)_t = -k^2 A \tag{9}$$

(Read: "The second partial derivative of A with respect to position [*i.e.* the *curvature* of A] with t held fixed is equal to $-k^2$ times A itself.")

"The" Wave Equation, cont'd

Thus
$$A = -\frac{1}{\omega^2} \left(\frac{\partial^2 A}{\partial t^2} \right)_x = -\frac{1}{k^2} \left(\frac{\partial^2 A}{\partial x^2} \right)_t$$
.
If we multiply both sides by $-k^2$, we get
$$\frac{k^2}{\omega^2} \left(\frac{\partial^2 A}{\partial t^2} \right)_x = \left(\frac{\partial^2 A}{\partial x^2} \right)_t.$$
But $\omega = ck$ so $\frac{k^2}{\omega^2} = \frac{1}{c^2}$, giving
the Wave
Equation
$$\frac{\partial^2 A}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = 0$$
(10)

In words, the *curvature* of A is equal to $1/c^2$ times the *acceleration* of A at any (x,t) point.

01/03/2007

Other "Wave Equations"

"The" Wave Equation governs our two most important types of waves:

SOUND (vibrations of a compressible medium) and **LIGHT** (electromagnetic oscillations), for which the *phase* and *group* velocities are the same:

But there are others for which this is not true:

WATER WAVES: $\omega = \sqrt{\frac{g k}{2}}$ and

MATTER WAVES, (see Schroedinger Equation)

Group Velocity

The phase velocity of a wave is always given by

 $v_{\rm ob} = \omega/k$

But *information* travels at the group velocity:

$$v_{\rm g}~\equiv~rac{\partial \omega}{\partial k}$$

These are not always the same!

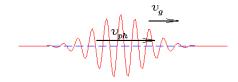
Water Waves

For DEEP OCEAN WATER WAVES,

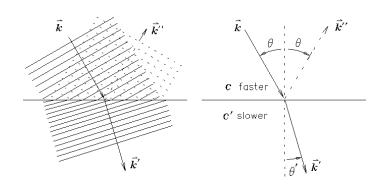
giving

$$v_{\mathsf{ph}} = \sqrt{\frac{g}{2k}}$$
 and $v_{\mathsf{g}} = \frac{1}{2}\sqrt{\frac{g}{2k}}$

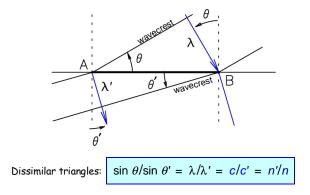
 $\omega = \sqrt{\frac{g k}{2}}$



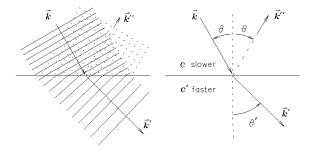
Reflection & Refraction



Snell's Law

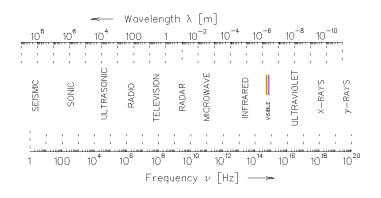


Total Internal Reflection



 $\sin \theta / \sin \theta' = n'/n$: For n' > n, at some angle θ_c this predicts $\theta' = \pi/2$, *i.e.* there is **no** refracted wave; then for $\theta > \theta_c$ we get a *perfect mirror*! (Ask any fish!)

The Electromagnetic Spectrum



Colors

How do we perceive color?

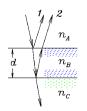
Can you tell a pure green laser from a mixture of pure blue and pure yellow lasers?

Can you tell a pure violet laser from a mixture of pure red and blue lasers?

What is the difference between violet and "purple"?

Thin Film Interference

We always draw the reflected and refracted rays at a small angle to the normal so that the two reflected rays (1 & 2) can be shown separately; but in reality we are always talking about **normal incidence**.



To decide if rays 1 & 2 are in phase or out of phase, we add up their phase differences. Upon reflection, if $n_{\rm B} > n_{\rm A}$, ray 1 experiences a phase shift of π ; ray 2 has a similar phase shift if $n_{\rm C} > n_{\rm B}$. Then the path length difference (2d) gives a phase difference of $\Delta \theta_{\rm path} = 2\pi (\Delta \ell / \lambda_{\rm B})$ where $\lambda_{\rm B}$ is the wavelength in medium B. Let's suppose $n_{\rm C} > n_{\rm B} > n_{\rm A}$

so that both reflected rays get the same "phase flip". Then the path length difference of 2d is the only source of $\Delta\theta = 2\pi(2d/\lambda_{\rm R})$.

If $d = \lambda_{\rm B}/4$ (what we call a "quarter-wave plate") then rays 1 & 2 will interfere destructively, giving minimum reflection & maximum transmission. This is used in "anti-glare" coatings on windows, glasses and camera lenses.